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Micro-computed X-ray tomography (MicroCT) is one of the most powerful
techniques available for the three-dimensional characterization of complex
multi-phase or porous microarchitectures. The imaging and analysis of
porous networks are of particular interest in tissue engineering due to
the ability to predict various large-scale cellular phenomena through the
micro-scale characterization of the structure. However, optimizing the
parameters for MicroCT data capture and analyses requires a careful balance
of feature resolution and computational constraints while ensuring that a
structurally representative section is imaged and analysed. In this work,
artificial datasets were used to evaluate the validity of current analytical
methods by considering the effect of noise and pixel size arising from
the data capture, and intrinsic structural anisotropy and heterogeneity.
A novel ‘segmented percolation method’ was developed to exclude the
effect of anomalous, non-representative features within the datasets, allow-
ing for scale-invariant structural parameters to be obtained consistently
and without manual intervention for the first time. Finally, an in-depth
assessment of the imaging and analytical procedures are presented by con-
sidering percolation events such as micro-particle filtration and cell sieving
within the context of tissue engineering. Along with the novel guidelines
established for general pixel size selection for MicroCT, we also report
our determination of 3 μm as the definitive pixel size for use in analysing
connectivity for tissue engineering applications.
1. Introduction
A key desire in tissue engineering is to mimic existing native environments in
order to effectively regenerate them. A single piece of natural tissue exhibits sig-
nificant heterogeneity in structure, chemistry and biology and thus there has been
a drive for increased complexity within scaffold design. Several chemical and bio-
logical phenomena, including nutrient diffusion andmigration of cells are heavily
dependent on the pore size and connectivity. Even though general rulesmay exist
to understand the interdependence between pore size and processing conditions
[1] scaffolds require significant structural characterization and analysis.

Micro-computed tomography (MicroCT) provides an obvious tool for the
characterization of tissue-engineering scaffolds and development in image analy-
sis, particularly pioneered by Ashworth et al. [2–4], has allowed for its application
as a predictive tool for cell migration. However, the results from any MicroCT
analysis should be treated with a degree of caution. As Liu et al. described in
2011 [5] ‘the limitation of microtomography lies in the relationship of the length
scale and resolution of the images’ if a higher resolution is desired then typically
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Table 1. List of nomenclature used for the terminology used in this paper.
Where possible, terms are grouped to represent the objects of similar nature
such as computational units (p, c), probes (d) and structural elements (D).

term nomenclature

pixel size p

maximum pixel size given resolution constraints pmax
minimum pixel size given computation constraints pmin
pixel size constraint given analysis panalysis
pixel size constraint given application pexperiment
voxel cluster size c

maximum voxel cluster size given

resolution constraints

cmax

minimum voxel cluster size given

computation constraints

cmin

maximum voxel cluster size given resolution

and regression constraints

cmax,data

minimum voxel cluster size given computation

and regression constraints

cmin,data

voxel cluster diameter d

median interconnection diameter dmedian
percolation diameter dperc
percolation diameter stable to ROI subdivision dperc,stable
size of a real percolating object of interest dobject
smallest probe size possessed by virtual

percolation object of interest

dprobe

typical protrusion size of a real

compressible object

dprotrusion

artificial mesh repeat distance Drepeat
pore size Dpore
maximum pore size in a given sample Dmaxpore

minimum pore size in a given sample Dminpore

minimum connection (fenestration) size Dfen
ROI side length R

original ROI side length R0
ROI size at the ith iteration of the ROI

subdivision method

Ri

volume of VOI V

volume of solid material Vm
volume measured after shrink-wrap operation at

cluster size c

Vc

standard deviation in pore sizes σpore
typical length scale of structural variation L0
length of accessible pore volume at a voxel

cluster size, c

Lc
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a smaller length scale will be scanned. This limitation can be
extended further, at high resolution a ‘representative volume
element’ [5] may consist of a dataset that is too large to be pro-
cessed for percolation analyses given the constraints of
computation placed by commercially available software, and
scanning time. On the other hand, if too low a resolution is
selected then crucial features may be lost. While the scientific
literature generally reports the pixel size for any analysis
within the methods sections, it has not been considered as a
potential constraint in the case of analysis of pore size or
measures of interconnectivity.

Structurally graduated collagen scaffolds were produced in
recentwork as a bonemarrowanaloguewithin a bio-reactor set-
up. Although other bone cells are present in vivo, this studywas
set up such that only the bonemarrow-derivedmegakaryocytes
were seeded onto the scaffold, which offered sieving capability
and shear flow over the megakaryocyte surfaces to enhance
platelet output [6]. Although highly interconnected systems
have been produced by Haugen et al. [7] and Tresoldi et al. [8],
the pore structure was desired such that the larger megakaryo-
cytes (approx. 30 μm in size) were distributed through the
scaffold and only platelets released into the outlet flow. Theor-
etical analyses of porosity using MicroCT analysis and
synthetic micro-particle filtration were applied as predictive
tools to tailor cell distribution within and release out of the scaf-
fold. In this study, interconnectivity analysis from MicroCT
analysis predicted a highly interconnected structure (over 90%
connectivity for theoretical spheres of up to 30 μm diameter)
suggestingmuch reduced sieving capability thanwas observed
experimentally. Thus, there is a need for an in-depth investi-
gation and improvement of current tools available for the
measurement of interconnectivity in porous structures.

In this work, we develop guidelines and optimize methods
for MicroCT data acquisition and analysis in three stages.
Firstly, well-defined artificial microCT datasets are produced
to understand the effect of pixel size, feature size, noise and
anisotropy using controlled structures devoid of experimental
artefacts. We explore ways in which the issues associated with
percolation diameter extraction may be overcome through the
‘segmented percolation analysis’ method whereby the ROI is
subdivided and analysed post data acquisition. Secondly,
after optimization on the artificial datasets, we take structurally
variable collagen scaffolds produced by a multi-stage lyophili-
zation process [6] and scan the same volume at a variety
of pixel sizes through the application of camera binning.
The influence of this pixel size on pore size analysis, intercon-
nectivity and percolation analysis is considered in the two
structurally distinct regions of the scaffold using the novel
segmented percolation methodology developed in this work.
Finally, we provide general guidelines for pixel size selection
prior to data capture in tissue-engineering scaffolds. Through
the judicious selection of pixel size and the use of the
segmented percolation analysis method, this work provides
the framework to obtain a value for the percolation diameter
consistent with the experimentally observed percolation
of micro-particles.
critical exponent for percolation analysis ν

granularity in voxel cluster sizes gc
granularity in ROI subdivision gsub
number of data points needed to calculate

percolation diameter

ndata
2. Material and methods
2.1. Terminology
Table 1 contains the full list of nomenclatures and figure 1 rep-
resents a graphical summary of the terminology used in this paper.



computational units

pixel voxel
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3× binning
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3D reconstructed image
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Figure 1. A summary of the terminology used in this paper. A pixel is a 2D picture element that can resolve a physical object of size p in one dimension. Pixels can
be binned to behave as a singular unit to improve signal-to-noise ratios but at the cost of resolution. A voxel is a 3D computational volume element which can be
dimensionalized to a real object using the pixel size p. Computational operations may involve the use of clusters of voxels whose size is determined by the number
of voxels in one dimension. A volume of interest represents the ‘representative volume element’ chosen by the user for analysis from the macroscopic dataset,
whereas a region of interest refers to a 2D slice within each volume of interest.
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A pixel is a 2D picture element and a component of the
MicroCT camera whose side size, p, determines the ultimate resol-
ution of the scan. For optimum resolution, each pixel of the
detector can be treated individually, although the resulting signals
are low, leading to long scan times. By applying camera binning,
intensities are increased and exposure times reduced. For instance,
in 2× camera binning, a pixel size becomes 2 × 2 pixels andwith 4×,
camera binning is 4 × 4 pixels. Camera binning is not only associ-
ated with reduced scan times but also reduced file sizes, thus
leading to more efficient image processing.

Avoxel is a three-dimensional volume element used in the com-
putational rendering of the reconstructed scaffold, which can be
dimensionalized to a real object using the pixel size of p. Compu-
tational operations may involve the use of spherical voxel clusters
whose size, c, is determined by the number of voxels along a diam-
eter. Thus, a 2-voxel cluster refers to a cluster with a length of 2
voxels along its diameter, with c = 2. The physical diameter of a
voxel cluster can, therefore, be denoted by d, where

d ¼ pc:

Finally, the volume of interest (VOI) with magnitude V, refers
to the section of the macroscopic dataset that is chosen by the
user as a representative volume element of the larger dataset.
A region of interest (ROI), of side length R, refers to a selected
2D slice within the volume which may be used for further com-
putational operations.

2.2. Artificial mesh generation
Aligned and shifted artificial meshes were generated in ImageJ [9]
(NIH, USA) at simulated pixel sizes of 1.5 μm, 3 μm and 6 μm. To
replicate a VOI that is roughly 2mm3, 1333, 666 and 333 images
were produced in a given stack for 1.5 μm, 3 μm and 6 μm, respect-
ively. Black and white square meshes as seen in figure 2 were
generated in ImageJ with a repeat distance, Drepeat of 40, 60, 80,
100 and 120 μm within each simulated pixel size, such that
‘black’ pixels represent the empty space and ‘white’ pixels rep-
resent the pore struts. Shifted lattices were produced by shifting
the origin of the axis by a distance equal to the pixel size in each
subsequent slice. The strut thickness in all the shifted and aligned
lattices was 1-pixel.
Further lattices were generated from the aligned meshes
through noise incorporation. This noise was applied in ImageJ
through a sequence of three steps. Firstly, a filter to smooth the
active image was applied, whereby each pixel was replaced by
the average of its immediate neighbours in the stack. Then, a
‘salt and pepper’ function in ImageJ was applied to the dataset
whereby 2.5% of black pixels and white pixels were randomly
selected and inverted. Finally, a Gaussian blur filter with a
radius of decay equal to two times the stack depth (666 for 6 μm,
1332 for 3 μm and 2666 for 1.5 μm), was applied to smooth the
VOI. One, two, four and eight passes of this noise incorporation
process were performed on the aligned datasets at a mesh repeat
distance of 100 μm at all pixel sizes. Using the CTAnalyzer soft-
ware (Bruker, Belgium), all datasets were then thresholded and
segmented using the automatic Otsu algorithm. Representative
3D volumes to illustrate the creation of aligned, shifted and
noisy datasets from 2D image slices are illustrated in figure 2.
2.3. Pore size analysis
Pore sizeswere determined using the 3D object analyser tool within
the CTAnalyzer software (Bruker, Belgium). The data were plotted
as the mean pore size ± s.d. of the pore size distribution.
2.4. Interconnectivity analysis
In order to measure the interconnectivity, ROIs were subjected to a
shrink-wrap operation. Briefly, this operation uses a spherical
voxel cluster as a probe to identify accessible pore spaces within
the VOI. The ‘3D ROI shrink-wrap’ was performed using the
CTAnalyzer software (Bruker, Belgium) with clusters 2–100
voxels in diameter. The 3D object analyser tool in CTAnalyzer
(Bruker, Belgium) was used to determine the volume of the simu-
lated struts after each shrink-wrap operation at a given voxel
cluster size.

Adopting the expression for interconnectivity from Fostad
et al. [10], the percentage interconnectivity (I) at given voxel clus-
ter size c can be expressed as

I ¼ V � Vc

V � Vm
� 100%,
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 2D layers
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Figure 2. Representative thresholded 2D slices and the 3D volume reconstructions of the artificial meshes. Volumes illustrated here were generated in ImageJ at a
simulated pixel size of 6 μm with a grid repeated distance, Drepeat of 100 μm. All volumes are oriented to indicate the open channels that run through the structure.
The black spaces in the 2D slices represent the empty space whereas the white represents struts.
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where V is the total VOI, Vm is the volume of the solid material
and Vc is the volume measured after a shrink-wrap operation at
voxel cluster size c.

Figure 3 illustrates typical interconnectivity plots as well as
the median interconnection diameter, dmedian, the voxel cluster
diameter at which only 50% of the scaffold is accessible. dmedian

was calculated using a linear interpolation for each inter-
connectivity measurement where sufficient data points exist to
interpolate the value at 50%.

2.5. Percolation analysis
The percolation diameter, dperc may be defined as the diameter of
the largest sphere able to penetrate through an infinitely large
scaffold and, unlike percentage interconnectivity, is a scalable
measure. By increasing the pixel normalized voxel cluster diam-
eter, d, the corresponding length of accessible pore volume L in the z
direction can be measured. These data can be plotted using the
critical scaling law relationship from percolation theory [3] in
order to calculate the percolation diameter

L ¼ L0(d� dperc)
�n,

where the constants ν and L0 represent the critical scaling
exponent, and typical length scale of structural variation,
respectively [11].
Using CTAnalyzer software (Bruker, Belgium), the generated
meshes were thresholded and segmented using the automatic
Otsu algorithm. A ‘3D ROI shrink-wrap analysis’ was performed
in CTAnalyzer using spherical voxel clusters 2–100 voxels in
diameter for each dataset, and the resultant ROIs were saved
as binarised images. A bespoke Python script was written to
analyse the binarised images. As illustrated in figure 4, the
script identifies the first and last slice in the stack of images
post-shrink-wrap to present entirely blank pixels. A completely
blank slice represents a slice unconnected to any pores from
either vertical surface. The distance from the surface to the first
blank slice in the direction of percolation is then calculated as
the percolation depth L at that given voxel cluster size.

As illustrated in figure 5, the percolation diameter, dperc, for
each dataset was then obtained by using linear regression on
the set of d and their corresponding L−1/ν, where ν = 0.88 for
3D datasets [12].

2.6. Segmented percolation analysis
The Python script for percolation length calculation was
extended to allow for iterative, segmented analysis of the saved
binarised images. Using a granularity factor gsub, the percolation
analysis was performed on a subdivided region of the original
image such that each ROI is smaller than the previous region
analysed by a factor of 1/g. This gsub represents the number of
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dmedian
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Figure 3. A schematic of the typical interconnectivity plots and median interconnection diameters, dmedian, obtained at different pixel sizes. dmedian is defined as the
voxel cluster diameter at which only 50% of the scaffold is accessible. Since d = cp, and the set of cluster sizes available for computation is the same regardless of
pixel size, there is a scale accessible by voxel clusters at each pixel size varies (as shown in with the grey boxes). This may result in the median value to be off the
accessible scale, and may not be determinable for samples imaged at either too high or too low a pixel size.

Csmall

Lbot
Lbot
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Ltop

Clargeincreasing voxel cluster size

last blank slice last blank slice

first blank slice
first blank slice

Figure 4. The shrink-wrap process produces stacks of data at each voxel cluster size, c, representing open, interconnected pore clusters as black voxels and both
struts and other isolated, unconnected clusters as white voxels. The Python script identifies the first and last slices at which no connected pores exist in the stack,
represented by an entirely blank slice. The distance from the top of the VOI to the first blank slice, Ltop and the equivalent distance from the bottom, Lbot were then
used to determine the percolation diameter.

dperc

dperc dperc

L–1/v L–1/v L–1/v

d d

ideal anomalousanomalous

d

Figure 5. A schematic of the typical percolation linear regression plots. dperc is obtained from the intercept of the line drawn to fit the data points obtained from the
analysis. The limits of scalability or presence of inhomogeneity may produce anomalous data points, resulting in a deviation from linearity or an unphysical (nega-
tive) percolation diameter.
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smaller sections that will be created through each subdivision
method. Therefore, at iteration i, the dimensions of the image are

Ri ¼ R0 � i
R0

gsub
,

where Ri is the current dimension and R0 is the original ROI
dimension. As seen in figure 6, sets of subdivided images of
dimensions Ri ×Ri were produced during the analysis. The first
set was partitioned such that all subdivided images Ri × Ri

share the centre of the original image R0 ×R0, whereas the
second set was designed for each Ri ×Ri section to share the
top left corner with the original image.

For this analysis, gsub was chosen to be 20 for computational
convenience.

2.7. Percolation diameter selection
Since the subdivision algorithm described in §2.6 produces a per-
colation diameter for each segmented ROI, a sequence of steps
were employed to select a single percolation diameter to



R0

R6

R6

R2

R1 R1

R2

typical ROI

centre ROI
subdivision

left ROI
subdivision

Figure 6. An illustration of the influence of anomalous pathways in the chosen ROI, preventing the calculation of a percolation diameter. The subdivision method
(here with gsub = 6), calculates a percolation diameter outside the regions (shaded in grey) where such features exist. From the typical ROI shown, anomalous pores
which are not in the top right corner of the ROI will be eliminated using the left subdivision method. Similarly, anomalous pores that are not in the centre of the
ROI will be eliminated by the centre subdivision method.
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characterize the entire dataset. Firstly, all the percolation diameters
were rounded to the nearest multiple of the pixel size, in order to
reflect the intrinsic limits of resolution. Secondly, all non-positive
values were removed from the datasets since they do not represent
a physical percolation diameter. Finally, the percolation diameter
exhibiting the longest plateau (the most stable, repeated value)
with respect to the subdivided region size (ROI subsize) was
selected for the ‘left’ subdivision method and for the ‘centre’ sub-
division method. Data were plotted as the mean ± s.d. of two
percolation diameters (measured from the top and bottom of the
stacks as indicated in figure 4) for each mesh generated.

2.8. Scaffold fabrication
MicroCT analysis was carried out on structurally variable collagen
scaffolds previously produced for the purpose of cell filtration
during ex vivo platelet generation. These scaffolds were produced
by a two-stage lyophilization process as described elsewhere
[6,13]. A continuous interface existed between two structurally dis-
tinct regions, a top region with a larger more anisotropic structure
and a base layer exhibiting amore isotropic, smaller pore structure.

2.9. Micro-computed tomography
As previously described [6] 5mm diameter cylindrical punched
samples were analysed using a Skyscan 1272 (Bruker, Belgium)
desktop MicroCT system. An initial scan pixel size of 1.5 μm
was selected (no applied camera binning), with an operating vol-
tage of 25 kV. These data have been previously published [6] but
scanning was then repeated of the same samples with 2× and 4×
camera binning applied, resulting in pixel sizes of 3 and 6 μm.

Resulting projections were reconstructed in NRecon (Bruker,
Belgium) and systematic VOIs selected as described previously
[6]. A three-dimensional analysis was carried out in after auto-
matic Otsu thresholding and sweep despeckling in CTAnalyzer.

2.10. VOI selection
For porosity analysis, multiple VOIs of 1 × 1mm cross-section
were selected in the top and bottom regions of the scaffold.
The precise thickness of these VOIs was dependent upon the
specific structure of each scaffold (ensuring the analysis was per-
formed on the bulk region of the layers and not the interface) but
was approximately 1mm.
2.11. Structural analysis
In order to mimic the conditions of cell seeding from a single face,
VOIswere initiallymodified to allowpenetration only from the top
x–y plane by inserting a solid border around the ROI. An intercon-
nectivity analysis was carried out using the ‘3D ROI shrink-wrap
analysis’ with increasing voxel cluster size using clusters of 2–30
voxels; 3D object analysis was used to calculate the inaccessible
volume after each shrink-wrap operation as defined in §2.4. The
length of accessible pore volume was calculated manually for
these real datasets. After shrink-wrap, the resulting ROIs were
saved as stacks of binarised images. For modified ROIs, the dis-
tance from the surface to the first entirely blank slice was
determined. VOIs were also considered without modification
where penetration from all surfaces occurred. The first non-
connected slice was defined as the first to be absent of pore
necks (i.e. where only surface pores were accessible). The percola-
tion diameter, dperc, for each dataset was then obtained as
described for the artificial meshes before the ROI subdivision pro-
cess was additionally carried out to obtain dperc,stable. Data were
plotted as the mean ± s.d. of two percolation diameters.
2.12. Three-dimensional representation
Volume-rendered models of representative VOIs were generated
using CTVox software (Bruker, Belgium).
2.13. Statistical analysis
Statistical analysis of ‘real’ data was carried out in Graph Pad
Prism 7.04. Statistical significance was determined with a one-
way ANOVA, followed by Tukey’s HSD with a significance level
of p = 0.05, since data satisfied the Shapiro–Wilk test for normality.
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Figure 7. Structural characterization of the artificial datasets: mean pore diameter of the (a) aligned (b) shifted (c) noise-incorporated meshes. Representative
distributions of (d ) pore size distributions and (e) interconnectivity obtained for the shifted meshes at a 3 μm simulated pixel size. Here, passes of noise
refers to the number of passes the ‘salt and pepper’ function was applied to add noise as defined in §2.2. Error bars represent the standard deviation.
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3. Results
3.1. Analysis of artificial datasets
3.1.1. Pore size
Pore sizes were measured for each mesh repeat distance in the
aligned and shifted lattice. As seen in figure 7a,b, linear
regression of the pore sizes revealed aligned meshes to have
an average pore size approximately 0.9 times the mesh repeat
distance, averaged across the three pixel sizes. Shifted lattices,
on the other hand, were roughly 1.6 times smaller than the
mesh repeat distances. Considering noise incorporation to
aligned datasets with a mesh repeat distance, Drepeat = 100
μm. Figure 7c reveals a decrease inmean pore size at increasing
passes of ‘salt and pepper’ noise incorporation. The discrepan-
cies between the pixel sizes are greatest at the highest levels of
noise incorporation, with the 6 μm pixel size producing larger
mean pore sizes, followed by 3 μm and 1.5 μm.

A narrow distribution of pore sizes is obtained with the
aligned meshes as seen in figure 7d with the mode coinciding
more closelywith themesh repeat distances than themeasured
pore sizes as observed in figure 7a for the aligned and shifted
lattices. The best matches between the mesh repeat distance
and the mode of the pore size distribution are observed at
the lowest pixel size of 1.5 μm. The modes of the pore size dis-
tribution of the shifted lattices correspond well with the
measured average pore sizes as seen in figure 7b.
Similarly, a systematic decrease in the mode of the pore
size distribution is observed with decreasing mesh repeat dis-
tances in figure 7d, corresponding well with the average pore
size measured. The standard deviations in the pore size dis-
tribution did not vary systematically with increasing
degrees of noise incorporation at any pixel size.

A representative interconnectivity plot is shown in
figure 7e for the shifted lattices simulated at a pixel size of
3 μm, and figure 8 illustrates the extrapolated median intercon-
nection diameter, or the value at which 50% interconnectivity
is achieved in the structure. The complete set of data pertain-
ing to the pore size distributions and interconnectivity are
presented in electronic supplementary material, figures S1
and S2. As expected, the percentage of accessible volume
decreased with the mesh repeat distance, and a systematic
decrease in the interconnectivity of the scaffold was also
observed with increasing degrees of noise as seen in figure
8c. The accessible volume did not vary with pixel size,
although the ability to compute a median interconnection
diameter was impeded at high pixel sizes and low mesh
repeat distances. The cluster size at which the sharpest
drop-off occurs with these lattices roughly corresponds
with the (highest) mode of each pore size distribution
observed in figure 7d. However, the median interconnection
diameters possessed the same values as the mean pore
sizes measured in figure 7.
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correlated with the average pore size distributions in figure 7a–c, although the values correlate more strongly with the mode of the pore size distribution rather than
the mean values.
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Figure 9. Representative percolation diameters as obtained through the centre ROI subdivision method for (a) shifted lattices at mesh repeat distances of 40–120
μm and (b) noise incorporated aligned lattices with 1, 2, 4 and 8 passes of the ‘salt and pepper’ function. Datasets analysed here were generated at a simulated
pixel size of 3 μm. Percolation diameters observed here demonstrate large variations with subdivision, with regions that can be characterized by a single stable
percolation diameter, dperc,stable.
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3.1.2. Percolation
Representative plots illustrating the percolation diameters
obtained with centre subdivision of the ROIs are shown in
figure 9. The full set of percolation diameters for the shifted
datasets and their associated R2 values are plotted in elec-
tronic supplementary material, figures S3a and S4a as a
function of the subsize in pixels. The percolation diameters
displayed variation with subdivision, with regions that can
be characterized by a single stable percolation diameter,
dperc,stable. The inclusion of noise to the aligned structures
resulted in no negative values of dperc,stable observed, through
either subdivision methods. However, datasets with increas-
ing degree of noise incorporation exhibited less stability in
the percolation diameter with ROI subdivision. In general,
the R2 value increases with subdivision from the largest
ROI subsize, for all pixel sizes and subdivision methods used.

Similarly, electronic supplementary material, figures S5a
and S6a represent the percolation diameters obtained through
left and centre subdivision of the noise-incorporated datasets.
These reveal that negative values of dperc were observed at
very high or very low subdivision sizes. Percolation diam-
eters were also not obtained consistently at lower subsizes,
lower resolution, and at low mesh repeat distances.

The results of the subdivision process can be consolidated
into a single table as shown in table 2, where the stability
and goodness of fit can be compared for percolation diam-
eters obtained through the different subdivision methods.
On the whole, these indicate that all methods are suitable
for determining the percolation diameter in a noisy or
isotropic structure.

By using the segmented percolation method outlined in
§2.6, a single effective percolation diameter, dperc,stable was
extracted from these datasets and plotted in figure 10a,b. The
dperc,stable of the shifted lattices revealed that not all subdivision
methods were capable of extricating a percolation for each
mesh repeat distance at each pixel size. In general, the values
obtained at pixel size 1.5 μm and 3 μm revealed an increase in
the percolation diameter with mesh repeat distance. Although
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Figure 10. Effective percolation diameter, dperc,stable from shifted lattices and noise incorporated lattices using the longest plateau selection criteria. A good match is
observed to the mean pore size, particularly for the noise incorporated samples in figure 7c. Error bars represent the standard deviation. (a) Shifted and (b) noise
incorporated.

Table 2. Summary of the percolation diameters obtained on the artificial
datasets using all subdivision methods. All subdivision methods were
capable of extracting a positive stable percolation diameter, although the
quality of fit decreased slightly with increasing noise (as measured by the
R2 values of the linear fit.)

noise subdivision R2 ranges sign of dperc,stable

× left >0.9 +ve

× centre >0.9 +ve

✓ left >0.7 +ve

✓ centre >0.8 +ve
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a clean trend is not observed, the values were generally consist-
ent with the pore sizes corresponding to the smallest mode of
each pore size distribution observed in figure 1.

Similarly, for the datasets with added noise in figure 10b,
the value of dperc,stable demonstrated a strong correlation with
the calculated mean pore sizes in figure 7c, particularly at 1.5
and 3 μm. At 6 μm, a similar trend is observed and obtained
through the left subdivision method.
3.2. Analysis of experimental data: structurally variable
ice-templated scaffolds

The cross-sectional images and volume-rendered models of
figure 11 demonstrate highly porous interconnected structures
with clear structural variation between top and bottom regions.
For the purpose of visual imaging alone, there appears little
advantage to the longer scan time and higher data use of the
lowest resolution scans. However, as shown in figure 12, the
structural parameters extracted from the data were affected
by the pixel size chosen. There was statistically significant vari-
ation between pore size and percentage porosity in the top and
bottom layers of the scaffold with all scan resolutions, with a
decrease in pixel size from 6 to 1.5 μm resulting in a decrease
in the measured mean pore size from approximately 130 μm
to around 85 μm. With this decreased mean pore size the
associated decrease in interconnectivity with decreasing pixel
size was as expected.

3.3. Standard percolation analysis
The results of the standard percolation analysis on the
real datasets are summarized in table 3. Statistical difference
(p < 0.05) was observed in percolation diameter between top
and bottom regions in all but the 1.5 μm dataset. R2 values
were in all cases highest for the largest pixel size (lowest
resolution scan).

3.3.1. Segmented percolation analysis
A comparison of the values obtained for the percolation diam-
eter using the standardmethod and the segmented percolation
method is presented in figure 13. The values obtained through
the standard methods and the segmented percolation method
demonstrate similar values for all conditions except the bottom
percolation diameter at 6 μm. Trends observed in figure 13
are broadly matched to the means and modes obtained in
figure 12, suggesting that the standard method is influenced
by the mean pore size whereas the selection criterion for the
most stable percolation diameter is influenced by the mode.
4. Discussion
4.1. Structural measurements
Section 3.1.1 explores the average pore size as well as the pore
size distribution of the artificial datasets, and reveals the
importance of considering the entire pore size distribution in
conjunction with the average pore sizes. Though the standard
deviations themselves did not result in appreciable changes to
the interconnectivity and percolation results observed, the
skew of the distribution (the deviation of the mode from
the mean) is speculated to be responsible for the differences



top bottom top bottom top bottom

(a) (b) (c)

Figure 11. Imaging of the structurally variable scaffolds at the 3 scan pixel sizes. Imaging can be considered at the scale of the whole sample (a–c) with three
orthogonal sections at (a) 6 μm pixel size, (b) 3 μm pixel size and (c) 1.5 μm pixel size. When through-thickness ROIs were considered little appreciable variation
was observed in the quality of either individual slices or volume-rendered models. In all instances structural variation between top and bottom regions
was observed.
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observed with the highly anisotropic aligned lattices, when
compared with their pore size averages. A theoretical analysis
by Tian et al. [14] compared the effect of both the average radius
and thewidth of a pore size distribution on the permeability of
shale rocks and ultra-filtration membranes. These analyses
used the inherently skewed distributions such as the gamma
distribution, or log-normal and truncated normal distributions
in place of a Gaussian to model the pore size distribu-
tions expected in the material. In both materials, an increase
in the (non-symmetric) width of the pore size distribution
was concluded to increase the permeability of the mineral
[14] or the hindered diffusivity of solutes [15] at a constant
effective pore radius.

Percolationdiameterswere not obtained for aligned lattices
since extrapolation to the critical cluster size below which an
infinite lattice can be fully percolated requires clusters to par-
tially infiltrate the 3D lattice during the shrink-wrap analysis.
In spite of the predictions made by the ‘capillary bundle
model’ of circular [11,16] cross-sections, since the aligned struc-
tures donot have any connections between thewalls, all probes
of a size smaller than the pore sizewill fully percolate the struc-
ture, whereas all probes larger than this pore size will be
unable to access any of the structure.

Figure 14 schematically illustrates anROI containing anom-
alous features. Here, two to three distinct regions of percolation
diameters are measured as the VOI is reduced in size. The first
region (Region I) is characterized by a percolation diameter
corresponding to the value obtained for the whole dataset.
As the dataset is reduced in size and the influence of any
(large) pores on the edge is eliminated, a second stable region
(Region II) of a percolation diameter is obtained. For some
datasets, such as the 100 μm lattice simulated at 1.5 μm pixel
size and the 80 μm lattice simulated at 6 μm pixel size, the
percolation diameter also drops drastically as the VOI becomes
smaller than the pore sizes of each lattice resulting in the values
observed in the final region (Region III).

The issues pertaining to the truncation of the VOI to a size
lower than the pore size in Region III are also seen in MicroCT
datasets, where the subdivision is not considered. For instance,
the idea of a representative volume element underlies the
choice of VOI [5]. A representative volume element allows a
subset of the entire dataset to be used for percolation analysis
to minimize the cost of computation, while possessing the
same average structural features of the dataset within the
smaller element. The method adopted here to determine con-
vergence of the percolation diameter on average, is not
dissimilar to related results from literature where a moving
windowmethodwas employed to determine the RVE required
for percolation analysis [5], as well as the convergence
observed in the percolation diameter as the system size [17].

The lack of stability in the percolation diameter observed
with both the left and centre subdivision method indicates
homogeneity in the lattices as smaller VOIs were obtained
by sectioning region towards the top left corner, or the
middle of the sample. For the samples analysed in this paper,
this suggests that any anomalous pores were not localized
at the centre or left corner, and therefore likely to be present
along at least one of the other three edges of the VOI. Further-
more, the inability to obtain a positive percolation diameter
from the bottom of the stack when using the left ROI subdivi-
sion method suggests that both subdivision methods must
be applied to ensure that all ‘systematic’ anomalies were
accounted for. In particular with the shifted lattices, this behav-
iour arises from the manner in which the grid was generated.
The shift as applied from the top of the stack for these ‘shifted’
lattices occurs from the top left corner to the bottom
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Figure 12. Structural measurements of the dual-layered scaffolds: (a) mean pore size, (b) volume porosity (c) collagen strut thickness, as a function of the pixel size.
Volume interconnectivity of the scaffolds are also plotted with respect to interconnection diameter for the (d ) top and (e) bottom sections. Mean and mode pore
sizes for the ( f ) top and (g) bottom of the structures. Error bars represent the standard deviation.

Table 3. Summary of the percolation analysis on the dual region scaffolds with a percolation diameter, dc and standard deviations included in parentheses.

section
6 μm 3 μm 1.5 μm

dperc (μm) R2 dperc (μm) R2 dperc (μm) R2

top 117.2 (39.1) 0.88 (0.16) 127.4 (31.7) 0.70 (0.22) 88.0 (36.1) 0.56 (0.20)

bottom 0.97 (0.04) 41.3 (6.89) 49.9 (32.5) 0.68 (0.12) 43.0 (16.5) 0.82 (0.11)
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right corner of the ROI. This effect is inverted when measuring
from the bottom of the stack, i.e. the shift of the grid lines
appear to move towards the top left corner when moving up
from the bottom of the stack. As a result, the left ROI subdivi-
sion method would be unable to filter out such anomalies,
since these features ‘move’ with the ROI from the bottom
right corner to the top left corner as it is reduced in size.
Unlike random artefacts that arise from noise during data
acquisition or bubbles during scaffold fabrication, examples
of systematic anomalies that can occur in real datasets may
include fabrication-driven artefacts such the inclusion site of
a thermocouple in the slurry or issues during imaging such
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Figure 13. A comparison of the values obtained for the percolation diameter using the standard method and the segmented percolation method at the pixel sizes
of (a) 1.5 μm, (b) 3.0 μm and (c) 6 μm. Error bars represent the standard deviation.

dperc

ROI size
IIIIII

Figure 14. Regions of stability with percolation subdivision. Region I is characterized by a percolation diameter corresponding to the value obtained for the whole
dataset. The region is heavily influenced by the presence of any anomalous, often large, pores. Region II represents the region over which the VOI produced a stable
percolation diameter as the presence of anomalous features are eliminated. As the VOI becomes smaller than the pore sizes of each lattice, the values observed
plummet as seen in Region III.
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as the presence of dead camera pixels resulting in ring artefacts
during reconstruction.

Additionally, the percolation diameters obtained at the high-
est ROI size using the centre and left subdivision do not match
exactly, since the centre subdivision method requires the identi-
fication of the centre of the image. Since the number of pixels is
discrete and middle pixel cannot be a half-integer, images with
an uneven number of pixels, such as 333 or 1333, will not pro-
duce an exact match whereas images with an even pixel width
such as 666 will be able to produce consistent results.

The datasets presented here possess a high degree of ani-
sotropy (which is reduced upon noise incorporation), which



dperc

Dpore

theoretical spherical probe

Figure 15. A framework to understand the theoretical limits of percolation
diameters. A cuboidal VOI with cylindrical, infinitely extending pathways
characterized by a pore size Dpore. The maximum diameter that a penetrating
sphere can possess, dperc is therefore equal to Dpore.
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has been shown to produce negative intercepts with a subset
of the subdivision processes. Since the shrink-wrap method
involves the inflation and deflation of voxel clusters present
in the structure, regular structures such as octahedra and
cubes can undergo the process without loss of their aspect
ratio [5]. On the other hand, a highly anisotropic pore when
represented as a voxel cluster will also transform into an octa-
hedron, resulting in a shift in the overall isotropy of the
component [5]. This may be responsible for occurrence of
negative values along the anomalous pore channels in
Region I, as well as the decreased occurrence of negative per-
colation diameters upon noise incorporation (and therefore,
increase in isotropy).

4.2. Determining the ideal pixel size
The inability to obtain percolation diameters at very low or
very high pore sizes as seen in figure 10, indicates that signifi-
cant thoughtmust be given to the choice of pixel size at the data
acquisition stage for MicroCT datasets. The determination of
the ideal pixel size for percolation analysis suggests that optim-
ization of two different components is required: the maximum
pixel size allowable given the smallest featurewemust resolve,
pres and theminimum pixel size that is practical given the com-
putational limits on voxel cluster sizes pcomp. The pixel size
must be chosen such that resolution of all salient features is
possible with an acceptable computational cost, giving rise to
the inequality:

pcomp , panalysis , pres:

4.2.1. Computation
Considering an ideal, infinitely extending channel of pores,
the largest diameter of a sphere that can penetrate the
entire network will be given by the pore size, Dpore, as seen
in figure 15. This length will, therefore, determine the
upper limit of the percolation diameter dperc.

Due to the high computational cost of running the shrink-
wrap algorithm, most analyses are also limited to a finite
range of voxel cluster sizes. This implies a minimum voxel
cluster size of cmin and a maximum voxel cluster size of
cmax, with the range of encompassing voxel clusters that
vary uniformly between cmin and cmax with an integer step
size—or a granularity—of gc.

In order to carry out the percolation analysis successfully,
the extrapolation requires the use of voxel clusterswith a diam-
eter larger than dperc. In the example shown in figure 16, a real
structural feature of size Dpore, can be fully encompassed by a
4-voxel cluster at a larger pixel size, plarge (red). The same object
is enclosed by a 8-voxel cluster when imaged using a smaller
pixel size, psmall (green).

The highest voxel cluster size, cmax, when dimensiona-
lized using the pixel size, pcomp, must fully encompass the
pore and therefore equal Dpore

pcomp ¼ Dpore

cmax
:

However, pore sizes are rarely uniform in reality: the values
quoted represent the average in a systemwith large deviations.

Thus, we must take the largest pore that is expected to be
present in the structure,Dmax

pore as an upper bound for our maxi-
mum computable feature size. Where Dmax

pore is not directly
known, we can estimate its value given the spread of the
individual pore sizes in each dataset. For an expected pore
size, Dpore, standard deviation of σpore, and a 95% confidence
level, we can estimate the maximum pore size to be

Dmax
pore ¼ Dpore þ 2spore

and hence, the minimum pixel size needed to resolve this fea-
ture is given by

pcomp ¼ Dpore þ 2spore

cmax
:

4.2.2. Resolution
The resolution of the features detected are not only determined
by the pixel size of the scan, p, but also the minimum voxel
cluster size cmin. Ideally, the pixel size used should be small
enough to resolve the smallest possible fenestrations found in
the structure of size Dfen as seen in figure 18. However, with
real structures, the smallest of such fenestrations may not be
at a practically or physiologically relevant length scale. For
instance, the pathways formed by the presence of several open-
ings of Dfen∼ 1 nm represent little value to understanding the
movement of cell nuclei or drug delivery agents that are of the
order of 100–1000 nm, although they may become relevant
when characterizing of fluid flow. This minimum feature size
to be resolved can instead be set to dobject, or the smallest real
incompressible percolating object of interest, for example, a
protein molecule or a cell.

For an open, interconnected structure with an average
pore size Dpore > dobject, the minimum resolvable feature size
must be sufficiently small to ensure that cmin is smaller than
the features in the VOI. This ensures that voxel cluster
probes have sufficient resolution to access the distances at
which the partial penetration of the VOI to extrapolate dperc
is achieved. The minimum value these features can be
expected take is expressed as

Dmin
pore ¼ Dpore � 2spore
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Figure 16. Probing structural elements with voxel clusters at different pixel sizes. A structural element, such as a pore, of size Dpore can be probed by clusters of
various voxel cluster sizes using the shrink-wrap algorithm. In order to obtain a percolation diameter, some voxel clusters must be blocked by the structure, and
hence these voxel clusters must be larger than Dpore. The ability to encompass the object entirely is dependent on the pixel size chosen. At psmall, an 8-voxel cluster
(green) is required unlike the 4-voxel cluster (red) which can encompass the same feature at plarge.
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Figure 17. Regression constraints placed by the shrink-wrap analysis to obtain a percolation diameter. The cluster sizes, d and corresponding percolation depths L
plotted can be used to obtain the critical cluster size of percolation dperc for an infinitely extending pathway. The number of data points, ndata required to assure a
good linear fit further restricts the clusters that must fully encompass the object of interest from the computational maximum cmax to cmax,data if operating at the
higher end of computability, or cmin to cmin,data at the lower end of resolvability.
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and where Dfen≈ dobject, the maximum pixel size that is
capable of resolving these features is

pres ¼ Dfen

cmin

and where dobject≫Dfen, the maximum pixel size compatible
with resolution is

pres ¼
Dmin

pore

cmin
:

4.3. Quantity of data points required for linear
regression

In order to obtain the percolation diameter through linear
regression, it is necessary to have a sufficient number of
accessible data points ndata as seen in figure 17.

The choice ofndatamaydependon themargin of error deter-
mined to be satisfactory for this analysis. This may vary with
the presence of sample heterogeneities. In the case where the
ability to perform linear regression is computationally limited
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theoretical spherical probean incompressible,
hard sphere with a smooth surface

a compressible, soft object
with protrusions

Figure 18. An illustration of the feature sizes of interest when considering the limits of percolation theory. (a) A cuboidal VOI of cylindrical, infinitely extending
pathways characterized by a pore size Dpore. The maximum diameter that a penetrating sphere can possess, dperc is therefore equal to Dpore. (b) The cylindrical
pathways are now permitted to have uniform fenestrations of size Dfen that connect the cylindrical pathways. These fenestrations would therefore set a minimum
value for the dperc to Dfen. However, the inclusion of such fenestrations in calculating dperc is insignificant for an object where the minimum probe size on the object
dprobe is significantly larger than Dfen. Thus the material properties of an object of size dobject will affect the values of dprobe the object can possess, and as a result,
the pathways that can be accessed by the object.
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by cmax, to get sufficient data points on the curve, we must be
able to encompass the necessary feature size by a set of ndata
voxel clusters. Therefore, the new limit becomes smaller than
cmax and termed cmax,data. Since the voxel cluster size at which
the object must be fully enclosed is now reduced by ndata, and
normalized by the granularity of cluster sizes gc, the upper
bound on the maximum cluster size is now redefined to

cmax,data ¼ cmax � gcndata:

In the case where resolution is the limiting factor, to get the
necessary number of points for linear regression, the smallest
features to resolve are reduced by a set of ndata voxel clusters.
Therefore, the new limit becomes larger than cmin and termed
cmin,data. Similarly, as the possible values at the lower range
are curtailed to:

cmin,data ¼ cmin þ gcndata:

This further curtails the range of pore sizes to

Dmax
pore

cmax � gcndata
, p ,

Dfen

cmin

or, where dobject≫Dfen

Dmax
pore

cmax � gcndata
, p ,

Dpore

cmin

and
Dpore þ 2spore

cmax � gcndata
, p ,

Dpore � 2spore

cmin þ gcndata
:

As a worked example, we can apply the above equation
to the study of cell percolation in scaffolds modelled as
hard spheres. For an estimated pore size of 100 μm, and
standard deviation of 20 μm, average mammalian nucleus
size of 10 μm, with cmin = 2, cmax = 100, gc = 2 (as required by
e.g. the CTAnalyzer software) and a ndata = 6, the pixel size
of choice p (in μm) is bounded as

100þ 2� 20
100� (2� 6)

, p ,
100� 2� 20
2þ (2� 6)

and 1:6 , p , 4:3:
Therefore, for this system, we can conclude that a pixel
size of 3 μm satisfies both the constraints of resolution and
computation for percolation analysis.

However, itmust be noted that the physical relevance of this
percolation diameter is heavily linked to the phenomena
studied. Given the application of hard-sphere percolation of
cell nuclei or micro-particles, dobject is of the order of 10 μm. If
Dfen were to take a value of approximately 50 nm, the pixel
size would be required to both be higher than 1.6 μm and
lower than 50 nm, suggesting that the analysis would be
likely to produce an inaccurate description of the problem
under our current computational and imaging constraints. Fur-
thermore, these predictionswill not apply cleanlywhere amore
nuanced approach is taken to cell migration and matrix remo-
delling, or where percolation analysis is used to characterize
the establishment of chemical gradients in the scaffold.

Regardless, this inconsistency in the mismatch of Dfen and
dobject can be resolved by considering the material nature of
object. At every pixel size, p, the smallest probe that can
detect the features in structure, dprobe, is given by the smallest
cluster size that can be used in the percolation analysis, cmin:

dprobe ¼ pcmin:

In the original work by Shepherd et al. the structurally vari-
able collagen scaffolds (also analysed here) were used to sieve
platelets while retaining megakaryocytes [6]. A preliminary
test using micro-particle filtration revealed that 100% of the
larger 20 μm micro-particles were retained in the structure,
whereas 40 ± 30% of the smaller 10 μm particles were retained.
In comparison, 80 ± 15% of the megakaryocytes and 35 ± 30%
of the platelets remained embedded in the scaffolds. At the
highest resolution of 6 μm, and a cmin = 2, the smallest probe
size we can simulate using percolation analysis, dprobe, has a
value of 12 μm. The percolation diameter of 23 ± 9 μmobtained
in figure 13 at 6 μm is physically consistent with the ability of
10 μm micro-particles to pass through the structure entirely,
while blocking the passage of 20 μm micro-particles. In this
case, due to the incompressible nature of the micro-particles,
the inability to resolve Dfen < dobject does not pose a problem,
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since any fenestration lower than the size of the object is in
practice, impenetrable by the object.

However, as we move towards softer, compressible
objects, such as the megakaryocytes and platelets also con-
sidered by Shepherd et al. [6], the ability of these spherical
objects to probe smaller features in the surrounding environ-
ment must also be considered. Cells can form filaments and
protrusions of various sizes rapidly to probe their surround-
ing structure and environment. In order for a protrusion to
direct cell migration, the protrusion must be stable and
semi-persistent rather than transient. For a protrusion to be
stable in a cell, there is often a minimum size it must possess.

For instance, in megakaryocytes, such stable protrusions
that direct cell migration have been observed at diameters
>3 μm [18]. Therefore, if we now consider pixel size, p =
3 μm, the minimum probe sizes we can simulate using perco-
lation analysis with a cmin = 2 corresponds to a dprobe of 6 μm
and similarly, at p = 1.5 μm, dprobe = 3 μm. The corresponding
percolation diameter dperc at these pixel sizes, as shown in
figure 13 was 41 ± 6 μm at 3 μm and 27 ± 15 μm at 1.5 μm.
At these two pixel sizes, the smallest probes that can be
simulated at a cmin = 2 are 6 μm and 3 μm, respectively.

Megakaryocytes have been reported to possess a median
diameter of 20 μm [19], and should, therefore, be expected to
behave similarly to the micro-particles of 20 μm. However,
there was a discrepancy observed by Shepherd et al. between
the near-complete retention of 20 μm micro-particles, and the
retention of 80% of megakaryocytes. One possible expla-
nation for this difference may arise from the ability of a real
percolating object to sense and respond to features of its
own size. The incompressible nature of the micro-particles
implies that features smaller than dobject are impenetrable to
them, and as a result, the inability to resolve these features
will not affect the prediction of micro-particle filtration.

In the case of the megakaryocytes, the ability of the cell to
probe features smaller than the object itself suggests that
the resolution of the image must by fine enough to resolve
protrusion-sized features. At this finer resolution, the percola-
tion diameter (41 μm) becomes larger than themegakaryocytes
themselves (20 μm), giving a potential explanation for the fact
that not all megakaryocytes were retained in the scaffold.
Consequently, the pixel size p = 3 μm is an appropriate choice
for this application of megakaryocyte cell sieving, given that
it is physically consistent with both the formation of stable pro-
trusions necessary for megakaryocyte migration through a
scaffold, and may also explain the subsequent retention of
most (but not all) megakaryocytes.

In summary, two considerations must be made. Firstly, the
ideal pixel size range for resolution and computation panalysis
can be calculated. Then, the flow behaviour and materials
properties of the percolating object must be considered. For
an incompressible real percolating object of size, dobject, the
minimum virtual probe size is given by

dprobe ¼ dobject,

whereas for a real percolating object that can change shape, if the
size of the smallest protrusions, dprotrusion can either be calculated
using extension ratios and compressibilities, or experimentally
measured, the minimum virtual probe size is given by:

dprobe ¼ dprotrusion:

This pixel size, pexperiment, emulating the experimental
probe is then given by dprotrusion/cmin as seen in figure 18.
For tissue engineering, although protrusions from the cell
are not necessary, they represent one of the most commonly
observed features during migration. One of the thinnest pro-
trusions in cells, filopodia, possess a characteristic length
between 1 and 2 μm [20] whereas broader lamellipodia
responsible for cell migration have been observed at widths
between 1 and 5 μm [21]. Consequently, these diameters for
lamellipodia or filopodia can be used as dprotrusion in the
general case of mesenchymal cell migration.

If pexperiment is within the range of values constrained by
panalysis, then pexperiment can be chosen as the pixel size. In
other cases, the structures and materials considered may be
unsuitable for percolation analysis without access to more
computationally efficient algorithms or bespoke software.

Considering the case of cell migration with lamellipodia,
as well as the example MicroCT structures considered above,
a pixel size of 3 μm remains suitable for both structural analy-
sis and the experimental system of choice.
5. Summary
In this paper, two measures of interconnectivity—the percola-
tion diameter and volume interconnectivity—were evaluated
for artificial MicroCT datasets at various simulated pixel sizes.
The analysis of these artificial lattices suggested that the mode
of the pore size distribution within each lattice may be a more
representative estimate than the mean for strongly anisotropic
scaffolds, analysis on a large range of structures is required to
validate this statement for a general structure. The mode for
all datasets exhibits a strong relationship with the volume inter-
connectivity and percolation diameters obtained. Finally, the
prevalence of negative percolation diameters occurring exclu-
sively for highly anisotropic structures also indicates that
values obtained may not be valid for such structures.

Crucially, the subdivision algorithm developed in this
paper can aid in obtaining a percolation diameter from data-
sets where anomalous features may otherwise hinder its
extraction. The accuracy of the subdivision algorithm, how-
ever, is still conditional on the use of an appropriate pixel
size to capture the features of interest. By taking into account
the limits of computation and resolution, the ideal pixel size
for such analyses was determined to be 3 μm for tissue engin-
eering scaffolds.

With the newfound ability to extract a percolation diameter
using the subdivision method, another layer of complexity
can now be added to the creation of collagen scaffolds of
varied scaffold architecture, including the determination of a
physically relevant value.
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