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Featured Application: This equipment enables traceable measurement of grayscale to luminance
with high accuracy and can provide a standardized reference for the display of grayscale images
in the fields of medicine, remote sensing, nondestructive testing, etc.

Abstract: The standardization of grayscale display is essentially significant for image signal
communication, transmission, and terminal reading. The key step of this standardization is
establishing a traceable equipment of grayscale. As a relative value, grayscale is transferred
to two different absolute values to satisfy different traceability methods, including optical density for
hardcopy image and luminance for softcopy. For luminance, a generation equipment is designed to
build the relationship between luminance and grayscale. In this work, novel equipment is established
using digital light processing (DLP) by time-frequency modulation, and the corresponding uncertainty
is analyzed. The experiment result shows that this digital equipment builds the relationship between
grayscale and luminance in the range of 0.16-4000 cd/m2. It enables traceable measurement of
grayscale to luminance on this equipment with high accuracy and can provide a standardized
reference for the display of grayscale images in the fields of medicine, remote sensing, non-destructive
testing, etc.

Keywords: grayscale display; image standard; digital light processing (DLP)

1. Introduction

Grayscale is an important feature which characterizes the lightness and darkness of an image, and
grayscale images are widely used in medical, remote sensing, and industrial inspection fields [1–4].
Color images can be converted to grayscale by weighting algorithm as required [5]. In recent
years, it has been applied in the technology of image segmentation, target recognition, and machine
vision based on differences and discontinuous changes in image grayscale [6–8]. Therefore, the
standardization of grayscale display is essentially significant for image communication, transmission,
and terminal reading.

The traditional grayscale standardization method is making or selecting a gray image as the display
reference and comparing the obtained gray image with the reference to requantize the fixed value [9–11].
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Obviously, this is limited by the complexity and fineness of the selected gray image for reference.
In 2009, a grayscale standard display function (GSDF) was laid down in the Digital Imaging and
Communications in Medicine (DICOM) 3.0 Standard by the American College of Radiology—National
Electrical Manufacturers Association (ACR-NEMA), which is used to achieve quality control of medical
imaging equipment [12]. Specially, it provides a standard model for image display in the luminance
range of 0.05~4000 cd/m2 based on human visual characteristics. However, it cannot meet the needs of
a wider range of luminance nor current application areas. Notably, the implementation of the standard
model is not mandatory, and it is not traceable [13–15].

Besides DICOM, no other research discusses the standard of grayscale, especially the traceability
of grayscale. The related works mainly study in two directions. One is the method to identify
and distinguish the grayscale from a picture [16–19], and the other is an improvement on monitor
(mostly LCD) performance compared with GSDF based on hardware or PLC [20–23]. Most research
uses grayscale as a relative parameter only, without focusing on the standardization of grayscale.
The traceability is a faraway work for them. However, the standardization and traceability of grayscale
is crucial for the consistency of image transmission, image display on different instruments, image
identification, etc. This research begins with the standardization and traceability of grayscale as it is a
key step in image processing, including medical, military, and remote images.

Establishing equipment that realizes the grayscale standard display with traceability is the key to
the grayscale standardization. Considering that grayscale is a discrete value, a digital light process
(DLP) technology is used to solve this problem. A digital grayscale generation equipment is established
by DLP, which can achieve the metrology of two-dimensional grayscale information and the calibration
of a monitor by a GSDF program built into the computer. Furthermore, grayscale-to-luminance
conversion measurement is performed at the terminal. Experiments show that the standard uncertainty
of the measurement by this equipment has a range of 0.26~65.55 cd/m2 at the luminance range
0.16~4000 cd/m2.

2. Materials and Methods

2.1. Method

There are three steps to realize the standardization and traceability of grayscale. Firstly, the
grayscale should be transmitted to an absolute value in theory, as described in Section 2.1. Secondly, a
corresponding equipment should be established to realize the measurement and traceability of the
theory value, as described from Section 2.2 to Section 2.4. Finally, the traceability uncertainty needs to
be analyzed to accomplish the standardization, as described in Section 3.

The grayscale of an image is a relative value. For traceability research, it should be transferred to
absolute value. This step is related to the image type. Hardcopy images (usually films) are mostly
described by optical density [24]. Optical density includes transmission density DT and reflection
density DV, and DT is defined as shown in Equation (1), where Φi is incident diffuse light flux and Φι
is transmission light flux [25]. Similarly, DV is defined as shown in Equation (2), where Φr is reflection
light flux [25]. We have developed a micron-scale printed density film (transmission film and reflection
film) as the standard of value transmission [16]. The changes in optical density on a plane are achieved
by adjusting the spatial frequency in the ways of amplitude modulation (AM) or frequency modulation
(FM). Furthermore, spatial frequency is characteristic of periodic structure in space. As shown in
Figure 1, different pixels in each display unit are assigned different values, and each unit is assigned
the same pixel information, so it appears visually as a certain grayscale.

DT = log10(φτ/φi), (1)

DV = log10(φr/φi), (2)
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Figure 1. Spatial frequency corresponding to hardcopy image grayscale.

For softcopy images, it is not optical density, but luminance, and the change of luminance is
achieved by adjusting the time frequency. The same theory is applied in DLP technology. At the
same time, image display resolution and detection precision are both improving, and real-time image
processing technology is gradually maturing [26–28]. Consequently, digital grayscale generation
equipment is established to reproduce high-resolution (bit depth) grayscale accurately, which can be
regarded as grayscale-to-luminance traceability equipment, providing a measurable basis for grayscale
image display standardization.

2.2. Composition and Principle

The digital grayscale generation equipment (DGGE) is shown in Figure 2. In this figure, “A” is
a light source module (laser-driven light source), with characteristics of high brightness (up to 104
cd/m2) and wide bandwidth. The laser excitation mode ensures its stability. The light hits DMD
through “B” (a series of lens groups), using fiber-coupled output. “C” is a DLP module, including
a digital micro-mirror device (DMD) with up to 16-bit precision, drive and control circuits, etc. “D”
is the projection lens that projects the outgoing light onto “E” (the luminance screen). “E” is a white
polyester fluoroethylene-coated board with a diameter of 100 mm. “F” is a DC power supply, and
the constant current working model is used in the equipment. “G” is a laptop for DLP control and
data processing. Besides, a photometer (PR655, not labeled in Figure 2 but labeled in Figure 3) is used
to measure the luminance value of the terminal output. The principle of this equipment is shown in
Figure 3. The high-intensity light enters the DLP module through a series of lenses and is displayed
with different luminance after being adjusted by the DMD. The light is received by the luminance
screen and measured with a photometer.
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Figure 3. Schematic diagram of DGGE.

2.3. Grayscale Standard Generation Algorithm

The core device of the DLP module is the DMD, which has the on and off states at a certain time.
That is, it corresponds well to 1 and 0 of a binary image matrix. The issue of standardizing grayscale
information of softcopy image can be translated into precise control of the DMD. Similar to the spatial
frequency that determines the optical density of a hardcopy image, the grayscale information of
softcopy image is determined by controlling the time frequency. Therefore, we conducted secondary
development based on the DMD, and transformed the spatial frequency characteristics of hardcopy
images to the time-frequency characteristics of softcopy images.

Specifically, the grayscale standard image generation algorithm consists of the following steps.
Firstly, grayscale is quantized into numerical matrices with different bit precision, and the value is
expressed in binary. Secondly, the image is layered on a corresponding bit plane, and different planes
represent the information on different bit positions. Different hierarchical planes are displayed at
different times during display, corresponding to the weights at different bit positions (higher bits
correspond to higher weights). Lastly, the binary value is read from high to low in unit integration time,
and displayed according to time-weight distribution. Thus, grayscale is achieved through the control
of time frequency, and the flow chart of the grayscale generation algorithm is shown in Figure 4.
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Figure 4. Flow chart of grayscale generation algorithm.

Taking an 8-bit grayscale image with a value of 82 as example (shown in Figure 5), it is considered
to be decomposed into eight binary images. The specific implementation method is to express the
grayscale in eight binary numbers and then read them from high to low. Reading one bit at a time as
the value of the corresponding binary image of the pixel, the 8-bit grayscale image can be decomposed
into eight binary images.
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The relevant parameters of DMD we used are shown in Table 1 (refer to the product manual
provided by the manufacturer). According to the DLP characteristics used in this equipment, the
integration time t is 3800 µs, so eight binary images are displayed cyclically by weight of 128t/256,
64t/256, 32t/256, 16t/256, 8t/256, 4t/256, 2t/256, 1t/256. Thus, we achieved an accurate display of the
grayscale of the image. All relevant information of the DGGE is shown in Table 2.

Table 1. Relevant parameters of DLP7000.

Gray Bit Fast Clear
Time (µs)

Reset Time
(µs)

Load Time
(µs)

Active Time
(µs)

Blank Time
(µs)

Frequency
(Hz)

1

0.64 14 30.72

50 0 20,000
2 150 0 6667
3 125 150 3636
4 250 150 2500
5 500 150 1538
6 1000 150 870
7 1900 150 488
8 3800 150 253

Table 2. Parameters of DGGE.

Category Parameter Value

DMD
bit 8

frequency 253 Hz

Light source

type Xenon lamp
power 140 W

color temperature 2856 K
mode Reflection + V(λ)filter

2.4. Operation and Control Mechanism

The Xinlin V5 series FPGA is used in DGGE, and it communicates with the host computer via USB.
The display control process is mainly managed by the host computer program, which can realize a 1~16
bit gray level display. The control process includes initialization, adjusting grayscale image, displaying
grayscale image, and stopping display. We connected the DLP after power-on to the PC of the host
computer, and the main interface is shown in Figure 6a. The interface is mainly composed of the
grayscale preview area, control button area, and device information district. The image to be displayed
is divided into six blocks, and each block can display different gray levels according to user settings.
Firstly, the equipment needs to be initialized. The host computer modifies the control register on the
DLP through the USB interface, so that the DLP development board enters the display preparation
state. Secondly, users define the precision and content of the grayscale image to be displayed. If 8-bit
is selected, the grayscale image has 256 gray levels, and users can then set the gray value of the six
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subareas in the preview area separately. Lastly, the approximate distribution of the generated grayscale
image can be observed through the preview window, as shown in Figure 6(b). We downloaded this
image to the onboard memory of the DLP, and after the data transfer was complete, the DLP displayed
the grayscale image according to the preset display mode. In this way, we achieved accurate control and
output of each gray level, and the luminance of the output image is measured through a photometer.
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3. Results

3.1. Uncertainty Analysis

We analyzed the measurement uncertainty u(Lm) on the DGGE. Different grayscales are generated
from the unique light source by DLP in the sequence algorithm as described in Section 2.3; the
uncertainty of grayscale (relative luminance) generation of DGGE is related to the stability of the light
source ∆Lr and the uniformity of the luminance screen ∆Lu. Furthermore, the grayscale must be traced
to luminance by photometer, so the uncertainty of the photometer measurement result ∆LP should be
considered. Thus, the uncertainty model of grayscale (No., n) ∆Ln from DGGE can be described by:

∆Ln =
n
N

∆Lr +
n
N

∆Lu +
n
N

∆LP, (3)

where N means the maximum grayscale number (corresponding to bit depth).
This means there are three main sources of uncertainty; u(Sr) is the uncertainty from the stability

of the light source ∆Lr, u(Su) is the uncertainty from the uniformity of the luminance screen ∆Lu, and
u(Lp) is the uncertainty from the photometer measurement result ∆LP.

(1) u(Sr)—The uncertainty from the stability of the light source ∆Lr

According to the digital control mode of the equipment, the light source works at a fixed working
current, and its emission degree is also determined. We set all control bits of the DMD to “1”,
that is, the luminance of the light source projected onto the whiteboard is the maximum, and the
grayscale corresponds to 255 (8-bit precision). The amount of change in the luminance of the projection
whiteboard at 1 h was measured as the stability of the light source. The measurement interval is 5 min,
and the measurement results are shown in Table 3.

Table 3. Stability of the light source.

Time (min) 0 5 10 15 20 25 30

Luminance (cd/m2) 3996 3998 3994 3999 4004 4002 3998

Time (min) 35 40 45 50 55 60

Luminance (cd/m2) 4003 4005 3995 4001 3996 4000
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The stability of the light source calculated according to Bessel’s formula is:

u(Sr) =

√√√√ n∑
i=1

(Li − L)
2

n− 1
= 3.55cd/m2, (4)

where Li represents each luminance measurement result, L represents the average of the results, and n
is the number of measurements (which is 13).

(2) u(Su)—The uniformity of the luminance screen ∆Lu

According to the field of view and distance of the calibrated photometer, the size of the luminance
area can be estimated. The whiteboard on the projection surface is a circular area with a diameter of
100 mm. Considering the influence of aberrations, an area with a diameter of 30 mm is selected as
the calibration plane. As shown in Table 4, the uncertainty of the luminance uniformity of the screen
of Φ30 mm when measuring the 255th gray level was taken as the result. The position mark on the
luminance screen is shown in Figure 7.

Table 4. Uniformity of the luminance screen.

Position 1 2 3 4 5 6 7

Luminance (cd/m2) 3985 3982 3987 3983 3995 3991 3996

Position 8 9 10 11 12 13

Luminance (cd/m2) 3993 4004 4002 4000 3999 4001
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(3) u(Lp)—The uncertainty from the photometer measurement result ΔLP 

Both the output of the digital grayscale generation equipment and the display curve of the 
calibrated image are characterized by luminance. The calibration process is also determined by the 
luminance range, so the luminance measurement uncertainty of the photometer is the main source of 
uncertainty, and its value is given by the calibration of the photometer. According to the calibration 
certificate of photometer given by the National Institute of Metrology (NIM), its extended uncertainty 
is 2% (k = 2). The traceability is achieved at maximum luminance Lmax (4000 cd/m2), so u(Lp) should 
be: 
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Figure 7. Schematic diagram of the measurement position.

The uniformity calculation formula can be expressed as:

u(Su) = Li − L0, (5)

where Li represents the luminance of the i-th position (position 2 is selected here), and L0 represents the
luminance at the center of the measurement area (corresponding to position 9). It can be calculated as:

u(Su) = 22cd/m2, (6)

(3) u(Lp)—The uncertainty from the photometer measurement result ∆LP
Both the output of the digital grayscale generation equipment and the display curve of the

calibrated image are characterized by luminance. The calibration process is also determined by the
luminance range, so the luminance measurement uncertainty of the photometer is the main source of
uncertainty, and its value is given by the calibration of the photometer. According to the calibration
certificate of photometer given by the National Institute of Metrology (NIM), its extended uncertainty
is 2% (k = 2). The traceability is achieved at maximum luminance Lmax (4000 cd/m2), so u(Lp) should be:

u(Lp) =
2%
2

Lmax = 40cd/m2, (7)
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It should be noted that DLP uses digital technology, so it can be considered to have no uncertainty.
The above uncertainty compositions are summarized as shown in Table 5.

Table 5. Summary of uncertainty compositions.

Source Standard Uncertainty(cd/m2) Distribution Uncertainty Category

u(Sr) light source 3.55 Normal A
u(Su) screen 22 Uniform A
u(Lp) photometer 40 / B

The combined standard uncertainty is:

u(Ln) = n
N u(Sr) +

n
N u(Su) +

n
N u(LP)

= 3.55 n
N + 22 n

N + 40 n
N

= 65.55 n
N

(8)

3.2. Analysis of Luminance Measurement Result

Based on the high-brightness light source and attenuator, we control the output luminance range
from 0.16~4000 cd/m2. That is, theoretically, the output luminance corresponding to 0 gray level is 0.16
cd/m2, while 255 gray level corresponds to 4000 cd/m2. Then, some typical gray levels are set, and the
luminance is measured by the photometer PR655. As shown in Table 6, the corresponding uncertainty
is calculated, and experimental data show that all measurements meet expectations.

Table 6. Luminance and standard uncertainty corresponding to some typical gray levels.

Gray Level Output (cd/m2) Uncertainty (cd/m2)

4 62.34 1.03
16 253.16 4.11
32 496.32 8.23
64 997.05 16.45

108 2001.25 27.76
156 2459.27 40.10
192 2991.87 49.36
224 3527.83 57.58
255 4004.12 65.55

4. Discussion

From the measurement result and corresponding analysis of the property of the DGGE, it is
determined to have desirable luminance output in the range of 0.16~4000 cd/m2. Furthermore, the
standard uncertainty of the measurement by DGGE has a range of 0.26~65.55 cd/m2 at the luminance
range. From this result, it is found that the methods of equipment building and the corresponding
measurement are key to the standardization and traceability of grayscale. These methods influence
the uncertainty of grayscale, which is equal to the standardization. Furthermore, the calibration and
processing methods of luminance data are also needed for the traceability of grayscale, which we
elaborate in another published paper [29].

5. Conclusions

The digital standard grayscale generation equipment is firstly established in the National Institute
of Metrology, China. It can provide a traceable grayscale value for the standardization of the terminal
image of imaging equipment. Images are represented in grayscale, which is traceable to national
luminance benchmarks. Thus, the images are consistent in different instruments, and they can be
transmitted consistently and identified in one mode. Notably, the characteristics of human vision and
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machine vision are combined when establishing a measurable quality control method. The innovation
of this method is that it is not limited to the imaging function or category, and it is directly calibrated
and standardized from the output. Thus, the DGGE can provide a standardized platform for resource
sharing in medical, remote sensing, military, and nondestructive testing images, among others.
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