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ABSTRACT
Head tracking is a fundamental component in visual atten-
tion detection, which, in turn, can improve the state of the art
of hearing aid devices. A multitude of wearable devices for
the ear (so called earables) exist. Current devices lack a mag-
netometer which, as we will show, represents a big challenge
when one tries to use them for accurate head tracking.

In this work we evaluate the performance of eSense, a
representative earable device, to track head rotations. By
leveraging two different streams (one per earbud) of inertial
data (from the accelerometer and the gyroscope), we achieve
an accuracy up to a few degrees. We further investigate the
interference generated by a magnetometer in an earable to
understand the barriers to its use in these types of devices.

CCS CONCEPTS
• Human-centered computing→ Ubiquitous and mobile
computing systems and tools.
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1 INTRODUCTION
As of 2019, more than 466 million people are suffering from
hearing impairments1[1]. By 2050, the World Health Organi-
zation forecasts that over 900 million people will be affected
by hearing disabilities [1]. Subjects with hearing impair-
ments (and non-impaired, too) struggle to identify and iso-
late the source of a sound. This is particularly true in social
situations. Crowded places, where multiple conversations,
involving several speakers happen at the same time, result in
the phenomenon known as the Cocktail Party Problem [11].
Earables, like the eSense platform we evaluate in this pa-

per, have an enormous and mostly unexploited potential. For
instance, if adopted as hearing-aids, earables could be used
both as sensors and actuators. Ears represent an extremely
good vantage point to sense those behaviours that could be
exploited to improve the performance of a hearing-aid (e.g.

1Hearing disabilities are considered so when referring to hearing loss greater
than 40dB in adult subjects and 30dB in children.

gaze tracking, head movements, etc.). Previous studies, espe-
cially from the medical community, highlight the importance
of using directional hearing-aids leveraging the visual atten-
tion of the user [5, 14]. For example, Favre-Félix et al. [5]
use electrooculography data (EOG) to characterize the visual
attention of the patients. Their study shows how steering
an hearing-aid by using EOG leads to better performance
on the sentence correctness score. However, because of the
challenging signal processing required when dealing with it,
the authors suggest that EOG may not be the best enabler to
steer hearing-aids with a sufficiently high degree of preci-
sion. Head movements are closely linked to eye-movements
[5], and therefore they are considered a good proxy to sense
visual attention, too.

Inertial motion tracking is a well known and studied prob-
lem. Yet, due to the lack of a reference point to re-calibrate
the sensors, and to estimate the 3D orientation of the tracked
object, tracking head movements with a device without a
magnetometer represents a challenging task. To the best of
our knowledge, because of the interference generated by
the magnets of the speakers and in their cases, none of the
earables in the market is equipped with a magnetometer.
Indeed, like the eSense we are using in this work, the Apple
AirPods2, the Google Pixel Buds3, and the Samsung Galaxy
Buds4 do not have a built-in magnetometer. In this work, we
focus on the evaluation of the eSense platform [7, 12] in track-
ing the head movements of a user concentrating on a specific
spatial point. To do so, we ran experiments with ten volun-
teers. We probed and stressed the robustness of the system
by asking our volunteers to perform different activities, such
as chewing and talking, while focusing on a series of targets
placed at different spatial locations.

By tracking instantaneous head movements as a proxy to
track visual attention, our study shows how a system, that
relies only on accelerometer and gyroscope, can still provide
useful insights on where a person is facing. Despite the fact
that head movements are user dependent, we obtained esti-
mations with an average error that ranges from 5.4 degrees
2https://www.ifixit.com/Teardown/AirPods+2+Teardown/121471
3https://medium.com/@justlv/google-pixel-buds-teardown-396183cbbc18
4https://root-nation.com/audio-en/headphones-en/en-samsung-galaxy-
buds-review/
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for short movements done by silent subjects, to 18.7 degrees
for longer movements carried out by subjects who are chew-
ing. This paper lays the foundations of a line of work aiming
to sense and characterize human attention through earables,
wearables that are neither socially-awkward, nor cumber-
some, unusable or unrealistic (e.g. combining an hearing-aid
with a pair of eye-tracking glasses). Lastly, it sheds light on
how a magnetometer would behave if placed in an earable.

2 RELATEDWORK
Earables. Earables are a relatively new concept. Despite

their huge potential, few research works currently use them.
Most focus on health monitoring and sensing. For instance,
LeBoeuf et al. [10] prototyped an optomechanical sensor to
sense blood flow and estimate oxygen consumption during
daily activities. The studies carried out by Bedri et al. [3] and
by Amft et al. [2] combine IMUs and microphones to detect
and classify eating activities. The former aimd to detect in-
the-wild chewing activities, whereas the latter focused on
the classification of four different types of food through the
analysis of eating activities.

Head Movements Tracking. Inertial motion tracking is a
known challenge and a well explored area. One of the most
recent works in the field, and the state-of-the-art, is the
study carried out by Shen et al. [13]. In their paper, the au-
thors widely discuss the 3D Orientation problem and present
MUSE, a magnetometer-centric sensor fusion algorithm for
orientation tracking. Their results found that MUSE outper-
formed all the previous state-of-the-art orientation tracking
approaches. Prior to their work, the other state-of-the-art
techniques, as A3 [15], were heavily relying on the gravity
to determine the object orientation in the space, using the
magnetometer data mainly to re-calibrate the system. How-
ever, as reported by Shen et al. [13], those previous works
are mostly based on the following assumptions:
(1) slow linear motion, with accelerometer data that have

gravity as average;
(2) slow rotational motion, with Gaussian errors that pre-

serve the linearity of the system;
(3) motion with frequent, fairly long pauses, needed to

reset the gravity estimation.
Yet, because of the huge freedom and unpredictability that

characterizes human motion, these assumption rarely hold
when tracking head movements. Our work partially follows
the approach used by LaValle et al. [9]. However, in their
work, the authors use a significantly different hardware (an
Oculus headset), which is equipped with a magnetometer.

This paper assesses and evaluates the performance of eS-
ense, an earble equipped solely with accelerometer and gy-
roscope, to track head movements. In addition, it presents a
preliminary study on the effects of a magnetometer if placed

in an earable. Given that there are no available earables
equipped with this kind of sensor, we believe these prelim-
inary observations represent and interesting input to both
the research community and industry.

3 PLATFORM OVERVIEW
In this section we introduce the eSense platform and the chal-
lenges of performing head movement tracking on a device
that can not rely on the data from a magnetometer.
eSense Platform
The eSense platform [7, 12] consists in a pair of true wire-
less earbuds which have been augmented with kinetic, audio
and proximity sensing options. The left earbud has a 6-axis
Inertial Measurement Unit (IMU) with accelerometer and gy-
roscope and a Bluetooth Low Energy (BLE) interface which is
used to stream data and to send periodic beacons that can be
used to detect proximity to nearby devices. Both earbuds are
also equipped with microphones to record external sounds.
The benefit of eSense, contrary to other commercial earbuds,
is the access to the raw data from the onboard sensors and
the complete flexibility in the configuration of their parame-
ters. In addition to serve as a well established and socially
acceptable device, for example to listen to music and take
phone calls, eSense allows to gather real-time sensor data,
opening the door to novel sensing applications involving the
head.
Challenges of Inertial Tracking
The primary goal of this work is to understand the accuracy
achievable by a device that solely relies on accelerometer
and gyroscope to track user’s head movements. The biggest
challenges we had to face while investigating that, were
related to the device itself. The small form factor, together
with the pure "wireless experience" and the relatively short
battery life , represent non-trivial constraints to deal with.
The presence of multiple magnets in the case compelled

the hardware manufacturer to put a 6 degree of freedom (6
DoF) IMU, instead of a 9 DoF, more complete, sensor. Practi-
cally, it means the platform is bounded to the 3 DoF of the
accelerometer (xacc , yacc , zacc ) and the 3 of the gyroscope
(xдyro , yдyro , zдyro ), lacking the presence of a magnetometer.

Accelerometer and gyroscope provide relative movement
estimates that drift over time. Without the magnetic north
as a reference, we could not rely on the state-of-the-art cal-
ibration and re-calibration techniques [13]. Besides, when
tracking the motion of an object (or of the head of a person),
it is crucial to initialize the system correctly, with the right
3D orientation of the object itself. Unfortunately, once again,
the majority of the algorithms to solve the 3D Orientation
Problem rely on the absolute direction reference provided by
themagnetometer (combinedwith gravity and instantaneous
gyroscope readings) [13, 15].
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4 HEAD TRACKING METHODOLOGY
The data we collected from the eSense buds are accelerations
(from the accelerometer) and rotational velocities (from the
gyroscope). We had integrate the data to get an idea of where
the person is paying its visual attention to.
Combining multiple IMUs. Tracking head motion from

only one ear might not give precise enough results, espe-
cially considering the absence of external reference points,
such as a magnetometer. As having more fine grained data
points enhances the precision of the estimation, we combined
the streams of inertial data coming from the IMU sensors in
the two earbuds5. We leverage the assumption that the two
different IMUs are recording, from different vantage points,
the same rotation. Yet, combining the data correctly becomes
crucial. We do so by concatenating and averaging the ac-
celerometer and gyroscope data over a window of 200ms.
Prior to that we resample and filter the readings from the
IMU sensors. A further challenge comes from the orienta-
tion of the IMUs themselves. We obviate that by making our
system independent from the human coordinate. To do that,
we only consider the intensity of the rotation, rather the
motion components along the 3 axis of the accelerometer
and the 3 of the gyroscope. In fact, we only leverage the
motion components to tell whether the rotation is positive
(to the right) or negative (to the left).

Quaternions and Complementary Filter. Euler angles, bet-
ter known by their components yaw , pitch, and roll , are the
most common, and widely used, coordinate system to repre-
sents rotations. Despite their diffusion due to their ease of
interpretability, they come with the problem know as Gimbal
Lock [4]. To obviate the gimbal lock problem, it is common
to switch to a better suited coordinate system: Quaternions
[6, 9].
Integrated gyroscope measurements are subject to short-

term drift, which may be more or less severe depending
on the application. The situation worsen over time, as the
error grows faster. To mitigate that, a common approach is
to fuse the gyroscope readings with the accelerometer ones,
as it is known to be more stable than the gyroscope in the
short-time.

Our angular estimation is based on a complementary filter,
which allows us to fuse gyroscope and accelerometer data,
and follows the approach proposed by LaValle et al. [9]. We
derive our estimation as follows:

qдyro = cos(
θ

2
) + iωx sin(

θ

2
) + jωy sin(

θ

2
) + kωz sin(

θ

2
) (1)

where:
ω = (ωx ,ωy ,ωz ) = (

дyrox
| |ω | |
,
дyroy
| |ω | |
,
дyroz
| |ω | |

), and θ = | |ω | |dt .

5since only the left eSense buds are equipped with the IMU sensors, we had
to use two left buds.

qдyro is the quaternion that describes the instantaneous ro-
tation of the head, based on the gyroscope data. We partially
account for the gyroscope drift by adding the 3D orientation
estimation and tilt correction of the head. To do that prop-
erly, we should rely on a combination of magnetometer and
accelerometer data. Instead, since the eSense do not have a
9 DoF IMU, we could to only rely on the gravity as external
reference to perform a rough orientation estimation and tilt
correction.

qacc_body = 0 + i accx + j accy + k accz
qacc_world = pos[t] ∗ qacc_body ∗ pos[t]−1

qcf = cos(ϕ2 ) + i
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ny
| |n | | sin(

ϕ
2 ) + k

nz
| |n | | sin(

ϕ
2 )

(2)
where qcf is the implementation of the complementary filter
in the space of quaternions, and where:

ϕ = (1 − α) arccos(
qacc_worldy
| |qacc_world | |

)

v = (
qacc_worldx
| |qacc_world | |

,
qacc_worldy
| |qacc_world | |

,
qacc_worldz
| |qacc_world | |

)

n = v ∗ (0, 1, 0)

We can now estimate the final rotation by doing:
f inal_position = qcf ∗ pos[t] (3)

Notice that for each earbud, we account for the factory offset
of both accelerometer and gyroscope by using the techniques
described by Kok et al. in their work [8]. In addition, because
of the absence of themagnetometer, we only focus on relative
rotations (delta motions).

5 USER STUDY
In this section we describe the methodology we followed to
investigate head motion tracking through earables. We detail
how we collected the data and the results obtained tracking
the head movements of our volunteers. Ethical approval was
obtained to conduct the user study.

Data Collection Methodology
We recruited 10 volunteers to join our data collection cam-
paign. Each individual waswearing two earbuds (both eSense
left bud) connected via BLE (Bluetooth Low Energy) to an
Android application running on a smartphone6 provided by
us. The eSense buds collected, and streamed to the smart-
phone, at 100 Hz. For the sake of reproducibility we report
the configuration of the two earbuds. Notice the two buds
have the same configuration:

• AccelerometerRanдe = ±2д
• GyroscopeRanдe = ±500deдrees/second
• AccelerometerLowPassFilter = 5Hz
• GyroscopeLowPassFilter = 5Hz

The experimental set up consisted of 4 targets (red cross)
attached to the walls in an empty room. The angle between
6Google Pixel 2, https://en.wikipedia.org/wiki/Pixel_2
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Fig. 1: Mean error and standard deviation of the head move-
ments estimation of 10 silent volunteers.

Fig. 2: Impact of chewing activity on themean error and stan-
dard deviation of the head movements estimation of 10 vol-
unteers.

the position of the volunteer and the targets was known and
represented ground truth. The targets were placed respec-
tively at 30, 45, 60, and -90 degrees. We chose 30 degrees as
the smallest angle we investigate assuming that for smaller
angles people would mostly move their eyes, barely mov-
ing their heads. With -90 degrees, we wanted to show how
our system could capture both clockwise and counterclock-
wise movements. We asked our volunteers to perform the
following actions:

• Standing in silence and looking at different targets,
and keep facing them, according to the instructions of
the investigators;

• Standing, chewing a piece of chewing gum, and look-
ing at different targets, and keep facing them, accord-
ing to the instructions of the investigators;

• Standing, conversing with one of the researchers, and
looking at different targets, and keep facing them, ac-
cording to the instructions of the investigators.

Baseline: Silent Subject
We now present the results of what we consider our baseline.
In this experiment, the volunteers were standing in silence,
looking at the different targets according to a set of instruc-
tions provided by us. For each target, the volunteers started
facing an initial reference, placed at 0 degrees. They then
rotated their heads towards the given target (delta motion).
Once there, we asked them to keep their head turned towards
the target for about 5 seconds (position maintenance). We

Fig. 3: Impact of speech on the mean error and standard de-
viation of the head movements estimation of 10 volunteers.

estimated the movements done by the volunteers processing
the readings of accelerometer and gyroscope according to
what described in Section 4. Figure 1 respectively reports the
mean errors of the motion delta estimation and the position
maintenance estimation when the users were rotating their
heads clockwise 30, 40, and 60 degrees, and counterclockwise
to -90 degrees. From the chart, we can immediately appre-
ciate how the position maintenance errors are greater than
the motion delta ones. This is due to the inertial sensors’
drift that heavily affects the integration. Because of our long
term application, we are interested in instantaneous move-
ments (deltas) we therefore mostly care about motion delta
errors. Another interesting observation is how the errors
grow for longer movements (i.e. greater angles), indicating
a higher precision of the system for short movements (i.e.
small angles). Moreover, the high standard deviation that
characterizes the mean errors denotes a strong user depen-
dency of the motion estimation. In fact, for some volunteers,
we even registered sub-degree motion delta accuracy in some
movements.

Impact of Chewing Activity
Once we evaluated our system on the simplest case, we
started testing the robustness of our motion estimation. We
gave chewing-gum to our volunteers, and asked them to re-
peat the same sequence of movements. The chewing activity
of the volunteers generated spurious vibrations that were
inevitably picked up by the inertial sensors in the earbuds. To
make our system more robust to this kind of noise, we tuned
the parameter α of our complementary filter, aiming for the
best performance in all the three types of experiments. Fig-
ure 2 depicts the mean errors of the estimation. If compared
with our baseline, as expected, the errors are slightly higher.
As we observed in the previous case, because of the drift,
the motion delta mean errors are smaller than the position
maintenance ones.

Impact of Speech
Lastly, we assessed how speech affects our estimation. To
do so, we asked our volunteers to talk. As for the chewing
experiment, speaking generates unwanted vibrations and
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(a) 5cm from the earbud. (b) 3cm from the earbud.

(c) 1.5cm from the earbud. (d) 1.25cm from the earbud.

(e) 1cm from the earbud. (f) Inside the earbud case.
Fig. 4: Magnetometer readings from a STEVAL-STLCS01V1
device at different distances from one eSense earbud. Notice
how the scale of the plots changes from top to bottom.

micro-movements that are captured by the sensors, and we
are interested to study the robustness of our system. Figure
3 shows how our system behaves with talking subjects. As
before, the mean errors of the estimation in this third case
are sightly higher than the ones for silent users. As in both
the previous cases, the motion delta accuracy is higher and
decreases for longer movements. Comparing Figure 2 and
Figure 3we can observe that chewing activity seems to have a
comparable impact on our motion estimation as speech. The
high standard deviation of the mean errors further remarks
the findings we got from the previous experiments.

Summary. Evaluating the performance of the eSense plat-
form, our work investigates the potential of ears as a vantage
point to sense visual attention through head movements. We
achieve estimations with an average error that ranges from
5.4 degrees for short movements in the least challenging
situation, to 18.7 degrees for longer movements, in noisier
circumstances. In the reminder of this paper, we try to further
improve the accuracy of our system, investigating whether
it would be feasible add a magnetometer, thus gaining an ex-
ternal absolute reference point. This would allow us to track
absolute and incremental movements and not only relative
motion.

6 WHY IS THE MAGNETOMETER MISSING?
In order to asses if we could use state-of-the-art motion
tracking approaches to further improve the precision of our
motion estimation, we studied how the magnets used to hold
the earbuds into the case and the magnet in the speaker
affect the readings of a magnetometer. We did that by plac-
ing a STEVAL-STLCS01V1 sensor tile7 at different distances
from one earbud, and we plotted the data captured by the
magnetometer in Figure 4.

To start off, we put down themagnetometer at a distance of
5 cm from the earbud (Figure 4a). We proceeded keeping the
earbud still in the initial position, while moving the sensor
tile closer to the bud. Figure 4b shows the magnetometer
readings when 3 cm apart. We can immediately appreciate
how the magnets start affecting the data, introducing an
offset. It is worth noticing how the offset does not fluctuate
when the magnetometer is fixed. As expected, the readings
change at different distances from the earbud. The closer we
get to the earbud, the higher the influence of the magnets is.
We further moved the STEVAL-STLCS01V1 at a distance of
1.50 cm, 1.25 cm, and 1 cm, as respectively depicted in Figure
4c, Figure 4d, and Figure 4e. Here, we can clearly notice
how the magnetic field generated by the magnets in the
earbud overtakes the Earth’s one, flattening all the readings.
Eventually, we put the sensor tile inside the case (Figure 4f).
The readings skyrockets, as the earbud’s magnetic field adds
a significant offset to the Earth’s.
Because of the constant offset at different locations, we

decided to delve deeper into the behaviour of themagnetome-
ter, collecting more data samples while moving the device.
We repeated the same set of movements twice. In the begin-
ning, we moved the STEVAL-STLCS01V1 alone, without any
direct external interference caused by either the earbud or by
the vicinity of a metallic source (Figure 5a). In the following
experiment, we recorded the data, performing the very same
movements, but placing the STEVAL-STLCS01V1 inside the
case of the earbud, swapping it with the eSense’s existing
PCB (printed circuit board) (Figure 5b). While in the first
case, where there was not interference, the magnetometer
was able to record the motion events, from Figure 5b we are
unable to observe any motion-related data. However, the
constant trend of the offset let us apply the calibration tech-
nique know as Hard Iron Distortion. As a result, we managed
to recover most of the motion related information, especially
along x and y (Figure 5c). These preliminary results provide
an initial indication about the possibility of integrating a
magnetometer even with the presence of strong magnets in
the sensor’s vicinity. However, experiments with different

7https://www.st.com/en/evaluation-tools/steval-stlcs01v1.html
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(a) No interference. (b) Inside the case. (c) Distortion correction.
Fig. 5: We run two experiments where a volunteer was asked to shake his head while having the a STEVAL-STLCS01V1 close
to the ear. (a) We first collected data without magnetic interference. (b) We then asked our volunteer to repeated the same
movements with the STEVAL-STLCS01V1 placed inside the eSense case. (c) This way we could observe how correcting the
offset introduced by the magnets, the magnetometer placed in the earbud is still able to record motion data.

conditions (e.g. when the buds are playing music) and a de-
tailed analysis of the resulting data are needed to confirm
our insights. We leave this for future work.

7 FUTUREWORK
Head movement tracking represents only a first step towards
the characterization and sensing of human attention. The be-
havioural cues we want to sense are not only limited to head
movement. After studying how the magnetometer would
work if placed in the case, and after evaluating the eSense
platform to track head motion, this paper motivates a second
revision of the hardware. This should include a wide variety
of sensors, such as:

• 9 DoF IMU;
• EOG support for gaze tracking;
• electroencephalography (EEG) sensors.

Such a device, could represent a step towards a platform
to sense attention and act as an advanced hearing-aid. We
acknowledge that the suggested improvements will pose
significant technical challenges, such as battery-life and form
factor, which we will gradually explore and tackle in future
work.

8 CONCLUSION
In this work, we evaluated eSense as an earable device to
perform in-ear head motion tracking. Our technique com-
bines multiple streams of data, and, despite the absence of
a magnetometer in the inertial sensor equipped in eSense,
achieves results precise up to a few degrees. Although the
accuracy of our estimation decreases for longer movements,
it performs well also in more realistic situations (e.g. with
the subjects speaking or chewing). Besides, our preliminary
study on the magnetometer represents an interesting input
to take into account in the development of future earables.
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