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Baudouin Géraud · Jerome A. Neufeld ·
Paul R. Holland · M. Grae Worster

Received: date / Accepted: date

Abstract We describe a versatile apparatus for measuring the permeability of
porous materials using oscillatory flows. The permeabilities are measured by an
original spectral analysis of the pressure and fluid-displacement signals. The mea-
surements are shown to be in very good agreement with classical drainage ex-
periments, performed on the same device. Our apparatus and methodology will
be useful if small fluid displacements are required, for example in reactive porous
media.
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1 Introduction

Porous media are ubiquitous in the natural environment and industrial applica-
tions. A fundamental characteristic of porous media is their permeability K, which
relates the volume flux per unit area v through a medium to the pressure gradient
applied across it and the body force, such as gravity, acting on the fluid within it,
according to Darcy’s law

v = −K
µ

(∇P − ρg) , (1)

where µ is the dynamic viscosity of the pore fluid, ρ is its density, P is the local
pore pressure and g is the acceleration due to gravity. Therefore the inverse of
the permeability coefficient characterises the resistance to flow through a prorous
medium under a fixed pressure gradient. Although there are some semi-empirical
relationships, such as the Carmen-Kozeny equation [1], used to estimate the per-
meability of a porous medium from knowledge of its porosity, the permeability
depends significantly on the internal morphology of the medium and must be
measured in most practical applications.

Permeability is usually measured by applying a known pressure difference ∆P
across a sample of length L and cross-section S and measuring the volume flux
Q of a pore fluid of known viscosity [2,3]. The permeability is then given by the
formula

K =
µQ/S

∆P/L
. (2)

This method is simple and robust but relies on a sustained flow through the porous
medium being measured. However, if the porous medium is reactive then the pore
size and hence its permeability can evolve while a measurement is being made
in consequence of the sustained flow carrying heat and chemicals through the
medium. An example is a mushy layer such as sea ice, which is a reactive porous
medium made up of dendritic crystals formed during the freezing of alloys. The
crystals can redissolve in response to flow of the pore liquid in the direction of
any applied temperature field. The disturbance of the gradients in brine salinity
by a uni-directional flow can also lead to variations of the permeability of several
orders of magnitude [4–7]. Additionally in some systems containing fine particles,
a sustained flow can lead to pore clogging and result in an important decrease
of the permeability during the measurement [3]. These observations indicate that
the classical method to measure permeabilities with a sustained flow may not be
sufficient for systems whose properties depend strongly on local gradients or on
the mobilisation of the particles they contain.

Here, we describe our development of a new experimental apparatus to measure
permeability that uses an oscillating flow of small displacement and thus avoids
the imposition of a sustained uni-directional flow. We reverse the usual procedure
by controlling the flow and measuring the consequent pressure drop across the
sample. Spectral analysis of the measured signals allows for precise control of
measurement errors and has the added potential (by recording phase differences)
to measure characteristics of deformable poro-elastic media.

This paper is focused on detailing the experimental setup and the spectral
analysis used to determine permeabilities. As a preliminary test of the technique,
we report on experiments using packed beads of glass. We validate our results by
making supplementary measurements using the classical drainage technique.
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2 Experimental apparatus and protocol

Central to our experimental design is the aim to produce an oscillating flow through
a porous medium in order to measure its permeability without the imposition
of a mean flow. The flow is driven by a rigid piston of cross-sectional area Sp
whose displacement Dp(t) is measured over time. This measurement determines
the flow rate through the flow cell by volume conservation Q(t) = SpdDp(t)/dt.
The pressure drop across the porous medium ∆P (t) is measured with a Differential
Pressure Sensor (DPS). The pressure drop and flow rate signals are then used to
compute the hydraulic resistance of the flow cell RH and the permeability of the
porous medium.

2.1 Experimental setup

The experimental apparatus comprises several elements, shown in figure 1 and
detailed below.

2.1.1 Flow generation

Oscillating flows are generated by a rigid piston below the flow cell connected
to a shaker (Data Physics SignalForce V20) supplied by a power amplifier (Data
Physics SignalForce PA100E) and controlled by an acquisition card (Data Physics
Quattro). The piston is screwed to the moving part of the shaker through a thick
(6mm) steel plate. A displacement transducer is screwed to the steel plate to
measure the piston stroke Dp(t) as a function of time. Our experiments were
performed at a single frequency f0 = 1Hz, chosen to be low enough to avoid
vibration of the support frame and to keep the pore Reynolds number small. The
pore Reynolds number Rep = ρvpd/µ, where vp is a characteristic magnitude of
the pore velocity and d is a characteristic size of the pores, measures the ratio
of viscous stresses to inertia. It must be small in order for Darcy’s equation to
be valid, and this is achieved by ensuring that the pore velocity, of the order of
vp ≈ D0f0/φ (where D0 is a characteristic amplitude of Dp(t) and φ the porosity)
is sufficiently small in our expriments.

2.1.2 Flow cell

The flow cell is a perspex cylinder with a 65mm internal diameter. The porous
medium is held between two metal plates drilled with regularly spaced 0.7mm
diameter holes to ensure that the fluid enters the porous medium homogeneously.
The meshes are covered with a silk fabric to avoid the loss of the smallest beads
and are supported by two inner perspex cylinders (A and B on Fig. 1), inserted in
the flow cell. Cylinder (A) keeps the porous medium away from the flow injection
and ensures that the flow is unidirectional before entering the porous medium.
The cylinder (B) presses the upper mesh with a 5.65kg mass to compact the glass
beads and avoid the fluidisation of the bed [8] when the flow velocity is directed
upwards. Another, cautionary mesh is set at the bottom of the flow cell to prevent
beads from dropping into the piston.



4 Baudouin Géraud et al.

Fig. 1 Photos and sketch of the experimental setup. a): photo of the device. The metal frame
in background reduces any vibration of the device during the experiments. The Linear Variable
Differential Transformer (LVDT) and the Differential Pressure Sensor (DPS) are situated on
the right-hand side. b): photo of a mesh used to maintain the grains in the flow cell. The mean
diameter is 64.6mm and the typical hole radius is 0.7mm. Each mesh was covered with silk
fabric to retain the smallest grains. c): sketch of the device in cross-sectional view. The region
accessible to the fluid (water) is colored in light blue and the acquisition circuit is shown in red.
All the dimensions are indicated in mm, the diameters are indicated with double arrows and
the symbols Ø. The porous medium is compacted between two meshes borne by two perspex
cylinders (A and B), drilled for pressure measurements. The DPS measures the pressure drop
across the porous medium of length L0. The LVDT measures the piston stroke and therefore
its displacement Dp(t), proportional to the displacement of the fluid in the flow cell D(t) by
volume conservation. The flux Q(t) is computed from the measurement of Dp(t) (see section
2.3).
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Fig. 2 Calibration curves of the sensors and the piston. The experimental points are
in blue, the red lines are linear fits. a) Displacement transducer calibration. Sensitivity:
2.0192±0.0005mm/V . b) Differential Pressure Sensor calibration. Sensitivity: 1719±3Pa/V .
c) Measurement of the volume of liquid displaced in the flow cell for several piston positions.
The linear fit provides the section of the piston and so its diameter with an excellent precision:
45.4 ± 0.3mm.

2.1.3 Sensors: calibration and sensitivity

The acquisition card records the piston stroke and the pressure drop between
two points at the inlet and the outlet of the porous medium simultaneously. This
pressure drop ∆P is measured with a differential pressure sensor (DPS, Omega
engineering, customized online: wet/wet differential, bidirectional, range 0.17bar,
output ±10VDC), connected to the flow cell through meshed, rigid hoses. It is
important to note that there is no flow through the DPS so that the pressure
drops between the flow cell and each inlet of the sensor are hydrostatic.
The displacement transducer is a Linear Variable Differential Transformer (LVDT,
Omega engineering LD620-10), which enables accurate measurements of the dis-
placement of the piston in time Dp(t), proportional to the volume of fluid displaced
in the flow cell V (t) = SpDp(t), with Sp the cross-sectional area of the piston. The
linearity of both sensors was checked with calibration experiments performed by
measuring constant displacements or hydrostatic pressures over the whole range
of the sensors (Fig. 2). These calibration experiments determined the relative un-
certainties of the measurements of the pressure and the volume of fluid displaced
which are respectively 0.17% and 1.3%. We could then measure Sp = 1.62×10−3m2

accurately by regression, as it is a crucial parameter for the measurements of the
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beads d (mm) L0 (mm) φ

A 0.12 ± 0.03 75.0 0.405
B 0.37 ± 0.01 76.0 0.407
C 0.47 ± 0.01 75.0 0.392
D 0.68 ± 0.01 76.5 0.423
E 1.07 ± 0.01 75.0 0.395
F 1.44 ± 0.01 75.0 0.393
G 2.20 ± 0.03 76.5 0.377

Table 1 Summary table of the several porous media parameters used for the experiments.
The porous media are composed of packed glass beads of average diameter d and porosity φ.
The length L0 corresponds to the height of the grain pile in the flow cell.

volume of fluid displaced V (t) and therefore for the computation of the flow rate
Q(t).

2.1.4 Porous media

To calibrate, test and characterize this new technique, we used porous media
made of compacted glass beads (ballotini) placed in the flow cell between the
two meshes. Great care was taken to ensure that no bubbles were trapped during
the setup and the filling of the device1. We varied the bead diameters to probe a
range of permeabilities spanning several orders of magnitude. The density and the
total volume of grains introduced in the flow cell were measured by weighing to
determine the porosities of the porous media. We measured the length of the porous
medium L0 to estimate its porosity φ of the order of 0.400 with a fair precision
of ∆φ ≈ ±0.015, which corresponds to a relative uncertainty of ±4%. The table
1 summarizes the different experimental parameters probed in this study. Each
pack of beads is denoted by a letter (A-G) to which we will refer in the following.

2.2 Experimental protocol

We applied a sequence of quick oscillations with the shaker at 10Hz to ensure a
good compaction of the packed beads before each series of experiments. The fluid
used was water, with a dynamic viscosity µ = 1.05 mPa s. The shaker device is
an electrodynamic one which generates forces in a moving assembly by driving
an electrical coil in a magnetic field [9]. The piston motion, driven by this force
generator, reacts accordingly to the piston stiffness and some experiments present
slow transients in which the amplitude of the piston stroke decreases slowly. We
checked for these experiments that the transient had no effect on the permeability
measurements. Indeed, the permeabilities measured with full signals and with
truncated ones (without the transient) only differ by 0.4%, which is less that the
experimental uncertainties.

1 Particularly, the beads were stirred with a rod and the absence of air was always checked
by a visual inspection from the top and the sides of the device before compressing the grains.
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The oscillations of the piston and the signal acquisition are both controlled with
the digital acquisition card (DAQ). The duration of each experiment was 512s and
the sampling acquisition frequency was 64Hz. The acquisition card generates an
input voltage U(t) to drive the motion of the shaker. In our experiments, U(t)
was a sine wave of frequency f0 = 1Hz and arbitrary phase shift ϕ0, of which we
varied the amplitude U0.

The experiments were performed by varying the amplitude U0 to the amplifier
to probe several flow velocities with the same porous medium. Drainage experi-
ments in which the fluid was allowed to drain through the porous medium under
a prescribed hydrostatic head were performed just after each oscillating run. We
could then compare the values of permeability measured with oscillations to a
classical technique (see appendix A).

2.3 Signal acquisition

A typical example of the signals acquired is shown in figure 3, which displays the
shaker’s input voltage U(t) (Fig. 3a) with both measurements of the pressure drop
∆P (t) (Fig. 3b) and the volume of fluid displaced V (t) (Fig. 3c). Although the
input voltage of the shaker is a sine wave, its output motion is not sinusoidal but
saturates between two positions. This is due to the fact that the shaker is a force
generator, reacting to the stiffness of the piston and the flow. As a consequence
the extremal values of U(t), marked in vertical dashed lines in Fig. 3 correspond
to the extremal values of ∆P (t). However, this behaviour does not impact the
permeability measurement since both signals ∆P (t) and V (t) are recorded at the
same time. The shape of these signals is such that the time scales of the rise and
the fall of the piston are much smaller than the period. This allows the generation
of flows with high velocities and small displacements of the fluid. The amplitude
of the displacement of the fluid inside the porous medium is indeed below 1 mm
in the example of figure 3c). This point may be of interest for some applications
of this technique to permeability measurements for which the solid phase is in
thermal or chemical equilibrium with the liquid.

2.4 Flow regime and Reynolds number

As the piston displaces the fluid (water) along the flow cell, the filtration velocity
v(t) varies in time and is defined as:

v(t) =
Q(t)

S0
, (3)

where S0 is the cross sectional area of the flow cell and Q(t) the volumetric flow
rate. The flow regime is characterised by the Reynolds number, defined as

Re =
ρd〈v〉
µ

(4)

where 〈v〉 is the order of magnitude of the flow velocity during an experiment.
As the flow velocity v(t) varies during each period of oscillation, the amplitude
of the velocity 〈v〉 was defined as the average of the maximum values of velocity
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Fig. 3 Signals involved in the acquisition and the data processing. a) input voltage delivered
to the shaker. The vertical dashed lines denote the positions of its extremal values on all the
other graphs. The extremal values of the input voltage correspond to the extremal values of
the pressure drop and the volumetric flow rate. b): Raw measurements of the pressure drop
∆P , oriented opposite to gravity. c) Volume of fluid displaced in the flow cell by the piston
V (t) (bottom) and the corresponding displacement of the fluid inside the flow cell. d) Signal
of the flux through the flow cell computed with equation 13, and the corresponding values of
the filtration velocities.

amplitudes of the flow when the piston moves upwards and downwards. Alternative
definitions of 〈v〉 could have been the standard deviation of v(t) during a period
instead or its maximal absolute value, but they proved to have very limited impact
on the results described here. In our experiments using water, beads of up to 2 mm
in diameter and fluid displacements at the pore scale between 0.1mm to 2.8 mm,
the Reynolds number ranges from about 0.07 to 20. We nevertheless find agreement
with Darcy’s law for Reynolds numbers up to about 10. This is consistent with well
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established results for flows in porous media [1] and indicates that the definition
of 〈v〉 used for the calculation of the Reynolds number is relevant.

2.5 Quasi-static approximation and oscillation frequency

An additional requirement to the experimental protocol is to ensure that transient
effects induced by the motion of the piston are negligible so that equation 1 can
apply. In other words, the oscillation frequency shall be low enough for equation
1 to hold at any time, so the filtration velocity and the pressure gradient vary
linearly with each other. Unsteady flows through porous media in laminar regime
have been described successfully by introducing an additional term and a time
delay τ in equation 1 as:

τ∂tv + v = −K
µ

(∇P − ρg) . (5)

Various models have been proposed to describe the characteristic time delay
[15–17], in some of which it is even not necessarily constant[18]. However, its order
of magnitude is greater and of the order of K/(φν) in all the models proposed[18,
19], where ν = µ/ρ is the kinematic viscosity of the fluid and from which we
can define a characteristic frequency fτ = φν/K. This implies that the oscillation
frequency f0 shall be negligible compared to fτ to neglect the impact of transient
effects:

f0 << fτ =
φν

K
. (6)

In our experiments, fτ varies from 28kHz (with the smallest beads) to 121Hz
(with the largest ones), while f0 had a set value of 1Hz. The results obtained with
the largest beads show that a ratio of frequencies of about 120 proved sufficient for
the quasi-static approximation to be valid, although some subtle transient effects
started to be visible through a small phase shift between the pressure and velocity
signals (section 4.2). These observations indicate that the oscillation frequency f0
shall not exceed the order of fτ/100 for the quasi-static approximation to be valid.

3 Modelling and signal processing

In this section, we detail the experimental principle and how we compute the
permeability K0 of a porous medium placed in the flow cell. We introduce the
equivalent pressure drop Π(t) and the hydraulic resistance RH computed from
the measurements of ∆P (t) and Q(t).

3.1 Hydraulic resistance and permeability measurements

To model the permeability measurement accurately, the flow cell can be subdivided
into five regions between the positions of the two tubes connecting the differential
pressure sensor. These regions are respectively the porous medium studied in the
experiment, the two meshes enclosing it and the regions situated below and above
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Fig. 4 Representation of the flow cell from a side view. The blue rectangles represent the
hydraulic resistances corresponding to each component of the flow cell. These components are
identified by their index and are characterised by their length along the flow direction Li and
their hydraulic resistance Ri. They are respectively the porous medium (of hydraulic resistance
R0), the two grid meshes enclosing it (R1 and R2) and the two flow portions linked to the
pressure sensor inputs (R3 and R4). The fluid in the pipes connected to the pressure sensor is
static. The corresponding hydrostatic pressure drop is −ρgh where h is the equivalent liquid
height. The red arrows represent the pressure drops ∆Pi across each component. ∆P is the
pressure difference measured by the pressure sensor and Q denotes the flux across the flow
cell.

them. Each region is characterised by its flow section Si, its permeabilityKi, length
Li and its hydraulic resistance Ri (see Fig. 4). In the following, the subscript i = 0
refers to the porous medium inserted in the device, the indices i = 1, 2 to the grid
meshes and the values i = 3, 4 to the regions below and above them. The pressure
drop across the flow cell is then the sum of the several pressure drops ∆Pi through
each part.

The displacement transducer measures the volume of fluid displaced in the
flow cell V (t). This allows the computation of the flow rate Q(t) by Fast Fourier
Transform (FFT, see eq. 13). The flow is purely vertical and so, providing the
Reynolds number remains low, we can apply Darcy’s law (eq. 1) along each part
of the cell in the vertical direction to give

Q = − 1

Ri
(∆Pi + ρgLi), where Ri =

µLi
KiSi

. (7)

The liquid is static in the two pipes connected to the DPS and we define h as
the equivalent height of liquid in the hoses. The total pressure drop is therefore∑

∆Pi = −∆P − ρgh, (8)
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and equations 7 and 8 can be combined to give

Π(t) = −∆P (t)− ρg
(∑

Li − h
)

(9)

Π(t) = RHQ(t), where RH =
∑

Ri. (10)

Here Π is the pressure drop across the whole cell, proportional to the flux Q. The
constant of proportionality is the total hydraulic resistance RH , equal to the sum
of the individual resistances. Note that Π only differs from −∆P by a constant,
which corresponds to the hydrostatic pressure drop when there is no flow. This
corresponds to the non-zero value of the pressure signal identified in figure 3 when
the piston reaches its extremal positions. This value is also the time average of the
pressure signal: since oscillating flows are performed here, the time average value
of the flow rate is zero 〈Q〉t = 0, so using equation 9 , 〈∆P 〉t = ρg(h−

∑
Li) and

therefore

Π(t) = 〈∆P 〉t −∆P (t), (11)

which makes the computation of Π straightforward. Here 〈〉t indicates an average
in time over a unit cycle.

The total hydraulic resistance RH is measured by processing the Fourier trans-
forms of the signals Π(t) and Q(t) as shown in the following section. However, RH
includes contributions that do not belong to the porous medium only but to the all
the components of the flow cell. We therefore measured the hydraulic resistance of
the device RD =

∑
i>0Ri, determined by drainage experiments involving all the

components of the flow cell but the porous medium. The hydraulic resistance of
the device was found to be RD = 1.35±0.02×107 Pa m−3 s. This value proved to
be smaller than RH in all our experiments, from two orders of magnitude smaller
(with the smallest beads) up to the half of RH (with the largest ones). This contri-
bution is eventually removed from the measurement of RH to find the permeability
of the porous medium,

K0 =
µL0

S0 (RH −RD)
. (12)

An accurate measurement of the total hydraulic resistance RH is thus crucial to
determine the permeability K0 of the porous medium inserted in the flow cell.

3.2 Signal Processing and spectral analysis

This section details the processing applied to the signals to measure the perme-
ability of the different porous media inserted in the flow cell. This processing is
performed in three steps, namely the calculation of the time variations of the flow
rate Q(t), the calculation of the hydraulic resistance RH by the analysis of the
Fourier spectra of Q and Π, and finally the calculation of the permeability K0

along with the errors associated with it.
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3.2.1 Flow rate

The flow rate through the flow cell Q(t) is computed by the Fast Fourier Transform
(FFT, denoted F [.]) of the volume displaced V (t):

Q(t) = ∂tV (t) = F−1 [2iπf F [V (t)]] (13)

where F−1[.] is the inverse FFT and f the frequency. The result is shown in
figure 3d, which also indicates the magnitude of the filtration velocity v(t). The
shape of the computed signal is very similar to the pressure signal ∆P (t), although
the pressure has a non-zero plateau when the flux is zero.

3.2.2 Hydraulic Resistance

In this section, we analyse the pressure and flux signals spectrally to measure the
hydraulic resistance RH and deduce the permeability of the porous medium K0

from it (eq. 12). We first compute the signals FFT, functions of the frequencies f
and denoted Q̃(f) and Π̃(f). Ideally, both signals would be proportional to each
other (eq. 10) but in practice they are affected by some measurement noise n.
They even may have a slight phase shift ϕ = 2πf0t0 due to experimental artifacts
(inertial effects, compliance), so that Π̃(f) can be expressed as

Π̃(f) = RHe
−i2πft0Q̃(f) + ñ.

Both signals are subject to noise, and the best way to compute ZH without bias
[10,11] is with the formula

RH =
〈|Π̃.Q̃∗|〉f
〈Q̃.Q̃∗〉f

(14)

where the brackets 〈.〉f represent averages over the sample frequencies and the stars
∗ refer to the complex conjugates of the Fourier transforms. The correlation be-
tween the two Fourier transforms is quantified by the normalized cross-correlation
coefficient

γ2 =
〈Q̃.Π̃∗〉2f

〈Π̃.Π̃∗〉f .〈Q̃.Q̃∗〉f
. (15)

A typical spectral analysis is shown in figure 5, where we compare the spectrum
of Π with the computation of RHQ. The data present harmonics of the oscillating
frequency (f0 = 1Hz) for which both spectra match up within about 25Hz. For
the porous media studied here, the spectra present an excellent matching, char-
acterized by a normalized cross-correlation coefficient of γ2 = 0.9989. Note that
no fit is involved in the processing, all the relevant quantities RH and the spectra
Q̃(f) and Π̃(f) are computed from the experimental data.

The normalized cross correlation coefficient is also used to asses the uncertain-
ties[10] associated with the measurement of RH :

∆RH
RH

= 1.96

√
(1− γ2)

2(Nγ2 − 1)
, (16)

where N is the number of points used for the calculation of equations 14 and 15,
typically N = 215. The measurement uncertainties associated with the measure-
ment of K0 involve the relative uncertainty of the measurement of RH as shown
in the next paragraph.
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Fig. 5 Comparison of the spectra of the pressures Π (blue line) and RHQ (red dots).The
bottom graph is a close up on high frequencies. In this example, we have RH = 7.60.107 ±
2.8.104Pa.s.m−3 and the normalized cross correlation coefficient between the two signals is
γ2 = 0.9989. The signals analysed here are the same as figure 3.

3.3 Permeability measurement and associated uncertainties.

The permeability of the porous media is finally computed using equation 12. This
equation includes the hydraulic resistance of the device, measured to be RD =
1.35±0.03×107Pa.m−3 s with an empty device by successive drainage experiments
as a calibration. The measurement uncertainty associated to equation 12 is then
estimated by:

∆K0

K0
=

√(
∆L0

L0

)2

+

(
∆S0

S0

)2

+

(
∆RD
RD

)2

+

(
∆RH
RH

)2

. (17)

Equation 17 assumes that the uncertainties are independent and neglects the
uncertainties associated with µ (as experiments were performed at a constant
temperature set by a thermostat). The term relative to the uncertainty in RH is
estimated by using equation 16, and is relatively small as γ ≈ 1 and N is large.
Over all our experiments, we found the uncertainty in RH to be 0.1% in average,
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with a maximum value of 0.7% for one experiment performed with the beads B.
The dominant source of error as defined in equation 17 are then the terms related
to RD and L0. As mentioned at the end of paragraph 3.1, RD was measured with
repeated experiments for a better precision. The relative uncertainty associated to
this measurement is 2%. The absolute uncertainty ∆L0 varies from 1mm (smallest
graduation of the height gauge) to 2mm which is the maximum grain diameter,
we have therefore kept this latter value to calculate the order of magnitude of
the measurement uncertainty of K0. The uncertainty on S0 is calculated from
the tolerance of the flow cell diameter which is 50µm compared to its value of
6.5mm. Finally, the relative uncertainty associated with the measurements of the
permeability K0 was found to be at most about 3.7%. This could be improved
further with more accurate measurements of RD and L0.

4 Results and observations

In this section we present the results of the experiments and the data analysis
described in sections 2 and 3. The measurements of the permeabilities of the
porous media are first compared with classical measurements obtained by draining
the fluid through the flow cell. The impact of the flow regimes, characterised by
the Reynolds number on the measurements is then assessed and provides further
insights into the experimental method. Finally, we investigate the information
collated from the spectral analysis, described in section 3.

4.1 Validation by comparison with drainage experiments

Several bead diameters were used to span a range of permeabilities (section 2). The
experiments were analysed with the processing detailed in section 3.1. For each
set of packed beads (A-G), we performed the measurements with a series of flows
of different amplitudes, by changing the amplitude of the shaker’s input voltage
U0. The results are gathered in table 4.1. We performed drainage experiments
after each oscillating experiment to compare the measurements with a reference
technique. Drainage experiments have the advantage that the flows are directed
downwards by gravity. They naturally and uniformaly compact the medium and
do not exhibit any effect of decompaction. They are therefore a reference for the
oscillatory permeability measurements. The protocol and the analysis of these
experiments are described in appendix A, and the result of their comparison with
oscillating measurements is shown in figure 6.

The comparison in figure 6 shows an excellent agreement between the two
measurements over a range of two orders of magnitude of permeabilities. The rel-
ative discrepancy between the two permeability measurements for a given porous
medium is of the order of 3% and is essentially due to the experimental uncer-
tainty of the method and of the estimation by drainage as well. These observa-
tions validate our experimental method as they indicate that the measurements
by oscillations provide the same values of permeability as the classical technique
of drainage. However, the precision of the measurements under oscillations, and
the precision with which the signals have been recorded allow for a more precise
characterisation of the flows.
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beads d (mm) 〈K0〉 (m2) 〈RH〉 (Pa.s.m−3) 〈ϕ〉 〈γ2〉

A 0.12 1.43 10−11 1.68 109 −2.8 10−2 0.97
B 0.37 1.12 10−10 2.30 108 −1.1 10−2 0.98
C 0.47 1.99 10−10 1.33 108 −5.2 10−3 0.97
D 0.68 3.91 10−10 7.55 107 2.6 10−4 0.99
E 1.07 7.96 10−10 4.33 107 2.9 10−3 0.99
F 1.44 1.40 10−9 3.05 107 8.8 10−3 0.96
G 2.20 3.12 10−9 2.13 107 2.5 10−2 0.95

Table 2 Summary table of the averaged permeability measurements for each set of packed
beads. The angled brackets represent the average among experiments performed with the same
porous medium. The results present the measurements of the permeability K0, the hydraulic
resistance RH , the phase shift ϕ and the cross-correlation coefficient γ2 between the pressure
and flow rate signals.

K
0

Dr (m2)

10-11 10-10 10-9 10-8

K
0O

s
c
 (

m
2
)

10-11

10-10

10-9

10-8

A

B

C

D

E

F

G

Fig. 6 Comparison between the permeabilities measured in oscillating measurements K0 and
by drainageKDr for 50 experiments. The black line corresponds to the straight lineK0 = KDr.
The average discrepancy between the two measurements is 3%.

4.2 Flux variation and flow regimes

The comparison with the drainage experiments indicates that the setup allows
for accurate measurements of permeabilities using oscillating flows. However, the
results do not indicate if the flow regime has an impact on the measurements
or whether the assumptions made to derive equations 12 and 10 are satisfied.
In particular, one can wonder if Darcy’s law applies in the flow regimes probed
during the experiments, which is equivalent to checking the validity of equation
10, that is Π(t) = RHQ(t), as it is directly derived from Darcy’s law (section 2).
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A comparison of both signals, namely the pressure drop Π(t) and the product
RHQ(t), allows us then to check if the assumptions behind the analysis presented
here are justified. It would also allow a check on the range of validity of the results
presented in the former paragraph and to assess the impact of the flow regime on
these measurements.

The flux signal Q(t) is not directly measured in the flow cell but is instead
computed from the measurement of the fluid displaced (see section 3). As RH is a
constant, the signals Π(t) and Q(t) should satisfy a linear relationship if Darcy’s
law applies in the quasi-static regime. As the filtration velocity v(t) is proportional
to the flow rate, the same conclusion can be drawn if Π(t) and v(t) are in phase and
proportional. The comparison between the signals Π(t) and RHQ(t) is presented
in figure 7 over an oscillation period of one second.

Figure 7 shows the comparison for three different flows. The graphs on the left
show the direct comparison between the signals Π(t) and the product RH .Q(t).
The graphs on the right correspond to the same experiments; they assess the
linearity between the filtration velocity and the pressure drop. In these graphs,
the experimental data (blue dots) is compared to the straight line of equation
v(t) = Π(t)/(RHS0), which corresponds to the measurement.

The results shown in figure 7 (a) represent the majority of the experiments
described in this article. The Reynolds number is 2.11 and the signal RHQ(t)
matches the pressure signal Π(t) accurately. The filtration velocity and the pres-
sure drop are linearly related, as indicated by the value of the linear regression
coefficient between the two signals R2 = 0.9994. These observations indicate that
the experiment is in a Darcy’s flow regime and justifies the analysis presented in
section 2.

The results shown in figure 7 (b) and 7 (c) correspond to some flows at low and
large Reynolds numbers (respectively Re = 0.40 and Re = 21.2). They correspond
to the limits of the experimental method described in this paper. In both cases, the
signal RHQ(t) slightly lags the pressure drop, and some deviations to the linearity
between v(t) and Π(t) are observed. These deviations are however small (the lin-
ear regression coefficients are respectively R2 = 0.9914 and R2 = 0.9948), which
explains that permeability measurements in these flow regimes still correspond to
the measures performed by drainage. The loss of the linearity between v(t) and
Π(t) proves to be due to a small phase shift ϕ between these two signals. The
results presented in table 4.1 indicate that the phase shift increases in absolute
value when the flow rate and the pressure signals are less correlated. This is in-
deed observed in experiments performed at high and low Reynolds number which
indicates the limits of validity of this measuring technique.

These limits at low and high Reynolds number have different origins. It is in-
deed expected to observe deviations to Darcy’s law at high Reynolds number as
the flow becomes subject to inertia [1,14]. An other point is that these flows are
generated through the porous media with the lowest permeabilities. Although the
values of the cross-correlation coefficient γ2 indicate that the quasi-static approx-
imation still applies, some subtle transient effects start to appear. The phase shift
between the velocity and the pressure signals increases indeed as the characteristic
frequency fτ , defined in section 2.5, gets closer to f0. On the other hand, the flows
at low Reynolds number correspond to experiments performed with the smallest
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computed with equations 13 and 14 (black crosses) over an oscillation period of one second.
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c) Experiment performed with the glass beads G at Re = 21.2.
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beads, which generate the smallest permeabilities. In these cases, the pressure drop
generated to move the fluid becomes so high that a few beads could be displaced
at the edges of the compacting meshes. This means that the compaction of the
beads was not optimal for these sizes, although a significant portion of the beads
was well packed and clearly dominated the permeability measurement. Another
artifact of the flows generated through the smallest beads was that the pressure
drop was high enough for the compliance or elasticity of some components (tubes,
joints, etc...) of the apparatus to introduce a small phase lag between the displace-
ment of the piston and the response in flow velocity. However, the effect of these
limiting phenomena at high and low Reynolds number on the measurements was
quite limited, which allowed determining the permeability of the porous medium
to leading order and with little impact of the flow regime, as can be seen in figure 8.

Figure 8 collates all the signals measured for different bead sizes at several
oscillation amplitudes. As observed in figure 7, the filtration velocity varies linearly
with the pressure drop for most of the experiments. Deviations are observed at the
highest and lowest values of the Reynolds number. The permeability measurements
are not impacted by the flow regime as long as the Reynolds number remains
smaller than 10. Indeed, for the packed beads A to F, the measurements of K0

present little variation and no dependency with the Reynolds number. This is not
the case for the measurements performed with the biggest beads, as there is a
slight decrease of the permeability values for Re ≥ 10, which indicates a deviation
to Darcy’s law in this regime [1].

Finally, the comparison between the signals Π(t) and RHQ(t) on one hand2,
and the verification of the linearity between Π(t) and v(t) on the other hand
confirm the validity of the experimental technique described here as long as the
flows are in Darcy’s regime that is for Reynolds numbers below 10.

5 Conclusion

In this article, we have presented a new experimental technique and an original
analysis for measuring the permeability of a porous medium using oscillating flows.
In particular, this technique differs from other methods using oscillating flows
[12,13] by the spectral analysis presented in section 2 and the amplitude of the
displacement of the fluid in the porous medium. This kind of experiment has
appeal for systems in which the liquid is at equilibrium (chemically or thermally)
with the medium itself and for which is is important to limit the magnitude of
the induced fluid motion so as to limit flow-driven reactions within the medium.
The setup is versatile and produces accurate permeability measurements with
a relative precision of the order of 3.7%. The analysis of the measured signals
allows an interesting charactarisation from Darcy’s flows to the inertial regime.
This experimental technique will be used in further studies with porous media in
equilibrium with their liquid phase.

2 This could have also be done in the frequency domain, as shown in appendix B
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Fig. 8 Main plot: global results of all the permeability measurements for several packed beads
(denoted from A to G as defined table 1). a) Permeability measurements for several Reynolds
numbers. The measured permeabilities do not depend on the Reynolds number provided it
is smaller than 10. For Re ≥ 10, the measured values decrease with Re as a consequence of
inertial effects. Subplots: phase planes of the measurements for the different packed beads. The
measurement of the filtration velocity v depends linearly on the effective pressure drop with
an excellent agreement for beads B, C, D and still with a good agreement (R2 ≥ 0.95) for the
other glass beads.
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A Drainage experiments

In this appendix, we describe complementary drainage experiments, performed using essentially
the same setup as was used for the oscillatory experiments. These experiments were used to
compare the results with a classical technique for which the flow is unidirectional and driven by
gravity. Indeed, the versatility of the setup allows us to compare both measurements without
changing the configuration of glass beads. The drainage experiments were performed after each
oscillating run to compare both measurements accurately.

Experiments A reservoir is placed near the top of the flow cell and communicates with it
through a siphon. This allow us to increase the volume of water flowing through the porous
medium significantly and to perform reliable experiments. The diameter of the upper cylinder
(cyl. B in figure 1) is actually smaller than that of the other cylinder to leave enough room for
the siphon. The piston is fixed during the experiments and the only relevant recording with
the acquisition card is the pressure signal. The drainage starts when the draining tap at the
bottom of the flow cell is open (see figure 1). The flow is then unidirectional and the flux is
measured with a weighing scale (Ohaus) placed at the outlet of the draining tap. The scales
are connected to a computer which records the measurement with an acquisition frequency of
2.9Hz. The signals are then analyzed using the procedure described in the next paragraph.

Processing The pressure balance and the analysis principle remain the same as the ones de-
scribed in section 3.1. However, since the flows are not periodic for these experiments, we do not
compute Π by subtracting the mean value of ∆P (t), but by subtracting the hydrostatic pres-
sure difference recorded when there is no flow. Contrary to the oscillating measurements, the
sampling rates of the signal V (t) (measured with the scales) is much smaller than the sampling
rate of the acquisition of Π(t). We interpolate V (t) with a cubic spline on the time intervals
of Π(t). Since differentiating V (t) would increase the uncertainties of the measurements, we
rather integrate Π(t) numerically to fit the signal of V (t). Indeed, integrating equation 10

leads to
∫ t
0
Π(t′)dt′ = RH .V (t) which allows us to measure RH with a single parameter fit.

The result of the processing is shown in figure 9. The fit is plotted in the top graph and
we check afterwards the good match of the values of Π(t)/RH and Q(t) by differentiating
the raw data of V (t) (bottom graph). Note that the fit is performed on the points recorded
between 1.25s after the opening and 1.25s before the locking of the draining tap. In the example
showed in figure 9, the standard error associated with RH was calculated using Matlab was
five orders of magnitude below its value. The main source of uncertainty associated with this
measurement actually comes from the data recorded by the scales, which leads to a relative
precision of the order of 3% for these measurements.

B Analysis of the signal Harmonics

The verification of the linearity between Π(t) and Q(t) presented in section 4.2 could also be
done in the frequency domain. Since both signals are periodic with a period 1/f0 = 1s, they
can be easily decomposed in harmonics of frequencies i.f0 and whose amplitudes are denoted
πi and qi respectively by FFT. Equation 10 implies the relationship

πi = RHqi. (18)
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Fig. 9 Measurements of the hydraulic resistance from drainage experiments performed with

1mm diameter glass beads (E). Top: fit of the integrated signal (1/RH)
∫ t
0
Π (magenta line)

to the measurements of V (t) (blue dots) with RH as a fitting parameter. We find RH =
2.3.108Pa.s.m−3. Bottom: validation of the fit by comparing the values of Q(t) computed
with numerical differentiation of V (t) (blue dots) with the scaled signal of Π(t)/RH (magenta
line).

.
The spectral analysis shown in section 3.2.2 enables the identification of the harmonics

of the pressure and flux signals and therefore a check on relationship 18. However, since the
signals are subject to some noise of a peak to peak amplitude of 9 mV, we only considered here
the harmonics whose amplitudes were greater or equal to 10 mV, and whose frequencies were
smaller than 25Hz as the harmonics are better defined in this frequency range (see figure 5).
The results shown in figure 10 gather all the data collected per porous medium. The results
indicate that the linearity between the harmonics πi and qi is indeed verified as a consequence
of Darcy’s law in the Fourier space.
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