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ABSTRACT 

A representative lignin was firstly prepared as well as an efficient lignin 

depolymerization process with highly controllable products was presented using 

Cs-substituted tungstophosphate (CsTP) cooperated with Raney Ni in this study. The 

double enzymatic lignin was depolymerized efficiently at 250–280 oC. The 

synergistic effects of Raney Ni with CsTP and temperature on the degradation of 

lignin were investigated by FT-IR, NMR, GPC and GC-MS techniques. Under the 

optimal condition at 270 oC for 3 h, the yield of depolymerized DEL was over 70 wt% 

and phenolic monomers were over 20%. The Mw of the lignin was reduced 

significantly from 15770 to 1150 g/mol (for aqueous phase lignin) and about 420 

g/mol (organic phase lignin). In addition, indicating that this tandem catalyst 

facilitates the depolymerization and demethoxylation of lignin, but prevents 

hydrogenation of benzene ring of lignin to form cyclohexanols. More importantly, the 

formation of char was restrained effectively in this process.  

 

Keywords: Lignin isolation, depolymerization, Raney Ni, Cs-substituted 

tungstophosphate 

 

 

 

 

 

 

 

 

 

 



Introduction 

Lignin constitutes for 10–35% (%weight) of lignocelluloses and carries the 

highest specific energy content (up to 40%) of all the three components (Zhang et al., 

2011), meanwhile, it is considered as the most abundant, renewable and natural 

aromatic biopolymer on earth, which is industrially important starting material for the 

production of chemicals and fuels (Li et al., 2015). However, efficient transformation 

of lignin into value-added products is still a severe challenge due to complicated 

structure in lignin that possesses a wide variety of linkages, as compared to other two 

components (cellulose and hemicellulose) in lignocellulose. The most ideal reaction 

process would be able to effectively convert lignin into aromatic compounds without 

condensation (Li et al., 2015). Therefore, it is imperative to develop advanced 

catalytic reaction systems for the efficient and cost effective depolymerization of 

lignin. 

Recently, a large number of researches focused on the lignin depolymerization 

and the yield and products selectivity varied with the reaction conditions and catalytic 

systems (Xu et al., 2014). Hydrogenolysis of lignin has been most frequently 

discussed in the scientific literatures in recent years and a variety of transition metals 

have been explored as catalysts for lignin depolymerization (Xu et al., 2014; Li et al., 

2015; Song et al., 2012). Raney Ni catalyst was reported to be useful in the 

hydrogenolysis of lignin (Ferrini & Rinaldi, 2014; Jiang et al., 2015; Wang & Rinaldi, 

2012a; 2012b). Some researches demonstrated a catalytic process for the 

hydrogenolysis of model substrates, bio-oils, as well as organosolv lignin involving 



hydrogen transfer using isopropanol as hydrogen donor solvent (Ferrini & Rinaldi, 

2014; Wang & Rinaldi, 2012a; 2012b). Raney Ni was found to be very active in 

transfer hydrogenation and hydrogenolysis reactions for upgrading bio-oils. In regard 

to real lignin feedstock, addition of acids allows the hydrogenolysis under mild 

conditions and accordingly enhances the depolymerization efficiency (Yan et al., 

2008). Polyoxometalates, particularly the Keggin-type Cs+ salts of polyoxometalates 

(e.g. CsTP) exhibit strong acidity and are well known for the catalytic transformation 

of cellulose into sugar alcohol (Chen et al., 2013; Deng et al., 2010; Geboers et al., 

2010). Fortunately, dissociation energy (about 290 kJ/mol) of β-O-4 in lignin was 

lower than that (about 323 kJ/mol) of the glycosidic bond in cellulose, which was the 

lowest energy among all the chemical bond in cellulose (Parthasarathi et al., 2011). It 

will ensure that the CsTP solid acid catalyst also will efficiently cleave the aryl ether 

bond in lignin, especially β-O-4 linkage. 

Inspired by the above research work for the depolymerization of biomass, Raney 

Ni cooperated with CsTP as tandem catalyst was selected to depolymerize a 

representative lignin sample, which is a residual lignin and prepared based on 

ball-milling and enzymatic hydrolysis process in this study. This strategy addresses 

the key challenge of yield loss of mono aromatic compounds owing to lignin 

recondensation, a major issue in acid-catalyzed depolymerization of lignin. In 

addition, the starting lignin with a high proportion of β-O-4 linkages will also 

facilitates the depolymerization process based on the existing results about 

depolymerization of lignin (Bouxin et al., 2015; Shuai et al., 2016). 



 

 

2. Material and method 

2.1. Material 

Eucalyptus sawdust (40–60 mesh) was extracted with toluene/ethanol (2: 1, v/v) 

for 6 h to remove extractives, and then the extractive-free powder was dried at 60°C 

for 16 h. Chemical reagents were purchased from Sinopharm Chemical Reagent 

Beijing Co., Ltd, and the analytical chemicals used were purchased from 

Sigma-Aldrich. The liquid-state cellulase (Cellic® CTec2, 100 FPU/mL) was 

ungrudgingly supplied by Novozymes, Beijing, China. 

 

2.2 Preparation of double enzymatic mild lignin (DEL) 

To obtain a more representative lignin for lignin depolymerization, double 

enzymatic lignin (DEL) was firstly presented in this study. The detailed procedures 

for DEL were listed as follows. The ball-milling process was performed in a planetary 

ball mill (FritschGMBH, Idar-Oberstein, Germany) for 5 h. The ball-milled 

Eucalyptus sawdust (20 g) and 10.0 mL of Novozyme Cellulase (1000 FPU) were 

dispersed in acetate buffer (0.05 mM, 500 ml, pH 4.8) at 50 oC. Enzymatic hydrolysis 

was carried out in a rotary shaker at 150 rpm for 72 h. When enzymatic hydrolysis is 

completed, the mixture was separated and the residue lignin was washed with acidic 

water (pH=2.0), and then freeze-dried. The dried residual lignin was again undergone 

ball-milling for 5 h, then enzymatic hydrolysis as mentioned above. The isolation 



procedure for DEL from Eucalyptus sawdust is vividly presented in Figure S1. 

 

2.3 Catalyst preparation 

 The Cs salt of Keggin-type CsTP was prepared by the reaction between 

H3PW12O40 (HPW) and Cs2CO3 in aqueous solution. The 15 ml 0.02M Cs2CO3 was 

added into 20 ml 0.06 M HPW under vigorous stirring at 323K. Afterwards, the 

precipitates were obtained by filtration, followed by wash extensive with deionized 

water, and then calcined in air at 673 K for 2 h to obtain CsTP. 

 

2.4 Lignin depolymerization  

The catalytic depolymerization process of lignin was conducted in a 100 mL 

stirred E100 batch reactor. Typically, the reactor was charged with suspension of 0.5 g 

DEL, 0.5g CsTP and 0.5 g wet Raney Ni in 20 ml methanol/water mixed solution 

(v/v=1:1). The sealed reactor was purged with H2 several times and the pressure was 

set to 3 MPa, then the sealed reactor was heated to the desired temperature under 

continuous stirring at 800 rpm within 3 h. After completion of the reaction, the reactor 

was cooled to room temperature with an ice water. Once the pressure was released, 

the pH value of the reaction slurry was adjusted to 2.0 by 1 M HCl. After that, the 

resulting mixture was filtered. The filtrated reaction mixture was extracted with ethyl 

acetate (15 mL×3). The organic phase lignin (OPL) were dried by rotary evaporation, 

while the aqueous phase lignin (APL) and the residue (char and catalyst) were 

freeze-dried. The bio-oil prepared under different temperatures was labeled as O250, 



O260, O270 and O280, respectively. S0 represents for the starting material (DEL). 

 

2.5. Product characterization 

NMR spectra of the lignin and depolymerized lignin samples were conducted at 

298 K on a Bruker AVIII spectrometer (400 MHz) in DMSO-d6 according to a 

previous literature (Wen et al., 2014). X-ray diffractograms was recorded using an 

XRD-6000 (Shimadzu, Japan). The diffraction pattern was obtained from 10° to 85° 

using Cu Kα radiation (k = 1.5418 Å) at 40 kV and 40 mA. The BET surface area of 

CsTP was measured by N2 physisorption at 77K using a Micromeritics Tristar 3000 

Surface Area and Porosimetry analyzer. Before measurements, the CsTP was out 

gassed 378K for 2 h. FT-IR spectroscopic measurements were conducted using a 

Nicolet iN10 FT-IR Microscope (Thermo Nicolet Corporation, Madison, WI, USA) in 

the region of 4000–800 cm-1 with 64 scans. The weight average molecular weight 

(Mw) and number average molecular weight (Mn) of the lignin were determined by 

GPC as previously reported (Wen et al., 2014). The compounds in OPL were 

identified and quantified by injecting diluted samples into a GC-MS (Agilent 

7890-5978, USA) and GC-FID (Agilent 7890, USA) using a 30 m × 0.25 mm × 0.25 

μm capillary column (HP-5MS), respectively. Gas chromatography was carried out at 

50 oC for 10 min before the temperature was increased to 220 oC at 10 oC/min. The 

injector temperature was 220 oC in splitless mode. The components were identified by 

NIST 2011 spectral library and quantified using GC-FID by using external 

tetradecane standard.  



 

3. Results and discussion 

The newly-developed lignin preparation DEL was selected as a “model lignin” 

for the subsequent lignin depolymerization. The DEL is a residual lignin based on 

ball-milling and enzymatic hydrolysis, thus its β-O-4 linkages is abundant, similar to 

those of native lignin samples, such as MWL and CEL. To verify the structural 

characteristics of this lignin sample, the lignin obtained is subjected to 2D-HSQC 

NMR investigation. The main substructures of the lignin are shown in Figure 1 and all 

the annotated NMR assignments of lignin cross-signals in the HSQC spectra are based 

on a previous publication (Wen et al., 2014). As shown in Figure 1, the relative 

content of β-O-4 linkage in the DEL is 63.0/100Ar, while a little C-C linkage (e.g., 

β-5 and β-β) were observed (Figure 1). It is expected that the high proportion of β-O-4 

linkage facilitates depolymerization of lignin according to a recent publication (Shuai 

et al., 2016). Furthermore, the average molecular weight (Mw) of the acetylated lignin 

was 15770 g/mol and the polydispersity index (PDI) was 2.07. As mentioned above, 

DEL was a native lignin (different from the industrial lignin, such as alkali lignin and 

organosolv lignin) to understand the structural transformations of real lignin in 

biomass during depolymerization processes. 

The crystalline structures of HPW and CsTP were investigated by the XRD 

measurements. As shown in Table S1 and Figure S2, the XRD patterns of HPW and 

CsTP can be attributed to the cubic crystalline structure of Keggin-type 

polyoxometalate compounds, and the lattice structure did not undergo significant 



changes after double-decompose reaction (Langpape et al., 1999; Zhang et al., 2010), 

suggesting that crystalline structures of HPW and CsTP are very similar. However, the 

surface areas of the CsTP sample sharply increased from 1.29 to 12.54 m2/g, which 

increased active surface area. It has been suggested that the substitution of the smaller 

hydrogen ions (H+) with larger cesium ions (Cs+) in the polyoxometalate can form the 

structure of mesopores and micropores (Zhang et al., 2010). 

Based on the proposed depolymerization processes, the yields of products (OPL, 

APL and char) and molecular weight of the degraded lignin (OPL, APL) were shown 

in Table 1. It can be observed that the yields of OPL and APL were dramatically 

improved for lignin as the depolymerization temperature rose, while the char yield 

was sharply decreased to zero. Importantly, molecular weight of the degraded lignin 

was sharply reduced from 15770 to less than 1200 g/mol after depolymerization 

process. The phenomenon implied that this catalyst system could inhibit formation of 

char by recondensation during depolymerization, which greatly promoted the 

depolymerization of lignin. The yield of APL increased from 12.46 to 18.18 % with 

the temperature increasing from 250 to 260 C, while its yield decreased to 15.16% 

with the temperature further elevating to 270 C. Meanwhile, the yield of OPL 

reached maximum. However, the yield of the OPL decreased from 77.54 to 67.46 

when the reaction temperature was higher than 270 C. These results were attributable 

to the fact that oligomeric lignin was firstly started forming and then degraded into 

monomeric lignin, and some of which were decomposed to volatile organic 

compounds when the temperature exceeded 270 C. 



The FT-IR spectra of original lignin and OPL were analyzed for qualitatively 

monitoring the changes in functional groups according to the literatures (Faix, 1991; 

Mahmood et al., 2015). As shown in Figure S3, the peaks of phenolic or aliphatic OH, 

methyl and methylene groups became weaker after depolymerization due to 

dehydration and demethylation during hydrogenation process. Besides, the intensity 

of unconjugated ketones decreased after hydrogenation process, which was due to the 

reduction of ketones. The ether linkages at 1165 cm-1 was weaker in spectra of OPL as 

compared to DEL, implying that the majority of the ether linkages (e.g., β-O-4) were 

cleaved. Meanwhile, the bands corresponding to aromatics at 1400–1700 cm-1 remain 

almost the same between original lignin and OPL, implying that the depolymerization 

process did not change lignin’s aromaticity. 

1H NMR spectra of the samples and the integration results are shown in Table S2 

and Figure S4, in which the relate resonances were assigned based on the previous 

publications (Jahan et al., 2007; Wen et al., 2014). As shown in Figure S4, the proton 

peaks of DEL are smooth while that of OPL are keen-edged, which may be caused by 

the depolymerization of DEL. In this case, the macromolecules were degraded into 

small molecules and therefore the molecular weights sharply decrease. Additionally, 

the signals of aliphatic units rapidly increased and that of the ether bond sharply 

decreased as the temperature rose. The reason for this phenomenon could demonstrate 

that a large number of aryl-O and aryl-O-alkyl bonds were subject to rupturing and 

small molecular aliphatic compounds were generated. Besides, the content of ArH 

remained nearly unchanged, implying that there was no excessive use of H2 to form 



cyclohexanols. 

To further understand the effect of the depolymerization temperature on lignin 

depolymerization reactions, the OPL was analyzed by GC-MS technique. Figures 3, 4 

and Table 2, S3 illustrate the effect of the depolymerization temperature on the yield 

and distribution of the degraded monomer. The degraded products are categorized in 

six classes, namely phenols, guaiacols, syringols, benzene derivative, cyclohexanes 

and other volatile chemicals. As shown in Figure 2, yield of the degraded monomers 

was firstly increased from 13.4 to 22.4% based on an increase of the temperature from 

250 to 270 oC, while decreased to 20.8% at 280 oC. It suggested that higher 

temperature was in favor of lignin depolymerization, but a higher temperature of 280 

oC would result in a further decomposition of the degraded monomers to form 

small-molecule gases. The monomeric products included phenols, guaiacols, benzene 

derivative, and a small amount of syringols, cyclohexanes and other volatile 

chemicals. Moreover, the yield of phenols, guaiacols, benzene derivative increased 

with the raise of temperature. In contrast, the yield of the syringols decreased as the 

temperature increased. Besides, the content of cyclohexanes was very littler and 

remained nearly constant. Based on the monomeric-product distribution (Figure 2), it 

can be concluded that the tandem catalyst showed low ring-hydrogenation activity 

and good demethoxylation in all of the cases. Figure 3 shows GC-MS results of the 

monomeric-products performed at various reaction temperatures. It was found that the 

main monomeric products were similar and compounds 6 and 7 were the main 

degraded product at various depolymerization temperatures, which showed satisfied 



catalytic selectivity. As the temperature rose, the γ–CH3 of part aromatic compound 3 

was eliminated and formed aromatic compound 3, implying that the tandem catalyst 

also has the ability of demethylation. In short, DEL can be effectively degraded into 

eight kinds of aromatic compounds in this tandem catalytic system. However, further 

optimization experiment is under way in our lab.  

 

4. Conclusions 

An efficient tandem catalysis approach for cleavage of β-O-4 linkages in a novel 

native lignin models has been proposed and developed, involving ether hydrolysis by 

CsTP solid acid followed by upgrading by Raney Ni. By depolymerization, the 

molecular weight of the DEL was reduced significantly from 15770 to about 1000 

g/mol (for APL) and about 400 g/mol (OPL). Meanwhile, there were few chars 

formed. Besides, it was found that the temperature only affects the yield of the 

degraded monomers, but don’t changes of the distribution of the degraded monomers. 

In short, this tandem catalyst exhibited a good catalytic performance and selectivity. 
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