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HIGHLIGHTS 

 First effective manipulation of the compass system in a migratory mammal 

 Adult bats shifted orientation at night by misinterpreting a mirrored sun at dusk 

 There may be no innate component to orientation in first year migrants 

 A novel assay to measure bat takeoff orientation based on free directional choice 

 

In Brief: Navigation of migratory mammals remains largely understudied due to the lack of a 

controlled behavioural assay for measuring orientation. Here, Lindecke and colleagues have 

developed an experimental behavioural assay for migratory bats to test the role of the sun's 

position in the compass system by measuring their takeoff orientation. Takeoff behaviour 

suggests that adults calibrate their compass with the sun’s azimuth at sunset, but that first year 

migrants appear unable to take up a migratory heading, suggesting that migration direction is 

learned rather than innate in these bats. 



SUMMARY 

From bats to whales, millions of mammals migrate every year. However, their navigation 

capacity for accomplishing long-distance movements remains remarkably understudied and lags 

behind by five decades compared to other animals [1, 2]; partly because, unlike for other taxa 

such as birds and sea-turtles, no small scale orientation assay has so far been developed. Yet 

recently, bats became a model to investigate the nature of the cues mammals use for long-range 

navigation, and surprisingly for nocturnal animals, sunset cues, and in particular polarized light 

cues, appear crucial to calibrate the magnetic compass system in non-migratory bats [3–5]. This 

does not appear to hold for a species of migratory bat however [6], and thus the nature of the 

information used by migratory bats for navigation remains unclear. In this experiment, we asked 

whether the position of the solar disk per se is relevant for compass orientation in a migratory 

bat, Pipistrellus pygmaeus. Using a new experimental assay that measures takeoff orientation, we 

tested the orientation of bats exposed to a shifted sunset azimuth using a mirror at dusk. Bats 

exposed to a 180° rotated azimuth of the setting sun and released after translocation during the 

same night shifted their heading direction by ~180° compared to control bats. However, first-year 

migrants had no clear orientation either as controls or following the same treatment, indicating 

that unlike birds, these bats do not have an innate migratory direction when released after 

translocation. This suggests learning is a key component in the long-range navigational system of 

naïve bats in this species. Our study provides rare empirical evidence for the specific cues and 

mechanisms migratory mammals use for navigation. 

 

Keywords: animal migration, bats, compass calibration, orientation, magnetoreception, solar 

orientation, takeoff behaviour 



  

RESULTS AND DISCUSSION 

Migratory animals show an ability to navigate over vast distances with remarkable precision 

returning to the same area year after year [7]. Whilst some aspects of this behaviour remain a 

mystery, advances in our understanding have been made in taxa such as birds and reptiles, by 

using small scale correlates of orientation that have allowed controlled manipulation of the cues 

animals are using [8, 9, 10]. One taxon, mammals, remains remarkably understudied with regard 

to navigation during migration however. Whilst the logistics of experiments on large terrestrial 

and aquatic migrants contributes to this dilemma, migratory insectivorous bats also remain 

understudied. A key reason for the lack of research on bats is the absence of an assay that 

measures a correlate of migratory orientation such as those that exist in birds and reptiles [1]. 

Therefore, a thorough understanding of the senses and environmental cues used by mammals for 

navigation over hundreds or even thousands of kilometres is lacking [11]. Bats have emerged as a 

widely studied model in movement ecology because they combine both high ecophysiological 

diversity with a variety of movement behaviours [12]. Bat eyes evolved to sense a wide range of 

light and a broad spectrum of wavelengths [13, 14] and, presumably, bats of the family 

Vespertilionidae, and possibly also others, rely heavily on vision when orienting over long 

distances since echolocation and path integration are ineffective and error-prone at distances 

larger than a few dozen meters [15–19]. 

Generally, the sun is considered to be the most prominent celestial cue for compass orientation, 

since it is key for bird navigation during homing and migration [20, 21]. Surprisingly, even 

nocturnal mammals, such as bats, integrate solar cues to successfully find their home roost at 

night, which appears counterintuitive because of bats’ strictly nocturnal behaviour [4, 5, 22]. 

Furthermore, it has been demonstrated that adult non-migratory bats calibrate a magnetic 

compass to cues at sunset [3, 4]. Like some migratory birds [23], a non-migratory bat species was 

demonstrated to use the maximum band of polarized sunlight at sunset for this calibration, which 

forms a band across the sky at 90° to the setting sun [5]. In contrast, however, the only 

experiment so far to test the cues used for navigation by a migratory bat species, namely 

Nathusius’ bats (Pipistrellus nathusii), failed to find an effect of manipulation of the polarized 

light pattern on heading directions [6]. Therefore the cues and mechanisms used by migratory 

bats during navigation remain entirely unknown [24]. 



Here, we tested whether the position of the setting sun on the horizon (solar disc azimuth) could 

be the key reference for bats to efficiently calibrate their compass system for navigation at night. 

We caught fifty-four Soprano pipistrelles (Pipistrellus pygmaeus) migrating towards their 

wintering grounds along the Latvian Baltic Sea shore. We discriminated between first-year 

migrants and adult bats, assuming that subadults are inexperienced and adults experienced 

migrants. After capture, bats were housed in small groups in a dark keeping room until the next 

evening. Our experimental approach was based on two-steps: (1) exposing bats to a shifted 

position of the sun at sunset created by using a polished steel-mirror and (2) subsequent 

translocation of experimental animals further inland with an orientation test at the release site 

during the same night. For the sunset treatment, we chose a location in the dunes with an open 

view of the Baltic Sea.  On the day of treatment, bats were randomly assigned to two treatment 

groups and individually put in cylindric cages with lids limiting their free view to the natural (C) 

or mirrored (M) sunset from 30 min before until 30 min after sunset, i.e., until the sun's disk 

disappeared below the horizon (-5°). For each treatment group, the opposite view of the horizon 

was blocked from vision for 180° by the taped sidewall of the cage. Thus, bats of the M group 

faced the mirror 50 cm in front of them instead of a free view of the forest to the east opposite to 

sunset. At the treatment site, we took utmost care that bats were not exposed to any other light 

source than defined by the experimental condition, i.e., we abstained from using artificial lights 

when collecting the animals from their cages again. We hypothesized that migrating bats use the 

sun, i.e. the directional information provided by the solar disk at sunset, to calibrate their 

orientation system. Accordingly, we expected bats of the M group to orient in the opposite 

direction compared to bats of the C group when released. 

To mirror the sunset, we used pure metal plate mirrors (stainless steel, 60  60 cm) as 

recommended for deflector studies by Horváth & Pomozi (1997) [25]. Using metal plate mirrors 

is crucial since common glass mirrors generate unwanted optical stimuli with qualitative and 

quantitative changes of the natural skylight polarization and near ultra-violet light patterns which 

have been shown to bias animal orientation in deflector studies [25, 26]. When handling bats, we 

ensured that they neither saw the sky nor the true horizon before and after the experimental 

treatment. After exposure to the sunset-treatment, we translocated the bats 5.1 km inland for 

nightly release on a large meadow surrounded by trees. 

For recording of the heading directions of released bats, we designed a behavioural assay to 

quantify the departure flight direction based on measures of takeoff using a novel apparatus, a 



circular release box for bats (CRBox). The CRBox allowed us to remotely release bats and record 

their takeoffs in every possible compass direction (Figure 1). The CRBox consists of a circular-

shaped arena with a lid including the remotely controlled mechanism for release of a bat from the 

centre of the arena. The apparatus is positioned in the field 1 meter above ground. By 

construction and due to translocation away from the treatment site, the CRBox reduces the 

amount of environmental information which could inform the navigation system of a bat, e.g., 

cues provided by the night sky, visual landmarks and winds. From the moment of release, the 

echolocation behaviour of the bat in the CRBox was monitored with the aid of a bat detector from 

10 m distance. When echolocation calls indicated flight by characteristic regular pulses, we noted 

the timing of takeoff. A 360° thin layer of chalk on the annulus of the arena enabled us to record 

the animals' orientation based on tracks, i.e., the footprints left after crawling to the edge for 

takeoff. This experimental behavioural assay is based on the recent finding that takeoff 

orientation is a reliable proxy for departure flight orientation in adult bats [27]. 

We found that translocated adult bats took off for departure in a direction that depended on the 

experimental treatment. The heading direction depended on the sunset azimuth that bats had been 

exposed to, and which they apparently integrated for navigation decisions. Mean takeoff 

orientation of bats previously watching the natural sunset averaged 256° (west-southwest) in the 

C group, and 79° (east) in the M group which matched the 180° difference in the perceived 

azimuth of the sun during the treatment. Orientation data of both groups were significantly 

different from a uniform circular distribution (Kuiper test, adult C: p < 0.01, V = 2.04, n = 11; 

adult M: p < 0.025, V = 1.977, n = 15; Figure 2), both being significantly unimodal (Rayleigh 

test, adult C: r = 0.591, p = 0.018, Z = 3.848; adult M: r = 0.511, p = 0.017, Z = 3.915). The 

variance of individual orientations around the group-specific means did not differ significantly, 

and thus can be considered equal (Levene's test: F1,24 = 0.061, p = 0.806), which is an additional 

indicator of the effectiveness of the mirror treatment. Distributions were significantly different 

between groups (Mardia–Watson–Wheeler test, W = 11.238, p = 0.004) while both groups took 

off in opposite directions (177° difference of mean angles). During 19 releases, unambiguous 

echolocation behaviour could be observed, indicating the exact moment when focal bats took off 

for flight. There was no significant difference in latencies between groups (adult C: mean = 88 

sec, median 72 sec n = 7; adult M: mean = 85 sec, median = 81 sec, n = 12; t = 0.177, d.f. = 17, p 

= 0.908).  



In contrast to adult takeoff orientations, subadult bats (n = 24) did not show any directional 

preference, displaying random orientation in both control and experimental groups. Takeoff data 

distributions from subadult control (subadult C) and mirrored (subadult M) bats did not differ 

from a uniform circular distribution (Kuiper test, subadult C: p > 0.15, V = 1.422, n = 14; 

subadult M: p > 0.15, V = 0.952, n = 10; Fig. 1), and thus any unimodal orientation could be 

ruled out a priori, which is supported by Rayleigh test results (subadult C: r = 0.313, p = 0.258, Z 

= 1.369; subadult M: r = 0.801, p = 0.801, Z = 0.232). In accordance with the above tests, we 

found no significant difference in either the variance of individual headings around group-

specific means (Levene's test: F1,22 = 1.328, p = 0.262), nor the distributions of both groups 

(Mardia–Watson–Wheeler test, W = 0.813, p = 0.666). Thus, first year migrants were not 

oriented irrespective of treatment. Again, takeoff latencies did not differ between treatment 

groups (subadult C: mean = 74 sec, median = 68 sec, n = 11; subadult M: mean = 77 sec, median 

= 64 sec, n = 7; t = -0.139, d.f. = 16, p = 0.891), nor was there a difference when we compared 

mean latencies among the age groups, suggesting that in principal subadults behave similarly 

when compared with adult test bats (adult C & M: mean = 86 sec, median = 72 sec, n = 19; 

subadult C & M: mean = 75 sec, median = 66 sec,  n = 18; t = 0.693, d.f. = 36, p = 0.493). 

Interestingly, in other taxa time-compensated sun compass orientation is possible at an early 

stage of ontogeny, as it supports long-distance dispersal movements of diurnal fish larvae and 

juvenile sea turtles [28, 29]. If so, this suggests that unlike many first year migratory passerines 

which migrate alone, and are able to count on genetically controlled population specific 

migratory orientation in the wild [30], and in an orientation cage [31], these bats do not appear to 

have an inherited migratory direction calibrated by the sun, or at least are not able to express it in 

the apparatus we use. This suggests that young P. pygmaeus need to learn long-distance 

orientation en route of migration from conspecifics, similar to some long lived bird species [32, 

33]. 

In conclusion, our study provides the first evidence to show unambiguously that a migratory bat 

species integrates the direction of the setting sun’s disc at dusk to calibrate a compass system for 

nocturnal orientation, a capability which to our knowledge has not been shown for any other 

animal species. This complements recent results which did not support a calibration based on 

polarized light cues in migrating pipistrelle bats (P. nathusii), suggesting that magnetic compass 

calibration is dependent on the solar azimuth at sunset. However, we did not track the migratory 

transit flight as such and thus cannot exclude actively migrating bats use different navigation 



strategies, such as route-following to complement map-and-compass navigation where possible. 

Also, it cannot be excluded that bats use solar azimuth-based orientation not only in the migration 

context but in a more general way, as well. For example, heading back to any flight corridor after 

natural displacements resembles the situation which we have observed in our experiment, which 

again is similar to the navigational challenge of locating foraging grounds or home roosts outside 

the migration season. To date, it remains unknown how subadult P. pygmaeus navigate on their 

first migration. We speculate that subadults may learn by social factors since we regularly 

observe groups of 2 to 3 bats passing by the migratory corridor at our study site [12]. Our results 

highlight for the first time in a migratory mammal that first year migrants appear to lack an 

inherited migratory direction and thus may rely on travelling with experienced conspecifics when 

making their first migratory journey – an intriguing difference to other migrants, such as juvenile 

passerine birds and sea turtles [9, 30, 34]. 
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Figure 1. The bat takeoff orientation assay. Scheme showing a bat departing from a circular 

release box. After the acclimatisation box is lifted, the animal may leave from the apparatus at the 

time and in the direction of choice. A thin layer of chalk tracks the movements of bats while 

orienting and crawling to the opening, enabling an accurate measure of takeoff orientation. The 

input of environmental cues is reduced until the bat takes off for free flight. 

 

Figure 2. Nightly takeoff orientation of adult and 1st-year bat migrants (Pipistrellus 

pygmaeus) at release depending on preceding sunset direction. Arrow and dashed lines (95% 

confidence intervals) highlight significant unimodal directionality in orientations of adult groups 

(A, B; n = 26) according to the Rayleigh test (5%, p-values are shown in the circular graph). The 

length of the black arrows corresponds to the vector length, r, in each graph. Orientation data of 

both subadult groups (C, D; n = 24) were indistinguishable from random distributions (Kuiper 

test results: p > 0.15). MWW.p and Levene's.p are p-values of the Mardia-Watson-Wheeler and 

the Levene's tests respectively, performed between neighbouring treatment groups. While adults 

but not subadults differed in distributions (MWW), the scatter of data around the means was equal 

(Levene tests). Significant differences are highlighted in bold. Total sample size n = 50. 

 

Figure 3. Experimental cage used to expose bats to the natural or mirrored sunset. The cage 

design offers a 180° free panoramic view. 

 

Data S1. Raw data of bat releases and heading data used in the statistical analysis. 
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STAR METHODS 

KEY RESOURCES TABLE 

 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Experimental Models: Organisms/Strains 

Soprano pipistrelle Pipistrellus pygmaeus nature N/A 

Software and Algorithms 

Oriana (v4.0) Kovach Computing 
Services 

https://www.kovcom
p.co.uk/oriana/index.
html 
 

Sigma Plot (v11.0) Systat Software, Inc. https://systatsoftwar
e.com 

Other   

Circular Release Box for Bats self-made, see below 
for construction details 
and Figure 1. 

N/A 

 

CONTACT FOR REAGENT AND RESOURCE SHARING 

Further information and requests for resources should be directed to and will be fulfilled by the 

Lead contact, Oliver Lindecke (lindecke@izw-berlin.de). 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Experimental bats and site 

Soprano pipistrelles (Pipistrellus pygmaeus) of both sexes were captured at Pape Bird Ringing 

Station (PBRS; 56°09' N 21°03' E, Rucava Municipality, Latvia) between 15 and 24 August 

2017, using a Heligoland trap aligned to the Baltic Sea shore (dimensions at the entrance of the 

funnel 50  15 m). Soprano pipistrelle populations around the Baltic Sea move towards central 

https://www.kovcomp.co.uk/oriana/index.html
https://www.kovcomp.co.uk/oriana/index.html
https://www.kovcomp.co.uk/oriana/index.html


Europe in August and September [35, 36]. On the night of capture, bats were controlled for site-

specific, seasonally appropriate body condition, aged according to the closure of the epiphyseal 

gaps of the phalanges, and afterwards transferred to a dark keeping room where wooden boxes 

served as cages for subsequent day-roosting. Bats were experimentally treated on the subsequent 

evening. The station and experimental sites are located in the Pape Nature Reserve. All work 

adheres to the ASAB guidelines for Use of Animals in Research and was carried out under the 

permission of the responsible Latvian authorities to the Institute of Biology, University of Latvia 

and Latvia University of Agriculture (Nr. 33/2017-E from 19.07.2017 and Nr. 3.6/85/2017-N-E 

issued by the Latvian Nature Conservation Agency), in accordance with the guidelines and 

regulations of the institutional animal care and ethics committee. The bats were released directly 

back into the wild when they were set free in the CRBox. 

 

METHOD DETAILS 

Mirror experiment 

On the day of the experiment, any handling of test subjects was performed indoors in a wooden 

hut in order to avoid bats seeing the sun and any directional solar cues respectively, prior to the 

treatment phase. Experiments were only carried out during evenings with stable weather 

conditions such as zero wind to light breeze (0–2 m s
-2

) and 0–60% cloud cover and a visible 

sunset. The treatment site was 60 m from the research station, about 100 m from the shoreline 

and 150 m from the funnel trap. For transportation to the treatment site, bats were put singly into 

cotton bags (Ecotone, Gdynia, PL) and additionally into dark plastic buckets. For the experiment, 

bats were individually placed in cylindrical cages (20 cm diameter, 7 cm height; Figure 3) 

positioned on tables on the dune. For construction of these cages we chose materials which had 

no effects on the polarity or intensity of the local geomagnetic field, measured from inside the 

cage and compared with immediate surroundings of the treatment site using a conventional 

compass (Suunto A-30 NH Metric, Vantaa, FIN) and a smartphone (Apple iPhone 5) equipped 

with a Hall-Sensor (3D Magnetometer, Asahi Kasei Microdevices AK8963, Tokyo, JP) which 

was read out via Phyphox software (RWTH Aachen University, Aachen, GER). For this location, 

we measured the geomagnetic field intensity at 50.8 µT on 15 Aug 2017. The sidewall of a cage 

consisted of conventional gauze mesh (8 mm aperture) and was partly taped so that a bat inside 

would have a 180° panoramic view of the surroundings. The lid was made of cardboard and fitted 

with a wooden stick in the centre (2 cm diameter) oriented down to the bottom of the cage. Thus, 



a bat could observe the environment from inside a cage in either horizontal body position or 

hanging heads down while clinging to the wood. We avoided using artificial light (flashlight or 

forehead lamps) for any procedure at the treatment site, so that the bats experienced natural 

sunlight, only. Further, according to the recently released atlas of artificial night sky brightness 

[37], our study site can be considered particularly dark at night, i.e., the natural nightscape is less 

polluted by anthropogenic light than the average European sky (ratio artificial to natural 

brightness < 0.05). The mirrors (stainless steel, 60  60 cm) were aligned perpendicular to the 

sunset bearing daily and positioned vertically, 50 cm in front of the caged bats. In general, when 

animals were handled, great care was taken that they neither saw the sky nor the true horizon 

until inserted into the cages and after completion of the treatment until they were put back in 

cotton bags to wait for translocation and release.  

 

Circular release box assay 

All components for the construction of the CRBox were purchased from hardware stores. The 

experimental setup consists of two circular shaped elements: an arena (42 cm diameter) as the 

bottom part and a lid (60 cm diameter; textured coated board) including the mechanism for 

remote release of the bat from a smaller acclimatisation box (8 cm diameter, 3 cm height; black 

plastic) in the centre (8 cm diameter) of the arena. The release mechanism is based on miniature 

electric motor (mounted onto the lid of the CRBox) which lifts the acclimatisation box for 3 cm 

when triggered remotely by radio control. For construction of the CRBox we only applied non-

magnetic materials to avoid interference with a putative magnetic sense of bats. We made use of 

a flat funnel-shape for the arena (extruded polysterol, XPS, Jackodur, Jackon Insulation), so that 

a bat starts a test below the level of the edge. The edge is 17 cm distant from the centre point of 

the CRBox. At the edge, the arena surface was again tilted downward 40° to facilitate takeoff for 

bats. The arena is coated with synthetic leather because the texture of this material supports 

crawling of bats and because it can be cleaned easily. A thin layer of chalk on the annulus around 

the acclimatisation box enables recording of the final takeoff direction based on tracks of a bat. 

The lid extends 9 cm beyond the arena, creating a brim that hinders the bat from seeing the night 

sky overhead and consequently impairs any celestial orientation at the RS. If the bat is motivated 

to gather information from the surroundings, it is thus forced to take off from the CRBox. For 

each trial the track of the previous test bat was eliminated with a renewed layer of chalk on the 

arena surface, and additionally, the CRBox was randomly rotated. Finally, the CRBox was 



positioned 1 m above ground. The horizontal position of the apparatus was adjusted using a spirit 

level. 

 

Geographical translocation and orientation testing 

On the day of treatments after 2230 hours, we translocated the bats 5.1 km to the release site (RS) 

98° east of the capture site away from the coastal migration corridor. By translocating the 

animals, we aimed to evade any bias on orientation behaviour which could arise from cues 

indicating the direction of the seashore, e.g. marine noise and visual landmarks provided by the 

dunes. The RS was on an open flat meadow (~3.1 ha) in the forested area of Pape Nature 

Reserve. Releases started at 2255 hours, the last trials during a given night were started between 

0011 and 0239 hours. Before releasing bats individually, and during trials, we surveyed the 

vicinity of the RS for the presence of any other bats using a handheld ultrasound detector (D100, 

Pettersson Elektronik, Uppsala, SW). In the presence of other bats, experimental releases were 

paused to avoid confounding effects when released bats might have been biased in their 

vanishing direction. To measure the effect of our treatment on the bats’ directional movements, 

we used a CRBox assay designed to record takeoff orientation on a full-circle. Previously, we 

identified takeoff orientation of as a useful proxy for departure flight direction of individually 

released adult bats [27]. Bats were randomly chosen for testing and were unable to explore the 

spatial details of the environment in which they could head prior to release from the CRBox. 

Therefore, we took care to keep bats naïve to the surroundings, i.e., we covered the individuals 

with cotton bags when they were carried to the CRBox. The direction for insertion of bats into 

the acclimatisation box was changed constantly between trials. The experimenter position relative 

to the CRBox was changed between trials in 90° steps, as well. We waited 15 sec before carefully 

lifting the acclimatisation box from 10 m distance using a remote control. The activity of the 

focal bat, i.e. its echolocation behaviour, was constantly monitored using a bat detector. Based on 

a pilot study in adult pipistrelles, we set a threshold time of 3 min until a trial was cancelled in 

case no echolocation indicated a lack of movement activity [27]. One bat took longer than this 

time threshold and consequently was ignored in the analysis. Free flight after takeoff was 

indicated by a sequence of echolocation calls leading away from the CRBox. However, we 

misinterpreted echolocation calls in three cases and exposed these individuals to light prior to 

takeoff. We excluded these trials. If a takeoff could be clearly identified by means of 

echolocations calls, we noted the time (sec), i.e. the takeoff latency a focal bat took to depart 



from the CRBox after the acclimatisation box was lifted. Takeoff latency potentially indicates 

behavioural differences between test groups [27]. We recorded takeoff latencies in 37 trials 

(C=18; M=19). After a bat had disappeared from the RS, we measured the bearing for takeoff, 

i.e. takeoff orientation, using a compass which was placed in the centre of the CRBox. The 

experimenter who recorded orientation data was blind to the treatment of bats. Over the course of 

nine nights, we recorded takeoff orientations of 26 adult (10 male, 16 female) and 24 subadult 

(11 male, 11 female, 2 sex undetermined) bats. 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Takeoff bearings were analysed using the Oriana 4.0 circular statistics software package (Kovach 

Computing Services, Pentraeth, UK). We calculated mean bearings and vector lengths, and then 

Kuiper's omnibus test was used for each treatment group as a goodness-of-fit test against uniform 

circular distribution, i.e., to detect randomness of data [38]. If Kuiper's test statistic indicated 

non-random orientation of data, the Rayleigh test was used to test for unimodal departure from 

circular uniformity, i.e. a preferred takeoff orientation [39]. We compared variances in group-

specific orientation scatter by applying the Levene's test based on the deviations of individual 

takeoff bearings from the group-specific mean [40]. The Mardia–Watson–Wheeler test was 

selected to test for differences in distribution across groups [38]. Testing for differences in 

takeoff latency was performed using t-tests for adult and subadult groups, and the treatments, 

respectively (SigmaPlot 11.0, Systat Software Inc., Chicago, USA). 

 

DATA AND SOFTWARE AVAILABILITY 

The heading data used in the statistical analysis for this study and a map showing the study 

location and mean orientations of adult test groups can be found in the supplementary materials 

associated with this article, available online (Data S1 file and Figure S2). 


