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Abstract

PaV1 is a pathogenic virus found only to infect Caribbean spiny lobsters Panulirus argus, a

major fishing resource. P. argus is a benthic mesopredator and has a complex life history,

with several ontogenetic habitat changes. Habitat characteristics and species diversity of

surrounding communities may have implications for disease dynamics. This is of more con-

cern for juvenile lobsters, which are more susceptible to PaV1 and are far less mobile than

adult lobsters. We targeted a population of juvenile P. argus in a reef lagoon in Mexico,

where PaV1 was first observed in 2001. Prevalence has been since irregularly assessed,

but in 2016 we began a more systematic assessment, with two sampling periods per year

(June and November) in three different zones of the reef lagoon. To examine the relation-

ship between PaV1 prevalence and potential ecological determinants, we assessed habitat

complexity, cover of different substrates, and invertebrate community composition in all

zones during the first four sampling periods (June and November 2016 and 2017). Habitat

complexity and percent cover of some substrates varied with zone and sampling period.

This was the case for seagrass and macroalgae, which nevertheless were the dominant

substrates. The invertebrate community composition varied with sampling period, but not

with zone. Probability of infection decreased with increasing lobster size, consistent with

previous studies, but was not affected by zone (i.e., variations in ecological characteristics

did not appear to be sufficiently large so as to influence prevalence of PaV1). This result

possibly reflects the dominance of marine vegetation and suggests that lobsters can be

sampled throughout the reef lagoon to assess PaV1 prevalence. Prevalence was higher in

only one of seven sampling periods (November 2017), suggesting that the pathogen has

leveled off to an enzootic level.

PLOS ONE | https://doi.org/10.1371/journal.pone.0229827 February 28, 2020 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Davies CE, Briones-Fourzán P, Barradas-

Ortiz C, Negrete-Soto F, Moo-Cocom G, Lozano-
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Introduction

The Caribbean spiny lobster Panulirus argus (Latreille, 1804) is an important fishing resource

throughout the wider Caribbean region [1]. This species has a complex life history with several

ontogenetic habitat changes. After an extended larval period that develops in oceanic waters for 5

to 7 months, the postlarvae of P. argus return to the coast and settle in shallow, vegetated habitats

(seagrass meadows, macroalgal beds), where the small juveniles (6 to ~20 mm carapace length, CL,

measured from the inter-orbital notch to the rear end carapace) dwell for approximately 2 to 4

months. Upon outgrowing the protection afforded by the vegetation, juvenile lobsters seek crevice-

type shelters within or adjacent to the macroalgal beds or seagrass meadows. Later, the subadults

(~50 to 80 mm CL) start migrating to coral reefs, which the adults (>80 mm CL) inhabit [2].

P. argus are omnivorous mesopredators and play an important ecological role in Caribbean

coral reefs systems [3–5], but they are also susceptible to parasites and diseases [6]. For exam-

ple, they are hosts to Panulirus argus virus 1 (PaV1), the first known naturally occurring virus

of a lobster. PaV1 was first discovered in Florida (USA) in 2000 [7], and shortly thereafter in

Puerto Morelos (México) in 2001 [8]. The main clinical/gross sign of infection is a ‘milky’

white hemolymph, immediately visible through the translucent membrane between the cara-

pace and abdomen [7,9]. PaV1 only affects P. argus and is currently widespread throughout

the Caribbean [10,11], linked to various factors. Principally, PaV1 prevalence has been corre-

lated with lobster size, being found more in smaller, juvenile lobsters [12,13], and with habitat,

being found more in highly-vegetated habitats [14–16], suggesting that vegetation may be act-

ing as an environmental reservoir for the virus.

Although Caribbean spiny lobsters are gregarious, healthy lobsters tend to avoid heavily

PaV1-infected conspecifics, which may help curb prevalence levels [17–20]. However, infec-

tions involve interactions not only between the pathogen and the host, but among networks of

species [21]. Even in host-specific disease systems (such as PaV1/P. argus), species diversity of

surrounding communities may affect disease dynamics in different ways [21–23]. For example,

non-host species may reduce the probability of encounter between hosts, and if non-host spe-

cies are prey or mutualists of hosts, they can reduce host stress, potentially increasing the effi-

cacy of the host immune response [21]. Additionally, some non-host species may act as

reservoirs of pathogens [24], although reservoirs of PaV1 and effects upon the ecosystem as a

whole are unknown. As previously noted, some studies have reported a higher PaV1 preva-

lence in densely-vegetated areas compared to poorly-vegetated areas even after accounting for

the significant effect of lobster size, suggesting that vegetation may be acting as an environ-

mental reservoir for the disease [14,15]. This notion has been supported by a recent study [16]

in which the probability of infection with PaV1 was found to be higher in lobsters inhabiting

more vegetated habitats, but further proposing that either marine vegetation or fauna that live

associated with vegetated habitats, or both, may be reservoirs of PaV1.

The present study aims to increase insight into the dynamics of the PaV1 disease in Caribbean

reef lagoons, which are nursery habitats for juvenile P. argus [2]. We targeted the population of

juvenile lobsters in the shallow Puerto Morelos reef lagoon (Mexico), where PaV1 has been present

since 2001 [8]. Previously, prevalence of PaV1 in the reef lagoon had been assessed in irregular

periods during 2005–2006 [13] and 2010–2014 [25]. Some assessments were based on lobster sam-

ples from specific sites within the lagoon and others on lobsters sampled throughout the reef

lagoon. However, small-scale habitat characteristics (e.g. habitat complexity, types of substrate) and

species diversity of local communities can play important roles in disease ecology [16,21,23,24].

This may be of more concern for juvenile lobsters than for adult lobsters because juveniles, espe-

cially those<50 mm CL, have far more limited movement ranges than adults [2,26,27] and are

more susceptible to PaV1 [9,12,15]. Therefore, in 2016 we began a more systematic assessment,
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with two samplings per year during contrasting seasons (June and November), in three zones of

the reef lagoon. During the first four sampling periods (June and November 2016 and 2017), we

also examined habitat characteristics, the composition of invertebrate communities (as a first step

into an assessment of potential reservoirs of PaV1), and the size of lobsters in the different sam-

pling zones to examine their potential relationship with PaV1 prevalence.

Materials and methods

Study area

The study was carried out in the Puerto Morelos Reef National Park, located at the north-

ernmost section of the Mesoamerican Barrier Reef, on the Mexican Caribbean coast. This

marine system (centered at 20˚52’N 86˚5’W) consists of an extended fringing reef located at a

distance of ~0.5 to 2 km from the coast [28] (Fig 1). The reef reduces wave energy, allowing

the presence of a shallow reef lagoon (~5 m in maximum depth) where seagrass meadows

dominated by the turtlegrass Thalassia testudinum develop. The Puerto Morelos reef lagoon

has been extensively studied since the early 1990s [29–36]. These studies have consistently

divided the lagoon vegetation into three distinct zones: a narrow coastal fringe (50–100 m in

width), a broad mid-lagoon zone, and a back-reef lagoon zone. In the mid-lagoon zone, which

covers the greatest part of the lagoon, the sandy sediment tends to be deeper and the seagrass

biomass and height are generally greater, but with substantial temporal and spatial variation

[31,33]. In the back-reef zone, seagrass meadows have generally less biomass, shorter leaves,

and a less dense canopy because the sediment layer is thinner and there is more hard substrate

[33]. The present study took place in the mid-lagoon and back-reef lagoon zones.

The vegetation throughout the reef lagoon provides adequate settlement habitat for postlar-

vae and protection for small juvenile P. argus [37,38], but the abundance of large juveniles and

sub-adult lobsters decreases abruptly because of the scarcity of crevice-type shelters in the

lagoon [39]. At different times between 1998 and 2009, up to 80 experimental casitas (artificial

shelters that mimic large crevices), scaled to harbor juvenile lobsters, were deployed on several

sites throughout the lagoon to examine their long-term effects, first on density and biomass of

juvenile lobsters, and later on PaV1 disease dynamics [13,25,27,40]. At the onset of the present

study, 54 casitas remained operational. To examine whether variation in types of substrate, hab-

itat complexity, and local invertebrate diversity were related with lobster size and prevalence of

PaV1, we selected three zones in the reef lagoon where casitas were present but that differed in

depth, density and height of seagrass (see [31,33]). Zone A, characterized by lower seagrass bio-

mass with shorter leaves, was located near the back reef (~2.5 m in depth); zone B, characterized

by higher seagrass biomass and canopy, was located in the mid-lagoon (3–3.5 m in depth); and

zone C, with some characteristics similar to zone B, was located leeward of a reef channel,

where the lagoon is broader and deeper (4.5–5 m in depth) (Fig 1). Distance between zones ran-

ged between 600 m and 1 km. These distances exceed the typical movement ranges of juvenile

P. argus� 50 mm CL (<100 m), as previously assessed in this same reef lagoon [27].

Ethics statement

A permit for sampling in the Puerto Morelos reef lagoon was issued by Comision Nacional de

Acuacultura y Pesca, Mexico (PPF/DGOPA-259/14).

Habitat characterization

To examine potential ecological differences among sampling zones and over time, percent

cover of different types of substrate, habitat complexity, and invertebrate diversity were
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estimated in each zone [16] for two contrasting seasons (June and November) over two years

(2016 and 2017), yielding four sampling periods. In each period, six transects, each 25 m in

length, were laid parallel to the reef and the coast in each zone. Each transect was marked

every 50 cm [16]. The percentage of cover of the following types of substrate was estimated

using the point intercept method: seagrasses, macroalgae, sand, rubble, live hard corals, soft

corals, hard bottom, and sponges [41]. This method consists of recording the type of substrate

observed below each mark along a transect (= 50 estimates per transect). Since points are

essentially dimensionless, the point intercept method is considered the least biased and most

repeatable for determining cover [42].

Habitat complexity was estimated using a qualitative metric, the habitat assessment score

(HAS) [16,43,44], which has the advantage that it can be applied in habitats from very complex

(e.g. coral reefs) to very simple (e.g. sand) [43]. HAS provides an overall structural complexity

value by visually evaluating six variables of the local topography (rugosity, variety of growth

forms, height, refuge size categories, percentage of live cover, and percentage of hard substra-

tum). Each variable is assigned a score between 1 and 5 (from smallest or lowest to largest or

highest; see Table 1 in [43]), and the sum of the individual scores is the HAS. Therefore, a

score of 6 would represent the least complex habitats and a score of 30 would represent the

most complex habitats. Three quadrats, 2 m × 2 m each, were laid at the beginning, middle

and end of each transect (N = 18 quadrats per zone). HAS was obtained within each quadrat

by adding the scores of all components per quadrat.

Invertebrate community composition

All conspicuous (> 1 cm) epibenthic macroinvertebrates (hereafter invertebrates) found

within the same quadrats used to estimate HAS were identified to the lowest taxonomic level

possible and quantified in situ [16,45]. Underwater identifications were conducted by two sci-

entific observers thoroughly trained prior to sampling. Training was achieved by repeatedly

studying an extensive guide of local invertebrate species created in our lab from photos and

drawings obtained from many different sources, followed by direct identification in the field

during preliminary dives, with the results being crosschecked between divers [16,45].

Lobster sampling

In each zone, lobsters were sampled using scuba and free diving during the same four sampling

periods as the habitat components and invertebrates, plus three additional periods (November

2018, and June and November 2019; logistic problems precluded sampling in June 2018). All

lobsters encountered beneath casitas within each zone were collected with hand nets. Nets

containing lobsters were fastened to the edge of the boat with lobsters remaining in the water

to avoid exposure to air. Lobsters were sexed, measured (CL), and carefully examined for clini-

cal signs of infection with PaV1 (milky hemolymph, visible through the translucent membrane

between the carapace and abdomen) [9]. All lobsters with no clinical signs of PaV1 were

returned to the capture site.

Two previous studies [15,46], one of them conducted in the same reef lagoon as the present

study, established that, compared to endpoint polymerase chain reaction (PCR) assays [47],

visual assessment of clinical signs of PaV1 had a specificity of 1 and a sensitivity of 0.5 (95%

Fig 1. Study area. Location of the three sampling zones, zone A (red area), zone B (blue area), zone C (gray area), in the Puerto Morelos reef

lagoon, Mexico. The black areas denote the reef crest. Isobaths are in meters. Inset shows the location of Puerto Morelos on the Mexican Caribbean

coast. (Source: Servicio Académico de Monitoreo Meteorológico y Oceanográfico, Instituto de Ciencias del Mar y Limnologı́a, Universidad

Nacional Autónoma de México).

https://doi.org/10.1371/journal.pone.0229827.g001
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CI: 0.4–0.6), meaning that a rough estimate of the true prevalence of PaV1 in this reef lagoon

could be obtained by applying a 2x factor to the clinical prevalence estimated in a representa-

tive sample of lobsters. To corroborate those findings, ~200 μl hemolymph samples were taken

from 402 lobsters sampled in the first two periods (June and November 2016). Hemolymph

was taken from the base of the fifth pair of pereopods using a 30-gauge sterile needle and 1ml

syringe, after disinfection of the puncture site with 70% ethanol. Hemolymph samples were

fixed immediately in ice-cold 96% ethanol, transported to the laboratory and frozen at -20˚C.

Hemolymph analysis of PaV1

DNA extraction. DNA was extracted from ~200 μl of hemolymph/ethanol mixture (~25

mg of hemolymph) with the Wizard genomic DNA purification kit (Promega) following a

slightly modified manufacturer’s protocol [16]. DNA eluted was used as the template for PCR.

Hemolymph DNA extraction was optimized to ensure detection of PaV1 by using known, pos-

itive controls initially derived from P. argus. DNA extractions were verified by running 1 μl

DNA mixed with 4 μl Promega Green GoTaq1 5 x Flexi Buffer on a 1.5% TAE agarose gel.

PCR conditions. All PCRs were carried out using primers synthesized by Sigma and per-

formed on a 3Prime Personal Thermal Cycler (Techne, UK) before being visualized on a 1.5%

TAE agarose gel. To test for the presence of PaV1 in lobsters, a PCR was performed using

known, specific primers for PaV1 (45aF: TTC CAG CCC AGG TAC GTA TC; and 543aR:

AAC AGA TTT TCC AGC AGC GT) that amplify a region of 499 bp [47]. All PCR reactions

were carried out in a total volume of 10 μl containing 1μl extracted DNA (50-200ng/ μl), 0.33

mM of each primer 45aF and 543aR, 2.5 mM MgCl2 (Promega), Green GoTaq1 5 x Flexi

Buffer (Promega), 0.4 mM dNTP mixture (Promega), and 0.75 u GoTaq1 Flexi DNA Poly-

merase (Promega) [16].

Statistical analyses

Habitat characterization. For each sampling period, data on the percent cover of each

type of substrate were logit-transformed [48] and subjected to independent general linear

models (GLM) with sampling zone (3 levels) and period (4 levels) as independent variables

[49]. The transformed data were then subjected to separate principal component analysis

(PCA) using the software PAST v.3.09 [50]. The data on structural complexity (HAS score)

were also subjected to a GLM with zone and period as independent variables. Significant

results of GLMs were followed by Tukey’s HSD multiple comparisons test. For these analyses,

the software Statistica v.10 (StatSoft, Inc., USA) was used.

Invertebrate community composition. For each sampling zone and period, the following

ecological indices were estimated: species richness (S, number of species), Shannon-Wiener’s

diversity (H’), Pielou’s evenness (J’) and Simpson’s dominance (D). S is an informative index

as it constitutes the basis of biodiversity estimates, whereas H’, J’ and D are compound indices

(i.e., indices that combine species richness and abundance) hence providing a greater ability to

discriminate sites [51]. Each index was subjected to a GLM with sampling zone and period as

independent variables.

Differences in invertebrate community composition between zones were analyzed by non-

metric multidimensional scaling (nMDS) using the Bray-Curtis similarity measure on a

square-root transformation of the abundance data [52]. This transformation retains the quan-

titative information while down-weighing the importance of the highly abundant species [53].

The significance of the observed differences among zones was further tested with a one-way

analysis of similarity, which provides an R-value, typically between 0 and 1. Values close to 0

are indicative of little difference whereas values close to 1 are indicative of a large difference in
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sample composition [53]. The software PRIMER 6 v6.1.9 (PRIMER-E Ltd) was used to carry

out these analyses.

Lobster size and PaV1 prevalence. Data on lobster size were log-transformed and sub-

jected to a GLM to examine the effects of sampling zone and period. Binomial logistic regres-

sion models with logit link functions [54] were used to determine whether specific predictor

variables had a significant effect on the probability of finding lobsters clinically infected with

PaV1. In the first model, the predictor variables were size (CL, covariate), zone, and sampling

period. Based on the results of this model, the second logistic model examined the effects of

size (covariate) and sampling period only. Clinical prevalence (the percentage of clinically

infected lobsters) was estimated for each sampling period, and 95% confidence intervals were

computed using Wilson’s score method with continuity correction [55]. These analyses were

run in the software Statistica v.10.

Results

Habitat characterization

Of the eight types of substrate considered, only five (seagrasses, macroalgae, sand, rubble, and

sponges) yielded sufficient data for the GLM analyses. Of these substrates, the percent cover of

seagrass, macroalgae and sponges varied significantly with zone and period, with no significant

interaction; the percent cover of rubble varied with zone and period but with a significant

interaction, whereas the percent cover of sand was not affected by zone, period, or their inter-

action (Table 1).

The relative cover of types of substrate changed over time. The first two components in the

PCA jointly explained 74% of the variance in June 2016, 78.1% in November 2016, 61.7% in

June 2017, and 84.1% in November 2017 (Fig 2). In all periods, either the first or the second

component was strongly defined by the percent cover of sand, rubble, and/or sponges, as these

substrates exhibited large positive or negative loadings (denoted by the length of the corre-

sponding green lines in Fig 2). In contrast, seagrass and macroalgae did not have large loading

values in any period (Fig 2). This is because, despite significant spatial and temporal variation

(Table 1), seagrass was the most abundant substrate on all three zones in all periods (39–73%

cover), generally followed by macroalgae (12–28% cover) (Fig 3).

Habitat complexity (HAS values) varied significantly with zone (F = 13.30; df = 2, 204;

p< 0.001) and sampling period (F = 3.34; df = 3, 204; p = 0.02), but the interaction term was

not significant (F = 1.11; df = 6, 204; p = 0.832). HAS values differed significantly among all

three zones, being lower in zone A (12.0 ± 0.3, mean ± 95% CI), intermediate in zone C

(12.7 ± 0.4), and higher in zone B (13.4 ± 0.4) (Tukey HSD test on factor zone). Canopy height

and size of refuges contributed to this difference because their mean scores were higher in zone

B than in zones A and C. The only period with a significantly different overall HAS value was

November 2016 (13.2 ± 0.5) (Tukey HSD test on factor sampling period), driven mainly by

higher scores in zones B and C during that particular period (S1 Fig). The other three periods

had lower HAS values (June 2016: 12.7 ± 0.4; June 2017: 12.4 ± 0.4; November 2017: 12.5 ± 0.5).

Invertebrate community composition

In total, 5847 individuals belonging to 96 different invertebrate taxa were observed, including

cnidarians, polychaetes, decapods, stomatopods, echinoderms, bivalves, and gastropods (S1

Table). Two of the five ecological indices (J’ and D) did not vary with either zone or sampling

period, whereas the other three (S, N, and H’) varied significantly with sampling period but

not with zone, and the interaction term was not significant (Table 2). In all three cases, June

2016 was responsible for the significant difference, as this period had lower values of S, N and

Habitat features and disease prevalence in juvenile spiny lobsters
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H’. Nonetheless, the nMDS 2D ordination plots showed great overlap in the community compo-

sition of all three zones in every period (Fig 4). The stress values were relatively high (0.16–0.19)

in three of the four periods, but 3D ordination plots (not shown) with stress values of 0.11–0.14

corroborated the great overlap among zones. This was further confirmed by analysis of similar-

ity tests, which yielded R values of 0.067 for June 2016, 0.046 for November 2017, 0.144 for June

2017, and 0.115 for November 2017. These results indicate a substantial level of similarity in the

invertebrate community composition across zones and periods. Overall, the ten most abundant

invertebrate taxa included four gastropod species: Tegula fasciata (N = 1047), Smaragdia viridis
(N = 387), Cerithium litteratum (N = 386), and Modulus modulus (N = 279); four decapod spe-

cies: the hermit crabs Pagurus brevidactylus (N = 757), Clibanarius tricolor (N = 436), and P.

annulipes (N = 277), and the crab Mithraculus sculptus (N = 163), and two ophiurid species:

Ophioderma appressa (N = 283) and Ophioderma sp. (N = 247) (S1 Table).

Lobster size

In total, 1503 lobsters were sampled throughout the study period. Size of lobsters ranged from

9.2 to 73.0 mm CL, with an overall mean (± SD) of 29.5 ± 10.5 mm CL (Fig 5). Mean size of

lobsters by sampling zone and period fluctuated between 26.0 mm CL and 38.3 mm CL (S2

Fig). Mean size was significantly affected by sampling zone (F = 14.585, df = 2, 1482,

Table 1. Effects of sampling zone and period on percent cover of substrate types.

Substrate type Effect DF MS F p
Seagrass Intercept 1 14.978 379.231 <0.001

Zone 2 0.208 5.265 0.008

Period 3 0.481 12.185 <0.001

Zone × Period 6 0.033 0.847 0.541

Error 60 0.039

Macroalgae Intercept 1 177.336 1965.22 <0.001

Zone 2 0.881 9.761 <0.001

Period 3 0.279 3.093 0.034

Zone × Period 6 0.108 1.194 0.322

Error 60 0.090

Sand Intercept 1 302.069 717.209 <0.001

Zone 2 0.351 0.832 0.440

Period 3 0.987 2.338 0.083

Zone × Period 6 0.378 0.898 0.503

Error 60 0.421

Rubble Intercept 1 800.141 2536.957 <0.001

Zone 2 5.148 16.321 <0.001

Period 3 2.677 8.488 <0.001

Zone × Period 6 0.915 2.901 0.015

Error 60 0.315

Sponges Intercept 1 824.315 2153.463 <0.001

Zone 2 3.940 10.293 <0.001

Period 3 4.140 10.816 <0.001

Zone × Period 6 0.564 1.473 0.203

Error 60 0.383

Results of GLMs (α = 0.05) on logit-transformed data of percent cover of five types of substrate on three sampling zones (A, B, C) in the Puerto Morelos reef lagoon in

four sampling periods (June and November 2016, June and November 2017) (N = 6 transects per zone per period).

https://doi.org/10.1371/journal.pone.0229827.t001
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p< 0.001) and period (F = 16.488, df = 6, 1482, p< 0.001), with a significant interaction

(F = 3.899, df = 12, 1482, p< 0.001). Mean size (± 95% CI) of lobsters was overall smaller in

zone A (28.0 ± 0.96, N = 489), than in zones B (29.9 ± 0.84, N = 515), and C (30.2 ± 0.95,

N = 499). Mean size of lobsters was smaller in November 2016, June 2017, and November

2017 than in the rest of the sampling periods

Prevalence of PaV1

Of the total sample, 243 lobsters (16.2%) exhibited clinical signs of PaV1. These lobsters were

relatively small, with a mean size of 27.2 ± 8.6 mm CL (size range: 10.4–60.3 mm CL). Preva-

lence values by individual zone and period varied from 5.4% to 27.3% (S3 Fig). However, in

the first logistic regression model testing the effects of size, zone, and period on the probability

of finding clinically PaV1-infected (i.e. diseased) lobsters, the effect of size was significant

Fig 2. Principal component analyses of percentage of cover of types of substrates. Biplots on logit transformation of percentage of cover

of seven types of substrate during four sampling periods (June and November 2016; June and November 2017) over three sampling zones

within the Puerto Morelos reef lagoon, zone A (red triangles), zone B (blue dots), and zone C (grey squares). Each symbol represents a

transect.

https://doi.org/10.1371/journal.pone.0229827.g002
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(Wald statistic, WS = 12.140, df = 1, p< 0.001), but the effects of zone (WS = 1.588, df = 2,

p = 0.451) and period (WS = 9.922, df = 6, p = 0.128) were not significant. Parameter estimates

of the model showed that the probability of finding clinically infected lobsters significantly

decreased with increasing lobster size, and was slightly higher in November 2017 (Table 3). As

we were particularly interested in examining the effect of time for monitoring purposes, we

pooled the samples from the three zones by period and subjected the data to a second logistic

regression model to examine only the effects of size and period on the probability of finding

diseased lobsters throughout the reef lagoon. Parameter estimates from this model showed

that the probability decreased with increasing lobster size and varied with sampling period,

but was only significantly different (higher) in November 2017 relative to the other six periods

(Table 4). Indeed, clinical prevalence of PaV1 was 22.5% in November 2017, compared to val-

ues between 13.4% and 18.6% in the other periods (Fig 6).

In the lobsters sampled for PCR assays in 2016, those testing positive for PaV1 amounted to

35.6% in June and 25.8% in November. Therefore, the proportion of lobsters with clinical

signs of PaV1 relative to those testing positive for PaV1 by PCR was 0.43 in June 2017 and 0.57

in November 2017. These proportions are within the 95% confidence interval estimated for

the sensitivity of clinical signs as compared to PCR assays [46], suggesting that the true preva-

lence of PaV1 across the entire study period may have varied between 26.8% and 45%.

Discussion

Temporal variation in PaV1 prevalence in the Puerto Morelos reef lagoon was examined con-

sidering the potential influence of local habitat features and invertebrate community

Fig 3. Temporal and spatial variation in percentage of cover of benthic substrates. Percentage of cover of the five most abundant substrates on the

three sampling zones (A, B, and C) in the Puerto Morelos reef lagoon in four sampling periods: June 2016 (J’16), November 2016 (N’16), June 2017 (J’17)

and November 2017 (N’17). Error bars denote 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0229827.g003

Habitat features and disease prevalence in juvenile spiny lobsters

PLOS ONE | https://doi.org/10.1371/journal.pone.0229827 February 28, 2020 10 / 21

https://doi.org/10.1371/journal.pone.0229827.g003
https://doi.org/10.1371/journal.pone.0229827


composition. Lobster size and the probability of clinical infection with PaV1 were inversely

related, which has been previously well established (e.g. [9,10,12,14–16]). Although sampling

period affected the probability of clinical infection, clinical prevalence was higher in only one of

the seven sampling periods (November 2017). However, contrary to our expectations, zone had

no effect on probability of infection. There were spatial and temporal variation in some of the

ecological characteristics of the reef lagoon considered in the present study (e.g., habitat com-

plexity, percent cover of different substrates), but such variations did not appear to be sufficiently

large so as to influence prevalence of PaV1. This result probably reflects the dominance of

marine vegetation (seagrass and macroalgae combined) in all three sampling zones and periods.

Because natural crevice-type shelters for lobsters are very scarce in the Puerto Morelos reef

lagoon [39], the sampling zones included experimental sites where casitas were deployed years

ago for other studies [25,27,39,40]. Casitas increase density of juvenile lobsters as well as their

persistence in a site [27], and the distance between our sampling zones was greater than the

average movement ranges of juvenile P. argus [2,26,27]. Yet, it cannot be dismissed that some

mingling of lobsters could occur over time, potentially masking any effect of habitat character-

istics on PaV1 prevalence. Therefore, future studies should use sampling sites that are further

apart and, whenever possible, located over more heterogeneous habitats.

Table 2. Effects of sampling zone and period on ecological indices.

Ecological index Effect DF MS F p
S Intercept 1 4617.37 929.935 <0.001

Zone 2 1.192 0.240 0.787

Period 3 125.882 25.352 <0.001

Zone × Period 6 9.076 1.828 0.096

Error 167 4.965

N Intercept 1 19531.66 558.077 <0.001

Zone 2 58.230 1.664 0.193

Period 3 1179.380 33.698 <0.001

Zone × Period 6 58.430 1.670 0.131

Error 167 35.000

H’ Intercept 1 346.034 2191.343 <0.001

Zone 2 0.010 0.064 0.938

Period 3 5.647 35.759 <0.001

Zone × Period 6 0.155 0.984 0.438

Error 167 0.158

J’ Intercept 1 139.772 206066.400 <0.001

Zone 2 0.000 0.400 0.653

Period 3 0.001 2.100 0.098

Zone × Period 6 0.001 1.000 0.445

Error 167 0.001

D Intercept 1 116.249 21367.790 <0.001

Zone 2 0.002 0.380 0.685

Period 3 0.002 0.390 0.764

Zone × Period 6 0.002 0.330 0.919

Error 167 0.005

Results of GLMs (α = 0.05) on data of five ecological measures of invertebrate diversity (S: species richness; N: abundance; H’: Shannon-Wiener’s diversity; J’: Pielou’s

evenness; D: Simpson’s dominance) in three sampling zones (A, B, C) in the Puerto Morelos reef lagoon during four sampling periods (June and November 2016, June

and November 2017) (N = 18 quadrats per zone per period).

https://doi.org/10.1371/journal.pone.0229827.t002

Habitat features and disease prevalence in juvenile spiny lobsters

PLOS ONE | https://doi.org/10.1371/journal.pone.0229827 February 28, 2020 11 / 21

https://doi.org/10.1371/journal.pone.0229827.t002
https://doi.org/10.1371/journal.pone.0229827


For example, habitat characteristics varied more substantially among sampling zones in

Bahı́a de la Ascensión (México), a large bay about 150 km south of Puerto Morelos, where casi-

tas are extensively used to fish for lobsters [9,14,15]. In that bay, probability of infection with

PaV1 was higher in lobsters collected in a zone with more vegetation than in zones with less or

no vegetation, even after controlling for the significant effect of lobster size, suggesting that

marine vegetation could be an environmental reservoir for PaV1 [14]. This hypothesis was

supported by a more recent study in the same bay, in which the probability of infection with

PaV1 was highest in a reef lagoon zone dominated by seagrass, followed by a back-reef zone

also dominated by seagrass but with less cover, and lowest in a zone almost devoid of vegeta-

tion, despite the lobsters in the latter zone having the smallest mean size [16]. Therefore, it

would appear that the scale of habitat differences required to be associated with a change in

disease prevalence requires a larger range of lobster sizes or a wider variation in habitats, such

as those studied in Bahı́a de la Ascensión.

Certain crustacean viruses can remain infective in water for several days (e.g., invertebrate

iridescent virus 6 [56]; yellow-head virus [57]), and waterborne transmission of PaV1 has been

reported in juvenile P. argus held under laboratory conditions [10]. However, viruses, bacteria

Fig 4. nMDS ordinations of invertebrate communities. nMDS ordination of invertebrate community structure in samples from zone A (red triangles), zone B (blue

dots), and zone C (gray squares) of the Puerto Morelos reef lagoon in June 2016 (A), November 2016 (B), June 2017 (C) and November 2017 (D). Analyses were done

using square-root transformation of species’ abundances and Bray-Curtis similarity. Each symbol denotes a quadrat.

https://doi.org/10.1371/journal.pone.0229827.g004
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Fig 5. Size distribution of lobsters. Size distribution (carapace length, in mm) of the total sample (N = 1503) of spiny lobsters (P. argus) throughout the

study. The orange column sections represent lobsters with clinical signs of PaV1 infection (N = 243) and the green column sections represent lobsters with

no clinical signs of PaV1 infection (N = 1260). Numbers in X-axis denote the upper limit of each size class.

https://doi.org/10.1371/journal.pone.0229827.g005

Table 3. Results of logistic model 1.

Effect Level of effect Estimate Standard error Wald

statistic

Lower 95% CL Upper 95% CL p

Intercept -0.926 0.227 16.655 -1.371 -0.481 <0.001

CL (mm) -0.026 0.008 12.140 -0.041 -0.011 <0.001

Period Jun 16 -0.015 0.231 0.004 -0.467 0.437 0.948

Period Nov 16 -0.117 0.162 0.521 -0.436 0.201 0.470

Period Jun 17 -0.242 0.174 1.921 -0.583 0.100 0.166

Period Nov 17 0.362 0.184 3.895 -0.002 0.722 0.048

Period Nov 18 0.266 0.157 2.871 -0.042 0.574 0.090

Period Jun 19 0.050 0.226 0.048 -0.393 0.492 0.826

Zone Zone B -0.130 0.116 1.259 -0.358 0.097 0.262

Zone Zone C -0.016 0.114 0.020 -0.208 0.241 0.885

Estimates for logistic regression analyses testing the effects of size (carapace length, covariate), sampling period (six levels: June and November 2016, June and

November 2017, November 2018, June and November 2019; reference level: November 2019) and sampling zone (three levels: zones A, B, and C; reference level: zone

A) on the probability of finding spiny lobsters P. argus clinically infected with PaV1 in the Puerto Morelos reef lagoon. CL: confidence limit.

https://doi.org/10.1371/journal.pone.0229827.t003
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and other particles can become trapped in seagrass meadows because the latter attenuate water

flow velocity [58–60]. Bacteria and viruses can become adsorbed to plant surfaces [61], and

although certain seagrasses produce natural bactericides [62] and seagrass meadows can

Table 4. Results of logistic model 2.

Effect Level of effect Estimate Standard error Wald

statistic

Lower 95% CL Upper 95% CL p

Intercept -0.815 0.220 13.693 -1.246 -0.383 <0.001

CL (mm) -0.029 0.007 15.049 -0.044 -0.014 <0.001

Period Jun 16 -0.028 0.220 0.016 -0.459 0.403 0.899

Period Nov 16 -0.184 0.159 1.345 -0.495 0.127 0.246

Period Jun 17 -0.236 0.165 2.053 -0.558 0.087 0.152

Period Nov 17 0.385 0.174 4.931 0.045 0.726 0.026

Period Nov 18 0.241 0.153 2.487 -0.058 0.540 0.115

Period Jun 19 -0.007 0.215 0.001 -0.429 0.415 0.973

Estimates for logistic regression analyses testing the effects of size (carapace length, covariate) and sampling period (June and November 2016, June and November

2017, November 2018, June and November 2019; reference level: November 2019) on the probability of finding spiny lobsters P. argus clinically infected with PaV1

throughout the Puerto Morelos reef lagoon. CL: confidence limit.

https://doi.org/10.1371/journal.pone.0229827.t004

Fig 6. Clinical prevalence of PaV1 over time. Clinical prevalence of PaV1 (percentage of lobsters visibly infected, i.e., diseased) throughout the Puerto

Morelos reef lagoon in seven sampling periods: June 2016 (Jun ‘16), November 2016 (Nov ‘16), June 2017 (Jun ‘17), November 2017 (Nov ‘17),

November 2018 (Nov ‘18), June 2019 (Jun ‘19), and November 2019 (Nov’19). Numbers in parentheses are sample sizes. Error bars denote 95%

confidence intervals. Different letters above bars denote significant differences.

https://doi.org/10.1371/journal.pone.0229827.g006
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reduce seawater pollution from human-originated bacteria [60], it has been suggested that the

shading provided by the seagrass canopy may further protect virions from damaging ultra-vio-

let radiation [14]. The presence of viable virions of PaV1 in seagrass meadows could be tested

using environmental DNA techniques [63].

In the present study, the relatively high levels of clinical prevalence of PaV1 (13.4–22.5%)

were clearly related to the small mean size of spiny lobsters in this reef lagoon, as juvenile P.

argus are more susceptible to PaV1 than adults [7,13]. It was expected that the samples from all

zones would comprise juveniles, since seagrass meadows constitute a nursery habitat for P.

argus [2,37,38]. Although most of the lobsters that we sampled were found in experimental

casitas, there is no evidence that the prevalence of PaV1 is any higher in areas where casitas are

used [9,14,15,25]. This is probably because healthy lobsters avoid diseased conspecifics [17–

20], and if forced to share a casita with a diseased lobster (e.g., due to the risk of predation),

they tend to keep some distance from the diseased lobsters [40].

Other than a few crustacean pathogens such as the white spot syndrome virus, which has

been confirmed to occur in many wild crustacean and non-crustacean species [24,64], little is

known of the natural reservoirs and vectors of many crustacean pathogens. Such agents

may play a critical role in the epizootiology and ecology of crustacean diseases but, to date,

PaV1 has only been detected in P. argus. Butler et al. [10] inoculated hemolymph from PaV1-

infected lobsters into multiple individuals of each of three crustacean species that live in sym-

patry with P. argus: the spotted spiny lobster Panulirus guttatus, the channel crab Maguimi-
thrax spinosissimus, and the stone crab Menippe mercenaria. However, after several weeks, no

histological evidence of PaV1 was found in any of these individuals. None of these crustacean

species were observed in the sampling zones of the present study. If alternate hosts or vectors

for PaV1 exist, they are more likely to be species that are syntopic with juveniles of P. argus
[24,65], which exhibit higher levels of prevalence of PaV1 than adults.

In conjunction with a study conducted in Bahı́a de la Ascensión [16], one of the aims of the

present study was to begin an assessment into potential reservoirs or vectors of PaV1 by identi-

fying the invertebrate fauna living in the same habitats as P. argus in the Puerto Morelos reef

lagoon as a first step. Although the composition of the invertebrate community varied signifi-

cantly with sampling period, it did not vary with zone, as it did in Bahı́a de la Ascensión. Four

of the 10 most abundant species in the Puerto Morelos reef lagoon were decapod crustaceans

(P. brevidactylus, C. tricolor, P. annulipes, and M. sculptus). These species were also abundant

in the back-reef and lagoon zones of Bahı́a de la Ascensión [16], making them good candidates

for screening for PaV1 using molecular techniques, such as endpoint PCR [47] or qPCR [66].

Between 2000 and 2010, clinical prevalence of PaV1 in 12 sites of the Florida Keys fluctu-

ated around an average of 5%, but varied both spatially and temporally, with some sites reach-

ing >40% in a given year [12]. Also in the Florida Keys, mean yearly clinical prevalence of

PaV1 fluctuated between 1 and 17% from 2005 to 2013 [19]. In the Puerto Morelos reef lagoon,

the overall clinical prevalence of PaV1 increased from 2.7% in 2001, to 7.0% in 2005, to 10.9%

in 2006 [13], and was found to fluctuate around a mean of 15% (95% CI: 10.8–18.8%) between

2010 and 2014 [25]. In the present study, clinical prevalence fluctuated around 16%, with only

one estimate being significantly higher (22.5%, November 2017). Therefore, it is possible that

in this location the pathogen has leveled off to an enzootic level [67,68]. However, as postlarvae

of P. argus enter the reef lagoon throughout the year with great temporal variability [38] and

some may become infected with PaV1 before settling [69,70], a certain amount of variation in

the level of prevalence is to be expected.

Given that the specificity and sensitivity of the macroscopic determination of PaV1 esti-

mated against endpoint PCR were 1.0 and 0.5, respectively [15,46], applying a 2x factor to clin-

ical prevalence would provide a gross estimation of true prevalence. Therefore, true prevalence
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of infection would fluctuate around a mean of ~32%. Although detection by PCR does not

imply that all individuals testing positive would have active infections [47], it provides infor-

mation about how widespread a virus is in a population [71].

Since the 1980s, the Puerto Morelos reef system has been gradually changing from a pristine

system to a more eutrophic system, mainly due to continuous and sustained coastal develop-

ment [31–35], which could be affecting the local biological communities. More recently, the

tropical Atlantic and Caribbean Sea, including Puerto Morelos, are being impacted by massive

influxes of the pelagic macroalgae Sargassum that, upon arriving to shallow near-shore sea-

grass communities, get stranded and die [72]. The decomposition of Sargassum masses pro-

duces a “brown tide” that severely depletes oxygen levels and reduces light penetration, killing

the seagrass and changing the environmental conditions of the shallow habitats [72]. This is of

concern for the biological communities of the reef lagoon, including the populations of juve-

nile P. argus, as the altered environmental conditions can cause mass mortalities of local fauna

[73] and can also affect immunity either directly, by changing components of the immune

responses, or indirectly, by inducing general stress responses [74]. According to recent studies,

recurrent blooms of pelagic Sargassum in the tropical Atlantic and Caribbean Sea arrivals

reflect a regime shift and may become the new norm [75]. Whether the changing environmen-

tal conditions associated with Sargassum strandings will alter the enzootic level of PaV1 in this

population remains to be determined.
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S1 Fig. Temporal and spatial variation in habitat complexity. Habitat assessment score in
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in four sampling periods: June 2016 (J’16), November 2016 (N’16), June 2017 (J’17) and

November 2017 (N’17). Error bars denote 95% confidence intervals.
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S2 Fig. Lobster mean size by sampling zone and period. Mean size (carapace length, mm) of

lobsters sampled in three sampling zones (zone A: red columns; zone B: blue columns; zone C:

gray columns) in the Puerto Morelos reef lagoon, in seven sampling periods: June 2016 (J’16),

November 2016 (N’16), June 2017 (J’17), November 2017 (N’17), November 2018 (N’18), June

2019 (J’19), and November 2019 (N’19). Numbers in parentheses below dates are sample sizes.

Error bars denote 95% confidence intervals. Different letters above bars denote significant dif-
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S3 Fig. Prevalence of PaV1 by sampling zone and period. Percentage of lobsters showing

clinical signs of PaV1 infection in three sampling zones (zone A: red columns; zone B: blue col-

umns; zone C: gray columns) in the Puerto Morelos reef lagoon, in seven sampling periods:

June 2016 (J’16), November 2016 (N’16), June 2017 (J’17), November 2017 (N’17), November

2018 (N’18), June 2019 (J’19), and November 2019 (N’19). Numbers in parentheses below

dates are sample sizes. Error bars denote 95% confidence intervals.
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S1 Table. Invertebrate species list. Invertebrate species (in alphabetical order within higher

taxa) and number of individuals observed by sampling zone (zones A, B, and C) across four

sampling periods (June and November of 2016 and 2017), Puerto Morelos reef lagoon (N = 18
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2. Briones-Fourzán P, Lozano-Álvarez E. Essential habitats for Panulirus spiny lobsters. In: Phillips BF,

editor. Lobsters: biology, management, aquaculture and fisheries ( 2nd edition). Oxford: Wiley-Black-

well; 2013. pp. 186–220.

3. Cox C, Hunt JH, Lyons WG, Davis GE. Nocturnal foraging of the Caribbean spiny lobster (Panulirus

argus) on offshore reefs of Florida, USA. Mar Freshw Res. 1997; 48: 671–679.

4. Briones-Fourzán P, Castañeda-Fernández de Lara V, Lozano-Álvarez E, Estrada-Olivo J. Feeding
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ability in clinical prevalence of PaV1 in Caribbean spiny lobsters occupying commercial casitas over a

large bay in Mexico. Dis Aquat Org. 2012; 100: 125–133. https://doi.org/10.3354/dao02452 PMID:

23186700

10. Butler MJ, Behringer DC, Shields JD. Transmission of Panulirus argus virus 1 (PaV1) and its effect on

the survival of juvenile Caribbean spiny lobster. Dis Aquat Org. 2008; 79: 173–182. https://doi.org/10.

3354/dao01899 PMID: 18589993

11. Moss J, Behringer D, Shields JD, Baeza A, Aguilar-Perera A, Bush PG, et al. Distribution, prevalence,

and genetic analysis of Panulirus argus virus 1 (PaV1) from the Caribbean Sea. Dis Aquat Org. 2013;

104: 129–140. https://doi.org/10.3354/dao02589 PMID: 23709466

12. Behringer DC, Butler MJ IV, Shields JD, Moss J. Review of Panulirus argus virus 1—a decade after its

discovery. Dis Aquat Org. 2011; 94: 153–160. https://doi.org/10.3354/dao02326 PMID: 21648244
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71. Peinado-Guevara LI, López-Meyer M. Detailed monitoring of white spot syndrome virus (WSSV) in

shrimp commercial ponds in Sinaloa, Mexico, by nested PCR. Aquaculture. 2006; 251: 33–45.

72. van Tussenbroek B, Hernández-Arana HA, Rodrı́guez-Martı́nez RE, Espinoza-Ávalos J, Canizales-Flo-
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