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Abstract 

Data envelopment analysis (DEA) is a non-parametric data-driven approach for evaluating the 

efficiency of a set of homogeneous decision-making units (DMUs) with multiple inputs and multiple 

outputs. The number of performance factors (inputs and outputs) plays a crucial role when applying 

DEA to real-world applications. In other words, if the number of performance factors is significantly 

greater than the number of DMUs, it is highly possible to arrive at a large portion of efficient DMUs, 

which practically may become problematic due to the lack of ample discrimination among DMUs. The 

current research aims to develop an array of selecting DEA models to narrow down the performance 

factors based upon a rule of thumb. To this end, we show that the input- and output-oriented 

selecting DEA models may select different factors and then present the integrated models to identify 

a set of common factors for both orientations. In addition to efficiency evaluation at the individual 

level, we study structural efficiency with a single production unit at the industry level. Finally, a case 

study on the EU countries is presented to give insight into business innovation, social economy and 

growth with regard to the efficiency of the EU countries and entire EU. 

Keywords: Data envelopment analysis; data-driven; selective factors; Variable returns-to-scale; 

input and output orientations; structural efficiency.  

1 Introduction 

An effective appraisal system is warranted for continuous improvement of organizations. Based upon 

the productive efficiency concept of Farrell (1957), Charnes, Cooper, & Rhodes (1978) initially 

developed a data envelopment analysis (DEA) model by the use of the linear programming (LP) 

approach to estimate a production frontier and find relative efficiency scores of decision-making 

units (DMUs) where each DMU produces multiple outputs by using multiple inputs. The current 

literature consists of a wide variety of DEA models to assess the efficiencies of DMUs (Liu, Lu, Lu, & 
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Lin (2013 a, 2013 b) and Emrouznejad & Yang (2017)). In addition to seeking the efficiency measure 

for each firm (production unit), the efficiency measurement of a group of firms is of importance to 

policymakers in numerous situations to monitor the performance of a certain industry1. This 

research stream, so-called ‘‘structural efficiency’’, was commenced by Farrell (1957) and Førsund & 

Hjalmarsson (1979) in which the technical efficiency of an industry is determined by a weighted 

average of the [technical] efficiencies of the individual firms. There are some studies undertaken in 

the related literature to study this interesting topic (e.g., see Li & Cheng (2007) and Karagiannis 

(2015)) .  

Regardless of structural efficiency and individual efficiency over the DEA assessment process, 

performance factors, i.e., input and output factors, are of great importance. Practically, when the 

number of performance factors is significantly larger than the number of DMUs, it is highly likely that 

a big proportion of DMUs is identified as efficient which may not be desirable from the top-level 

management team (Eskelinen, 2017). In this respect, Jenkins & Anderson (2003) stated "the greater 

the number of input and output variables [factors] in a DEA, the higher the dimensionality of the LP 

solution space, and the less discerning the analysis". To tackle this problem, combining the 

performance factors and omission of some inappropriate or less influential factors are two different 

ways that can be set out to reduce the number of performance factors. So, there is a need to opt for 

the most important factors, which can build up a reasonable balance between the number of 

performance factors and the number of DMUs.  

A predefined generic rule of thumb is often used to establish the balance of the number of units and 

the number of inputs and outputs (see for instance Golany & Yaakov, 1989; Friedman & Sinuany-

stern, 1998; Dyson et al., 2001; Cooper, Seiford, & Tone, 2007; Charles, Aparicio, & Zhu, 2019 and 

Khezrimotlagh, Cook, & Zhu, 2019 ).   

Two evolving streams of research have been proposed in the literature to deal with the problem of 

factor selection in DEA. The first approach revolves around statistical tests and the second approach 

tries to focus on the standard DEA models. Let us review the pertinent literature of these two 

approaches concisely.  

The first stream firstly conducted by Lewin, Morey, & Cook (1982) who were applied a correlation 

and regression analysis to select a set of factors that are policy-relevant and administrative efficiency 

stance and omit redundant factors. As a rewarding study, Simar & Wilson (2001) recommended some 

statistical procedures including bootstrapping and Mont-Carlo experiments to test whether 

performance factors are irrelevant, as well as testing whether performance factors can be aggregated. 

Pastor, Ruiz, & Sirvent (2002) presented an efficiency contribution measure (ECM) for examining the 

importance of a factor in the process of efficiency assessment. The authors highlighted that 

performing the test may help the assessors to decide the involvement or deletion of a given factor 

into or from a given DEA model. Jenkins & Anderson (2003) employed a multivariate statistical 

approach based on the partial correlation to reduce the number of performance factors. The authors 

spelled out a systematic statistical method to identify which of the original correlated variables can 
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be omitted with minimum loss of information, and which of them need to be retained. The results 

showed that the omitted variables that are highly correlated with each other, and contain little 

information on performance can have a significant influence on the efficiency measures. Wagner & 

Shimshak (2007) developed a stepwise approach to perform factor selection that involves 

sequentially maximizing (or minimizing) the average change in the efficiencies as variables are added 

to or dropped from the evaluation process. Morita & Avkiran (2009) made use of external evaluation 

and discriminant analysis to study a performance factor selection method. To this end, a 3-level 

orthogonal layout experiment is exploited to find an appropriate combination of inputs and outputs, 

where experiments are independent of each other. Nataraja & Johnson (2011) classified the existing 

factor selection methods in DEA into eight categories but because of the similarity of some methods, 

they only analysed four most widely-used categories; (i) efficiency contribution measure (ECM), (ii) 

principal component analysis (PCA), (iii) regression-based test (RBT), and (iv) bootstrapping for 

factor selection using Monte Carlo simulations. Their genuine research objective was to provide 

insights into the performance of these four methods along with developing guidelines for selecting 

appropriate performance factors. The overall findings showed that PCA-DEA is a robust and reliable 

technique with the smallest run time. Amirteimoori, Despotis, & Kordrostami (2014) that proposed 

an iterative DEA approach to reduce the number of performance factors periodically by aggregating 

each two highly correlated factors in each iteration. Toloo & Babaee (2015) extended an iterative-

free method to deal with variable reduction problem in DEA.  

The second stream was originated by Toloo, Barat, & Masoumzadeh (2015) by modifying the 

standard CRS model of DEA and developing two mixed binary linear programming (MBLP) models 

based upon individual and aggregate efficiency scores that are able to select the performance factors 

along with satisfying a predefined rule of thumb. The developed models are called “selecting DEA 

models” since the objective of the models is to select the performance factors (Toloo et al., 2015).  

Toloo & Tichý (2015) extended Toloo et al. (2015)'s approach to propose the multiplier and 

envelopment forms of DEA models for selecting performance factors under VRS assumption, leading 

to an increase in discriminatory power of DEA. It was proved that the multiplier models select 

performance factors from an optimistic viewpoint while the envelopment models consider a 

pessimistic viewpoint. Toloo & Allahyar (2018) proposed epsilon-free versions of Toloo & Tichý 

(2015)'s selecting DEA models under general returns-to-scale (GRS). As a matter of fact, these studies 

formulated MBLP models based on the standard input-oriented DEA models, which selection 

procedure of performance factors has been implemented by utilizing a binary variable associated 

with each selective factor. Recently, Hančlová (2019) modified the directional distance DEA model in 

the presence of undesirable output in order to develop an approach for selecting factors with more 

than one value which are measured by various definitions or standards.  

This paper first briefly reviews the standard DEA models and input-oriented selecting DEA models 

and then formulate a new output-oriented selecting DEA model under the VRS assumption coupled 

with arguing some theories and underpinnings to uncover most important properties of the 

proposed models. Moreover, as a significant contribution of this research, the input- and output-

oriented selecting DEA models are aggregated to unify performance factor selection in a way that 
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gets rid of the plausible inconsistency when the different orientations cause to select different factors. 

Finally, we revisit the concept of structural efficiency of an industry in order to make an informed 

decision with regard to factor selection. In addition to the theoretical development in this research, 

we contribute to the practical aspect by exploring a case study in which the relative efficiencies of 28 

EU countries are assessed in terms of 50 potential performance factors. The findings demonstrate 

the key role of types of DEA models, either envelopment or multiplier, and its orientations, either 

input or output respects.  

The remainder of the paper is organised as follows. In Section 2, the basic input- and output-oriented 

DEA models are briefly reviewed. Section 3 presents the input- and output-oriented selecting DEA 

models for both multiplier and envelopment forms under the VRS assumption. Section 4 presents a 

new approach to aggregate the input- and output-oriented selecting DEA models with the aim of 

unifying the factor selection. In Section 5, we extend our selective factor thrust to the concept of 

structural efficiency. The penultimate section meticulously illustrates the proposed models and 

theorems by assessing the performance of the EU countries and the EU as a whole. Ultimately, some 

conclusions and further remarks are provided in Section 7.   

2 DEA models in benchmarking 

DEA is an advanced benchmarking approach aiming to identify the improvement ways of business 

operations and organizational performance. The results derived from this approach are informative 

and intended to provide applicable feedback to get rid of inefficiencies sources as well as making 

informed decisions about effective changes across firms. Figure 1 summarises a serious of steps being 

performed to implement the pertinent processes. Step 1 first defines the assessment structure 

including the operating units (DMUs) and performance factors (inputs and outputs) subject to the 

generic rule of thumb and consequently collects the primary and/or secondary data for each DMU. 

Step 2 aims to specify the production technology and appropriate returns to scale in terms of 

competitive levels embedded in the markets and industries under analysis. In Step 3, it is aimed to 

determine whether the radial or no-radial setting is used for the purpose of efficiency and economic 

measurement and benchmarking. The radial setting is divided into the input- and output-oriented 

models where the former model is seeking to obtain technical efficiency as a proportional reduction 

in input usage and the latter one sought to determine technical efficiency as a proportional increase 

in output production. The output- and input-orientated measures are equivalent efficiency measures 

when CRS is regarded, but are unequal when VRS exists (Färe & Lovell, 1978). Step 4 identifies the 

best practices and technical inefficiency by the use of DEA models which have either multiplier or 

envelopment forms. Step 5 includes the results and findings interpretation that helps the decision-

makers and top management team provide insight and make informed decisions about the strategic 

planning and resource allocation across the organisation. 
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Figure 1. Summary of DEA-based procedures  

 

Let us here review the input- and output-oriented DEA models in both multiplier and envelopment 

forms under different RTS assumptions. Toward this end, we assume that there are 𝑛 homogenous 

DMUs (DMU𝑗, 𝑗 = 1,… , 𝑛). Each DMU𝑗 consumes 𝑚 different semi-positive inputs, 𝒙𝑗 = (𝑥1𝑗, … , 𝑥𝑚𝑗) 

to produce 𝑠 different semi-positive outputs, 𝒚𝑗 = ( 𝑦1𝑗, … , 𝑦𝑠𝑗). For the sake of brevity, the following 

VRS models are expressed to evaluate the relative efficiency of DMU𝑜 (Cooper et al., 2007): 

 

 

Multiplier VRS models 

Input-oriented  Output-oriented  

 

max𝜑𝑜
𝑖𝑛 = ∑ 𝑢𝑟

𝑖𝑛𝑦𝑟𝑜
𝑠
𝑟=1 −𝑤0

𝑖𝑛  
s. t.  
∑ 𝑣𝑖

𝑖𝑛𝑥𝑖𝑜
𝑚
𝑖=1 = 1  

∑ 𝑢𝑟
𝑖𝑛𝑦𝑟𝑗

𝑠
𝑟=1 −𝑤0

𝑖𝑛 −∑ 𝑣𝑖
𝑖𝑛𝑥𝑖𝑗

𝑚
𝑖=1 ≤ 0 ∀𝑗

𝑣𝑖
𝑖𝑛 ≥ 0 ∀𝑖

𝑢𝑟
𝑖𝑛 ≥ 0 ∀𝑟

𝑤0
𝑖𝑛free in sign

 (1) 

min𝜑𝑜
𝑜𝑢𝑡 = ∑ 𝑣𝑖

𝑜𝑢𝑡𝑥𝑖𝑜
𝑚
𝑖=1 +𝑤0

𝑜𝑢𝑡  
s. t.  
∑ 𝑢𝑟

𝑜𝑢𝑡𝑦𝑟𝑜
𝑠
𝑟=1 = 1

∑ 𝑢𝑟
𝑜𝑢𝑡𝑦𝑟𝑗

𝑠
𝑟=1 −∑ 𝑣𝑖

𝑜𝑢𝑡𝑥𝑖𝑗
𝑚
𝑖=1 −𝑤0

𝑜𝑢𝑡 ≤ 0 ∀𝑗

𝑣𝑖
𝑜𝑢𝑡 ≥ 0 ∀𝑖

𝑢𝑟
𝑜𝑢𝑡 ≥ 0 ∀𝑟

𝑤0
𝑜𝑢𝑡free in sign

  
(2) 
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Envelopment VRS models 
Input-oriented  Output-oriented  

 

min𝜃𝑜
𝑖𝑛  

s. t.  
∑ 𝜆𝑗

𝑖𝑛𝑥𝑖𝑗
𝑛
𝑗=1 ≤ 𝜃𝑜

𝑖𝑛𝑥𝑖𝑜 ∀𝑖

∑ 𝜆𝑗
𝑖𝑛𝑦𝑟𝑗

𝑛
𝑗=1 ≥ 𝑦𝑟𝑜 ∀𝑟

∑ 𝜆𝑗
𝑖𝑛𝑛

𝑗=1 = 1

 (3)  

max𝜃𝑜
𝑜𝑢𝑡  

s. t.  
∑ 𝜆𝑗

𝑜𝑢𝑡𝑥𝑖𝑗
𝑛
𝑗=1 ≤ 𝑥𝑖𝑜 ∀𝑖

∑ 𝜆𝑗
𝑜𝑢𝑡𝑦𝑟𝑗

𝑛
𝑗=1 ≥ 𝜃𝑜

𝑜𝑢𝑡𝑦𝑟𝑜 ∀𝑟

∑ 𝜆𝑗
𝑜𝑢𝑡𝑛

𝑗=1 = 1

 (4) 

where 𝑢𝑟
𝑖𝑛 and 𝑢𝑟

𝑜𝑢𝑡  are the weights associated to the 𝑟𝑡ℎ output in models (1) and (2), respectively; 

𝑣𝑖
𝑖𝑛 and 𝑣𝑖

𝑜𝑢𝑡  are the respective weights associated to the 𝑖𝑡ℎ input in models (1) and (2); 𝑤0
𝑖𝑛 and 

𝑤0
𝑜𝑢𝑡  are the RTS [free] variables in models (1) and (2), respectively; 𝜆𝑗

𝑖𝑛 ≥ 0 and 𝜆𝑗
𝑜𝑢𝑡 ≥ 0 are 

intensity variables of DMU𝑗 in models (3) and (4), respectively. It is worth noting that the multiplier 

and envelopment forms of input (output) orientation models are mutually dual and in terms of the 

strong duality theorem, 𝜑𝑜
𝑖𝑛∗ = 𝜃𝑜

𝑖𝑛∗(𝜑𝑜
𝑜𝑢𝑡∗ = 𝜃𝑜

𝑜𝑢𝑡∗) for DMU𝑜.  

3 Selecting DEA models  

The diagrammatical representation of the holistic decision-making framework developed in Figure 

1 shows a clear picture of applicability and importance of the performance evaluation system to 

achieve sustainable competitive advantages.  As exemplified in Figure 2, DEA models play a crucial 

role in assessing the industry performance and making strategic decisions. In many real-world 

situations, the number of factors might be significantly greater than the number of operating units 

which is often problematic because this reduces the discrimination power of DEA models. Therefore, 

it has been a long-standing discussion in the related literature and reducing the number of factors 

and emphasising the more imperative factors are reasonable and justifiable to achieve the DEA’s 

objectives. In practice, the practitioner needs the number of units to be large enough in comparison 

with the number of performance factors so as to achieve a reasonable level of discrimination. A 

generic rule of thumb as 𝑛 ≥ 𝑓(𝑚, 𝑠) is often used to establish the lower bound, 𝑓(𝑚, 𝑠), of the 

number of units where 𝑚 and 𝑠 are the number of inputs and outputs, respectively. 

The DEA literature embraces several experimental values for 𝑓(𝑚, 𝑠) that have been suggested to the 

practitioners. To the best of our knowledge, Golany & Yaakov (1989) was the first study that aimed 

to reinforce the need of a sufficient number of inputs and outputs in DEA and 2(𝑚 + 𝑠) was 

resultantly proposed as the lower bound of the number of units. Then, Friedman & Sinuany-stern 

(1998) and Dyson et al. (2001) put forth different values for 𝑓(𝑚, 𝑠) as 3(𝑚 + 𝑠) and 2𝑚𝑠, 

respectively. Cooper, Seiford, & Tone (2007), with the aim of considering both aforementioned lower 

bounds, proposed 𝑓(𝑚, 𝑠) = max{3(𝑚 + 𝑠), 𝑚 × 𝑠}.  Recently, Charles, Aparicio, & Zhu (2019) and 

Khezrimotlagh, Cook, & Zhu (2019) studied the discriminatory power and accuracy of DEA with 

respect to the number of units and performance measures.   

The question here is, what are the most influential performance factors and how does one select them 

prior to running DEA models? In this regard, Cooper et al. (2007) recommended a before-modelling 

approach involving a process of selecting a small set of input and output factors at the beginning and 

gradually enlarging the member of the set to observe the effects of the added factors. Toloo et al. 

(2015) extended a by-modelling approach where a selecting DEA model chooses a subset of the 

inputs and outputs with the aim of meeting a predefined rule of thumb.  
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This section endeavours to ameliorate the benchmarking and decision-making system by opting for 

the more appropriate performance factors for situations where the system includes numerous inputs 

and outputs and cannot be used altogether in DEA models. The proposed models give the decision-

makers a big advantage over the existing models by providing reliable results in the presence of more 

affecting factors. To achieve this, we first start with the input orientation of the selecting model and 

widening our scope by covering the output orientation for both the multiplier and envelopment 

forms. Then, we turn our discussion to the output orientation to supplement our view.  

 

 
Figure 2. A decision-making framework 

 

3.1 Selecting DEA models under input-oriented VRS 

Let 𝐼𝑓 , 𝐼𝑠 , 𝑅𝑓 , and 𝑅𝑠  denote the index sets of the fixed-input, selective-input, fixed-output, and 

selective-output factors, respectively. Fixed [input/output] factors are those factors, which have been 

already selected by the decision maker and must be utilized in the evaluation process while selective 

factors provide greater leeway to either opt out of or opt into performance assessment. 
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 Toloo & Allahyar (2018) proposed the input-oriented selecting DEA models in both multiplier and 

envelopment forms with the aim of satisfying a predefined rule of thumb. In their proposed selecting 

DEA models, which are MBLPs, all factors have been assumed to be selective factors. At present, let 

us focus on the modified selecting DEA models of Toloo & Allahyar (2018) by setting fixed and 

selective factors into the models as shown below: 

Selecting DEA models under input-oriented VRS  

Multiplier form  Envelopment form 

 

max �̅�𝑜
𝑖𝑛 = ∑ 𝑢𝑟

𝑖𝑛𝑦𝑟𝑜
𝑠
𝑟=1 −𝑤0

𝑖𝑛

s. t.
∑ 𝑣𝑖

𝑖𝑛𝑥𝑖𝑜
𝑚
𝑖=1 = 1

∑ 𝑢𝑟
𝑖𝑛𝑦𝑟𝑗

𝑠
𝑟=1 −𝑤0

𝑖𝑛 −∑ 𝑣𝑖
𝑖𝑛𝑥𝑖𝑗

𝑚
𝑖=1 ≤ 0 ∀𝑗

∑ 𝑑𝑖
𝑥

𝑖∈𝐼𝑠 + ∑ 𝑑𝑟
𝑦

𝑟∈𝑅𝑠 ≤ 𝐾 − (|𝐼𝑓| + |𝑅𝑓|)

∑ 𝑑𝑖
𝑥

𝑖∈𝐼𝑠 + ∑ 𝑑𝑟
𝑦

𝑟∈𝑅𝑠 ≥ 1

𝑣𝑖
𝑖𝑛 ≤ 𝑀𝑑𝑖

𝑥                                         ∀𝑖 ∈ 𝐼𝑠

𝑢𝑟
𝑖𝑛 ≤ 𝑀𝑑𝑟

𝑦
                                         ∀𝑟 ∈ 𝑅𝑠

𝑑𝑖
𝑥 , 𝑑𝑟

𝑦
∈ {0,1}                       ∀𝑖 ∈ 𝐼𝑠 , 𝑟 ∈ 𝑅𝑠

𝑣𝑖
𝑖𝑛 , 𝑢𝑟

𝑖𝑛 ≥ 0                                        ∀𝑖, 𝑟

𝑤0
𝑖𝑛free in sign

 (5)  

min �̅�𝑜
𝑖𝑛 

s. t.
∑ 𝜆𝑗

𝑖𝑛𝑥𝑖𝑗
𝑛
𝑗=1 ≤ �̅�𝑜

𝑖𝑛𝑥𝑖𝑜                             ∀𝑖 ∈ 𝐼
𝑓

∑ 𝜆𝑗
𝑖𝑛𝑦𝑟𝑗

𝑛
𝑗=1 ≥ 𝑦𝑟𝑜                                  ∀𝑟 ∈ 𝑅

𝑓

∑ 𝜆𝑗
𝑖𝑛𝑥𝑖𝑗

𝑛
𝑗=1 ≤ �̅�𝑜

𝑖𝑛𝑥𝑖𝑜 +𝑀(1 − 𝑑𝑖
𝑥)  ∀𝑖 ∈ 𝐼𝑠

∑ 𝜆𝑗
𝑖𝑛𝑦𝑟𝑗

𝑛
𝑗=1 ≥ 𝑦𝑟𝑜  − 𝑀(1 − 𝑑𝑟

𝑦)      ∀𝑟 ∈ 𝑅𝑠

∑ 𝑑𝑖
𝑥

𝑖∈𝐼𝑠 + ∑ 𝑑𝑟
𝑦

𝑟∈𝑅𝑠 ≤ 𝐾 − (|𝐼𝑓| + |𝑅𝑓|)

∑ 𝑑𝑖
𝑥

𝑖∈𝐼𝑠 + ∑ 𝑑𝑟
𝑦

𝑟∈𝑅𝑠 ≥ 1

𝑑𝑖
𝑥 , 𝑑𝑟

𝑦
∈ {0,1}                       ∀𝑖 ∈ 𝐼𝑠 , ∀𝑟 ∈ 𝑅𝑠

∑ 𝜆𝑗
𝑖𝑛𝑛

𝑗=1 = 1

 (6) 

where 𝑢𝑟
𝑖𝑛 and 𝑣𝑖

𝑖𝑛, 𝑤0
𝑖𝑛 and 𝜆𝑗

𝑖𝑛 are defined as the same as models (1) and (3), and �̅�𝑜
𝑖𝑛 and �̅�𝑜

𝑖𝑛 are the 

objective functions (corresponding to radial efficiencies) of DMUo associated with the input-oriented 

multiplier and envelopment selecting DEA models, respectively. It must be emphasized that decision 

variables of selecting models (5) and (6) are different from those in models (1) and (3). �̅�𝑜
𝑖𝑛 and �̅�𝑜

𝑖𝑛 

are the objective functions (corresponding to radial efficiencies) of DMUo associated with the input-

oriented multiplier and envelopment selecting DEA models, respectively. 𝑀 is a sufficiently large 

positive number, | . | indicates the cardinal of a set, and 𝑑𝑖
𝑥  and 𝑑𝑟

𝑦  are the indicator binary variables 

associated to the 𝑖𝑡ℎ selective input factor and the 𝑟𝑡ℎ selective output factor as defined below:  

𝑑𝑖
𝑥 = {

1, 𝑖𝑡ℎ  selective input is chosen
0, otherwise

; 𝑑𝑟
𝑦 = {

1, 𝑟𝑡ℎselective output is chosen
0, otherwise

 

In addition, 𝐾 is a pre-determined value in the above models indicating the maximum number of 

factors that must be involved in the assessment process. The desired value of 𝐾 can be computed by 

the generic rule of thumb as 𝑛 ≥ 𝑓(𝑚, 𝑠). In the DEA literature, the following four values for 𝐾 can be 

regarded based on experimentally suggested lower bounds 𝑓(𝑚, 𝑠):   

𝐾 =

{
 
 

 
 
⌊𝑛/2 ⌋ if 𝑓(𝑚, 𝑠) = 2(𝑚 + 𝑠)

⌊𝑛 3⁄ ⌋ if 𝑓(𝑚, 𝑠) = 3(𝑚 + 𝑠)

⌊√𝑛⌋ if 𝑓(𝑚, 𝑠) = 2𝑚𝑠

min{⌊𝑛 3⁄ ⌋, ⌊2√𝑛⌋} if 𝑓(𝑚, 𝑠) = max{3(𝑚 + 𝑠),𝑚𝑠}

 

where ⌊ 𝑎 ⌋ is called the floor function indicating the largest integer less than or equal to 𝑎.   

Golany & Yaakov (1989), Friedman & Sinuany-stern (1998), Dyson et al. (2001), and Cooper et al. 

(2007) were respectively put forth the above lower bounds 𝑓(𝑚, 𝑠) of the number of DMUs. 

Constraint ∑ 𝑑𝑖
𝑥

𝑖∈𝐼𝑠 + ∑ 𝑑𝑟
𝑦

𝑟∈𝑅𝑠 ≥ 1 enforces the models to choose at least one selective factor in the 

evaluation process. It is easy to verify that if 𝑑𝑖
𝑥 = 0, then constraint 𝑣𝑖

𝑖𝑛 ≤ 𝑀𝑑𝑖
𝑥 in model (5) turn 
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into 𝑣𝑖
𝑖𝑛 = 0, and also constraint ∑ 𝜆𝑗

𝑖𝑛𝑥𝑖𝑗
𝑛
𝑗=1 ≤ �̅�𝑜

𝑖𝑛𝑥𝑖𝑜 +𝑀(1 − 𝑑𝑖
𝑥) in model (6) will become 

redundant, which means that the 𝑖𝑡ℎ input has no role in performance analysis of DMU𝑜 and it can be 

opted out. When 𝑑𝑖
𝑥 = 1, the 𝑖𝑡ℎ input plays a part due to the fact that constraint 𝑣𝑖

𝑖𝑛 ≤ 𝑀𝑑𝑖
𝑥  in model 

(5) is redundant, and constraint ∑ 𝜆𝑗
𝑖𝑛𝑥𝑖𝑗

𝑛
𝑗=1 ≤ �̅�𝑜

𝑖𝑛𝑥𝑖𝑜 +𝑀(1 − 𝑑𝑖
𝑥) in model (6) is converted to  

∑ 𝜆𝑗
𝑖𝑛𝑥𝑖𝑗

𝑛
𝑗=1 ≤ �̅�𝑜

𝑖𝑛𝑥𝑖𝑜 which shows that the 𝑖𝑡ℎ input must be available throughout the evaluation 

process. Likewise, the value of 𝑑𝑟
𝑦  controls the selection status of the 𝑟𝑡ℎ output. 

It should be noted that the selecting DEA models (5) or (6) are solved 𝑛 times (one time for each 

DMU) to select a set of appropriate factors. Therefore, ultimately each performance factor has 𝑛 

different statuses as either selected or unselected. One way to identify the overall status of a factor 

(selected or unselected factor) is to consider the majority of a status that has been observed among 𝑛 

different statuses. After having chosen the performance factors, the conventional DEA models can be 

applied to measure the relative efficiencies of DMUs. 

It is worth noting that the multiplier and envelopment forms of the conventional DEA models are 

mutually dual and the duality theorem for linear programming holds. However, the multiplier and 

envelopment DEA models in the presence of selective measures which are changed to the MBLP 

models are no longer the primal-dual pair of problems. On the other hand, similar to conventional 

DEA models, different orientations in each multiplier/envelopment form of selecting models may 

result in different selections under non-CRS conditions. Therefore, it seems worthy of further study 

the relation between models (5) and (6) by way of the following Theorems 1 and 2.  

Theorem 1. The optimal objective value of the envelopment model (6) is less than or equal to the 

optimal value of the multiplier model (5), i.e., �̅�𝑜
𝑖𝑛∗ ≤ �̅�𝑜

𝑖𝑛∗ . 

Proof. Let (�̅�𝑜
𝑖𝑛∗, 𝒖𝑖𝑛

∗
, 𝒗𝑖𝑛

∗
, 𝒅𝑥∗, 𝒅𝑦∗, 𝑤0

𝑖𝑛∗) and (�̅�𝑜
𝑖𝑛∗, 𝝀𝑖𝑛

∗
, �̅�𝑥

∗
, �̅�𝑦

∗
) be the optimal solutions to 

models (5) and (6), respectively. We define the index sets 𝐼 ̅ = {𝑖 ∈ 𝐼𝑠 : �̅�𝑖
𝑥∗ = 1}, �̅� = {𝑟 ∈ 𝑅𝑠: �̅�𝑟

𝑦∗
= 1} 

and observe the following LP model: 

 

min𝜃  
s. t.  
∑ 𝜆𝑗𝑥𝑖𝑗
𝑛
𝑗=1 ≤ 𝜃𝑥𝑖𝑜 ∀𝑖 ∈ 𝐼𝑓 ∪ 𝐼̅

∑ 𝜆𝑗𝑦𝑟𝑗
𝑛
𝑗=1 ≥ 𝑦𝑟𝑜  ∀𝑟 ∈ 𝑅𝑓 ∪ �̅�

∑ 𝜆𝑗
𝑛
𝑗=1 = 1

 (7) 

It can be easily verified that (�̅�𝑜
𝑖𝑛∗, 𝝀𝑖𝑛

∗
) is the optimal solution of model (7). Let us now write the 

dual problem of (7) as follows: 

 

max𝜑 = ∑ 𝑢𝑟𝑦𝑟𝑜𝑟∈𝑅𝑓∪�̅� −𝑤0  
s. t.  
∑ 𝑣𝑖𝑥𝑖𝑜𝑖∈𝐼𝑓∪𝐼̅ = 1  
∑ 𝑢𝑟𝑦𝑟𝑗𝑟∈𝑅𝑓∪�̅� − 𝑤0 −∑ 𝑣𝑖𝑥𝑖𝑗𝑖∈𝐼𝑓∪𝐼̅ ≤ 0 ∀𝑗

𝑣𝑖 , 𝑢𝑟 ≥ 0 𝑖 ∈ 𝐼𝑓 ∪ 𝐼,̅ 𝑟 ∈ 𝑅𝑓 ∪ �̅�

𝑤0free in sign

 (8) 

Suppose that (𝜑∗, 𝒖′
∗
, 𝒗′

∗
, 𝑤0

′ ∗) is the optimal solution of model (8), where 𝒖′
∗
= (… , 𝑢𝑟

′ ∗ ,… )
𝑟∈𝑅𝑓∪�̅�

 

and 𝒗′
∗
= (… , 𝑣𝑖

′∗, … )
𝑖∈𝐼𝑓∪𝐼̅

. By virtue of the strong duality theorem of LP (Bazaraa, Jarvis, & Sherali, 
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2010), we result in �̅�𝑜
𝑖𝑛∗ = 𝜑∗. Let �̂�𝑖

𝑥 = {
1, 𝑖 ∈ 𝐼 ̅

0, 𝑖 ∈ 𝐼𝑠 − 𝐼̅
   , �̂�𝑟

𝑦
= {

1, 𝑟 ∈ �̅�

0, 𝑟 ∈ 𝑅𝑠 − �̅�
  , �̂�𝑟

𝑖𝑛 =

{𝑢𝑟
′ ∗, 𝑟 ∈ 𝑅𝑓 ∪ �̅� 
0, otherwise

,   �̂�𝑖
𝑖𝑛 = {

𝑣𝑖
′∗, 𝑖 ∈ 𝐼𝑓 ∪ 𝐼 ̅

0, otherwise
, �̂�0 = 𝑤

′
0
∗

 and �̂� = 𝜑∗. A straightforward verification 

indicates that (�̂�, �̂�𝑖𝑛, �̂�𝑖𝑛, �̂�𝑥 , �̂�𝑦 , �̂�0) is a feasible solution of model (5) and hence  �̅�𝑜
𝑖𝑛∗ = �̂� ≤ �̅�𝑜

𝑖𝑛∗ , 

which completes the proof. ■ 

The selecting DEA models (5) and (6) include a binary variable associated with each selective factor. 

Therefore, if there are |𝐼𝑠 ∪ 𝑅𝑠| selective factors, then mathematically many different subsets (k-

combinations) from the selective factors, i.e., Π = ∑ (|𝐼
𝑠∪𝑅𝑠|
𝑘

)𝐾
𝑘=1 , can be drawn while we are seeking 

those which meet the generic rule of thumb. Note that each combination of |𝐼𝑠 ∪ 𝑅𝑠| leads to a subset 

of selected factors which is able to provide us with a given set of efficiency scores. The following 

theorem proves that the subset of the selective factors is identified by solving models (5) and (6). 

Theorem 2. Let 𝑒𝑜
𝑝∗, 𝑝 = 1,… , Π, be the efficiency score of DMU𝑜 associated with the 𝑝𝑡ℎ subset 

(combination) of |𝐼𝑠 ∪ 𝑅𝑠| selective factors, which is obtained by the conventional input-oriented 

models (1) or (3). We have (i)  �̅�𝑜
𝑖𝑛∗ = max{𝑒𝑜

𝑝∗
: 𝑝 = 1,… , Π} and (ii) �̅�𝑜

𝑖𝑛∗ = min{𝑒𝑜
𝑝∗
: 𝑝 = 1,… , Π} 

where �̅�𝑜
𝑖𝑛∗ and �̅�𝑜

𝑖𝑛∗ are the optimal objective values of (5) and (6), respectively.  

Proof. (i) Let  (�̅�𝑜
𝑖𝑛∗, 𝒖𝑖𝑛

∗
, 𝒗𝑖𝑛

∗
, 𝒅𝑥

∗
, 𝒅𝑦

∗
, 𝑤0

𝑖𝑛∗) be the optimal solution of model (5). It is clear that 

�̅�𝑜
𝑖𝑛∗ ∈ {𝑒𝑜

𝑝∗: 𝑝 = 1,… , Π}. In order to prove the theorem, without loss of generality, let 𝑒𝑜
𝑞∗ =

max{𝑒𝑜
𝑝∗: 𝑝 = 1,… , Π} and on the contrary �̅�𝑜

𝑖𝑛∗ < 𝑒𝑜
𝑞∗. We assume that 𝐼𝑞(⊆ 𝐼𝑠) and 𝑅𝑞(⊆ 𝑅𝑠) are 

respectively the index sets of selected inputs and outputs, which leads to the maximum efficiency 

score 𝑒𝑜
𝑞∗. In what follows, we shall think of the following multiplier DEA problem: 

 

max𝑒𝑜
𝑞
= ∑ 𝑢𝑟𝑦𝑟𝑜𝑟∈𝑅𝑓∪𝑅𝑞 −𝑤0  

s. t.  
∑ 𝑣𝑖𝑥𝑖𝑜𝑖∈𝐼𝑓∪𝐼𝑞 = 1  
∑ 𝑢𝑟𝑦𝑟𝑗𝑟∈𝑅𝑓∪𝑅𝑞 −𝑤0 − ∑ 𝑣𝑖𝑥𝑖𝑗𝑖∈𝐼𝑓∪𝐼𝑞 ≤ 0 ∀𝑗

𝑣𝑖 , 𝑢𝑟 ≥ 0 𝑖 ∈ 𝐼𝑓 ∪ 𝐼𝑞 , 𝑟 ∈ 𝑅𝑓 ∪ 𝑅𝑞

𝑤0free in sign

 (9) 

Suppose that (𝑒𝑜
𝑞∗, 𝒖∗, 𝒗∗, 𝑤0

∗) is the optimal solution of model (9), where 𝒖∗ = (… , 𝑢𝑟
∗ , … )𝑟∈𝑅𝑓∪𝑅𝑞   and 

𝒗∗ = (… , 𝑣𝑖
∗, … )𝑖∈𝐼𝑓∪𝐼𝑞 . Obviously, the vector (�̂�𝑖𝑛, �̂�𝑖𝑛, �̂�𝑖𝑛, �̂�𝑥 , �̂�𝑦 , �̂�0

𝑖𝑛), whose components are 

defined as follows, is a feasible solution of model (5). 

�̂�𝑖
𝑥 = {

1, 𝑖 ∈ 𝐼𝑞

0, 𝑖 ∈ 𝐼𝑠 − 𝐼𝑞
   , �̂�𝑟

𝑦 = {
1, 𝑟 ∈ 𝐼𝑞

0, 𝑟 ∈ 𝐼𝑠 − 𝐼𝑞
  , �̂�𝑟

𝑖𝑛 = {
𝑢𝑟
∗ , 𝑟 ∈ 𝑅𝑓 ∪ 𝑅𝑞  
0, otherwise

,   �̂�𝑖
𝑖𝑛 = {

𝑣𝑖
∗, 𝑖 ∈ 𝐼𝑓 ∪ 𝐼𝑞  

0, otherwise
,

�̂�0
𝑖𝑛 = 𝑤0

∗, and �̂�𝑖𝑛 = 𝑒𝑜
𝑞∗. 

The objective value of this feasible solution, i.e. �̂�𝑖𝑛 = 𝑒𝑜
𝑞∗

, is greater than �̅�𝑜
𝑖𝑛∗, which occasions a 

contradiction with the optimality of (�̅�𝑜
𝑖𝑛∗, 𝒖𝑖𝑛

∗
, 𝒗𝑖𝑛

∗
, 𝒅𝑥∗, 𝒅𝑦∗, 𝑤0

𝑖𝑛∗) for model (5).  

(ii) Let (�̅�𝑜
𝑖𝑛∗, 𝝀𝑖𝑛

∗
, 𝒅𝑥∗, 𝒅𝑦∗) be the optimal solution of model (6); it is obvious that �̅�𝑜

𝑖𝑛∗ ∈

{𝑒𝑜
𝑝∗
: 𝑝 = 1,… , Π}. If 𝑒𝑜

𝑞∗
= min{𝑒𝑜

𝑝∗
: 𝑝 = 1,… , Π} and �̅�𝑜

𝑖𝑛∗ > 𝑒𝑜
𝑞∗

, then we reach a contradiction. 

There is no loss of generality in assuming that in the selection process which leads to the minimum 
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efficiency score 𝑒𝑜
𝑞∗

, the index sets of the selected inputs and outputs are 𝐼𝑞  and 𝑅𝑞 , respectively. We 

now deem the following model to continue the proof: 

 

min𝜃  
s. t.  
∑ 𝜆𝑗𝑥𝑖𝑗
𝑛
𝑗=1 ≤ 𝜃𝑥𝑖𝑜 ∀𝑖 ∈ 𝐼𝑓 ∪ 𝐼𝑞

∑ 𝜆𝑗𝑦𝑟𝑗
𝑛
𝑗=1 ≥ 𝑦𝑟𝑜  ∀𝑟 ∈ 𝑅𝑓 ∪ 𝑅𝑞

∑ 𝜆𝑗
𝑛
𝑗=1 = 1

 (10) 

Clearly,  𝜃∗ = 𝑒𝑜
𝑞∗

is the optimal objective value of model (10). Let (𝜃∗, 𝝀∗) be the optimal solution of 

model (10) and consider the vector (𝜃, �̂�, �̂�𝑥 , �̂�𝑦), whose components are defined as �̂�𝑖
𝑥 =

{
1, 𝑖 ∈ 𝐼𝑞

0, 𝑖 ∈ 𝐼𝑠 − 𝐼𝑞
   , �̂�𝑟

𝑦
= {

1, 𝑟 ∈ 𝑅𝑞

0, 𝑟 ∈ 𝑅𝑠 − 𝑅𝑞
, �̂� = 𝝀∗ and 𝜃 = 𝑒𝑜

𝑞∗
. It is easy to observe that (𝜃, �̂�, �̂�𝑥 , �̂�𝑦) 

is a feasible solution of model (6) and its objective value, i.e. 𝑒𝑜
𝑞∗

, is greater than �̅�𝑜
𝑖𝑛∗, which is a 

contradiction to the optimality of (�̅�𝑜
𝑖𝑛∗, 𝝀𝑖𝑛

∗
, 𝒅𝑥

∗
, 𝒅𝑦

∗). ■ 

Due to the fact that the multiplier and envelopment forms of selecting models are no longer the 

primal-dual pair of problems, Theorem 2 shows that the developed models opt for the selective 

factors from two varying views that can be interesting to explore further in this study. In this respect, 

the multiplier model (5) seeks the factors out based upon enhancing performance (optimistic 

perspective)  whereas the envelopment model (6) is intended to significantly enhance discrimination 

power of DEA (pessimistic perspective). The next section aims at extending the output-oriented 

version of selecting DEA models coupled with investigating some related properties.  

3.2 Output-oriented selecting DEA model 

Contrary to the input-oriented DEA models, the output-oriented DEA models make an attempt to 

increase outputs proportionally while keeping the existing inputs unchanged (Cooper et al., 2007). 

Given the notations used in Section 3, we formulate the output-oriented selecting DEA models in the 

multiplier and envelopment forms as follows: 

 

min �̅�𝑜
𝑜𝑢𝑡 = ∑ 𝑣𝑖

𝑜𝑢𝑡𝑥𝑖𝑜
𝑚
𝑖=1 +𝑤0

𝑜𝑢𝑡

s. t.
∑ 𝑢𝑟

𝑜𝑢𝑡𝑦𝑟𝑜
𝑠
𝑟=1 = 1

∑ 𝑢𝑟
𝑜𝑢𝑡𝑦𝑟𝑗

𝑠
𝑟=1 −∑ 𝑣𝑖

𝑜𝑢𝑡𝑥𝑖𝑗
𝑚
𝑖=1 − 𝑤0

𝑜𝑢𝑡 ≤ 0  ∀𝑗

∑ 𝑑𝑖
𝑥

𝑖∈𝐼𝑠 + ∑ 𝑑𝑟
𝑦

𝑟∈𝑅𝑠 ≤ 𝐾 − (|𝐼𝑓| + |𝑅𝑓|)

∑ 𝑑𝑖
𝑥

𝑖∈𝐼𝑠 + ∑ 𝑑𝑟
𝑦

𝑟∈𝑅𝑠 ≥ 1

𝑣𝑖
𝑜𝑢𝑡 ≤ 𝑀𝑑𝑖

𝑥                                             ∀𝑖 ∈ 𝐼𝑠

𝑢𝑟
𝑜𝑢𝑡 ≤ 𝑀𝑑𝑟

𝑦
                                           ∀𝑟 ∈ 𝑅𝑠

𝑑𝑖
𝑥 , 𝑑𝑟

𝑦
∈ {0,1}                           ∀𝑖 ∈ 𝐼𝑠 , 𝑟 ∈ 𝑅𝑠

𝑣𝑖
𝑜𝑢𝑡 , 𝑢𝑟

𝑜𝑢𝑡 ≥ 0                                             ∀𝑖, 𝑟

𝑤0
𝑜𝑢𝑡free in sign

 (11)  

max �̅�𝑜
𝑜𝑢𝑡  

s. t.
∑ 𝜆𝑗

𝑜𝑢𝑡𝑥𝑖𝑗
𝑛
𝑗=1 ≤ 𝑥𝑖𝑜                                         ∀𝑖 ∈ 𝐼

𝑓

∑ 𝜆𝑗
𝑜𝑢𝑡𝑦𝑟𝑗

𝑛
𝑗=1 ≥ �̅�𝑜

𝑜𝑢𝑡𝑦𝑟𝑜                                ∀𝑟 ∈ 𝐼
𝑓

∑ 𝜆𝑗
𝑜𝑢𝑡𝑥𝑖𝑗

𝑛
𝑗=1 ≤ 𝑥𝑖𝑜 +𝑀(1 − 𝑑𝑖

𝑥)              ∀𝑖 ∈ 𝐼𝑠

∑ 𝜆𝑗
𝑜𝑢𝑡𝑦𝑟𝑗

𝑛
𝑗=1 ≥ �̅�𝑜

𝑜𝑢𝑡𝑦𝑟𝑜  − 𝑀(1 − 𝑑𝑟
𝑦)    ∀𝑟 ∈ 𝑅𝑠

∑ 𝑑𝑖
𝑥

𝑖∈𝐼𝑠 + ∑ 𝑑𝑟
𝑦

𝑟∈𝑅𝑠 ≤ 𝐾 − (|𝐼𝑓| + |𝑅𝑓|)

∑ 𝑑𝑖
𝑥

𝑖∈𝐼𝑠 + ∑ 𝑑𝑟
𝑦

𝑟∈𝑅𝑠 ≥ 1

𝑑𝑖
𝑥 , 𝑑𝑟

𝑦
∈ {0,1}                                    ∀𝑖 ∈ 𝐼𝑠 , 𝑟 ∈ 𝑅𝑠

∑ 𝜆𝑗
𝑜𝑢𝑡𝑛

𝑗=1 = 1

 (12) 

Let us now investigate the theorems for the above output-oriented models similar to those in Section 

3.11.  

                                                             
1 Since the following theorems can be proved identical to Theorem 1 and Theorem 2 in the previous section, let us leave 

their proof to the readers. 
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Theorem 3. The optimal objective value of the multiplier model (11) is less than or equal to the 

optimal value of the envelopment model (12), i.e. �̅�𝑜
𝑜𝑢𝑡∗ ≤ �̅�𝑜

𝑜𝑢𝑡∗ . 

Theorem 4. Let 𝜉𝑜
𝑝∗ , 𝑝 = 1,… , Π, be the optimal objective value of DMU𝑜 calculated from the 

conventional output-oriented models (2) or (4) in terms of  the 𝑝𝑡ℎ combination of selective factors. 

We have (i)  �̅�𝑜
𝑜𝑢𝑡∗ = min{𝜉𝑜

𝑝∗: 𝑝 = 1, … , Π} and (ii) �̅�𝑜
𝑜𝑢𝑡∗ = max{𝜉𝑜

𝑝∗: 𝑝 = 1,… , Π}.  

It would be very interesting to study the relationship between input- and output-oriented selecting 

DEA models. In this regard, the following theorems prove that the multiplier and envelopment forms 

of the input- and output-oriented selecting DEA models are equivalent under CRS assumption. 

Theorem 5. In the light of CRS assumption, (i) The input- and output-oriented multiplier selecting 

DEA models (5) and (11) are equivalent. (ii) The input- and output-oriented envelopment selecting 

DEA models (6) and (12) are equivalent.  

Proof. (i) Let (�̅�𝑜
𝑖𝑛∗, 𝒖𝑖𝑛

∗
, 𝒗𝑖𝑛

∗
, 𝒅𝑥

∗
, 𝒅𝑦

∗) ∈ ℝ1+2(𝑚+𝑠) be an optimal solution of model (5) under CRS 

assumption. Since �̅�𝑜
𝑖𝑛∗ is positive, it can be easily shown that (

1

�̅�𝑜
𝑖𝑛∗
,
𝒖𝑖𝑛

∗

�̅�𝑜
𝑖𝑛∗
,
𝒗𝑖𝑛

∗

�̅�𝑜
𝑖𝑛∗
, 𝒅𝑥

∗
, 𝒅𝑦

∗
) is a feasible 

solution for (11). If (
1

�̅�𝑜
𝑖𝑛∗
,
𝒖𝑖𝑛

∗

�̅�𝑜
𝑖𝑛∗
,
𝒗𝑖𝑛

∗

�̅�𝑜
𝑖𝑛∗
, 𝒅𝑥∗, 𝒅𝑦∗) is not optimal for model (11), then there is an 

alternative feasible solution (�̂�𝑜
𝑜𝑢𝑡 , �̂�𝑜𝑢𝑡 , �̂�𝑜𝑢𝑡 , �̂�𝑥 , �̂�𝑦) such that: 

 ∑ 𝑣𝑖
𝑜𝑢𝑡𝑥𝑖𝑜

𝑚
𝑖=1 = ∑

𝒗𝑖𝑛
∗

�̅�𝑜
𝑖𝑛∗ 
𝑥𝑖𝑜

𝑚
𝑖=1 =

1

�̅�𝑜
𝑖𝑛∗ 

> ∑ �̂�𝑖
𝑜𝑢𝑡𝑥𝑖𝑘

𝑚
𝑖=1 = �̂�𝑜

𝑜𝑢𝑡   (13) 

It is plain to verify that the vector (𝜑𝑜 , 𝒖, 𝒗,𝒅
𝑥 , 𝒅𝑦) = (

1

�̂�𝑜
𝑜𝑢𝑡 ,

�̂�𝑜𝑢𝑡

�̂�𝑜
𝑜𝑢𝑡 ,

�̂�𝑜𝑢𝑡

�̂�𝑜
𝑜𝑢𝑡 , �̂�

𝑥 , �̂�𝑦) is a feasible solution 

of the input-oriented model (5) and its objective value is ∑
𝑢𝑟
𝑜𝑢𝑡

�̂�𝑜
𝑜𝑢𝑡 𝑦𝑟𝑜

𝑠
𝑟=1 =

1

�̂�𝑜
𝑜𝑢𝑡. In the light of equation 

(13), 
1

�̂�𝑜
𝑜𝑢𝑡 > �̅�𝑜

𝑖𝑛∗, which contradicts the optimality of �̅�𝑜
𝑖𝑛∗.  In a similar manner, it can be shown that 

if (�̅�𝑜
𝑜𝑢𝑡∗, 𝒖𝑜𝑢𝑡

∗
, 𝒗𝑜𝑢𝑡

∗
, 𝒅𝑥

∗
, 𝒅𝑦

∗) is an optimal solution of output-oriented model (11), then 

(
1

�̅�𝑜
𝑜𝑢𝑡∗ ,

𝒖𝑜𝑢𝑡
∗

�̅�𝑜
𝑜𝑢𝑡∗ ,

𝒗𝑜𝑢𝑡
∗

�̅�𝑜
𝑜𝑢𝑡∗ , 𝒅

𝑥∗, 𝒅𝑦∗) is an optimal solution of input-oriented model (5). 

(ii) Let (�̅�𝑜
𝑖𝑛∗, 𝝀𝑖𝑛

∗
, 𝒅𝑥∗, 𝒅𝑦∗) be an optimal solution of the input-oriented envelopment selecting DEA 

model (6). It is clear that (
1

�̅�𝑜
𝑖𝑛∗
,
𝝀𝑖𝑛

∗

�̅�𝑜
𝑖𝑛∗
, 𝒅𝑥∗, 𝒅𝑦∗) is a feasible solution of model (12). We prove that 

(
1

�̅�𝑜
𝑖𝑛∗
,
𝝀𝑖𝑛

∗

�̅�𝑜
𝑖𝑛∗
, 𝒅𝑥∗, 𝒅𝑦∗) is an optimal solution of model (12). Suppose, contrary to our claim that 

(
1

�̅�𝑜
𝑖𝑛∗
,
𝝀𝑖𝑛

∗

�̅�𝑜
𝑖𝑛∗
, 𝒅𝑥∗, 𝒅𝑦∗) is not optimal solution for model (12) and therefore there is a distinct optimal 

solution (𝜃𝑜
𝑜𝑢𝑡 , �̂�𝑜𝑢𝑡 , �̂�𝑥 , �̂�𝑦), hence 𝜃𝑜

𝑜𝑢𝑡 >
1

�̅�𝑜
𝑖𝑛∗

. Obviously, (
1

�̂�𝑜
𝑜𝑢𝑡 ,

�̂�𝑜𝑢𝑡
∗

�̂�𝑜
𝑜𝑢𝑡 , �̂�

𝑥 , �̂�𝑦) is feasible for input-

oriented model (6) with an objective value which is less than the optimal objective value, i.e.,  �̅�𝑜
𝑖𝑛∗ >

1

�̂�𝑜
𝑜𝑢𝑡 which is a contradiction. Likewise, we can conclude that each optimal solution of output-oriented 

model (12) is equivalent with an optimal solution of input-oriented model (6). ◼ 

As mentioned earlier, the process of eventual decision-making on factor selection is intricate. 

Although it is supposed that problem examination from different angles simplifies the factor 
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selection, producing many conflicting results by means of these examinations leads to another 

problem.  For example, regardless of multiplier and envelopment form, Theorem 5 emphasizes that 

both of the input- and output-oriented selecting DEA models provide identical results when the CRS 

condition is assumed. However, this does not necessarily observe in VRS assumptions.  

Unlike conventional DEA models, the shape of PPS is not fixed and identical for both input and output 

orientations in our selecting models. In other words, the PPS constructed by the input-oriented 

selecting DEA model (either multiple or envelopment form) may differ from those created by the 

output-oriented ones. Therefore, the input- and output-oriented selecting DEA models might result 

in various sets of performance factors that can be disputable on the concept of PPS. Therefore, the 

decision-maker’s view and characteristics embedded in the production process will be involved in 

the choice of orientations through the factor selection problem. In the next section, we propose a new 

approach to integrate input- and output-oriented selecting models for both multiplier and 

envelopment forms to constitute an identical PPS for both input and output orientations.      

4 Integrated input- and output-oriented selecting DEA models 

The input- and output-oriented selecting DEA models presented in the previous sections are capable 

of selecting the performance factors, even though those selected factors may be different based on 

these models. This issue can be controversial when the performance evaluation has dissimilar sets 

of performance factors. In this section, we develop a pair of multiplier and envelopment selecting 

DEA models in which each one integrates both input- and output orientation models. The aim of the 

proposed models is to determine the same set of selective factors for both input- and output-oriented 

models. To do this, we firstly integrate both the conventional input- and output-oriented models to 

turn into a single model and then prove that the optimal solution of the integrated model leads to 

those of individual models and vice versa. Finally, we extend this idea to selecting DEA models with 

the aim of unifying factor selection in both orientations. 

In the light of the input- and output-oriented multiplier models (1) and (2), we propose the following 

integrated model: 

 

max  (∑ 𝑢𝑟
𝑖𝑛𝑦𝑟𝑜

𝑠
𝑟=1 − 𝑤0

𝑖𝑛) − (∑ 𝑣𝑖
𝑜𝑢𝑡𝑥𝑖𝑜

𝑚
𝑖=1 + 𝑤0

𝑜𝑢𝑡)  
s. t.  
∑ 𝑣𝑖

𝑖𝑛𝑥𝑖𝑜
𝑚
𝑖=1 = 1  

∑ 𝑢𝑟
𝑜𝑢𝑡𝑦𝑟𝑜

𝑠
𝑟=1 = 1

∑ 𝑢𝑟
𝑝
𝑦𝑟𝑗

𝑠
𝑟=1 −𝑤0

𝑝
−∑ 𝑣𝑖

𝑝
𝑥𝑖𝑗

𝑚
𝑖=1 ≤ 0    ∀𝑗, 𝑝 = 𝑖𝑛, 𝑜𝑢𝑡

𝑣𝑖
𝑝
, 𝑢𝑟

𝑝
≥ 0        ∀𝑖, 𝑟, 𝑝 = 𝑖𝑛, 𝑜𝑢𝑡

𝑤0
𝑝
free in sign 𝑝 = 𝑖𝑛, 𝑜𝑢𝑡

 (14) 

Let 𝑆𝑖𝑛 and 𝑆𝑜𝑢𝑡  be the feasible region of the input- and output-oriented models (1) and (2), 

respectively, i.e., 

𝑆𝑖𝑛 = {(𝒗
𝑖𝑛 , 𝒖𝑖𝑛 , 𝑤0

𝑖𝑛)|𝒗𝑖𝑛𝒙𝑜 = 1,𝒖
𝑖𝑛𝐘 −𝑤0

𝑖𝑛𝟏𝑛 − 𝒗
𝑖𝑛𝐗 ≤ 𝟎𝑛 , 𝒗

𝑖𝑛 ≥ 𝟎𝑚 , 𝒖
𝑖𝑛 ≥ 𝟎𝑠 , 𝑤0

𝑖𝑛free in sign}

𝑆𝑜𝑢𝑡 = {(𝒗
𝑜𝑢𝑡 , 𝒖𝑜𝑢𝑡 , 𝑤0

𝑜𝑢𝑡)|𝒖𝑜𝑢𝑡𝒚𝑜 = 1, 𝒖
𝑜𝑢𝑡𝐘− 𝒗𝑜𝑢𝑡𝐗 −𝑤0

𝑜𝑢𝑡𝟏𝑛 ≤ 𝟎𝑛 , 𝒗
𝑜𝑢𝑡 ≥ 𝟎𝑚 , 𝒖

𝑜𝑢𝑡 ≥ 𝟎𝑠 , 𝑤0
𝑜𝑢𝑡free in sign}

 

where 𝒗𝑝 = (𝑣1
𝒑
, … , 𝑣𝑚

𝒑
), 𝒖𝑝 = (𝑢1

𝒑
, … , 𝑢𝑠

𝒑
) for 𝑝 = 𝑖𝑛, 𝑜𝑢𝑡, are the input and output weights; 𝐗 =

[𝑥𝑖𝑗] ∈ ℝ
𝑛×𝑚 , and 𝐘 = [𝑦𝑟𝑗] ∈ ℝ

𝑠×𝑛 are the matrices associated with the input and output sets, 
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respectively; 𝟏𝑛 is a column vector with all components equal to one, and 𝟎𝑛 is the origin in ℝ𝑛.  It is 

obvious that the feasible region of model (14) is 𝑆𝑖𝑛⋃𝑆𝑜𝑢𝑡 . Moreover, the objective function of (14) is 

𝜑𝑜
𝑖𝑛 − 𝜑𝑜

𝑜𝑢𝑡 , where 𝜑𝑜
𝑖𝑛 and 𝜑𝑜

𝑜𝑢𝑡  are respectively the objective function of the input- and output-

oriented models (1) and (2). The following theorem shows that the integrated model (14) is 

equivalent with models (1) and (2).  

Theorem 6. (𝒗𝑖𝑛
∗
, 𝒖𝑖𝑛

∗
, 𝑤0

𝑖𝑛∗ , 𝒗𝑜𝑢𝑡
∗
, 𝒖𝑜𝑢𝑡

∗
, 𝑤0

𝑜𝑢𝑡∗) is an optimal solution of the integrated model (14) 

if and only if (𝒗𝑖𝑛
∗
, 𝒖𝑖𝑛

∗
, 𝑤0

𝑖𝑛∗) and (𝒗𝑜𝑢𝑡
∗
, 𝒖𝑜𝑢𝑡

∗
, 𝑤0

𝑜𝑢𝑡∗) are the optimal solutions of models (1) and 

(2), respectively. 

Proof. Let (𝒗𝑖𝑛
∗
, 𝒖𝑖𝑛

∗
, 𝑤0

𝑖𝑛∗ , 𝒗𝑜𝑢𝑡
∗
, 𝒖𝑜𝑢𝑡

∗
, 𝑤0

𝑜𝑢𝑡∗) be the optimal solution of model (14). Therefore, 

(𝒗𝑖𝑛
∗
, 𝒖𝑖𝑛

∗
, 𝑤0

𝑖𝑛∗) and (𝒗𝑜𝑢𝑡
∗
, 𝒖𝑜𝑢𝑡

∗
, 𝑤0

𝑜𝑢𝑡∗) are the feasible solutions of models (1) and (2), 

respectively. On the contrary, if (𝒗𝑖𝑛
∗
, 𝒖𝑖𝑛

∗
, 𝑤0

𝑖𝑛∗) is not the optimal solution of model (1), then there 

is a feasible solution (�̂�𝑖𝑛, �̂�𝑖𝑛, �̂�0
𝑖𝑛) ≠ (𝒗𝑖𝑛

∗
, 𝒖𝑖𝑛

∗
, 𝑤0

𝑖𝑛∗) such that ∑ 𝑢𝑟
𝑖𝑛∗𝑦𝑟𝑘

𝑠
𝑟=1 − 𝑤0

𝑖𝑛∗ <

∑ �̂�𝑟
𝑖𝑛𝑦𝑟𝑘

𝑠
𝑟=1 − �̂�0

𝑖𝑛 . In what follows, (�̂�𝑖𝑛, �̂�𝑖𝑛, �̂�0
𝑖𝑛, 𝒗𝑜𝑢𝑡

∗
, 𝒖𝑜𝑢𝑡

∗
, 𝑤0

𝑜𝑢𝑡∗) is a feasible solution of model 

(14) and ∑ 𝑢𝑟
𝑖𝑛∗𝑦𝑟𝑘

𝑠
𝑟=1 − ∑ 𝑣𝑖

𝑜𝑢𝑡∗𝑥𝑖𝑘
𝑚
𝑖=1 − 𝑤0

𝑖𝑛∗ − 𝑤0
𝑜𝑢𝑡∗ < ∑ �̂�𝑟

𝑖𝑛𝑦𝑟𝑘
𝑠
𝑟=1 −∑ 𝑣𝑖

𝑜𝑢𝑡∗𝑥𝑖𝑘
𝑚
𝑖=1 − �̂�0

𝑖𝑛 −𝑤0
𝑜𝑢𝑡∗ 

which is in contradiction to the optimality of (𝒗𝑖𝑛
∗
, 𝒖𝑖𝑛

∗
, 𝑤0

𝑖𝑛∗ , 𝒗𝑜𝑢𝑡
∗
, 𝒖𝑜𝑢𝑡

∗
, 𝑤0

𝑜𝑢𝑡∗). Likewise, the 

optimality of (𝒗𝑜𝑢𝑡
∗
, 𝒖𝑜𝑢𝑡

∗
, 𝑤0

𝑜𝑢𝑡∗) is concluded. Moreover, the converse is straightforward. ◼    

It should be noted that the first component associated with the objective function of model (14) is 

always equal to or smaller than one and the second one is invariably equal to or larger than one. 

Thereby the optimal value of the objective function of (14) will be zero if and only if the value of both 

components are equal to one. Subsequently, we arrive at the following corollaries as direct results of 

Theorem 6. 

Corollary 1. The optimal objective value of model (14) is always non-positive. 

Corollary 2. DMU𝑜 is an efficient DMU if and only if the optimal objective value of model (14) is zero.     

In the following, we employ the above idea to integrate the envelopment form models (3) and (4).  

 

min𝜃𝑜
𝑖𝑛 − 𝜃𝑜

𝑜𝑢𝑡   
s. t.  
∑ 𝜆𝑗

𝑖𝑛𝑥𝑖𝑗
𝑛
𝑗=1 ≤ 𝜃𝑜

𝑖𝑛𝑥𝑖𝑜 ∀𝑖

∑ 𝜆𝑗
𝑖𝑛𝑦𝑟𝑗

𝑛
𝑗=1 ≥ 𝑦𝑟𝑜  ∀𝑟

∑ 𝜆𝑗
𝑜𝑢𝑡𝑥𝑖𝑗

𝑛
𝑗=1 ≤ 𝑥𝑖𝑜 ∀𝑖

∑ 𝜆𝑗
𝑜𝑢𝑡𝑦𝑟𝑗

𝑛
𝑗=1 ≥ 𝜃𝑜

𝑜𝑢𝑡𝑦𝑟𝑜 ∀𝑟

∑ 𝜆𝑗
𝑝𝑛

𝑗=1 = 1 𝑝 = 𝑖𝑛, 𝑜𝑢𝑡

 (15) 

As can be seen, the objective function of model (15) is the difference of the objective functions of 

models (3) and (4), and the constraint sets of model (15) are derived from the union of the constraint 

sets of models (3) and (4).  The following theorem shows that optimal solution of model (15) gives 

the optimal solution of models (3) and (4) and vice versa. 

Theorem 7. The necessary and sufficient conditions for (𝜃𝑜
𝑖𝑛∗, 𝝀𝑖𝑛

∗
, 𝜃𝑜
𝑜𝑢𝑡∗, 𝝀𝑜𝑢𝑡

∗
) to be an optimal 

solution of the integrated model (15) are the optimality of (𝜃𝑜
𝑖𝑛∗, 𝝀𝑖𝑛

∗
) and (𝜃𝑜

𝑜𝑢𝑡∗ , 𝝀𝑜𝑢𝑡
∗
) for models 

(3) and (4), respectively. 
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Proof. In order to prove the necessary condition, let the optimal solution of model (15) be 

(𝜃𝑜
𝑖𝑛∗, 𝝀𝑖𝑛

∗
, 𝜃𝑜
𝑜𝑢𝑡∗, 𝝀𝑜𝑢𝑡

∗
). It is not difficult to show that (𝜃𝑜

𝑖𝑛∗, 𝝀𝑖𝑛
∗
) and (𝜃𝑜

𝑜𝑢𝑡∗, 𝝀𝑜𝑢𝑡
∗
) are the feasible 

solutions of models (3) and (4), respectively. To obtain a contradiction, we think of two cases (i) 

(𝛿, 𝝁) is the optimal solution of model (3) such that 𝛿 < 𝜃𝑜
𝑖𝑛∗, and (ii) (𝛿, 𝝁) is the optimal solution of 

model (4) such that 𝛿 > 𝜃𝑜
𝑜𝑢𝑡∗. Regarding case (i), (𝛿, 𝝁, 𝜃𝑜

𝑜𝑢𝑡∗, 𝝀𝑜𝑢𝑡
∗
) as a feasible solution can result 

in 𝛿 − 𝜃𝑜
𝑜𝑢𝑡∗ < 𝜃𝑜

𝑖𝑛∗ − 𝜃𝑜
𝑜𝑢𝑡∗, which is impossible to occur due to the optimality condition for 

(𝜃𝑜
𝑖𝑛∗, 𝝀𝑖𝑛

∗
, 𝜃𝑜
𝑜𝑢𝑡∗, 𝝀𝑜𝑢𝑡

∗
), and in case (ii) (𝜃𝑜

𝑖𝑛∗, 𝝀𝑖𝑛
∗
, 𝛿, 𝝁) is a feasible a feasible solution of model (15) 

and 𝜃𝑜
𝑖𝑛∗ − 𝛿 < 𝜃𝑜

𝑖𝑛∗ − 𝜃𝑜
𝑜𝑢𝑡∗ which also cannot occur thanks to the optimality of 

(𝜃𝑜
𝑖𝑛∗, 𝝀𝑖𝑛

∗
, 𝜃𝑜
𝑜𝑢𝑡∗, 𝝀𝑜𝑢𝑡

∗
). Consequently, we observe a contradiction in each case, which proves the 

necessary condition. Analogously, the sufficient condition can be proved. ◼ 

Let us now come to the following corollaries as evident properties of model (15). 

Corollary 3. The optimal objective value of model (15) is always non-positive.     

Corollary 4. DMUo is efficient if and only if the optimal objective value of model (15) is zero.     

By the use of the above idea, we propose two new multiplier- and envelopment-based selecting DEA 

models to identify the identical set of selective factors for both input- and output-orientations. At 

first, consider the following multiplier-based selecting DEA model. 

 

max  (∑ 𝑢𝑟
𝑖𝑛𝑦𝑟𝑜

𝑠
𝑟=1 − 𝑤0

𝑖𝑛) − (∑ 𝑣𝑖
𝑜𝑢𝑡𝑥𝑖𝑜

𝑚
𝑖=1 + 𝑤0

𝑜𝑢𝑡)  
s. t.  
∑ 𝑣𝑖

𝑖𝑛𝑥𝑖𝑜
𝑚
𝑖=1 = 1  

∑ 𝑢𝑟
𝑜𝑢𝑡𝑦𝑟𝑜

𝑠
𝑟=1 = 1

∑ 𝑢𝑟
𝑝
𝑦𝑟𝑗

𝑠
𝑟=1 −𝑤0

𝑝
−∑ 𝑣𝑖

𝑝
𝑥𝑖𝑗

𝑚
𝑖=1 ≤ 0    ∀𝑗, 𝑝 = 𝑖𝑛, 𝑜𝑢𝑡

∑ 𝑑𝑖
𝑥

𝑖∈𝐼𝑠 + ∑ 𝑑𝑟
𝑦

𝑟∈𝑅𝑠 ≤ 𝐾 − (|𝐼𝑓| + |𝑅𝑓|)  

∑ 𝑑𝑖
𝑥

𝑖∈𝐼𝑠 + ∑ 𝑑𝑟
𝑦

𝑟∈𝑅𝑠 ≥ 1

𝑣𝑖
𝑝
≤ 𝑀𝑑𝑖

𝑥  ∀𝑖 ∈ 𝐼𝑠 , 𝑝 = 𝑖𝑛, 𝑜𝑢𝑡

𝑢𝑟
𝑝
≤ 𝑀𝑑𝑟

𝑦
∀𝑟 ∈ 𝑅𝑠 , 𝑝 = 𝑖𝑛, 𝑜𝑢𝑡

𝑑𝑖
𝑥 , 𝑑𝑟

𝑦
∈ {0,1}          ∀𝑖 ∈ 𝐼𝑠 , ∀𝑟 ∈ 𝑅𝑠

𝑣𝑖
𝑝
, 𝑢𝑟

𝑝
≥ 0        ∀𝑖, 𝑟, 𝑝 = 𝑖𝑛, 𝑜𝑢𝑡

𝑤0
𝑝
free in sign 𝑝 = 𝑖𝑛, 𝑜𝑢𝑡.

 (16) 

The objective function of model (16) contains two distinct components where the first component 

∑ 𝑢𝑟
𝑖𝑛𝑦𝑟𝑜

𝑠
𝑟=1 − 𝑤0

𝑖𝑛 and the second component ∑ 𝑣𝑖
𝑜𝑢𝑡𝑥𝑖𝑜

𝑚
𝑖=1 + 𝑤0

𝑜𝑢𝑡  are the objective function of 

models (5) and (11), respectively. The set of variables and constraints of model (16) are the union of 

all variables and constraints of both models (5) and (11). The binary variables 𝑑𝑖
𝑥  and 𝑑𝑟

𝑦  associated 

with the selective factors in model (16) are assumed to be in common. Note that theses binary 

variables are crucial in model (16) because they play the role of a bridge between models (5) and 

(11). The optimal value of the binary variables may differ when solving models (5) and (11) 

separately, although model (16) enables us to obtain an identical value for each binary variable, 

resulting in a unique selection of performance factors. The following theorem shows the relationship 

between the integrated selecting DEA model (16) and distinct models (5) and (11).  

Theorem 8. Let (𝒗𝑖𝑛
∗
, 𝒖𝑖𝑛

∗
, 𝑤0

𝑖𝑛∗ , 𝒗𝑜𝑢𝑡
∗
, 𝒖𝑜𝑢𝑡

∗
, 𝑤0

𝑜𝑢𝑡∗ , 𝒅𝑥∗, 𝒅𝑦∗) be the optimal solutions of model (16). 

Then, (i)  ∑ 𝑢𝑟
𝑖𝑛∗𝑦𝑟𝑜

𝑠
𝑟=1 − 𝑤0

𝑖𝑛∗ is a lower bound for the optimal objective value of model (5) (ii) 

∑ 𝑣𝑖
𝑜𝑢𝑡∗𝑥𝑖𝑜

𝑚
𝑖=1 +𝑤0

𝑜𝑢𝑡∗ is an upper bound for the optimal objective value for model (11). 
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Proof. Since (𝒗𝑖𝑛
∗
, 𝒖𝑖𝑛

∗
, 𝑤0

𝑖𝑛∗ , 𝒅𝑥
∗
, 𝒅𝑦

∗) and ( 𝒗𝑜𝑢𝑡
∗
, 𝒖𝑜𝑢𝑡

∗
, 𝑤0

𝑜𝑢𝑡∗ , 𝒅𝑥
∗
, 𝒅𝑦

∗) are feasible solutions for 

models (5) and (11), respectively, the proof is straightforward. ■ 

Similarly, the envelopment form of the selecting model can be studied, and the proposed selecting 

model, which integrates the input- and output-oriented selecting models (6) and (12) is expressed 

below:  

 

min �̅�𝑜
𝑖𝑛 − �̅�𝑜

𝑜𝑢𝑡   
s. t.  
∑ 𝜆𝑗

𝑖𝑛𝑥𝑖𝑗
𝑛
𝑗=1 ≤ �̅�𝑜

𝑖𝑛𝑥𝑖𝑜 ∀𝑖 ∈ 𝐼𝑓

∑ 𝜆𝑗
𝑖𝑛𝑦𝑟𝑗

𝑛
𝑗=1 ≥ 𝑦𝑟𝑜  ∀𝑟 ∈ 𝑅𝑓

∑ 𝜆𝑗
𝑖𝑛𝑥𝑖𝑗

𝑛
𝑗=1 ≤ �̅�𝑜

𝑖𝑛𝑥𝑖𝑜 +𝑀(1 − 𝑑𝑖
𝑥)    ∀𝑖 ∈ 𝐼𝑠

∑ 𝜆𝑗
𝑖𝑛𝑦𝑟𝑗

𝑛
𝑗=1 ≥ 𝑦𝑟𝑜  − 𝑀(1 − 𝑑𝑟

𝑦
)     ∀𝑟 ∈ 𝑅𝑠

∑ 𝜆𝑗
𝑜𝑢𝑡𝑥𝑖𝑗

𝑛
𝑗=1 ≤ 𝑥𝑖𝑜 ∀𝑖 ∈ 𝐼𝑓

∑ 𝜆𝑗
𝑜𝑢𝑡𝑦𝑟𝑗

𝑛
𝑗=1 ≥ �̅�𝑜

𝑜𝑢𝑡𝑦𝑟𝑜 ∀𝑟 ∈ 𝑅𝑓

∑ 𝜆𝑗
𝑜𝑢𝑡𝑥𝑖𝑗

𝑛
𝑗=1 ≤ 𝑥𝑖𝑜 +𝑀(1 − 𝑑𝑖

𝑥) ∀𝑖 ∈ 𝐼𝑠

∑ 𝜆𝑗
𝑜𝑢𝑡𝑦𝑟𝑗

𝑛
𝑗=1 ≥ �̅�𝑜

𝑜𝑢𝑡𝑦𝑟𝑜  − 𝑀(1 − 𝑑𝑟
𝑦) ∀𝑟 ∈ 𝑅𝑠

∑ 𝑑𝑖
𝑥

𝑖∈𝐼𝑠 + ∑ 𝑑𝑟
𝑦

𝑟∈𝑅𝑠 ≤ 𝐾 − (|𝐼𝑓| + |𝑅𝑓|)  

∑ 𝑑𝑖
𝑥

𝑖∈𝐼𝑠 + ∑ 𝑑𝑟
𝑦

𝑟∈𝑅𝑠 ≥ 1

𝑑𝑖
𝑥 , 𝑑𝑟

𝑦
∈ {0,1}       ∀𝑖 ∈ 𝐼𝑠 , 𝑟 ∈ 𝑅𝑠

∑ 𝜆𝑗
𝑝𝑛

𝑗=1 = 1 𝑝 = 𝑖𝑛, 𝑜𝑢𝑡

 (17) 

Contrary to model (16), the input- and output-oriented models (6) and (12) are aggregated to make 

the above model. Over and above, the common binary variables 𝑑𝑖
𝑥  and 𝑑𝑟

𝑦
 are also introduced to join 

the respective constraints of models (6) and (12) and these variables assist model (17) to seek the 

most influential factors of both input- and output-orientations. At present, it is of interest to explore 

the details of the relationship between the developed model (17) and models (6) and (12).  

Theorem 9.  Let (�̅�𝑜
𝑖𝑛∗, 𝝀𝑖𝑛

∗
, �̅�𝑜
𝑜𝑢𝑡∗, 𝝀𝑜𝑢𝑡

∗
, 𝒅𝑥

∗
, 𝒅𝑦

∗
) be the optimal solution of model (17). Then, (i) 

�̅�𝑜
𝑖𝑛∗ is an upper bound for the optimal objective value of model (6)  (ii) �̅�𝑜

𝑜𝑢𝑡∗ is a lower bound for the 

optimal objective value of model (12).  

Proof. Similar to the proof of Theorem 8 (omitted). ◼ 

It is worth noting that the multiplier integrated model (16) as the aggregation of the multiplier 

models (5) and (11) yields an optimistic results for efficiency and, during an economic boom, can be 

applied to decisional problems related to performance analysis, while the envelopment integrated 

model (17) builds on the envelopment models (6) and (12) aiming at improving the discrimination 

power of our assessment with the focus on a pessimistic view during an economic recession.  

The proposed models (5), (6), (11), (12), (16), and (17) have been formulated at individual level 

analysis, that is, factor selection is made in a way that is of interest to the DMU under evaluation. 

However, many situations with a centralized organizational structure such as sector, region or 

industry levels consist of a homogenous set of firms that are managed by a top management team. In 

essence, the performance and efficient allocation of resources across different firms play an 

important role for an aggregate entity such as sector, industry or country. In the ensuing section, we 

propose some new selecting DEA models, which consider factor selection apropos of the industry, 

region or country level analysis (so-called structural efficiency hereafter). 
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5 Selective factors for structural efficiency  

For policy-makers and regulators, an industry is a group of companies and organisations that are 

active in a particular field and their performance individually or in combination has a direct impact 

on economy and society. The isolated assessment of a group of firms, despite the importance and 

applicability, may not provide deeper insights into the performance of industry. The small- and 

medium-size firms are often interested in evaluating itself in comparison with their rivals at the 

industry level and as a consequence of such evaluation, the firms enable to find out that some firms 

are relatively efficient in terms of their effective resource allocation and importantly this practice 

helps inefficient firms to gain a terrific picture of their future potential change for enhancing the 

performance and competitiveness in the domestic and international market. However, the 

perspective and concerns of policy-makers are wholly different and they often attempt to set out 

more comfortable rule and regulations associated to the industry in regard to economic uncertainty, 

technological advances and the altering skills requirement in the workforce. By focusing on the 

efficiencies of both firms and industry, not only it can improve efficiency and resource allocation of 

respective stakeholders, but also helps the economic growth of the country. To achieve the strategic 

goals of an industry or organization, it needs to effectively benchmark, make improvement and make 

informed decisions and recommendations for the future. Farrell (1957, pp. 261–262) firstly 

presented the structural efficiency of an industry as the technical efficiency of its component 

organizations measured by the output-weighted average of the individual efficiencies. This thrust 

was extended and generalized by several researchers to make explicit the relationship between the 

production technology of the group and that of an individual DMU (see e.g., Førsund & Hjalmarsson 

(1979);Li & Cheng (2007) and Karagiannis (2015)). The aim of this section is to extend an alternative 

approach to choose the performance factors when one takes structural efficiency of the industry into 

account in a multiple inputs and multiple outputs technology. 

Assume that there are 𝑛 DMUs in a certain industry in which all DMUs have an identical production 

technology. Let 𝐗 = [𝑥𝑖𝑗]𝑚×𝑛 and 𝒀 = [𝑦𝑟𝑗]𝑠×𝑛 be the input and output matrixes, respectively, and 

(𝒙𝑗, 𝒚𝑗) represents the input-output vector associated with DMU𝑗. The total input-output of the 

industry is defined as (𝒙, 𝒚) = (∑ 𝒙𝑗
𝑛
𝑗=1 , ∑ 𝒚𝑗

𝑛
𝑗=1 ) and production technology set of the industry is the 

sum of the individual technology of all DMUs (for more details, see Li & Cheng, 2007). More precisely, 

the question is whether the industry has been able to produce the highest possible level of  

productions and services (overall outputs) using their available internal and external resources 

(overall inputs). To answer this question, the modified DEA approach can be applied from the input- 

or output-oriented aspects. From the input-oriented aspect, we explore whether the industry output 

𝒚 can produce by using a smaller aggregate input bundle or not. Having focused on the Shephard–

Farrell concept of radial efficiency measures, we identify to what extent proportional reduction in 

the input bundle of the industry would be made when keeping  the aggregate output unchanged (Ray 

& Hu, 1997). The output-oriented aspect of the industry assessment can be analogously observed. 

The concept of structural efficiency of the industry that makes use of the technical efficiency of the 

aggregate unit (𝒙, 𝒚) is a proper tool in the literature. The following multiplier and envelopment 

forms of DEA-based models in both orientations can measure the structural efficiency of a given 
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industry under the VRS assumption (see Ray & Hu, 1997 and Karagiannis, 2015 for preliminary 

models ). 

Multiplier VRS models for structural efficiency 

Input-oriented  Output-oriented  

max𝜙𝑖𝑛 = 𝑼𝑖𝑛𝒚− 𝑛𝑊0
𝑖𝑛

s. t.
𝑽𝑖𝑛𝒙 = 1
𝑼𝑖𝑛𝐘−𝑊0

𝑖𝑛𝟏𝑛 −𝑽
𝑖𝑛𝐗 ≤ 𝟎𝑛

𝑽𝑖𝑛 ≥ 𝟎𝑚  

𝑼𝑖𝑛 ≥ 𝟎𝑠
𝑊0

𝑖𝑛  free in sign

 (18) 

min𝜙𝑜𝑢𝑡 = 𝑽𝑜𝑢𝑡𝒙 + 𝑛𝑊0
𝑜𝑢𝑡

s. t.
𝑼𝑜𝑢𝑡𝒚 = 1

𝑼𝑜𝑢𝑡𝐘−𝑊0
𝑜𝑢𝑡𝟏𝑛 −𝑽

𝑜𝑢𝑡𝐗 ≤ 𝟎𝑛
𝑽𝑜𝑢𝑡 ≥ 𝟎𝑚
𝑼𝑜𝑢𝑡 ≥ 𝟎𝑠
𝑊0

𝑜𝑢𝑡  free in sign

  (19) 

Envelopment VRS models for structural efficiency 

Input-oriented  Output-oriented  

minΘ𝑖𝑛

s. t.
𝚲𝑖𝑛𝐗 ≤ Θ𝑖𝑛𝒙
𝚲𝑖𝑛𝐘 ≥ 𝒚

𝟏𝑛𝚲
𝑖𝑛 = 𝑛 

 (20) 

maxΘ𝑜𝑢𝑡

s. t.
𝚲𝑜𝑢𝑡𝐗 ≤ 𝒙
𝚲𝑜𝑢𝑡𝐘 ≥ Θ𝑜𝑢𝑡𝒚

𝟏𝑛𝚲
𝑜𝑢𝑡 = 𝑛

 (21) 

At present, let us study the relationship between individual and structural efficiencies. To this end, 

we need to present the following two theorems, which focus on the optimal solution of the input-

oriented multiplier models (1) and (18) and the output-oriented multiplier models (2) and (19), 

respectively. 

Theorem 10. Let  (𝒖𝑖𝑛∗, 𝒗𝑖𝑛
∗
, 𝑤0

𝑖𝑛∗, 𝜑𝑜
𝑖𝑛∗) and (𝑼𝑖𝑛

∗
, 𝑽𝑖𝑛

∗
,𝑊0

𝑖𝑛∗, 𝜙𝑖𝑛
∗
) be the optimal solutions of 

models  (1) and (18), respectively. If 𝒙𝑜 is a strictly positive vector, then (𝑼𝑖𝑛
∗
𝒚𝑗 −𝑊0

𝑖𝑛∗) ≤ 𝜑𝑜
𝑖𝑛∗. 

Proof. Given the normalization constraint of model (18), we have 𝑽𝑖𝑛
∗
𝒙 = 𝑽𝑖𝑛

∗
∑ 𝒙𝑗
𝑛
𝑗=1 =

∑ 𝑽𝑖𝑛
∗
𝒙𝑗

𝑛
𝑗=1 = 𝑽𝑖𝑛

∗
𝒙𝑜 + ∑ 𝑽𝑖𝑛

∗
𝒙𝑗

𝑛
𝑗=1,𝑗≠𝑜 = 1, and consequently 𝑽𝑖𝑛

∗
𝒙𝑜 ≤ 1. On the other hand, 𝑽𝑖𝑛

∗
is 

a semi-positive and 𝒙𝑜 is a strictly positive vector and then 0 < 𝑽𝑖𝑛
∗
𝒙𝑜 ≤ 1. Evidently, 

1

𝑽𝑖𝑛
∗
𝒙𝑜
(𝑼𝑖𝑛

∗
, 𝑽𝑖𝑛

∗
,𝑊0

𝑖𝑛∗) is a feasible solution for model (1) because it satisfies the normalization 

constraint ∑
𝑉𝒊
𝑖𝑛∗

𝑽𝑖𝑛
∗
𝒙𝑜
𝑥𝑖𝑜

𝑚
𝑖=1 = 1 and the common constraints ∑

𝑈𝒓
𝑖𝑛∗

𝑽𝑖𝑛
∗
𝒙𝑜
𝑦𝑟𝑗

𝑠
𝑟=1 −

𝑊0
𝑖𝑛∗

𝑽𝑖𝑛
∗
𝒙𝑜
−∑

𝑉𝒊
𝑖𝑛∗

𝑽𝑖𝑛
∗
𝒙𝑜
𝑥𝑖𝑗

𝑚
𝑖=1 ≤

0 for 𝑗 = 1,… , 𝑛 in model (1) . Given the feasibility of  
1

𝑽𝑖𝑛
∗
𝒙𝑜
(𝑼𝑖𝑛

∗
, 𝑽𝑖𝑛

∗
,𝑊0

𝑖𝑛∗) and 𝑽𝑖𝑛
∗
𝒙𝑜 ≤ 1, we can 

conclude that  𝑼𝑖𝑛
∗
𝒚𝑜 −𝑊0

𝑖𝑛∗ ≤
𝑼𝑖𝑛

∗
𝒚𝑜−𝑊0

𝑖𝑛∗

𝑽𝑖𝑛
∗
𝒙𝑜

≤ 𝒖𝑖𝑛
∗
𝒚𝑜 −𝑤0

𝑖𝑛∗ = 𝜑𝑜
𝑖𝑛∗, which completes the proof. ◼ 

Theorem 11. Let (𝑼𝑜𝑢𝑡
∗
, 𝑽𝑜𝑢𝑡

∗
,𝑊0

𝑜𝑢𝑡∗, 𝜙𝑜𝑢𝑡
∗
) and (𝒖𝑜𝑢𝑡∗, 𝒗𝑜𝑢𝑡

∗
, 𝑤0

𝑜𝑢𝑡∗, 𝜑𝑜
𝑜𝑢𝑡∗),  be the optimal 

solutions of models (19) and (2), respectively. If 𝒚𝑜 is a strictly positive vector, then  
𝑽𝑜𝑢𝑡

∗
𝒙𝒐+𝑊0

𝑜𝑢𝑡∗

𝑼𝑜𝑢𝑡
∗
𝒚𝒐

≥

𝜑𝑜
𝑜𝑢𝑡∗. 

Proof. This is alike to the proof of Theorem 10. If (𝑼𝑜𝑢𝑡
∗
, 𝑽𝑜𝑢𝑡

∗
,𝑊0

𝑜𝑢𝑡∗) is the optimal solution of the 

output-oriented model (19), then 
1

𝑼𝑜𝑢𝑡
∗
𝒚𝒐
(𝑼𝑜𝑢𝑡

∗
, 𝑽𝑜𝑢𝑡

∗
,𝑊0

𝑜𝑢𝑡∗) is a feasible solution for model (2) and 

we have  
𝑽𝑜𝑢𝑡

∗
𝒙𝒐+𝑊0

𝑜𝑢𝑡∗

𝑼𝑜𝑢𝑡
∗
𝒚𝒐

≥ 𝒗𝑜𝑢𝑡
∗
𝒙𝒐 + 𝑤0

𝑜𝑢𝑡∗ = 𝜑𝑜
𝑜𝑢𝑡∗, which completes the proof. ◼  
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Similarly, there exist an identical relationships and arguments between the envelopment models (1), 

(4), (20) and (21). 

The production technology associated with each industry and its constituent firms hinges on the 

performance factors. In this regard, the exclusion (inclusion) of the factors from (in) performance 

analysis affects the structural and individual efficiencies. Accordingly, we can extend the selecting 

DEA models (16) and (17) in a way that aggregates the input- and output-oriented models of 

structural efficiency. To do so, we suggest the following MBLPs models associated with the multiplier 

and envelopment forms:  

Integrated selecting DEA model for 

structural efficiency (Multiplier form) 
 

Integrated selecting DEA model for 

structural efficiency (Envelopment form) 

 

max  (𝑼𝑖𝑛𝒚− 𝑛𝑊0
𝑖𝑛) − (𝑽𝑜𝑢𝑡𝒙+ 𝑛𝑊0

𝑜𝑢𝑡)

s. t.
𝑽𝑖𝑛𝒙 = 1
𝑽𝑜𝑢𝑡𝒚 = 1

𝑼𝑖𝑛𝐘−𝑊0
𝑖𝑛𝟏𝑛 − 𝑽

𝑖𝑛𝐗 ≤ 𝟎𝑛    

𝑼𝑜𝑢𝑡𝐘−𝑊0
𝑜𝑢𝑡𝟏𝑛 −𝑽

𝑜𝑢𝑡𝐗 ≤ 𝟎𝑛
𝟏|𝐼𝑠|𝒅

𝑥 + 𝟏|𝑅𝑠|𝒅
𝑦 ≤ 𝐾 − (|𝐼𝑓| + |𝑅𝑓|)

𝟏|𝐼𝑠|𝒅
𝑥 + 𝟏|𝑅𝑠|𝒅

𝑦 ≥ 1

𝑽𝑖𝑛 , 𝑽𝑜𝑢𝑡 ≤ 𝑀𝒅𝑥  

𝑼𝑖𝑛 , 𝑼𝑜𝑢𝑡 ≤ 𝑀𝒅𝑦

𝑽𝑖𝑛 , 𝑽𝑜𝑢𝑡 ≥ 𝟎𝑚
𝑼𝑖𝑛 , 𝑼𝑜𝑢𝑡 ≥ 𝟎𝑠
𝒅𝑥and 𝒅𝑦 are binary vectors

𝑊0
𝑖𝑛 ,𝑊0

𝑜𝑢𝑡 are free in sign

 (22) 

min Θ̅𝑖𝑛 − Θ̅𝑜𝑢𝑡  
s. t.
𝚲𝑖𝑛𝐗𝑓 ≤ Θ̅𝑖𝑛𝒙𝑓

𝚲𝑖𝑛𝐘𝑓 ≥ 𝒚𝑓 

𝚲𝑖𝑛𝐗𝑠 ≤ Θ̅𝑖𝑛𝒙𝑠 +𝑀(𝟏|𝐼𝑠| −𝒅
𝑥) 

𝚲𝑖𝑛𝐘𝑠 ≥ 𝒚𝑠 −𝑀(𝟏|𝑅𝑠| −𝒅
𝑦)     

𝚲𝑜𝑢𝑡𝐗𝑓 ≤ 𝒙𝑓

𝚲𝑜𝑢𝑡𝐘𝑓 ≥ Θ̅𝑜𝑢𝑡𝒚𝑓

𝚲𝑜𝑢𝑡𝐗𝑠 ≤ 𝒙𝑠 +𝑀(𝟏|𝐼𝑠| − 𝒅
𝑥)

𝚲𝑜𝑢𝑡𝐘𝑠 ≥ Θ̅𝑜𝑢𝑡𝒚𝑠 −𝑀(𝟏|𝑅𝑠| −𝒅
𝑦)  

𝟏|𝐼𝑠|𝒅
𝑥 + 𝟏|𝑅𝑠|𝒅

𝑦 ≤ 𝐾 − (|𝐼𝑓| + |𝑅𝑓|)

𝟏|𝐼𝑠|𝒅
𝑥 + 𝟏|𝑅𝑠|𝒅

𝑦 ≥ 1

𝒅𝑥and 𝒅𝑦 are binary vectors       

𝟏𝑛𝚲
𝑖𝑛 = 𝑛,𝟏𝑛𝚲

𝑜𝑢𝑡 = 𝑛

 (23) 

where the input matrix 𝐗 is portioned into fixed input matrix (𝐗𝑓) and selective input matrix (𝐗𝑠), 

i.e.  𝐗 = [𝐗𝑓 , 𝐗𝒔], and 𝐘 = [𝐘𝑓 , 𝐘𝒔] indicates the output matrix where 𝐘𝑓  and 𝐘𝒔 denote the fixed 

output and selective output matrixes, respectively.  

We find models (22) and (23) helpful when the selection of factors must be made to render the 

structural efficiency of the industry. Moreover, such models can be applied when ties are 

encountered at the individual selecting DEA models.  

6 A case study 

The Europe 2020 strategy lays emphasis on sustainable and all-encompassing economy growth and 

development with the aim of tackling the structural barriers, and improving the competitiveness and 

productivity across Europe1. Europe has five interconnected objectives to reach its strategic vision. 

The first objective is to create “a highly competitive social market economy aiming at full employment 

and social progress…”2. The second key and long-standing objective of the EU is to boost spending on 

research and development (R&D) to 3% of the EU's gross domestic product (GDP) in order to help 

countries to improve productivity and living standards. The third integral objective is set to get 

around barriers to climate change and energy both in Europe and globally. In this regard, the Europe 

2020 targets are to reduce greenhouse gas emissions by 20%, increase energy efficiency by 20%, and 

                                                             
1 https://ec.europa.eu 
2 Article 3 of the Treaty on European Union (TEU). 
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generate 20% energy from renewable resources by 2020. The fourth objective is concerned with the 

EU education and training that should be managed, executed and monitored by each member state, 

and the EU as a supporting role funds different educational programs such as Erasmus to encourage 

EU countries to develop quality education. Currently, the EU has more than 120 million people at 

stake of poverty or social exclusion and the objective of EU leaders is to raise public consciousness 

and lift at least 20 million people out of poverty.  

In complex EU environment, it is extremely difficult to check the overall strategy implemented and 

its coherence. Therefore, the development of performance indicators helps the EU examine whether 

activities has contributed to the achievement of specific objectives. Despite a myriad of performance 

indicators, the consideration of each indicator independently to track progress of the strategic 

performance of the EU members has not only been often contentious debate but also seems like a 

herculean task. In addition, there is also a tendency to focus heavily on some recognised indicators 

of performance such as GDP per capita rather than less familiar indicators. To deal with the existing 

partial analysis of the EU countries, we take 50 performance indicators into account to provide a 

better picture of each country’s performance. This study looks into the relative performance of 28 EU 

countries in the year of 2013 using a DEA methodology. In an effort to estimate a best practice 

frontier, DEA envelops observed data as tightly as possible to measure the relative efficiency of each 

country to the estimated best practice. All data used in the analysis are taken from the World Bank 

database1. 

The specification of the DEA model is required to define the inputs and outputs in which inputs have 

to be minimized and outputs have to be maximized. One of the key assumptions in conventional DEA 

models is that input and output observations are non-negative data but some data of the performance 

indicators are characterized by negative values. To combat the negativity, we adopt Scheel (2001)’s 

method in which the inverse of absolute values of negative outputs are deemed as inputs and the 

inverse of the absolute values of negative inputs are deemed as outputs. Finally, the data set involves 

fourteen inputs and thirty-six outputs. The descriptive statistics and definitions of input and output 

variables are given in Table 1 and Table 2, respectively. 

The 28 EU countries are evaluated using conventional DEA models in both input and output 

orientations under CRS and VRS assumptions and the results show that all countries are efficient. 

This bespeaks the lowest level of discrimination power which is, of course, unable to provide insights 

into the strategic alignment of the EU. Technically, this problem may arise due to violating the generic 

rule of thumb 𝑛 > 𝑓(𝑚, 𝑛). If Cooper et al., (2007)'s suggestion is utilized i.e., 𝑛 < max {3(𝑚 +

 𝑠),𝑚 ×  𝑠}, we have 28 < 504. To combat this problem, it is inevitable to reduce the number of 

performance factors the extent to which the desirable and formative results are observed. To this 

end, we apply the proposed models to identify the upmost factors in our analysis. We assume that 

"CO2 emissions", 𝑥2, and "GDP", 𝑦9, are the fixed input and output, respectively, and the remaining 

48 factors are regarded as selective factors (13 inputs and 35 outputs) because it seems to be of 

importance in relation to the EU strategy. Therefore, we need to make 𝐾 − (|𝐼𝑓| + |𝑅𝑓|) =

min{⌊𝑛 3⁄ ⌋, ⌊2√𝑛⌋}− (|𝐼
𝑓
|+ |𝑅𝑓|) = 7 factors selection among 48 selective factors where 𝑛 =

                                                             
1 http://data.worldbank.org/. The raw data used in this paper is available upon request. 

http://data.worldbank.org/
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28, |𝐼𝑓| = 1 and |𝑅𝑓| = 1. In the ensuing discussion, we seek the performance factors from individual 

and industrial viewpoints and in turn measure the relative individual and structural efficiencies. 

 

Table 1. Descriptive statistics and definitions of input factors 

Inputs Definition Min Mean  Median Sd. Max 

𝑥1 Adolescent fertility rate (births per 1,000 women ages 15-19) 4.357 12.701 10.780 8.845 42.673 

𝑥2 CO2 emissions (metric tons per capita) 3.518 7.346 6.225 3.703 18.498 

𝑥3 External debt stocks, total (DOD, 1.E+05US$) 5.15E+10 8.77E+10 8.77E+10 9.69E+09 1.24E+11 

𝑥4 Fertility rate, total (births per woman) 1.210 1.546 1.500 0.216 1.990 

𝑥5 Foreign direct investment, net inflows (BoP, current US$) 3.04E-12 8.12E-10 2.31E-10 1.78E-09 9.62E-09 

𝑥6 GDP growth (annual %) 0.169 1.097 0.641 1.232 5.254 

𝑥7 Imports of goods and services (% of GDP) 21.286 61.119 52.523 32.982 158.613 

𝑥8 Military expenditure (% of GDP) 0.419 1.342 1.247 0.509 2.358 

𝑥9 Mortality rate, under-5 (per 1,000 live births) 2.600 4.568 4.100 1.784 10.000 

𝑥10 Population density (people per sq. km of land area) 3.013 172.040 110.926 247.214 1331.147 

𝑥11 Population growth (annual %) 0.433 3.933 1.993 5.994 30.148 

𝑥12 
Poverty headcount ratio at $1.90 a day (2011 PPP) (% of 
population) 

1.00E-11 4.41E-01 2.00E-01 4.97E-01 1.70E+00 

𝑥13 
Poverty headcount ratio at national poverty lines (% of 
population) 

9.700 17.927 17.927 2.758 25.100 

𝑥14 Prevalence of HIV, total (% of population ages 15-49) 0.100 0.200 0.200 0.110 0.600 

 

Table 2. Descriptive statistics and description of output factors 

Outputs Definition Min Mean  Median Sd. Max 

𝑦1 Agriculture, forestry, and fishing, value added (% of 
GDP) 

0.277 2.334 2.189 1.239 5.397 

𝑦2 Births attended by skilled health staff (% of total) 98.300 99.322 99.322 0.484 100.000 

𝑦3 Contraceptive prevalence, any methods (% of women 
ages 15-49) 

65.100 68.300 68.300 1.111 73.000 

𝑦4 Domestic credit provided by financial sector (% of GDP) 41.658 133.049 139.555 64.436 306.105 

𝑦5 Electric power consumption (MWh per capita) 2.49E+03 6.43E+03 5.41E+03 3.23E+03 1.55E+04 

𝑦6 Energy use (100kg of oil equivalent per capita) 1.60E+03 3.34E+03 2.90E+03 1.44E+03 7.31E+03 

𝑦7 Exports of goods and services (% of GDP) 19.988 65.071 56.739 38.115 190.629 

𝑦8 Forest area (sq. km) 3.50E+00 1.00E+05 2.89E+04 2.31E+05 1.24E+06 

𝑦9 GDP (current million US$) 1.01E+10 6.85E+11 2.33E+11 9.88E+11 3.75E+12 

𝑦10 GNI per capita, Atlas method (current US$) 7.61E+03 3.27E+04 2.51E+04 1.90E+04 7.55E+04 

𝑦11 GNI per capita, PPP (current international $) 1.63E+04 3.40E+04 2.96E+04 1.10E+04 6.38E+04 

𝑦12 GNI, Atlas method (current million US$) 9.65E+09 6.85E+11 2.13E+11 9.98E+11 3.82E+12 

𝑦13 GNI, PPP (current international million $) 1.27E+10 6.82E+11 2.78E+11 9.41E+11 3.73E+12 

𝑦14 Gross capital formation (% of GDP) 11.601 20.140 19.499 3.685 27.810 

𝑦15 High-technology exports (% of manufactured exports) 4.309 12.796 10.439 7.349 38.553 

𝑦16 Immunization, measles (% of children ages 12-23 
months) 

86.000 94.929 95.500 3.432 99.000 

𝑦17 Income share held by lowest 20% 5.700 7.689 7.694 1.124 9.500 

𝑦18 Industry (including construction), value added (% of 
GDP) 

10.006 22.378 22.763 5.637 32.850 

𝑦19 Inflation, GDP deflator (annual %) 0.281 1.144 0.754 1.229 6.333 

𝑦20 Life expectancy at birth, total (years) 73.915 79.388 80.539 2.795 83.078 
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𝑦21 Merchandise trade (% of GDP) 31.462 89.029 72.917 44.625 176.693 

𝑦22 Mobile cellular subscriptions (per 100 people) 99.068 124.258 122.402 15.975 162.337 

𝑦23 Net barter terms of trade index (2000 = 100) 42.660 96.005 93.538 20.955 176.992 

𝑦24 Personal remittances, received (current million US$) 2.46E+08 4.01E+09 1.97E+09 5.37E+09 2.44E+10 

𝑦25 Population, total (million) 4.26E+05 1.86E+07 9.75E+06 2.28E+07 8.06E+07 

𝑦26 Primary completion rate, total (% of relevant age group) 81.984 97.906 97.906 4.291 108.675 

𝑦27 Revenue, excluding grants (% of GDP) 2.162 33.726 35.996 10.125 47.524 

𝑦28 School enrolment, primary (% gross) 95.315 102.166 100.679 4.723 120.429 

𝑦29 School enrolment, primary and secondary (gross), gender 

parity index (GPI) 

0.966 1.006 1.005 0.031 1.098 

𝑦30 School enrolment, secondary (% gross) 90.806 112.053 107.469 15.893 160.925 

𝑦31 Statistical Capacity score (Overall average) 84.444 86.667 86.667 0.664 88.889 

𝑦32 Surface area (sq. km) 3.20E+02 4.30E+05 8.55E+04 1.42E+06 7.74E+06 

𝑦33 Tax revenue (% of GDP) 1.287 20.123 22.018 6.620 33.820 

𝑦34 Time required to start a business (days) 2.500 13.018 10.750 8.905 38.500 

𝑦35 Total debt service (% of exports of goods, services and 
primary income) 

16.704 49.483 49.483 120.086 95.459 

𝑦36 Urban population growth (annual %) 0.374 4.633 1.776 45.903 24.762 

 

6.1 Performance factor selection with an individual view 

We first make an effort to select the performance factors by those proposed selecting DEA models 

that focus the degree to which a unit can preserve its efficiency score in favorable respect. 

For the sake of brevity, let us consider Austria (DMU1). Here, we employ the input- and output-

oriented selecting DEA models, i.e., models (5), (6), (11), and (12), in relation to the multiplier and 

envelopment forms under assumptions of CRS and VRS. The results are shown in Table 3 in this 

respect.  

 

Table 3. The results of factor selection by different disintegrated selecting DEA models for Austria 
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 Input-oriented  Output-oriented 

Model (5)  Model (6)  Model (11)   Model (12) Model (5)  Model (6)  Model (11)  Model (12) 

CRS VRS  CRS VRS  CRS VRS  CRS VRS CRS VRS  CRS VRS  CRS VRS  CRS VRS 

𝑑1
𝑥  0 0  0 0  0 1  0 1 𝑑12

𝑦
 0 0  1 0  0 0  1 0 

𝑑2
𝑥  Fixed input  Fixed input 𝑑13

𝑦
 0 0  1 0  0 0  1 0 

𝑑3
𝑥  0 0  0 0  0 0  0 1 𝑑14

𝑦
 0 0  0 0  0 0  0 0 

𝑑4
𝑥  0 0  0 0  0 0  0 1 𝑑15

𝑦
 0 0  1 0  0 0  1 0 

𝑑5
𝑥  0 0  0 0  0 0  0 1 𝑑16

𝑦
 0 0  0 0  0 0  0 0 

𝑑6
𝑥  0 0  0 0  0 0  0 0 𝑑17

𝑦
 0 1  0 0  0 0  0 0 

𝑑7
𝑥  0 0  0 0  0 0  0 0 𝑑18

𝑦
 0 0  0 0  0 0  0 0 

𝑑8
𝑥  0 0  0 0  0 0  0 1 𝑑19

𝑦
 1 0  0 0  1 1  0 0 

𝑑9
𝑥  0 0  0 0  0 0  0 1 𝑑20

𝑦
 1 0  0 0  1 1  0 0 

𝑑10
𝑥  0 1  0 0  0 0  0 0 𝑑21

𝑦
 1 0  0 1  1 1  0 0 

𝑑11
𝑥  0 0  0 0  0 0  0 0 𝑑22

𝑦
 0 0  0 0  0 0  0 0 

𝑑12
𝑥  0 0  1 1  0 0  1 0 𝑑23

𝑦
 1 1  0 0  1 1  0 0 

𝑑13
𝑥  0 0  0 0  0 0  0 0 𝑑24

𝑦
 1 0  1 0  1 1  1 0 

𝑑14
𝑥  1 0  0 0  1 0  0 0 𝑑25

𝑦
 0 1  1 0  0 0  1 0 

𝑑1
𝑦

 0 0  0 1  0 0  0 0 𝑑26
𝑦

 0 0  0 0  0 0  0 0 

𝑑2
𝑦

 0 0  0 0  0 0  0 0 𝑑27
𝑦

 0 0  1 0  0 0  1 0 

𝑑3
𝑦

 0 0  0 1  0 0  0 0 𝑑28
𝑦

 0 1  0 0  0 0  0 0 
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𝑑4
𝑦

 0 0  0 0  0 0  0 0 𝑑29
𝑦

 0 0  0 0  0 0  0 0 

𝑑5
𝑦

 0 0  0 0  0 0  0 0 𝑑30
𝑦

 0 1  0 0  0 0  0 0 

𝑑6
𝑦

 0 1  0 0  0 0  0 0 𝑑31
𝑦

 0 0  0 0  0 1  0 0 

𝑑7
𝑦

 0 0  0 1  0 0  0 0 𝑑32
𝑦

 0 0  0 0  0 0  0 0 

𝑑8
𝑦

 1 0  0 0  1 0  0 0 𝑑33
𝑦

 0 0  0 0  0 0  0 0 

𝑑9
𝑦

 Fixed output  Fixed output 𝑑34
𝑦

 0 0  0 1  0 0  0 0 

𝑑10
𝑦

 0 0  0 0  0 0  0 0 𝑑35
𝑦

 0 0  0 0  0 0  0 0 

𝑑11
𝑦

 0 0  0 0  0 0  0 0 𝑑36
𝑦

 0 0  0 1  0 0  0 1 

Optimal objective function value 1 1  0.17 0.27  1 1  5.68 2.38 

 

As can be spotted from Table 3, 𝑥14, 𝑦8, 𝑦19, 𝑦20, 𝑦21, 𝑦23 and 𝑦24 are selected identically by both the 

input- and output-oriented multiplier models under CRS assumption, and 𝑥12, 𝑦12, 𝑦13, 𝑦15, 𝑦24, 𝑦25 

and 𝑦27 are the identified performance factors as the result of solving both the input- and output-

oriented envelopment models under CRS assumption. These results subject to the CRS assumption 

are in line with Theorem 5.  

To validate Theorem 1 and Theorem 3, let us look into the optimal values of the objective functions 

of models (5), (6), (11) and (12) apropos as appeared in the last row of Table 3. In the view of 

Theorem 1, the optimal objective function value calculated from the envelopment model (6), 

irrespective of RTS assumptions, is always less than or equal to the efficiencies obtained from the 

multiplier model (5). In this regard, the optimal objective function value for Austria as result of 

solving model (6) for CRS and VRS is 0.176 and 0.270 while it is equal to 1 for model (5). Contrary to 

the input-oriented case in Theorem 1, Theorem 3 stiffly focuses on the output-orientation models, in 

which the optimal objective function value of the multiplier model (11) is less than or equal to the 

optimal objective function value of the envelopment model (12).  

Whilst the total combination for identifying the seven factors for each unit is Π = ∑ (|𝐼
𝑠∪𝑅𝑠|
𝑘

)7
𝑘=1 =

(48
1
) + (48

2
) + ⋯+ (48

7
) = 87,825,940 that is obviously very time consuming, Theorem 2 shows that 

the optimal objective values of models (5) and (6) are �̅�𝑗
𝑖𝑛∗ = max{𝑒𝑗

𝑝∗: 𝑝 = 1,… , Π} and �̅�𝑗
𝑖𝑛∗ =

min{𝑒𝑗
𝑝∗: 𝑝 = 1,… , Π}, respectively. The similar argument can be observed for models (2) or (4) 

according to Theorem 4. Table 4 exhibits the total frequencies of each factor as well as its rank in 

parentheses after solving the multiplier and envelopment [selecting] models for both input- and 

output orientations. Consequently, we pick out the seven factors (𝐾 − (|𝐼𝑓| + |𝑅𝑓|) = 7) with the 

highest frequencies in Table 4 and the resultant selection of four disintegrated models are minutely 

summarised in Table 5.  

 

Table 4. Frequencies of a performance factor and its rank derived from disintegrated selecting DEA models 
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 Input-oriented  Output-oriented 

Model (5)  Model (6)  Model (11)  Model (12) Model (5)  Model (6)  Model (11)  Model (12) 

CRS VRS  CRS VRS  CRS VRS  CRS VRS CRS VRS  CRS VRS  CRS VRS  CRS VRS 

𝑥1 8 (7th) 2 (31st)  14(5th) 7 (10th)  8 (7th) 7 (7th)  14(5th) 16(3rd) 𝑦12 12(6th) 1 (39th)  21(1st) 3 (15th)  12(6th) 1 (23rd)  21(1st) 16(3rd) 

𝑥2 Fixed input  Fixed input 𝑦13 1 (29th) 2 (31st)  4 (15th) 2 (18th)  1 (29th) 1 (23rd)  4 (15th) 3 (18th) 

𝑥3 3 (13th) 1 (39th)  13(6th) 2 (18th)  3(13th) 7 (7th)  13(6th) 16(3rd) 𝑦14 0 (39th) 1 (39th)  0(29th) 2 (18th)  0 (39th) 0 (36th)  0 (29th) 0 (26th) 

𝑥4 1 (29th) 1 (39th)  9 (8th) 3 (15th)  1(29th) 11(6th)  9 (8th) 13(7th) 𝑦15 1 (29th) 2 (31st)  2(19th) 1 (31st)  1 (29th) 0 (36th)  2 (19th) 1 (20th) 

𝑥5 2 (16th) 5 (15th)  21(1st) 10(7th)  2(16th) 7 (7th)  21(1st) 23(1st) 𝑦16 0 (39th) 9 (4th)  0(29th) 2 (18th)  0 (39th) 1 (23rd)  0 (29th) 0 (26th) 
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𝑥6 4 (10th) 3 (27th)  6(11th) 15(3rd)  4(10th) 3(11th)  6(11th) 7(11th) 𝑦17 0 (39th) 4 (19th)  0(29th) 2 (18th)  0 (39th) 1 (23rd)  0 (29th) 0 (26th) 

𝑥7 2 (16th) 2 (31st)  20(3rd) 8 (8th)  2(16th) 3(11th)  20(3rd) 21(2nd) 𝑦18 0 (39th) 6 (10th)  0(29th) 2 (18th)  0 (39th) 0 (36th)  0 (29th) 0 (26th) 

𝑥8 1 (29th) 2 (31st)  3(17th) 4 (12th)  1 (29) 1(23rd)  3(17th) 8 (9th) 𝑦19 20(3rd) 5 (15th)  0(29th) 1 (31st)  20(3rd) 21(4th)  0 (29th) 0 (26th) 

𝑥9 4 (10th) 0(44th)  5(13th) 0 (44th)  4(10th) 2(17th)  5(13th) 8 (9th) 𝑦20 19(4th) 10(2nd)  0(29th) 1 (31st)  19(4th) 22(3rd)  0 (29th) 0 (26th) 

𝑥10 3 (13th) 4 (19th)  9(8th) 12(6th)  3(13th) 1(23rd)  9 (8th) 7(11th) 𝑦21 18(5th) 4 (19th)  0(29th) 1 (31st)  18(5th) 21(4th)  0 (29th) 0 (26th) 

𝑥11 2 (16th) 6 (10th)  6(11th) 8 (8th)  2(16th) 2(17th)  6(11th) 9 (8th) 𝑦22 4 (10th) 8 (5th)  0(29th) 0 (44th)  4 (10th) 3 (11th)  0 (29th) 0 (26th) 

𝑥12 2 (16th) 7 (9th)  19(4th) 15(3rd)  2(16th) 1(23rd)  19(4th) 16(3rd) 𝑦23 25(2nd) 13(1st)  0(29th) 1 (31st)  25(2nd) 25(2nd)  0 (29th) 0 (26th) 

𝑥13 1 (29th) 0 (44th)  12(7th) 0 (44th)  1(29th) 1(23rd)  12(7th) 6(13th) 𝑦24 27(1st) 5 (15th)  4(15th) 1 (31st)  27(1st) 26(1st)  4 (15th) 4 (15th) 

𝑥14 5 (8th) 2 (31st)  1(23rd) 4 (12th)  5 (8th) 3(11th)  1(23rd) 1(20th) 𝑦25 2 (16th) 4 (19th)  5(13th) 1 (31st)  2 (16th) 0 (36th)  5 (13th) 4 (15th) 

𝑦1 5 (8th) 8 (5th)  3(17th) 23(1st)  5 (8th) 2(17th)  3(17th) 3(18th) 𝑦26 2 (16th) 8 (5th)  0(29th) 1 (31st)  2 (16th) 2 (17th)  0 (29th) 0 (26th) 

𝑦2 0 (39th) 4 (19th)  1(23rd) 1 (31st)  0(39th) 1(23rd)  1(23rd) 1(20th) 𝑦27 2 (16th) 10(2nd)  1(23rd) 1 (31st)  2 (16th) 0 (36th)  1(23rd) 1 (20th) 

𝑦3 0 (39th) 6 (10th)  1(23rd) 14(5th)  0(39th) 0(36th)  1(23rd) 1(20th) 𝑦28 0 (39th) 8 (5th)  0(29th) 2 (18th)  0 (39th) 3 (11th)  0 (29th) 0 (26th) 

𝑦4 1 (29th) 2 (31st)  1(23rd) 0 (44th)  1(29th) 1(23rd)  1(23rd) 0(26th) 𝑦29 1 (29th) 6 (10th)  0(29th) 0 (44th)  1 (29th) 2 (17th)  0 (29th) 0 (26th) 

𝑦5 2 (16th) 0 (44th)  2(19th) 3 (15th)  2(16th) 0(36th)  2(19th) 0(26th) 𝑦30 0 (39th) 4 (19th)  0(29th) 1 (31st)  0 (39th) 1 (23rd)  0 (29th) 0 (26th) 

𝑦6 0 (39th) 3 (27th)  2(19th) 2 (18th)  0(39th) 0(36th)  2(19th) 0(26th) 𝑦31 1 (29th) 6 (10th)  0(29th) 1 (31st)  1 (29th) 6 (10th)  0 (29th) 0 (26th) 

𝑦7 1 (29th) 3 (27th)  0(29th) 4 (12th)  1(29th) 0(36th)  0(29th) 0(26th) 𝑦32 2 (16th) 0 (44th)  2(19th) 2 (18th)  2 (16th) 0 (36th)  2 (19th) 1 (20th) 

𝑦8 2 (16th) 0 (44th)  8(10th) 7 (10th)  2(16th) 0(36th)  8(10th) 6(13th) 𝑦33 2 (16th) 4 (19th)  0(29th) 2 (18th)  2 (16th) 1 (23rd)  0 (29th) 0 (26th) 

𝑦9 Fixed output  Fixed output 𝑦34 3 (13th) 4 (19th)  0(29th) 2 (18th)  3 (13th) 0 (36th)  0 (29th) 0 (26th) 

𝑦10 2 (16th) 1 (39th)  0(29th) 2 (18th)  2(16th) 1(23rd)  0(29th) 0(26th) 𝑦35 1 (29th) 2 (31st)  0(29th) 2 (18th)  1 (29th) 3 (11th)  0 (29th) 0 (26th) 

𝑦11 0 (39th) 3 (27th)  0(29th) 1 (31st)  0(39th) 0(36th)  0(29th) 0(26th) 𝑦36 2 (16th) 5 (15th)  1(23rd) 17(2nd)  2 (16th) 2 (17th)  1(23rd) 4 (15th) 

 

Table 5. Seven factors selected by disintegrated models 

Models Selected factors and their frequencies 

Model (5) 
CRS 𝑦24  (27) 𝑦23(25) 𝑦19  (20) 𝑦20(19) 𝑦21  (18) 𝑦12(12) 𝑥1 (8) 

VRS 𝑦23  (13) 𝑦20  (10) 𝑦27  (10) 𝑦16(9) 𝑦1  (8) 𝑦22  (8) 𝑦26  (8) 

Model (6) 
CRS 𝑥5 (21) 𝑦12  (21) 𝑥7 (20) 𝑥12 (19) 𝑥1 (14) 𝑥3 (13) 𝑥13 (12) 

VRS 𝑦1  (23) 𝑦36  (17) 𝑥6 (15) 𝑥12 (15) 𝑦3 (14) 𝑥10 (12) 𝑥5 (10) 

Model (11) 
CRS 𝑦24  (27) 𝑦23  (25) 𝑦19  (20) 𝑦20  (19) 𝑦21  (18) 𝑦12  (12) 𝑥1 (8) 

VRS 𝑦24  (26) 𝑦23  (25) 𝑦20  (22) 𝑦19  (21) 𝑦21  (21) 𝑥4 (11) 𝑥1 (7) 

Model (12) 
CRS 𝑥5 (21) 𝑦12  (21) 𝑥7 (20) 𝑥12 (19) 𝑥1 (14) 𝑥3 (13) 𝑥13 (12) 

VRS 𝑥5 (23) 𝑥7 (21) 𝑥1 (16) 𝑥3 (16) 𝑥12 (16) 𝑦12  (16) 𝑥4 (13) 

 

For instance, under CRS assumption the input- and output-oriented multiplier forms are composed 

of six selective outputs 𝑦12, 𝑦19, 𝑦20, 𝑦21, 𝑦23, 𝑦24 and one selective input 𝑥1. However, under VRS 

assumption the input- and output-oriented multiplier forms consist of the dissimilar factors in which 

the former case includes seven selective outputs 𝑦1, 𝑦16, 𝑦20, 𝑦22, 𝑦23, 𝑦26, 𝑦27 and latter one embraces 

five selective outputs 𝑦19, 𝑦20, 𝑦21, 𝑦23, 𝑦24 and two selective inputs 𝑥1, 𝑥4. Notice that through 

selecting inputs and outputs if ties occurs, the choice may be made by either a decision-maker or 

applying the selecting approach developed in Subsection 6.2.   

As an alternative matter, it is envisaged that the identical seven factors are identified for the input- 

and output-oriented selecting DEA models under a certain RTS. However, Table 5 bespeaks that the 

results culminate in different selected performance factors. To deal with the inconsistency and 

complexity, the integrated selecting DEA models (16) and (17) can be appropriately considered in a 

way that combine input and output orientation models. Table 6 reports the corresponding results of 

multiplier and envelopment forms in relation to DMU1(Austria) instigating unified performance 

factors in both orientations, and these factors are completely different with what we identify from 
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the disintegrated selecting DEA models. Table 7 releases the frequencies of selected factors after 

solving integrated selecting DEA models for all countries, and Table 8 consequently sums up the top 

seven frequently selected performance factors. For example, regardless of orientations, the 

multiplier integrated model embraces six selective outputs 𝑦3, 𝑦22, 𝑦26, 𝑦28, 𝑦31, 𝑦35 and one selective 

input 𝑥5 under VRS assumption whereas that envelopment integrated model consists of two selective 

outputs 𝑦12, 𝑦24 and five selective inputs 𝑥3, 𝑥5, 𝑥7, 𝑥11 , 𝑥12. It is obvious that varying outputs and 

inputs are resulted from the multiplier and envelopment integrated models. This is because the 

multiplier and envelopment integrated selecting models are no longer the primal-dual pair of 

problems. We can hence gain insights by returning to Theorem 2 showing that the multiplier 

integrated model chooses those performance factors with the object of enhancing performance 

(optimistic perspective) and the envelopment integrated selecting model picks out those 

performance factors for strengthening the discrimination power of our assessment (pessimistic 

perspective). Intuitively, a significant decline in economic activities in the EU such as an increase in 

unemployment and bankruptcy rates and vulnerable social conditions inspires us to apply the 

envelopment integrated selecting models because it can take a pessimistic view and avoid extreme 

dissatisfaction by overestimating efficiencies of counties whereas the flourishing society and 

prosperous economy lead us to have an optimistic view and use the multiplier integrated selecting 

model to analyze the countries’ efficiencies. 

Table 6. Factors selected from the integrated selecting DEA models for Austria 

Binary 

variables 

Multiplier model (16)   Envelopment model (17)  
Binary 

variables 

Multiplier model (16)  Envelopment model (17) 

CRS VRS  CRS VRS  CRS VRS  CRS VRS 

𝑑1
𝑥  0 0 

 
0 0 

 
𝑑12
𝑦

 0 0 
 

1 1 

𝑑2
𝑥  Fixed input 

 
Fixed input 

 
𝑑13
𝑦

 0 0 
 

1 1 

𝑑3
𝑥  1 0 

 
0 0 

 
𝑑14
𝑦

 0 1 
 

0 0 

𝑑4
𝑥  1 0 

 
0 0 

 
𝑑15
𝑦

 0 0 
 

1 0 

𝑑5
𝑥  0 1 

 
0 0 

 
𝑑16
𝑦

 0 0 
 

0 0 

𝑑6
𝑥  0 0 

 
0 0 

 
𝑑17
𝑦

 0 1 
 

0 0 

𝑑7
𝑥  0 0 

 
0 0 

 
𝑑18
𝑦

 0 1 
 

0 0 

𝑑8
𝑥  0 0 

 
0 0 

 
𝑑19
𝑦

 0 1 
 

0 0 

𝑑9
𝑥  0 0 

 
0 0 

 
𝑑20
𝑦

 0 0 
 

0 0 

𝑑10
𝑥  1 0 

 
0 0 

 
𝑑21
𝑦

 0 0 
 

0 0 

𝑑11
𝑥  0 0 

 
0 0 

 
𝑑22
𝑦

 0 0 
 

0 0 

𝑑12
𝑥  0 0 

 
1 1 

 
𝑑23
𝑦

 0 0 
 

0 0 

𝑑13
𝑥  0 0 

 
0 0 

 
𝑑24
𝑦

 0 0 
 

1 1 

𝑑14
𝑥  0 0 

 
0 0 

 
𝑑25
𝑦

 0 0 
 

1 1 

𝑑1
𝑦

 0 0 
 

0 0 
 

𝑑26
𝑦

 0 0 
 

0 0 

𝑑2
𝑦

 0 0 
 

0 0 
 

𝑑27
𝑦

 0 0 
 

0 0 

𝑑3
𝑦

 0 0 
 

0 0 
 

𝑑28
𝑦

 0 0 
 

0 0 

𝑑4
𝑦

 0 0 
 

0 0 
 

𝑑29
𝑦

 0 0 
 

0 0 

𝑑5
𝑦

 0 0 
 

0 0 
 

𝑑30
𝑦

 0 0 
 

0 0 

𝑑6
𝑦

 0 0 
 

0 0 
 

𝑑31
𝑦

 0 0 
 

0 0 

𝑑7
𝑦

 0 0 
 

0 0 
 

𝑑32
𝑦

 1 0 
 

0 0 

𝑑8
𝑦

 0 1 
 

0 0 
 

𝑑33
𝑦

 0 0 
 

0 0 

𝑑9
𝑦

 Fixed output 
 

Fixed output 
 

𝑑34
𝑦

 1 0 
 

1 1 

𝑑10
𝑦

 1 1 
 

0 0 
 

𝑑35
𝑦

 0 0 
 

0 0 

𝑑11
𝑦

 0 0 
 

0 0 
 

𝑑36
𝑦

 1 0 
 

0 1 

Optimal objective function value 0 0  -5.499 -2.114 
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Table 7. Frequencies of a performance factor and its rank derived from the integrated selecting DEA models 

Input 
Multiplier model (16)  Envelopment model (17)  

Output 
Multiplier model (16)  Envelopment model (17) 

CRS VRS  CRS VRS  CRS VRS  CRS VRS 

𝑥1 9 (5th) 4 (18th)  13(5th) 9 (8th)  𝑦12 0 (39th) 0 (43rd)  21(1st) 20(1st) 
𝑥2 Fixed input  Fixed input  𝑦13 2 (22nd) 0 (43rd)  6 (13th) 8 (10th) 

𝑥3 18(3rd) 3 (25th)  8 (11th) 11(6th)  𝑦14 0 (39th) 5 (14th)  0 (31st) 1 (26th) 
𝑥4 26(2nd) 5 (14th)  4 (17th) 3 (17th)  𝑦15 3 (18th) 2 (31st)  2 (21st) 2 (20th) 
𝑥5 5 (11th) 7 (5th)  15(3rd) 16(3rd)  𝑦16 1 (30th) 4 (18th)  0 (31st) 2 (20th) 
𝑥6 3 (18th) 4 (18th)  6 (13th) 6 (13th)  𝑦17 0 (39th) 2 (31st)  0 (31st) 1 (26th) 

𝑥7 0 (39th) 2 (31st)  18(2nd) 14(4th)  𝑦18 2 (22nd) 6 (10th)  0 (31st) 0 (36th) 
𝑥8 1 (30th) 4 (18th)  3 (18th) 5 (14th)  𝑦19 2 (22nd) 2 (31st)  3 (18th) 1 (26th) 
𝑥9 1 (30th) 4 (18th)  8 (11th) 3 (17th)  𝑦20 0 (39th) 4 (18th)  3 (18th) 2 (20th) 

𝑥10 5 (11th) 6 (10th)  9 (8th) 9 (8th)  𝑦21 5 (11th) 3 (25th)  1 (25th) 0 (36th) 
𝑥11 6 (8th) 6 (10th)  9 (8th) 11(6th)  𝑦22 2 (22nd) 7 (5th)  1 (25th) 1 (26th) 
𝑥12 2 (22nd) 5 (14th)  15(3rd) 20(1st)  𝑦23 3 (18th) 3 (25th)  1 (25th) 1 (26th) 
𝑥13 1 (30th) 1 (40th)  10(7th) 3 (17th)  𝑦24 1 (30th) 2 (31st)  11(6th) 12(5th) 

𝑥14 6 (8th) 0 (43rd)  2 (21st) 5 (14th)  𝑦25 1 (30th) 3 (25th)  6 (13th) 7 (11th) 
𝑦1 9 (5th) 2 (31st)  0 (31st) 1 (26th)  𝑦26 0 (39th) 10(4th)  0 (31st) 0 (36th) 
𝑦2 0 (39th) 3 (25th)  0 (31st) 1 (26th)  𝑦27 5 (11th) 6 (10th)  0 (31st) 1 (26th) 

𝑦3 1 (30th) 7 (5th)  0 (31st) 0 (36th)  𝑦28 0 (39th) 13(2nd)  0 (31st) 0 (36th) 
𝑦4 3 (18th) 2 (31st)  0 (31st) 0 (36th)  𝑦29 0 (39th) 7 (5th)  0 (31st) 0 (36th) 
𝑦5 1 (30th) 1 (40th)  1 (25th) 2 (20th)  𝑦30 1 (30th) 5 (14th)  0 (31st) 0 (36th) 

𝑦6 0 (39th) 0 (43rd)  1 (25th) 2 (20th)  𝑦31 2 (22nd) 16(1st)  0 (31st) 0 (36th) 
𝑦7 4 (15th) 0 (43rd)  0 (31st) 0 (36th)  𝑦32 2 (22nd) 0 (43rd)  5 (16th) 5 (14th) 
𝑦8 2 (22nd) 2 (31st)  9 (8th) 7 (11th)  𝑦33 4 (15th) 7 (5th)  0 (31st) 0 (36th) 
𝑦9 Fixed output  Fixed output  𝑦34 6 (8th) 3 (25th)  1 (25th) 1 (26th) 

𝑦10 8 (7th) 2 (31rd)  0 (31st) 0 (36th)  𝑦35 4 (15th) 11(3rd)  0 (31st) 0 (36th) 
𝑦11 11(4th) 1 (40th)  2 (21st) 1 (26th)  𝑦36 28(1st) 4 (18th)  2 (21st) 2 (20th) 

 

Table 8. Seven selected factors for integrated models 
Models Selected factors and their frequencies 

Model (16) 
CRS 𝑦36 (28) 𝑥4(26) 𝑥3 (18) 𝑦11(11) 𝑥1 (9) 𝑦1(9) 𝑦10 (8) 

VRS 𝑦31 (16) 𝑦28 (13) 𝑦35 (11) 𝑦26(10) 𝑥5 (7) 𝑦3 (7) 𝑦22 (7) 

Model (17) 
CRS 𝑦12 (21) 𝑥7 (18) 𝑥5 (15) 𝑥12 (15) 𝑥1 (13) 𝑦24 (11) 𝑥13 (10) 

VRS 𝑥12 (20) 𝑦12 (20) 𝑥5 (16) 𝑥7 (14) 𝑦24 (12) 𝑥3 (11) 𝑥11 (11) 

 
Figures in parentheses in Table 4 and Table 7 represent the overall rankings of the factors for each 

selecting DEA model as per their frequencies. It is interesting to show that the results of six different 

models (groups) under each RTS are dependent. To do so, we apply the Kruskal–Wallis H test for CRS 

and VRS to examine whether there are statistically significant indifferences between the results of 

six models. As seen in Table 9, the Kruskal–Wallis H test shows that there is no statistically significant 

difference between the different six models under CRS and VRS technologies with 𝜒2(2)  =  0.749, 

𝜒2(2)  =  2.713 , respectively. 

 

Table 9. Comparison of the models apropos of the frequencies of selected factors  

Test CRS VRS 

Kruskal-Wallis H 0.749 2.713 

df 5 5 

Asymp. Sig. 0.980 0.744 
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Table 10. Validation of Theorem 9 for Austria 

Technology �̅�𝑜
𝑖𝑛∗ �̅�𝑜

𝑜𝑢𝑡∗ Model (6) Model (12) 

CRS 0.176 5.675 0.176 5.681 

VRS 0.270 2.385 0.270 2.386 

 

Let us at present emphasise on DMU1 =Austria for CRS and VRS technologies to oversee Theorem 8 

and Theorem 9. Regarding Theorem 8, ∑ 𝑢𝑟
𝑖𝑛∗𝑦𝑟1

36
𝑟=1 −𝑤0

𝑖𝑛∗ and ∑ 𝑣𝑖
𝑜𝑢𝑡∗𝑥𝑖1

14
𝑖=1 +𝑤0

𝑜𝑢𝑡∗ and the 

optimal objective values of models of (5) and (11) are equal to 1. Furthermore, in compliance with 

Theorem 9, Table 10 exhibits that the optimal solutions, i.e., �̅�𝑜
𝑖𝑛∗ (�̅�𝑜

𝑜𝑢𝑡∗), calculated from model (17) 

is greater (less) than or equal to the optimal objective value of model (6) (model (12)).  

Having narrowed down the numerous potential factors and selected the most influential ones with 

regard to model and situation characteristics, we, in turn, measure the relative efficiency of 28 EU 

countries in the year 2013. To delve into the all proposed selecting DEA models, either disintegrated 

or integrated models and their impacts on the efficiency, their descriptive statistics are given in Table 

11 and Table 12. Let us start with Table 11 that is the result of efficiencies where the disintegrated 

models are employed to opt for the performance factors. According to the mean efficiencies, apart 

from the NDRS and VRS cases, the efficiencies in the input-oriented multiplier models are greater 

than those calculated by the envelopment models, while the efficiencies of the output-oriented 

multiplier models are invariably greater than those specified by the envelopment models. Turning to 

a comparison of variances, findings in Table 11 appealingly shows the higher variances in the 

envelopment models contrary to multiplier models. From consideration of orientations, the mean 

efficiencies of input-oriented multiplier (envelopments) models in VRS technology are smaller 

(greater) than those obtained from the output-oriented models, while the efficiencies of both input- 

and output-oriented multiplier (envelopment) models in CRS technology are identical (see Theorem 

5). We also draw attention to the number of efficient countries in different models showing that 

discretion in choosing the types of models and orientation imperatively matters. In brief, the 

discrimination power of the envelopment models in both orientations is more than the multiplier 

models.  

Table 11. Descriptive statistics of efficiencies of the EU countries using conventional DEA models 

Title 

Input orientation  Output orientation 

Multiplier   Envelopment  Multiplier   Envelopment 

CRS VRS  CRS VRS  CRS VRS  CRS VRS 

Min 0.412 0.464  0.003 0.557  0.412 0.962  0.003 0.007 
Mean  0.902 0.909  0.273 0.923  0.902 0.997  0.273 0.736 
1st Quartile 0.827 0.913  0.024 0.88  0.827 1  0.024 0.235 
Median 1 1  0.088 1  1 1  0.088 1 
3rd Quartile 1 1  0.348 1  1 1  0.348 1 
Sd. 0.154 0.162  0.359 0.13  0.154 0.008  0.359 0.42 
Max 1 1  1 1  1 1  1 1 
No. eff. 16 20   3 19  16 23   3 20 
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Table 12. Descriptive statistics of efficiencies of the EU countries using the integrated selecting 
models 

Title 

Input orientation  Output orientation 

Model (16)   Model (17)  Model (16)   Model (17) 

CRS VRS  CRS VRS  CRS VRS  CRS VRS 

Min 0.778 0.514  0.010 0.804  0.778 0.982  0.010 0.015 
Mean  0.965 0.864  0.333 0.988  0.965 0.997  0.333 0.691 
1st Quartile 0.953 0.693  0.081 1.000  0.953 0.997  0.081 0.109 
Median 1.000 1.000  0.128 1.000  1.000 1.000  0.128 1.000 
3rd Quartile 1.000 1.000  0.609 1.000  1.000 1.000  0.609 1.000 
Sd. 0.062 0.174  0.349 0.038  0.062 0.005  0.349 0.422 
Max 1.000 1.000  1.000 1.000  1.000 1.000  1.000 1.000 
No. eff. 20 16   3 22  20 17  3 18 

 

Table 12 represents the efficiency measures of input- and output-oriented models apropos of the 

selecting DEA models (16) and (17) . Let us compare the results in terms of orientations and selecting 

DEA models. Based on Theorem 1 for factor selection, the mean efficiencies in the input-oriented 

multiplier models are greater than or equal to those calculated by the envelopment models, while 

regarding model (16) the mean efficiencies of the input-oriented models under VRS assumption are 

less than those from the output-oriented models. In addition, the different orientations do not affect 

the discrimination power between but the factors selected by model (17) clearly cause an increase 

in discriminatory power in DEA with greater variances. According to our findings, we would express 

that the greater variances in efficiency measure lead to higher discriminatory power and vice versa.  

Table 13. The results of factor selection, obtained by proposed models (22) and (23) 

 
Multiplier model (22)  Envelopment model (23)  

 
Multiplier model (22)  Envelopment model (23) 

CRS VRS  CRS VRS  CRS VRS  CRS VRS 

𝑑1
𝑥  0 0  0 1  𝑑12

𝑦
 0 0  1 1 

𝑑2
𝑥  Fixed input  Fixed input  𝑑13

𝑦
 0 0  0 0 

𝑑3
𝑥  1 1  0 0  𝑑14

𝑦
 0 0  0 0 

𝑑4
𝑥  1 1  0 0  𝑑15

𝑦
 0 0  0 0 

𝑑5
𝑥  0 0  1 1  𝑑16

𝑦
 0 0  0 0 

𝑑6
𝑥  0 0  0 0  𝑑17

𝑦
 1 1  0 0 

𝑑7
𝑥  1 1  1 0  𝑑18

𝑦
 0 0  0 0 

𝑑8
𝑥  0 0  0 0  𝑑19

𝑦
 0 0  0 0 

𝑑9
𝑥  0 0  0 1  𝑑20

𝑦
 0 0  0 0 

𝑑10
𝑥  0 0  1 0  𝑑21

𝑦
 0 0  0 0 

𝑑11
𝑥  0 0  1 1  𝑑22

𝑦
 0 0  0 0 

𝑑12
𝑥  0 0  1 1  𝑑23

𝑦
 0 0  0 0 

𝑑13
𝑥  0 0  0 0  𝑑24

𝑦
 0 0  1 1 

𝑑14
𝑥  1 0  0 0  𝑑25

𝑦
 0 0  0 0 

𝑑1
𝑦

 0 0  0 0  𝑑26
𝑦

 0 0  0 0 

𝑑2
𝑦

 0 1  0 0  𝑑27
𝑦

 0 0  0 0 

𝑑3
𝑦

 0 0  0 0  𝑑28
𝑦

 0 0  0 0 

𝑑4
𝑦

 0 0  0 0  𝑑29
𝑦

 1 0  0 0 

𝑑5
𝑦

 0 0  0 0  𝑑30
𝑦

 0 0  0 0 

𝑑6
𝑦

 0 0  0 0  𝑑31
𝑦

 0 0  0 0 

𝑑7
𝑦

 1 1  0 0  𝑑32
𝑦

 0 1  0 0 

𝑑8
𝑦

 0 0  0 0  𝑑33
𝑦

 0 0  0 0 

𝑑9
𝑦

 Fixed output  Fixed output  𝑑33
𝑦

 0 0  0 0 

𝑑10
𝑦

 0 0  0 0  𝑑35
𝑦

 0 0  0 0 

𝑑11
𝑦

 0 0  0 0  𝑑36
𝑦

 0 0  0 0 
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6.2 Performance factor selection for structural efficiency  

Rather than evaluate efficiency at the country level, let us now focus on [structural] efficiency at the 

EU level to form a single production unit that allows for resource allocation across constituent 

countries. The structural efficiency measure identifies how well the EU performs in 2013. To this end, 

the most influential factors can be selected by solving the multiplier model (22) or the envelopment 

model (23) for CRS and VRS technologies (see Table 13). Table 14 reports the selected seven factors. 

Having crunched the results, inputs 𝑥3, 𝑥4, 𝑥7 and outputs 𝑦7, 𝑦17 for model (22) and inputs 𝑥5, 𝑥11, 𝑥12 

and outputs 𝑦12, 𝑦24 for model (23) are always selected despite the RTS characterization. From Table 

14, we do not find any common performance factors selected by either model (22) or model (23). 

Consequently, the structural efficiencies are reported in  

Table 15. In the light of models (22) and (23), the structural efficiency values from the both 

orientations is at least 0.96 and 0.6, respectively, meaning that all inputs should be reduced by about 

4% and 40% for the input-oriented assessment and all outputs should be augmented by about 4% 

and 40% for the output-oriented assessment to omit all types of inefficiency. Our findings show that 

if the analysis is based upon the factors identified by the multiplier selecting DEA model (22), the EU 

had a flourishing year (optimistic viewpoint), while the factors recognised by the envelopment 

selecting DEA model (23) deteriorates the EU efficiency significantly (pessimistic viewpoint). 

Table 14. Seven selected factors for integrated models 

Models Selected factors  

Model (22) 
CRS 𝑥3 𝑥4 𝑥7 𝑥14 𝑦7 𝑦17 𝑦29 

VRS 𝑥3  𝑥4 𝑥7 𝑦2 𝑦7 𝑦17 𝑦32 

Model (23) 
CRS 𝑥5 𝑥7 𝑥10 𝑥11 𝑥12 𝑦12 𝑦24 

VRS 𝑥1 𝑥5 𝑥9 𝑥11 𝑥12 𝑦12  𝑦24  
 

Table 15. Input- and output-oriented efficiency of the EU under different technologies 

Based upon factors selected from 
 Input-oriented  Output-oriented 

 CRS  VRS  CRS  VRS 

Model (22)  0.960  0.961  0.960  0.995 

Model (23)  0.609  0.676  0.609  0.847 

7 Summary and conclusion 

One of the initial steps in employing DEA is to identify the most influential performance factors 

(inputs and outputs), however, it is generally lost in numerous existing studies due to the fact that 

the literature lacks a mechanism for such important element before undertaking performance 

evaluation. As the number of factors increases, the problem tends to add more complexity to factor 

selection in DEA models. In this paper, we thoroughly look into the factor selection problem in DEA 

models to fill the gap in the literature. The contribution of this research is fivefold. First, the 

envelopment and multiplier forms of selecting DEA models under VRS assumption are developed for 

input and output orientations. Second, contrasting properties and relations between the developed 
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models are identified and in turn discussed. Our key findings reveal that the set of factors selected by 

the selecting DEA models often vary considerably from input- to output-oriented assessment for VRS 

assumption, other than CRS assumption. Third, a new mathematics programming model in relation 

to the DEA principles is developed to unify the results of selecting DEA models for both orientations. 

Fourth, two distinct levels of assessments, including individual (firm) and structural (industry) 

levels, are studied in this paper. Fifth, a large number of growth and development factors is utilized 

to present a case study on assessment of EU countries.   

For future study, the developed framework can be extended to other existing DEA models such as 

non-radial models to identify the performance factors. In this regard, there are many challenges 

involved in the proposed research that open abundant scope for future research. For example, it 

would be also interesting to consider data irregularities and structural complexities in the factor 

selection problem. In addition, the literature entails a plethora of selecting techniques from varying 

perspectives. The comparison of existent selecting DEA approaches will be carried out in a future 

paper.    
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