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Abstract

Energy management has been one of the most important parts in electric race strategies since the Fédération Internationale

de l’Automobile Formula-E championships were launched in 2014. Since that time, a number of unfavorable race finishes

have been witnessed due to poor energy management. Previous researches have been focused on managing the power flow

between different energy sources or different energy consumers based on a fixed cycle. However, there is no published

work in the literature about energy management of a full electric racing car on repeated course but with changeable settings

and driving styles. Different from traditional energy management problems, the electric race strategy is more of a multi-

stage decision-making problem which has a very large scale. Meanwhile, this is a time-critical task in motorsport where

fast prediction tools are needed and decisions have to be made in seconds to benefit the final outcome of the race. In this

study, the use of artificial neural networks (ANN) and tree search techniques is investigated as an approach to solve such a

large-scale problem. ANN prediction models are developed to replace the traditional lap time simulation as a much faster

performance prediction tool. Implementation of Monte Carlo tree search based on the proposed ANN fast prediction

models has provided decent capability to generate decision-making solution for both pre-race planning and in-race reaction

to unexpected scenarios.

Keywords Formula-E race strategy � Energy management � Machine learning � Artificial neural networks

1 Introduction

1.1 Formula-E racing

The first worldwide electric motorsport event, the Fédéra-

tion Internationale de l’Automobile (FIA) Formula-E (FE)

championship, was originally conceived as a single-seater

electric motor racing championship in 2011 and launched

its first ePrix in September 2014 [1]. Since then, several

electric racing series have been developed such as I-PACE

Trophy, Electric GT. So far in any of these series, teams

have been running very similar cars fitted with the same

rechargeable energy storage system (RESS). It has always

been a problem for engineers and drivers to properly

manage the battery energy during the race. For example, a

flat battery or an over-heated battery will lead to a Did Not

Finish (DNF) before crossing the finished line.

Among all the series, the current fifth FIA FE season

2018/2019 has raised the problem of energy management

to a completely different level. The new FE Gen 2 cars

have to last for the entire 45 min plus one-lap race, and a

new power mode called the ‘Attack mode’ is introduced

into the race. Teams have to decide which two laps to

activate this mode which allows teams to increase the

maximum total power of the RESS by 50 kW in addition to

the base 200 kW limit stated by the technical regulations.

During the race, drivers are not able to drive flat out

through the complete length of the race simply due to the

limited capacity of the RESS. And the integrated battery

management system (BMS) also brings restrictions. When

the battery temperature rises up to the first threshold, no

regeneration will be allowed. If the battery temperature

further reaches a higher threshold, the power output will be

completely shut down, resulting in a car stopping on the
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track. For example, Fig. 1 demonstrates the effect of BMS

in a case where we have ‘No Regen’ threshold of 50 �C

and ‘Shut Down’ threshold of 60 �C during an ePrix.

Figure 1a shows a typical state of charge (SOC) trend

during a race. A significant steeper drop can be observed

starting from 2250 s. The cause of this can be found in

Fig. 1b where the battery temperature went over 50 �C at

the same time. The energy consumption became quicker

after then as a result of no more regeneration. If the

strategy is not properly managed, it is very likely that the

battery could go flat before the end of the race like shown

in Fig. 1a and the battery temperature could end up over

60 �C as shown in Fig. 1b, either of which would lead to a

DNF.

According to the technical regulations, there are not too

many mechanical changes a driver can make once the race

has started. However, drivers are free to change the pow-

ertrain settings through the steering wheel according to the

regulations to help them manage the energy during the race

[2]. There are three main rotary switches located at the

bottom of the steering wheel by which the driver can tune

the regenerate power, lift/coasting torque and drive power.

Apart from these three switches, the driver can decide how

much coasting distance he needs. In FE races, the regen-

eration and lift/coasting techniques are very popular for

energy management. However, the combinations have to

be properly planed as higher regeneration saves more

energy but also can bring quicker temperature rise to the

battery. If the driver loses his regeneration too early due to

the battery temperature threshold, he will be facing an

energy crisis for the remaining laps of the race. It is nec-

essary for engineers and drivers to make careful decisions

both before and during the race to avoid risking any

potential DNFs.

1.2 Energy management strategy

Researches into energy management have been mainly

focused on hybrid vehicles. Early researches have been

trying to categorize different drive modes regarding dif-

ferent drive demands [3–8]. Such analytic methods have

been used to achieve better efficiency on different road

types, but the result in reality could be far from optimum

due to the lack of analysis on demand varieties [9]. To

solve such problems, more intelligent control algorithms

such as fuzzy logic [10, 11] and model predictive control

[12] are used to more efficiently control the power flow

based on the system dynamic feedback. This feature has

benefitted real-time implementations.

Later, researches indicated that the control strategies

above might also not give the optimum solution as those

algorithms do not take the entire trip into account. To make

further global improvement, dynamic programming (DP)

was proposed to manage the energy for an entire trip [13].

Machine learning has been proposed to help categorize

road types and predict traffic congestion level [14–17]. And

techniques such as support vector machine (SVM) [18, 19]

and artificial neural networks (ANN) [9, 20] have been

applied for driving condition recognition to further reduce

the computation time of DP.

In addition to hybrid vehicles, full electric vehicles with

multiple consumers are another object in energy manage-

ment researches. These researches have focused on opti-

mizing the power distribution between two or more motors

based on their motor efficiency maps [21–23]. Techniques

such as DP, genetic algorithms (GA), particle swarm

optimization (PSO) are used to optimize the power distri-

bution to minimize the power loss [24, 25]. The power

distribution is also integrated with vehicle dynamics con-

trols as a multi-objective optimization problem in recent

researches [26, 27].

Fig. 1 a SOC drop in an ePrix, b battery temperature in an ePrix
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1.3 Artificial neural networks (ANN) and Monte
Carlo tree search (MCTS)

In previous researches, soft computing techniques are

widely adopted to solve real-life problems in different

fields. Machine learning has become a major part as a

popular approach.

ANN is an important component in machine learning

which was proposed as a concept in the 1940s [28]. Later in

the early 1990s, the development of ANN reached a bot-

tleneck where one-hidden-layered neural networks could

not provide acceptable level of accuracy and training multi-

layered networks was nearly impossible [29, 30]. After a

breakthrough was made in 2006 [31], the transition from

shallow networks to deep networks enabled deep learning

method [32]. The training of a network may take relatively

longer time due to the complexity of training algorithms,

but applying a trained network is a lot quicker as beneath

the network is basically matrix calculation. This made

ANN models thrive and become one of the most widely

used classification/prediction/fitting tools.

One of the most well-known products of machine

learning in recent years is AlphaGo. What made the

AlphaGo to successfully handle a problem with over

250150 possibilities is the combination of tree search and

deep neural networks [33]. The Monte Carlo tree search

(MCTS) [34] used in AlphaGo is a tree search method for

finding optimal decisions based on random sampling in a

given domain [35]. By focusing only on relatively more

promising branches, MCTS is able to shrink a large-scale

problem into a computable scale. The process of a node

expanded into a next layer can be seen as a newly reached

state after a decision is made. These features made the

MCTS a method very suitable for large-scale multi-stage

problems [36].

1.4 Present study motivation

Engineers and drivers need to be able to properly decide

the race strategy both in pre-race planning and also during

a race when reacting to unexpected scenarios in order to

finish the race as quickly as possible. It would be easier to

decide the strategy planning before the race weekend as

there is much more time available. However, during the

race when decisions have to be made within seconds in

reaction to unexpected incidents, it would become impos-

sible to generate a decent solution by using traditional lap

time simulation approaches. The traditional lap time sim-

ulations take seconds to simulate a single lap based on a

setting. To make the challenge more difficult, the number

of possible settings can easily reach over 50 meaning that a

32-lap race will create a problem with a scale of 5032. This

is way beyond the realm of computation even before the

race weekend, not to mention making quick reactions

during the race. Furthermore, the race strategy develop-

ment is a multi-stage decision problem, which is different

from traditional energy management problem which can be

solved by algorithms such as dynamic programing, linear

programing. All the challenges above raise the demand for

a tool with fast prediction and efficient searching capability

to tackle the challenges. The present study will focus on

using ANNs and Monte Carlo tree search to develop such a

tool which can help engineers and drivers to make good

and quick decisions in seconds.

2 Lap time simulation model and data
generation

2.1 Lap time simulation

To generate accurate data to be used for training of the

ANN prediction models, a lap time co-simulation platform

was built by integrating IPG/Carmaker with a MATLAB/

Simulink model. Different drive power, regenerate power,

lift/coasting distance and torque, and environment tem-

perature changes were simulated to study their effects on

the vehicle’s performance such as lap time, battery state of

charge (SOC) and battery temperature. The general struc-

ture of the proposed lap time simulation platform is shown

in Fig. 2. The IPG/Carmaker part comprises a FE style

vehicle model, a London ePrix track model and a built-in

driver model. The built-in driver model maximizes the

vehicle dynamic performance on the track to deliver the

fastest lap time based on the powertrain motor output tor-

que which is calculated in the MATLAB/Simulink part

according to the driver model demand and the current

powertrain status, such as the battery temperature, SOC.

The visualized track and lift/coasting distance definitions

are shown in Fig. 3.

The function of the MATLAB/Simulink components is

to provide the output torque information back to IPG/

Carmaker for vehicle dynamics simulation. In this part of

simulation, the battery and powertrain status are calculated

based on which, given the driver demand from IPG/Car-

maker, the actual regenerative/drive torque is transmitted

back to IPG/Carmaker. In the MATLAB/Simulink part, the

Fig. 2 Lap time simulation platform
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electric powertrain system is modeled including a battery

model which is of vital importance to predict both power

limitations and heat generation. In terms of the modeling

approaches used, modern battery models are mainly cate-

gorized as mathematical models, electrochemical models

and electrical equivalent models [37–40]. In this applica-

tion, the battery thermal behavior is the main concern. It

has been widely observed in electric racing events that

regenerative braking which saves energy during the race

would also heat up the battery much more significantly

than discharge/driving condition. Therefore, to generate

reliable data samples for further decision makings, the

battery model has to be able to describe such features.

Considering the data available for model validation and the

computing complexity of the models, Bernardi model [41]

is selected in this study. Bernardi model has been widely

adopted in battery thermal management studies [42–44]

due to its capability to capture the reversible heat genera-

tion which differs the battery charging thermal behavior

from discharging. The heat generation is calculated by the

following equations:

Q ¼ Qirrev þ Qrev ð1Þ

Qirrev ¼ I2R ð2Þ

Qrev ¼ IT
oU

oT

� �

P

ð3Þ

where Q is the total heat generation rate and Qirrev is the

irreversible heat component determined by the internal

resistance of the battery and the current through it. Qrev is

the reversible heat component determined by the battery

current, temperature and the entropy coefficient oU
oT

� �

P
.

In order to calculate the heat exchange between the hot

coolant and ambient, the following equation is used:

Hreal ¼
Arealcooler

Arefcooler

� Tcoolant � Tamb

DTref
� f Hrefð Þ ð4Þ

where Hreal is the heat exchange rate, Arealcooler is the cooler

size, Tcoolant and Tamb are the temperatures of the coolant

and air, respectively. f ðHrefÞ is the reference heat exchange
rate look-up table at reference cooler size Arefcooler and

reference temperature difference DTref whose inputs are

vehicle speed and coolant mass flow.

In this study, the aim is to develop the energy man-

agement strategy for a 32-lap race. Through the lap time

simulation, a 32-lap race was simulated. In the race sim-

ulation, the power limit is set to 200 kW and no coasting is

performed through the whole race. Issues were found at the

end of the race as shown in Fig. 4. It can be observed from

Fig. 4 that the battery temperature has increased above

60 �C before the end of the race and the battery went flat as

well. Both these two plots indicate a DNF and that less

aggressive strategy is necessary to secure a successful

finish of the race. The solution of this issue is discussed in

the next section.

2.2 Training data generation

The lap time simulation is able to give the energy con-

sumption, battery temperature rise and lap time results

according to the powertrain settings and environment

conditions. In order to develop ANN prediction models as

powerful and accurate as possible, factors which mainly

determine the vehicle performance are defined as simula-

tion inputs as listed in Table 1. There are other variables in

the real world which affects the performance such as

humidity, ambient pressure. However, they are less rele-

vant and make little difference to the result and thus are not

considered in this study. After these input values are

Fig. 3 London ePrix track

modeling using IPG/Carmaker
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assigned, the lap time simulation is completed for a 1-lap

simulation based on these inputs. The battery temperature

rise, SOC drop and lap time results are then collected as

respective outputs of the inputs. In this way, each training

sample comprises 7 input values and 3 output values.

In this study, the ANN prediction models function

mainly as a fitting tool considering the fact that ANN is

inherently good at interpolation rather than extrapolation

[45]. The discrete training inputs must cover the complete

possible range to guarantee well-functioning prediction

networks under any circumstances. Therefore, each input is

assigned with certain values instead of random assignment.

Table 2 shows the values of each input and the output

variables and their expected range. The sample generation

was automatically completed by running a MATLAB

script. The whole process took more than 3 days, and

172,800 training samples were collected for ANN predic-

tion model development.

3 Race simulation prediction using artificial
neural networks

3.1 ANN layout

In this study, the number of network outputs needs to be

first selected. The prediction models are expected to

produce three performance values. One of the options is to

use a single deep network to predict these three values

simultaneously. This means that the feature extraction

layers and mapping layers are shared by three different

outputs. During training process, the accuracy of each

neural weight will be compromised by the training algo-

rithm in order to achieve overall optimum for three outputs,

which will result in an overall accuracy compromise. In

contrast, another option is to use three separate deep net-

works for predicting each value. In this way, each network

Fig. 4 Battery parameters

variation during a race

a temperature b SOC

Table 1 Simulation input

parameters
Inputs Descriptions Range

Drive power limit Maximum total power going out of the RESS 190–225 kW

Regeneration power limit Maximum total power going into the RESS 0–250 kW

Coasting distance Lift and coasting distance before brake point 1 0–120 m

Coasting torque Regenerative brake torque during lift and coasting 0–200 Nm

Ambient temperature Cooling air intake temperature 25–30 �C

Battery initial temperature Battery temperature at the start of simulation 25–60 �C

Battery initial SOC Battery SOC at the start of simulation 0–100%

Table 2 Input and output values

Inputs Discrete values

Drive power limit (kW) 190, 195, 200, 225

Regeneration power limit (kW) 0, 100, 250

Coasting distance (m) 0, 60, 120

Coasting torque (m) 0, 100, 200

Ambient temperature (�C) 25, 27, 28, 30

Battery initial temperature (�C) 25, 28.5, 31,…, 60

Battery initial SOC (%) 2.5, 5, 7.5,…, 100

Outputs Expected range

Battery temperature rise (�C) - 10…10

SOC drop (%) 0…5

Lap time (s) 83…87
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will only need to focus on a single output. Therefore, the

accuracy of each output can be further improved. The

accuracy of these two options is shown in Fig. 5. By

comparing parts (a) and (b), it can be seen that the 3-output

network produced twice as much mean square error as the

separate network option. This result shows that separate

networks are better in predicting these three values. The

error difference proves that when the feature extraction and

mapping layers are shared by three less-related prediction

targets, the overall accuracy of the network will be com-

promised. Therefore, separate networks are used in this

study.

The number of hidden layers, which distinguishes a

‘deep network’ from a ‘shallow network,’ is another key

factor of prediction accuracy. Deep networks have stronger

capabilities to deal with complex, strong nonlinear prob-

lems. In order to study the effect of network depth, net-

works with different layers are tested, with number of

hidden neuron fixed to 10 for each hidden layer and sig-

moid chosen as activation function. Three different training

methods are tested and compared. Levenberg–Marquardt

(LM) [46] method is used to train the SOC and lap time

prediction networks, while Bayesian regularization (BR)

[47] method is used to train the battery temperature net-

work. The reason of such choice of training method is

demonstrated in Fig. 6a. In terms of the mean square error

after training, it can be seen that the neural networks are

very good at lap time predictions and have relatively less

accuracy on battery temperature predictions. Among the

three training algorithms, Levenberg–Marquardt-based

methods are better than the scaled conjugate gradient

method. While LM produces better results in lap time and

SOC predictions, BR performs better in training battery

temperature prediction networks. LM is more accurate as is

observed in lap time network and SOC network trainings.

But when the samples are noisier like in the battery tem-

perature case, BR performs better than the traditional LM.

Therefore, when later deciding the layout of the networks,

LM will be used to train the lap time and SOC networks,

while BR will be used for battery temperature network as

the battery temperature data are noisier than the other two.

The corresponding MSE results for different network

depths are also shown in Fig. 6. It can be seen from the

results that for all the three prediction objects, the mean

square error decreases as the neural networks become

deeper. The MSE decreases quickly before the number of

layers increases to 3. More layers allow the network to

extract and map higher nonlinear features from the datasets

and therefore result in higher fitting quality. After the

number of layers goes higher 4, network accuracy

improves very slowly which suggest an adequate depth for

feature extraction and mapping. By comparing the absolute

error of the battery temperature prediction of different

network depth (Table 3), the effect of this parameter can be

seen more clearly. The deeper network produces much less

errors than shallower networks. With only 0.04% of the

prediction result having error greater than 0.2 �C, the

5-layer solution looks promising. Using that 5-layer net-

work, the SOC and lap time prediction results are also very

accurate. So, three 5-layer prediction networks are used in

this study in the following parts.

3.2 Race prediction validation

The neural networks are developed for a single-lap per-

formance prediction. To check the feasibility of a multi-lap

race prediction using the proposed networks, a 32-lap race

is predicted through 32 iterations of the three networks;

meanwhile, the same race is simulated using the previously

developed lap time simulation platform. The results

Fig. 5 a 3-Output network error, b 1-output network error
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Fig. 6 MSE result for

a different training methods

b lap time, c battery SOC drop

and d battery temperature rise
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comparison is shown in Figs. 7 and 8. According to these

results, the general patterns of ANN and simulation plat-

form results are very close to each other. The max devia-

tion occurred in the final laps of the race. The ANN

predicted a battery temperature which is 0.37 �C lower

than the lap time simulation by the end of the race.

In terms of the energy consumption, the proposed ANN

predicts a very close result to the lap time simulation

software too. Similar to the battery temperature, the devi-

ation has also increased during the final laps. By the end of

the race, the proposed ANN has predicted a 0.628% lower

SOC than the actual simulation.

It can be seen from Figs. 7 and 8 that the prediction

deviation increased after lap 26 when there is no more

regeneration due to the battery high temperature (higher

than 50 �C). This limit crossing results in a much faster

energy consumption and thus a quicker SOC drop. Mean-

while, the missing of regeneration removed an important

part of heat generation. Both these phenomenons lead to a

stronger nonlinear transition of the trend of the perfor-

mance indicators. Because the mechanism nature of ANN

training aims to reduce the overall loss of prediction errors,

this particular point (50 �C) is compromised compared to

other points. As a result, relatively larger deviations can be

observed in the figures mentioned above. However, the

Table 3 Battery temperature

prediction error comparison
2-Layer network 5-Layer network

Biggest error 1.602 �C 0.2245 �C

Proportion of samples error[ 0.4 �C 7.9% 0%

Proportion of samples error[ 0.2 �C 30.9% 0.04%

Proportion of samples error\ 0.1 �C 47.6% 95.6%

Fig. 7 Battery temperature

trend throughout a race

Fig. 8 SOC trend throughout a

race
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accumulated deviation by the end of the race is very small

and acceptable. In terms of prediction speed, the ANN

prediction models help to save a huge amount of time.

While the lap time simulation platform takes more than

20 s to simulate a single lap, within the same amount of

time, the ANN can produce more than 300,000 results. It

can be confirmed that the ANN prediction models can

replace the lap time simulation platform as a fast perfor-

mance prediction tool. Using such a fast prediction tool,

searching algorithms can be utilized to develop a FE race

strategy. So, the ANN prediction model works as an

evaluation function in the searching algorithms. In the next

section, Monte Carlo tree search method is introduced as

an intelligent search technique to be used for FE racing

strategy development in combination with ANN.

4 Race planning and optimization using
Mont Carlo tree search

4.1 Monte Carlo tree search (MCTS) method

Monte Carlo tree search is a searching algorithm based on

Markov decision processes (MDP) [48] and Monte Carlo

method trying to find optimal decisions in a given space.

While intermediate states do not need to be evaluated in the

Monte Carlo simulation process, MCTS is very good at

shrinking large-sized problems by only taking the reward

from the terminal state at the end of simulation process,

then balancing the exploitation and exploration. Therefore,

MCTS is very suitable for solving the previously raised

energy management strategy problem. Although the pro-

posed ANN saves a huge amount of computation time in

performance predictions, still it is impossible to use an

exhaustive ‘direct search’ for such a big-scale strategy

problem. This is the reason why an advanced search

technique like MCTS is used here.

The MCTS is completed by running a number of MCTS

iterations. As shown in Fig. 9, each MCTS iteration com-

prises four processes, selection, expansion, simulation and

backpropagation. Each time the tree agent searches into a

deeper layer, it is considered as a lap finished in the race. In

this study, a 32-lap race means the tree has a maximum

depth of 32 layers.

Starting from the root, the agent selects among the

parent’s child nodes and then moves to the child node with

the highest upper confidence bounds for trees (UCT) value

[49]. It then takes that child as a new parent to proceed the

selection process. The selection is terminated when the

agent reaches unvisited child (leaf) node or a terminal state,

which technically is also a leaf node. The UCT value in this

study is calculated using the following equation:

UCT ¼ Q s; að Þ �mina2A Q s; að Þ
maxa2A Q s; að Þ �mina2A Q s; að Þ þ Cp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 lnN sð Þ
N s; að Þ

s

ð5Þ

where the reward Q s; að Þ is normalized as the exploitation

term and parameter Cp is the balancing factor which in this

study is assigned
ffiffiffi

2
p

as default according to Kocsis and

Szepesvári [49].

After selection, if the agent ends up at a node which has

been visited but does not have any child yet, the node will

be expanded according to the tree policy. In this section,

tree policy is a full expansion policy which expands all the

possible actions in the action space based on the current

state (i.e., battery temperature, battery SOC and number of

laps in our problem). Table 1 shows the defined possible

choices of the four parameters that driver can change

during a race.

Fig. 9 Monte Carlo tree search

iteration
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If a parent state has no constraints, its action spaces will

contain 68 different setting combinations; thus, 68 child

nodes will be created following the parent node. If a parent

state has constraints such as battery temperature higher

than 50 �C or ‘Attack mode’ already activated, the action

space will be smaller resulting in less child nodes. While

the child nodes are created, the child states will also be

updated through the previously developed three prediction

networks based on each child’s setting configuration. By

the end of the expansion process, the agent will move to the

first expanded child node, which, according to Table 4,

represents the choice of the lowest values for the four

setting parameters.

After the expansion if the agent is at a node which has

not been visited since being created, instead of expanding

it, a simulation process will be completed starting from the

node to the end of the tree. The simulation process starts

from the state of the node. Three prediction networks will

iterate for the remaining laps of race. In each iteration, the

setting configuration is randomly picked from the action

space based on the starting state of that iteration.

By the end of the simulation process, the SOC, battery

temperature (TBat in �C) and race finishing time (t in sec-

onds) results are used to calculate the reward through the

reward function in the following:

R s; að Þ ¼ 2800� t; SOC[ 0 and TBat\60

0; else

�

ð6Þ

The reward will be greater when the car uses shorter

time to successfully finish the race, while a DNF results in

reward of 0.

In the backpropagation process, the number of times a

node has been visited is firstly updated. The parameter

N s; að Þ of the newly simulated node is assumed to be 1

instead of default 0 when created; meanwhile, the value of

N s; að Þ of all its parent nodes will increase by 1 due to the

new node. After the visiting times are updated, the UCT

value of each node is upgraded based on the new Q-value

and new visiting times.

4.2 Application of MCTS in different race
scenarios

The complete MCTS is coded and tested to see how it

reacts to different possible scenarios both before and dur-

ing a race. The following result is obtained after 100,000

MCTS iterations.

4.2.1 Pre-race planning

A problem is raised in Sect. 2.1 that if no strategy was

planned and driver kept pushing throughout the race, a

DNF would be the result due to an over-heated flat battery.

As a pre-race application, the MCTS will search for entire

32 layers of search depths. The MCTS solution is shown in

figures.

It can be seen from Fig. 10 that MCTS instructs that

‘Attack Mode’ needs to be activated at lap 3 and later

lower driver power will be needed at certain laps, and

driver needs to do coasting during the race. Meanwhile,

MCTS also gives the recommended regeneration power

and coasting torque. The race result shown in Fig. 11

demonstrates that the MCTS solution has successfully

slowed down the battery temperature rise and the energy

consumption. The race was successfully finished with SOC

of 0.88% and battery temperature of 59.8 �C at the end of

the race.

A pre-race plan has been developed using MCTS.

However, uncertainties will lead to some unexpected sce-

narios during the race. The following sections demonstrate

the capability of MCTS solving different problems that

might happen during a race.

4.2.2 Aggressive driving

This scenario can be triggered by an aggressive driver

trying to chase one of his rivals. It is assumed that driver

keeps pushing after the ‘Attack Mode’ laps at highest drive

power with no coasting for 6 more laps (the ‘A’ area shown

in Fig. 12) and comes back to the pre-race plan after those

laps. The result of this aggressive driving and the MCTS

reaction is shown in Fig. 13. The dashed lines in Fig. 13

show that the aggressive driving has resulted in a flat and

over-heated battery which led to a DNF with the pre-race

plan. After the aggressive laps, MCTS gave a solution that

driver needs to lower down the drive power and do more

coasting in the remaining laps (the ‘B’ area shown in

Fig. 12). Despite that the race finishing time will be longer

than what was planned, the MCTS has been able to elim-

inate the DNF crisis.

Table 4 FE driver’s choices of setting parameters

Parameter Choices

Driver power (kW) 190, 195, 200, 225

Regeneration power (kW) 0, 100, 250

Coasting torque (Nm) 0, 100, 200

Coasting distance (m) 0, 60, 120
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4.2.3 Different ‘Attack mode’ lap

It is probable that a heavy traffic will reduce the worthiness

of activating ‘Attack mode’ and later cleaner laps will

more benefit the ‘Attack mode’ in terms of lap time. It is

assumed that driver decides to activate ‘Attack mode’ in

lap 16–17 (the ‘A’ area shown in Fig. 14a) instead of pre-

race planned lap 3–4. According to the prediction model,

this resulted in a different battery temperature trend (the

‘A’ area shown in Fig. 15a) and an over-heated battery

before the race finished (dashed line in Fig. 15b). After the

‘Attack mode’ laps, MCTS gives a solution in which slight

Fig. 10 MCTS solution, a drive power, b regeneration power, c coasting distance, d coasting torque

Fig. 11 Race results comparison: a battery SOC, b battery temperature
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lower drive power and more coasting are required. In this

way, the battery temperature was kept below 60 �C till the

end of the race. However, it can be observed in Fig. 15b

that the MCTS solution has found a faster way to finish the

race which suggests that the pre-race plan was not the

optimal solution. This will be discussed later.

4.2.4 Safety car scenario

In modern motor racing, especially the narrow street-based

FE races, it is very likely that incidents would happen

which result in safety cars being deployed. When the safety

car is out, drivers will be driving in a very slow pace on the

Fig. 12 Racing commands: a drive power, b coasting distance

Fig. 13 Race results: a battery temperature, b battery SOC

Fig. 14 Race commands: a drive power, b coasting distance
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track meaning that the energy consumption and heat gen-

eration will be very low during those laps. It can be seen

from the ‘A’ area shown in Fig. 16a that during lap 5–7

when safety car is out, the battery temperature is cooled

down. If driver keeps driving in the planned way, by the

end of the race, the battery temperature will have a big

margin from over-heating and there will be plenty of

energy left as shown in the ‘C’ area shown in Fig. 16b.

After the safety car went in, the MCTS gave a solution as

shown in the ‘A’ area in Fig. 17a and the ‘B’ area in

Fig. 17b. As a result, there will be no more need for

compromise in drive power output and also there will be

less need for regeneration. The new MCTS solution after

safety car laps proved to be 3 s faster (the ‘C’ area shown

in Fig. 16b) comparing to the original pre-race plan.

4.2.5 Environment change

Weather is one of the most unpredictable and uncontrol-

lable factors during a race. The ambient temperature has a

direct impact on the cooling system. Therefore, if the

ambient temperature changes, reaction has to be taken to

adapt to the new environment. Figure 18a shows a scenario

where the ambient temperature rises by 2 �C at lap 10. It

can be observed that the battery temperature rises faster

than what was predicted before the race. If the driver keeps

driving in the planned way, an over-heated battery will

cause a DNF before end of the race. In order to eliminate

the crisis, the MCTS has generated a solution as shown in

Fig. 19. To keep the battery temperature in a safe range,

drive power needs to be lowered down and a lot more

coasting is required (the ‘B’ area shown in Fig. 19). This

resulted in a 2-s slower race time (shown by arrow B in

Fig. 18b) but no more DNF threats.

4.3 Assumptions and discussion

From the previous sections, it is clearly observed that such

integration of ANNs and MCTS successfully generated

solutions to both pre-race and in-race scenarios. In the pre-

race planning scenario, the MCTS generated solutions for

all four strategy-defining parameters (driving power,

Fig. 15 Race results: a battery temperature, b temperature at the end of race

Fig. 16 Race results: a battery temperature, b battery SOC

Neural Computing and Applications

123



regeneration power, coasting distance and coasting torque).

From the SOC and battery temperature, it can be observed

that the MCTS utilized the full working range of the battery

to generate a fast race finishing strategy which gives a

reference for the following in-race scenarios.

To create an aggressive driving problem, it was assumed

that the driver kept pushing after the ‘Attack mode’ for a

number of laps. The reason for such assumption is that in

real world it is very common that a driver failed to overtake

his opponent with the help of ‘Attack mode’ but could get

closer within those two laps. So it is rational to make such

assumptions to mimic the attempt of a real driver keep

trying to overtake his opponent. The number of aggressive

laps was set to 6 to create a significant impact to the pre-

race plan as can be observed from the figures that such

changing would lead to a DNF. More laps of aggressive

driving would not be rational in this case because in real

world it would be very likely to raise other issues such as

brake overheating or tire degradation and such irrational

driver would not be realistic.

The case of different ‘Attack mode’ activation repre-

sents another common scenario in-race event that the best

overtake opportunity not always appears as planned. Usu-

ally drivers have to drive normally to wait for that oppor-

tunity to raise. Therefore, to mimic such problem, the

‘Attack mode’ was set to be activated later in the race. One

feature of interest is observed in Fig. 15b that when MCTS

tried to eliminate the DNF threat, it found a faster solution

to finish the race which means the pre-race plan was not the

optimal. The reason behind can be explained as such that it

is naturally very hard for MCTS to generate the optimal

solution given such a big scale of problem. This shows the

potential that such algorithm can be improved. Different

ways have been proposed in relevant studies. A part of

future work can focus on such improvement on the race

strategy application.

Fig. 18 Race results: a battery temperature, b temperature at the end of race

Fig. 17 Race commands: a drive power, b regeneration power
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Incidents like crashes are very likely to happen in the

street circuit racings especially in the early stages when

drivers are closed and fights to overtake each other.

Therefore, in the third in-race scenario, it was assumed an

incident happened and safety car was deployed for 2 laps to

wait for any hazards to be eliminated before the race

returns to normal. Under the safety car period, the energy

consumption and battery temperature rise are much lower

than normal, which leaves a big margin from DNF to work

on. From the result it can be seen that the MCTS suc-

cessfully took advantage of that margin and updated the

strategy to allow the driver to finish the race 3 s faster,

which is a big improvement in motorsport application,

compared to sticking to the pre-race plan.

The final scenario represents another tricky issue in the

real world when race events are held in a place where

weather is significantly changeable. The weather change

would very likely to change the finish of the race because

this basically changed the conditions for thermal manage-

ment of the battery. The creation of such scenario in this

study aimed to test the algorithm’s capability of reacting to

such weather changes and the MCTS succeeded. However,

in real world this could be more complicated because the

weather would also change the track condition which also

has a big impact on the vehicle performance. This has the

potential to become a part of future work.

5 Conclusions and future work

In this study, artificial neural network prediction models

were built to predict the FE car performance. The effect of

ANN depth and number of outputs on prediction accuracy

was studied. Deeper ANNs produce less prediction errors,

and separating the lap time, battery temperature and battery

SOC prediction ANNs contributes to higher accuracy than

using a single ANN to predict three parameters simulta-

neously. In terms of computational time, the ANN pre-

diction models can produce more than 300,000 results

within 20 s, while a traditional lap time simulation soft-

ware can only produce one. The ANNs proved to be a

powerful replacement tool of not only a single-lap simu-

lation but also a race (multiple consecutive laps) simulation

with decent accuracy and huge advantage in terms of

computational speed. This has made it possible to run an

advanced searching algorithm based on a big action space

to solve the multi-stage strategy problem.

A Monte Carlo tree search algorithm was coded inte-

grating the ANN prediction models as reward function. The

MCTS is able to generate decent strategic solutions from

the start of a race as pre-race planning. Additionally, it can

also make quick and high-quality reactions to unexpected

scenarios in a race, such as improper driving, safety car and

ambient condition changes, eliminating potential battery

temperature or energy crisis in order to finish a race suc-

cessfully and competitively.

Based on the current study, there are limitations which

could be improved in future work in such directions. First,

the strategy solution of this MCTS was not the optimal.

Further work can focus on improving the tree policy,

rollout policy and searching efficiency to improve the

overall performance of the algorithm. Second, apart from

the 7 inputs of the neural network, there are other param-

eters that can affect the vehicle performance such as track

condition, relative race position, tire condition. These

variables will further increase the scale of problem and

computational cost. But success of bringing these into

consideration would make this algorithm more powerful.

Third, the algorithm architecture proposed in this paper

gives the solution within seconds which is fast enough for

pit-wall applications. However, considering the nature of

motorsport, if this algorithm can be applied as a part of on-

Fig. 19 Race commands: a drive power, b coasting distance
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board system can calculate solution in real time, this would

more significantly benefit the strategy.
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