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ABSTRACT

Freeform surfaces find wide application, particularly in optics, from unique single-

surface science programmes to mobile phone lenses manufactured in billions.

This thesis presents research into the mathematical and algorithmic basis for the

generation and measurement of smooth freeform surfaces. Two globally

significant cases are reported: 1) research in this thesis created prototype

segments for the world’s largest telescope; 2) research in this thesis made

surfaces underpinning the redefinition of one of the seven SI base units – the

kelvin - and also what will be the newly (and permanently) defined value for the

Boltzmann constant.

The research demonstrates two underlying philosophies of precision engineering,

the critical roles of determinism and of precision measurement in precise

manufacturing.

The thesis presents methods, and reports their implementation, for the

manufacture of freeform surfaces through a comprehensive strategy for tool path

generation using minimum axis-count ultra-precision machine tools. In the

context of freeform surface machining, the advantages of deterministic motion

performance of three-axis machines are brought to bear through a novel

treatment of the mathematics of variable contact point geometry. This is applied

to ultra-precision diamond turning and ultra-precision large optics grinding with

the Cranfield Box machine. New techniques in freeform surface representation,

tool path generation, freeform tool shape representation and error compensation

are presented.

A comprehensive technique for very high spatial resolution CMM areal scanning

of freeform surfaces is presented, with a new treatment of contact error removal,

achieving interferometer-equivalent surface representation, with 1,000,000+

points and sub-200 nm rms noise without the use of any low-pass filtering.
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accuracy the closeness of a measured or controlled

value to the true or correct value

1

additive

manufacturing

any of a number of processes of manufacturing

involving accretion or adding material to an

already existing substrate – cf. subtractive

manufacturing

102

affine preserving parallel relationships – an affine

transformation, such as scaling, translation,

rotation, linear shearing preserves parallelism,

ratios of distances between collinear points,

and therefore preserves planes and their

normal tolerance scale relationships although

not necessarily angles

130

aliasing a sampling artefact where (in particular)

frequencies and also amplitudes of essentially

periodic signals may be falsely represented

where sampling frequencies are too low

compared with the signals’ periods

53

apodization a windowing or filtering technique where

multiple adjacent data points are combined to

change the value of one, a function which is

then successively applied to each data point

55

approximation a process of finding a dependent from an

independent variable given a data set where

this relationship is known at discrete values,

specifically the approximating function may not

have the same value as the existing points – cf.

interpolation

39

asphere literally not a sphere – taken to mean a surface

of revolution of a curve, usually of a curve with

unipolar curvature (curving just one way)

23

Avogadro

constant

the number ~6.02×1023 mol-1 of constituent

particles in one mole of substance – its quantity

defines the mole

18
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Bézier spline a parametric curve defined by control points

which (excepting first and last) do not lie on the

curve

9

binary search

successive

approximation

an approximation technique in which a result is

reached by splitting available options into two

(roughly) equal parts, selecting (by a test) the

part containing the solution, and thus repeating

binary division until only one potential solution

remains

128

Boltzmann

constant

a fundamental physical constant ~1.38×10-23

m2·kg·s−2·K-1 relating particulate energy with

temperature

2

canonical form a standard form of representation – (often)

specifically the simplest, with lowest complexity

of arrangement

24

closed solution an exact solution which can be reached in a

finite number of mathematical operations

162

conicoid a surface of rotation of a conic section, broadly

a quadric - specifically a second-degree

surface of three variables such as a

hyperboloid, ellipsoid, paraboloid or sphere

24

continuous a pupil that has no breaks or gaps between its

extents, which might otherwise affect its

mathematic treatment

33

convex hull the smallest convex locus of points in X-Y

space that encloses all the defined points for

the interpolating function

72

degree of

freedom

any of a minimum set of directions in which

independent motion can occur – often an

orthogonal set

95

departure the amount or degree to which a surface differs

from a common or simpler shape, which is

usually a conicoid that can be made using

conventional (non-freeform) manufacturing

techniques

21



xxv

TERM introduced on:

page

end effector (normally in robots) an active element that

performs a task, which is placed at the

functional point of a machine – it can be

exchanged, in concept or actuality, for a

different end effector performing a different task

43

explicit a function whose result variable may be

computed from independent variables: e.g. � =

�(�) = �� is explicit for y

23

freeform a surface without global invariance in any axis

of translation or rotation

8

full-aperture it describes a process or procedure which

operates over the whole width (or whole area)

of a component simultaneously

8

implicit a function whose relation to the (result) variable

is given by an equation for which the function

has not been solved explicitly e.g. �(�,�) =

�� + 3�� + �� = 1 is implicit for y

23

interpolation a process of finding a dependent from an

independent variable given a spanning data set

where this relationship is known at discrete

values, specifically the interpolating function

has the same value as the existing points – cf.

approximation, extrapolation

37

material

removal

function

a functional description (usually 1 or 2

dimensional) of material depth removal rate as

a function of distance from centre of tool-

workpiece interaction

42

measurand the object (or quantity) being measured 100

mole see Avogadro constant 2

multivariate a function of more than one variable 24

NaN an IEEE Standard numeric type representing

an undefined value

78

neutral removal an even removal of material across a surface,

to improve surface finish without changing

surface form

51
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numerical

aperture

a dimensionless number (incorporating

refractive index) which characterises the

angular range of light entering or leaving an

optical system NA = � sin�

15

NURBS a highly flexible and arbitrarily precise

mathematical model used to represent curves

and surfaces – a generalisation of a Bézier

spline

35

Orthogonal

polynomials

classes of polynomial ��(�) defined over a

range [�, �] obeying orthogonality criterion

∫ �(�)��(�)��(�)�� = �����
�

�
where ��� is

the Kronecker delta c.f. (2-15) – polynomials

which, because they can be independently

adjusted and summed to fit, are particularly

useful in representing solutions to certain

mathematical problems

31

piecewise a function defined itself by multiple sub-

functions, each applying to a certain interval or

region of the piecewise function's domain – the

intervals generally overlap

28

precision The closeness of a measured or controlled

value to one or more other measurements of

the same quantity

15

principal axes

transformation

a transformation in Euclidean space that finds

the perpendicular axes aligned to a

hyperboloid, ellipsoid etc. simplifying the

algebraic expression for the surface

24

process chain a sequence of process steps each designed to

achieve suitable input quality for the

immediately subsequent one

41

pupil an image of the smallest effective aperture in

the optical system at either the entrance or exit

of the optical system as appropriate – it

determines the effective aperture size

31

radial basis

function

a constituent of a series sum of weighted

functions of radial distance from a series of

38
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different centres – the sum is used to

approximate a surface

Rayleigh

criterion

the generally accepted criterion for resolving

image detail, based on the ratio of the

wavelength of light to the governing image

formation pupil

14

reproducible ability of an experiment or measurement to be

reproduced, either by the experimenter or by

someone else working independently

17

roll-off edge roll-off – the unintended rounding of

edges due primarily to increase in machining

pressure as the contact area decreases at an

edge

109

sag sagitta – the depth of a curve, or depth of

material to be removed from a flat to make a

curved surface

23

sculptured

surface

a freeform surface, usually in the context of a

surface defined by surface patches described

and blended together using polynomial

expressions

8

singular value

decomposition

a factorisation of a matrix relating to its

decomposition using eigenvectors with wide

applications in numerical science – pertinently

in linear algebra and the solution of linear

equations

86

smooth having an even surface, free from sharp

projections

1

specular

surface

a term derived from speculum metal meaning a

reflective surface obeying the law of reflection

in Euclidean geometric optics, where the

incident and (single) reflected ray lie in a plane

perpendicular to the reflecting surface, each

with the same angle to the surface – in common

parlance one might say a specular surface is

'shiny'

39
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spline a curve or curved surface defined by control

points and equations either interpolating

between the points or more often defining a

figure influenced by the points

34

stacked axes a combination of two or more motion

assemblies, where the nominally static part of

one is attached to the moving part of another,

so that the entire mass or inertia of the first is

moved by the second

190

sub-aperture a process or procedure which does not operate

over the whole width (or whole area) of a

workpiece but is directed to different smaller

portions at different times so as eventually to

process the whole

8

subtractive

manufacturing

any of a number of material removal processes

– typically these are conventional ‘machining’

cf. additive manufacturing

102

tool centre point a nominally central point on a tool which is used

as the position-controlled location in generating

a tool path; the tool’s cutting edge or surface is

defined relative to this point

113

traceability an unbroken chain of comparisons relating a

measurement to the definition of its unit

17
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1 INTRODUCTION TO FREEFORM SURFACE

GENERATION

1.1 Background to the research

The term free-form has been used since the mid-20th century to attribute an

irregular shape or structure to objects or even literary and musical compositions

[33]. In the context of this work however freeform implies smooth continuous

surfaces manufactured without rotational symmetry (strictly, without rotational

invariance) about any physical axis of rotation used in their manufacture. This

loose definition of freeform surfaces (freeforms) therefore relates as much to the

manner and apparatus of manufacture as to the final characteristics of the

surface. Further consideration is given to a definition in section 2.1.1 on page 7.

Essentially, the lack of rotational invariance in freeforms renders impracticable

the simple application of traditional types of machining. In general, freeforms are

therefore more difficult to make accurately than rotationally invariant surfaces.

Despite their higher cost, freeform manufactured surfaces are used where their

functional or aesthetic surface properties are demanded. Advances in both

design and manufacturing techniques have rendered the use of freeforms

increasingly common, particularly in optical systems [34]. Here, a combination of

the availability of advanced and dynamic CNC-controlled machines, new

mathematical surface representations and innovative 3D design technologies is

bringing rapid change to high performance optical systems [35]. The increasing

adoption of freeforms moreover, has made many new product types possible –

e.g. miniature freeform projection optics allowing multiple LEDs in any

configuration to produce the shaped illumination required for vehicle headlights’

low-beam [36].

The work described in this thesis has been central to a key research goal with

diverse applications – the production of freeform surfaces of the highest surface

accuracy. Several ultra-precision technologies are required to achieve this.

These include machine design, machining process design, motion control and

surface metrology. Three things are inextricably linked with all these ultra-

precision technologies: a) the mathematical representation of freeform surfaces,

b) the generation of complex toolpaths and c) the acquisition and mathematical
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treatment of freeform measurement data. Toolpaths are the co-ordinated

numerical motion descriptions needed to instruct the machining and the

measurement of freeforms. The achievement of (a) and in particular (b) and (c)

form the body of this work, which describes the creation of a comprehensive

system of mathematical treatment of freeform surface generation/measurement

and how it has been applied for two very important cases.

1.2 Research case studies

1.2.1 Acoustic thermometry

The two cases are intrinsic to major scientific objectives of global significance.

The first of these objectives is the revision of the International System of Units

(SI) in which all of the seven base units (metre, kilogram, second, ampere, kelvin,

candela, mole) will be defined by fixing precisely the values of fundamental

constants of nature, which are currently expressed approximately with quantified

uncertainties [37,38]. The case study related to this objective is the lowest

uncertainty measurement ever achieved of the Boltzmann constant, kB, in terms

of which the SI unit of thermodynamic temperature, the kelvin, can be redefined.

This requires the manufacture and measurement of an ellipsoidal resonator

cavity with exceptional accuracy.

In 2007 Michael de Podesta, from the National Physical Laboratory (NPL), the

lead scientist for the ‘Boltzmann project’, approached the author to design the

apparatus and full process to make the cavity and then to deliver it at the highest

possible accuracy [39]. Part of the reason for the approach was the

acknowledged expertise at Cranfield in single point diamond turning (SPDT) [40]

and specific research in freeform surface generation through SPDT [18] for

infrared (IR) optics for the company Thales Optics, supported through the UK

Engineering and Physical Sciences Research Council (EPSRC) funded Cranfield

Innovative Manufacturing Research Centre (IMRC).

The ellipsoid specified for the Boltzmann cavity, with around 124 mm internal

dimension, is tri-axial with fractional eccentricities of 0.0005 and 0.001, and is

therefore without rotational invariance and thus freeform. This has been made

using single point diamond turning (SPDT) with an ultra-precision lathe using the

novel mathematical techniques explained herein.
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1.2.2 Extremely Large Telescope optics

The second major scientific objective is the creation of what will be the world’s

largest optical telescope. The case study related to this objective is the grinding

of mirror segments for the primary mirror of the European Extremely Large

Telescope (E-ELT) – which will be the first ELT ever made, as determined by the

size of its primary mirror. In 2003, UK-based collaborators from Cranfield

University, Royal Observatory Edinburgh, Cranfield Precision, NPL, Thales

Optics and University College London (UCL) conducted a Large Optics

Manufacturing Study (LOMS) [41] for Thales Optics, Optic Technium, and the UK

Government’s Department of Trade and Industry. This study identified existing

manufacturing chains and proposed new ones oriented towards satisfying an

evident and growing demand for ultra-precise large optics. As identified in the

2003 LOMS report, current (2017) demand for large optics comes both through

requirements of industry, national and international science programmes.

Industrial requirements for large optics are driven by i) extreme ultra-violet (EUV)

microelectronics lithography systems and ii) earth observation satellites; science

programmes include iii) large-scale astronomy projects and iv) nuclear fusion

energy generation.

Instigated by the success of LOMS, in 2004 new research was initiated at

Cranfield University and UCL into ultra-precise large optics fabrication. This

research, in which the author was primarily engaged, was funded through a Joint

Research Councils’ Basic Technologies project entitled “Ultra-Precision

Surfaces; a New Paradigm” (BT-UPS) and entailed the design and build of an

ultra-precision large optics grinding machine – Big OptiX (BOX) at Cranfield. This

machine employs the novel mathematical techniques explained herein. Following

the success of this programme, in 2006 EPSRC funded the creation of an

Integrated Knowledge Centre in Ultra Precision and Structured Surfaces (IKC-

UPS2), a research project in which the author was an Investigator, with facilities

based in the Universities Cranfield, UCL & Cambridge and at Optic Technium.

One of the successes of the IKC-UPS2 was the winning in 2008 of an order for

Optic Technium from the European Southern Observatory (ESO) for the

manufacture of several prototype mirror segments for E-ELT. These were ground

using the prototype BOX machine, initially using funding from the IKC-UPS2

research project. In the E-ELT design finally approved for construction [42], each
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of the required 931 hexagonal mirror segments for the primary mirror (M1) is

about 1.45 metres in size (corner to corner). 798 of these are mounted at any one

time. When combined, the segments form one rotationally symmetric ellipsoidal

concave surface, over 39 metres in diameter with an 11-metre central obstruction.

Each segment however is more than 5 metres from the optic axis of symmetry of

the overall M1 mirror, so all segments are freeform surfaces when manufactured

individually.

1.3 Research hypothesis

The hypothesis of this research is that the following is possible. The research

question can be posed in two parts. Can ultra-high accuracy smooth freeform

surfaces, such as those required by the application case studies, be

manufactured by minimum axis-count machine tools, such as the Cranfield BoX

3-axis grinding machine or the Moore UPL 350-3 axis diamond turning machine,

even though those machines, as configured, do not possess the capability to

change the orientation of their tools? Can an industrial standard large CMM

produce the high spatial resolution data-intensive surface maps required to

perform error compensation and validation of the case study freeform machining

with a measurement uncertainty performance beyond its advertised capability

and a data volume beyond its software capacity?

The aim and objectives of the research are outlined in chapter 3.

1.4 Thesis structure

In this thesis, the research and development of freeform generation processes

are described for two globally significant scientific cases calling for machining and

measurement performance beyond pre-existing practice. In chapter 2, firstly the

scientific and commercial contexts are introduced through two cases in each;

then the mathematical bases for previous work are explored. This focuses on

satisfying the two scientific demand cases that will be the subject of chapters 7

and 8 and identifies the state of relevant knowledge. In chapter 3, gaps in

knowledge are re-emphasised and a statement of aim and objectives given. The

approach to the research is explained, including an explanation of the order and

content of the principal technical chapters, 5 - 8 (which address the research

objectives) in the context of the research methodology. In chapter 4, the

experimental equipment used in the study is introduced. In chapter 5, extensive
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new metrology algorithms are introduced underpinning the entire study, with a

summary discussion. In chapter 6 algorithms and techniques are introduced; with

detailed information on toolpath compression. In chapter 7, freeform

manufacturing case study 1 (for acoustic thermometry) is presented, re-

examining the demands set out in chapter 2, adopting the equipment and

procedure laid out in earlier chapters, presenting results with analysis and

discussion. In chapter 8, manufacturing case study 2 (for ELT mirror segments)

is presented, similarly re-examining the demands, equipment and procedure with

results, analysis and discussion. In chapter 9, conclusions and summary of

achievement are presented – reiterating the contribution to knowledge, impact

and dissemination of research. In chapter 10, recommendations for further work

and exploitation are collated. References are placed after chapter 10 and the

manuscript concludes with an Appendix, containing specific elements of some

coded algorithms.

Within the text, terms in the glossary (page xxiii) are introduced in italics. Some

abbreviations and acronyms are listed on page xviii.
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2 BASIS FOR RESEARCH

This chapter gives an historical background and a basis for the research through

a review of relevant literature and a background to the required mathematical

representations.

First, an appropriate definition of “freeform” is established.

Then the origin of commercial demand for freeforms is considered in the context

of this research. This establishes how two principal and distinct manufacturing

areas: infrared optics and lithography optics, whatever their commonalities,

require differing manufacturing processes. For freeform infrared optics, diamond

turning is the principal machining technology, whereas for lithography optics

grinding is frequently a preparatory process only, through its delivery of near net

shape spherical machining.

The demands set by the scientific objectives of the two scientific case studies of

this thesis are then considered, and these map closely to the industrial cases

introduced earlier.

A range of potential mathematical descriptions of freeforms is discussed along

with tool path algorithms and their automated development.

Non-specular freeform surface areal measurement techniques are reviewed and

finally there is an outline of the process of position-controlled machining

(techniques of this thesis) of freeform surfaces.

The chapter concludes with a statement of the relevant gap in knowledge.

2.1 The nature of a freeform

The development of functional and aesthetic continuous smooth curved surfaces

that are literally manu-factured (hand-made) [43] of course pre-dates recorded

history. More recently, similar functional surfaces by contrast have been

manufactured in a more modern sense - created with the aid of apparatus or

machinery imparting relative motion between a tool and a workpiece. The detail

of the early history of mechanised surface creation is certainly controversial, but

it likely stretches back several thousand years. Enoch [44] claims the existence

of manufactured mirrors 8,000 years old and Egyptian lenses of high quality

4,000+ years old, for instance in the famous “Seated Scribe” in the Louvre [45].

The equally famous Babylonian “Nimrud” lens in the British Museum, itself nearly
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3,000 years old, is plano-convex with a focal length of 12 cm; whether this

represents a functional specification or is merely decorative is debated [46]

although it was likely fabricated on a lapidary’s wheel [47]. These ancient optical

surfaces - the earliest of which (if Enoch is correct) would be roughly

contemporary with the development of wheels (spinning, potters’ &

transportation) [48] - were made with a technique giving rotational invariance of

shape, as were the vast majority of optics manufactured until the 21st century [34]

for reasons both of manufacturing ease and available design capability.

2.1.1 Freeform definition

Fang [49] defines a freeform as a surface “with no axis of rotational invariance

(within or beyond the part)”. Under this definition, the E-ELT telescope segments

are not freeforms despite freeform techniques being required to make them. Jiang

[50] introduces sub-classifications: 1 – freeforms with steps/facets, in other words

with slope discontinuities; 2 – so called tessellated surfaces, with a repeated

structure (that might also have the discontinuities of class 1); and 3 – smooth

surfaces with a global geometry definition. Savio [51] classifies freeforms as

complex geometrical features according to the definition in ISO 17450-1 [52] with

no invariance under any of the invariance classes (prismatic, revolute, helical,

cylindrical, planar, spherical); in other words a freeform surface will always

appear to be changed in position or orientation by a translation or rotation. Under

this definition, a tilted flat (being rotated about an axis not normal to the surface)

would not be a freeform despite freeform techniques being required to make it.

These definitions, which might be called purist definitions, relate to the definition

of the surface geometry in a most general way, with no assumption about

manufacturing technique.

For the author’s purposes, a definition is required that reflects the requirements

of making the surfaces, which has implications to the way they are described

mathematically. This might be called a definition of freeform machining, rather

than of the surface per se. Thompson [34] uses such a definition “A ... surface

that leverages a third independent axis (C-axis in diamond turning terminology)

during the creation process to create a ... surface with as-designed non-

symmetric features.” Garrard [53] explicitly identifies the issue of off-axis

machining in the definition “Freeform ... surfaces are defined as any non-

rotationally symmetric surface or a symmetric surface that is rotated about any
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axis that is not its axis of symmetry”. This manuscript will adopt the following

machining process-centric definition with some elements of all these but with

generic application.

A freeform is a surface made using freeform machining which means the

surface as mounted is without global invariance in any axis of translation or

rotation possessed by the machine.

2.2 Demand for freeforms from commercial objectives

The manufacturing science of freeform imaging-optical surfaces has developed

somewhat independently from the equivalent manufacturing science for what

have been called sculptured surfaces in the wider field of Numerically Controlled

(NC) machining. “Sculptured” and “free-form” were used together by Coons [54]

as early as 1967; numerous other authors have explicitly expressed the

equivalence of the terms [51,55,56]. There are several reasons for this

independent development. Principal among these, as intimated by Thompson

[34], may be the commonly circular aperture of imaging optical systems. This has

discouraged the adoption of X-Y polynomial surface descriptions common in

other fields and is also linked to the production techniques conventionally applied

for imaging optics, which have tended to be predominantly full-aperture and

rotational; whereas the NC machining tradition (in optics parlance) is sub-

aperture for a variety of material removal techniques.

The wider development of freeforms has been promoted by demands for

aesthetic and functional surfaces; according to Choi [57] the functional

applications include:

• aerodynamic: aerofoil (jet engine), impeller (compressor), marine

propeller, etc.;

• optical: lamp reflector (automobile), shadow mask (TV-monitor), radar-

dish, etc.;

• medical: parts for anatomical reproduction;

• structural: structural frames (aircraft), sporting goods, etc.;

• manufacturing surface: parting surface (moulding die), die face (stamping

die), etc.
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Early development for systematic characterisation of freeforms was driven

through the 20th Century by aeronautical and automotive applications. The

example of aerofoil development is instructive. Although flat sheet wings will

function, Cayley, the inventor of the aeroplane who built the first successful

manned heavier-than-air craft in 1853, had experimented with aerofoils in 1804

[58]. Phillips patented a series of curved aerofoil shapes in 1884 [59]. Systematic

design and testing of aerofoils was carried out by the US National Advisory

Committee for Aeronautics (NACA) from 1915. These designs used relatively

high degree polynomial descriptions for 3D surfaces, although: i) design success

was empirically achieved through trial and error, ii) designs could only be

transferred to manufacture manually, through graphical processes. From 1925

[60] these designs could be tested without experiment, based on aerodynamic

theory, to some extent avoiding (i). From 1933 [61] a good degree of determinism

was possible in shaping design parameters based on performance goals; this

was closer to today’s design-CAD process. It would be some years before (ii)

could also be avoided by adding CAM to the CAD or indeed before the make-

measure ‘loop’ could be closed with freeform surface metrology.

Later, French automotive engineers at Citroën (De Casteljau) and Renault

(Bézier) were responsible for the early development of Bézier splines which soon

led to their generalisation into non-uniform rational B-splines (NURBS) [62] taking

in the work of Schoenberg [63] and others. The motivation was to find an

arbitrarily precise way to represent 2D curves and 3D surfaces mathematically,

and these were integrated into the proprietary CAD packages of car companies

as early as the 1960s [64] and gradually applied more widely for instance in

marine and aeronautical engineering [65].

Separately, imaging optical requirements for freeforms developed more slowly

through the 20th Century although in the 21st Century their benefits are now clear

[66]. Progressive (varifocal) lenses give asymmetric lens performance. Aves’

patent of 1907 [67] for a progressive lens uses non-coaxial conic sections front

and back to achieve function, in other words without using freeforms. Kanolt

proposed a freeform spectacle lens in a 1959 patent giving an explicit asymmetric

polynomial description, which may be the first such specification in optics [68].

Other commercial production designs do have surfaces which due to their

asymmetry, meet the freeform definitions given by other authors [49,50,51]. Until
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close to the end of the 20th Century however these were all manufactured with

non-freeform machining techniques (the majority still are) using progressively

reset tooling to adjust curvature across the surface in successive passes,

followed by a final polish with a soft lap [69,70]. Newer designs do use freeform

machining, including SPDT [71].

A 1937 patent for a spiral mirror [72] is in most definitions freeform, although its

machining operation is akin to thread cutting. One of the first examples of a true

freeform (as defined in section 2.1.1 on page 8) in an imaging-optical application

was for Polaroid’s SX-70 camera in 1973. The freeform moulds for these had high

degree polynomial surface descriptions and were NC machined using

mathematically corrected toolpaths. This may be the earliest use reported of NC

freeform machining for an imaging-optical application [73]. Demands for

application of freeform imaging optics have proliferated from the very end of the

20th Century, although the earliest meetings on the subject of freeform optics

were probably the ASPE and OptoNet topical meetings in 2004 [74,75]. Two

important current commercial application areas for freeform optics are outlined

below – infrared and lithographic optics.

2.2.1 Commercial case 1: infrared optics

Infrared (IR) radiation spans wavelengths between the visible and microwaves,

approximately 0.75 to 1000 microns. This range is conventionally split as shown

in Table 2-1 (and Figure 2-1) with some minor variation [76,77], the divisions

between bands arising from wavelengths absorbed by common media such as

air or glass. The distinction between bands is also influenced by preferred

wavelengths of the different developed sensor technologies. These effects

together give rise to typical application sectors indicated below.

Table 2-1: IR spectrum

Near (NIR) Short wave

(SWIR)

Mid wave

(MWIR)

Long

wave

(LWIR)

Far (FIR)

0.75 – 1.4 µm 1.4 – 3 µm 3 – 8 µm 8 – 15 µm 15 - 1000 µm

Fibre

telecoms,

night vision

Remote

sensing, long-

range comms.

Thermal

image

weaponry

Thermal

imaging

Astronomical

spectroscopy
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IR optics are used in transmission (lenses) and reflection (mirrors). For lenses,

materials must be chosen for adequate transparency in the selected band.

Refractive index can also be a factor in selection as can chromatic aberration,

density, stiffness, hardness, thermal/mechanical shock resistance, chemical

resistance, machinability and of course cost. These requirements give rise to a

range of material choices including Calcium Fluoride (CaF2), Germanium (Ge),

Magnesium Fluoride (MgF2), Sapphire (Al2O3), Silicon (Si), Zinc Selenide (ZnSe),

and Zinc Sulphide (ZnS). Various materials (principally metals) are commonly

used in reflection - particularly aluminium - with or without coatings.

Several factors have hastened the adoption first, of aspherics (also diffractive

optics) and then more recently, of freeform optics, for IR applications.

1) Design simplicity - the surfaces of rotation of conic sections (which are

aspheric) are widely used in IR applications because they allow elimination

of spherical aberration for reflective as well as refractive surfaces [78].

2) Material - traditional optics production technology has centred on

spherical surfaces in glass, both for mirrors and lenses, simply because

glass is an easy material to work, with grinding/lapping/polishing, and

350 450 550 650 750 nm

Frequency (Hz)
3×
108

3×
106

3×
104

3×
1010

3×
1012

3×
1014

3×
1016

3×
1018

3×
1020

3×
1022

MWIR LWIR FIR

S
W

IR
N

IR

0.75 1 3 8 15 1000 µm

EUV FUV MUV NUV

10-14 10-12 10-10 10-8 10-6 10-4 10-2 100 102 104 Wavelength (m)

Chart showing IR bands of interest and

lithography wavelengths in the context of

the wider electromagnetic spectrum.

1
3
.5

1
9
3

2
4
8

3
6
5

IRUVX-RAYSƔ-RAYS RADIO POWER
microwaves

Figure 2-1: Electromagnetic spectrum



12

spherical (or flat) surfaces are the easiest surfaces to make accurately.

This is because they can be produced by two spindle rotations without

requiring NC motions to generate* the curvature. IR materials, particularly

the ones used for MWIR & LWIR, are amenable to turning [78] whereas

glass isn’t, and turning aspheres with SPDT is relatively simple.

3) Aberrations - the detrimental effect of some surface errors in optics

depends on the ratio of their size to the wavelength of the light; this can

make the absolute surface form accuracy requirements for IR optics less

demanding than for the shorter visible wavelengths. The ability to

accommodate larger surface errors has accelerated the take-up of more

advanced designs requiring aspheric (and freeform) surfaces for IR [79].

4) Optical performance benefits – for instance phase masks for wavefront

coding to increase depth of field [80,81]. There are numerous other

performance benefits to different freeform designs.

5) Reduction in optical surface count - more advanced designs using non-

spherical optics can reduce the optical component count which improves

the following [80,82]:

a. transmission losses (less interposing lens medium)

b. weight

c. cost

A substantial proportion of the MWIR/LWIR work is military-related and classified,

as indicated by Fuerschbach [83] although all-reflective designs which were un-

obscured (not coaxial) were in use for aerial cameras as early as the 1960s as

some unclassified reports have shown [84]. Advances of these designs, based

initially on aspherics [85] and later, on freeform optics [86,87] have been reported,

particularly for astronomical/spectroscopy applications. Optical surfaces of these

types tend to be produced by SPDT [88]. For infrared optics, the surface finish of

SPDT is nearly always considered adequate without subsequent superfinishing†.

* Generating, in this context, implies making a shape by motion synchronised between
two axes, angular or linear, as required for freeform surface creation - as opposed to
spindle rotations which do not require synchronisation
† Superfinishing conventionally is a metal finishing process akin to short-stroke honing
and produces directional surface texture – in this context, and for optical applications
however, it's one of several surface modification techniques producing nearly isotropic
surface texture of very low roughness over a wide range of spatial wavelengths
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Errors in machining can be mitigated of course by error compensation, but a

remaining contribution to error is tool decentring. There are treatments for tool

decentring based on assessment of error profile, which are successful for

spherical forms, but approximate for aspherics [89] and freeforms. In order to

exploit the benefits of a high-resolution 3D measurement capability a technique

for accurate first time setting from the entire aspheric or freeform surface would

give the highest accuracy, but this is not reported in the literature.

2.2.2 Commercial case 2: lithography optics

Litho-graphy, at one time literally writing on stones [90], has evolved via a 19th-

20th Century chemical printing process to modern photolithography. The

application of this to microelectronics production has developed through

enormous investment in technology and equipment to yield one of the most

impressive achievements of modern industrial science. By this technique, the

geometric pattern of a complex integrated circuit is photographically transferred

from an optical mask or reticule to a coated substrate, often with a change in

scale determined by the design of the optics. The coating and the substrate are

subsequently treated chemically or recoated. Combinations of multiple such

processes can create complex multilayer devices with feature sizes of a few

nanometres. The process can be repeated many times on different adjacent

areas of a substrate to make multiple copies of the device.

The continuous improvement in the lithography process has underpinned the

semiconductor industry’s continuous advancement, in pace with the famous

Moore’s Law. This ‘law’ is Gordon Moore’s mid 1960s prediction [91] based on

contemporary trends, that the integrated circuit (IC) transistor count-per-chip

would double every 2 years. It has been predicted on numerous occasions

throughout several decades that lithography will fail to maintain this rate of

improvement [92]. So far, these predictions have always failed to come to pass.

Schaller [93] has explained that the International Technology Roadmap for

Semiconductors (ITRS), which is the industry-led and adopted plan for

technology improvement, takes Moore’s Law as a basic planning assumption; it

may have become a self-fulfilling prophecy. The 2011 ITRS Roadmap and its

2012 update [94,95] take a view to 2025. In this view, Moore’s Law is expected

to hold, although very significant changes in the production technology are

anticipated in this period.
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This continuous improvement in device count is achieved through miniaturisation

– the reduction in scale of device dimensions. The lower limit in a device’s feature

size created using an optical projection process is conventionally set by the

effective imaging resolution of the system – and this is related to the diffraction

limit and therefore the wavelength of light used. Several enhancements to simple

pattern exposure lithography are useful at the shortest available wavelengths to

enhance resolution, such as immersion lithography to improve the resolution

optically by changing the refractive index of the exposure gap (this is used

currently). There are various other techniques such as multiple patterning to

utilise photoresist properties to ‘defeat’ the Rayleigh criterion by a factor of 2 or

more (this is expensive to implement because of multiple exposure). These

techniques can achieve some improvement, perhaps as much as one order of

magnitude in combination for a given wavelength of light; device dimension

however will always be functionally dependent on (essentially proportional to)

wavelength. This fundamental issue has seen the industry move from the near

ultraviolet (NUV) wavelength of 365 nm Mercury lamps in the 1980s through the

KrF excimer laser’s 248 nm in the mid ultraviolet (MUV) band to the current

production standard of the ArF excimer laser’s 193 nm wavelength. This

wavelength is into the so-called vacuum-UV band – wavelengths at which air

begins to absorb significant amounts of UV radiation. The vacuum-UV band is

further split into far ultraviolet (FUV) and extreme ultraviolet (EUV). Figure 2-1 on

page 11 places these wavelengths into the context of the wider electromagnetic

spectrum.

A ‘soft’ end to conventionally-optical lithography’s progress is anticipated around

2020 [92,95] although Moore’s Law adherence is predicted (is planned) to

continue thereafter using new technology. New candidate technologies to replace

193 nm UV lithography after 2020 include: Extreme Ultraviolet Lithography

(EUV/EUVL), Nano-Imprint Lithography (NIL) [96], Multiple Electron Beam Direct

Write (MEBDW) and Direct Self Assembly (DSA). Of these EUV is by far the front-

runner, having very large investment and systems already being series-produced

[97,98,99]. These systems operate at 13.5 nm wavelength in the extreme UV

range (close to soft X-ray wavelengths). Strong absorption by air of this

wavelength enforces use of high vacuum throughout the optical path. Use of

lenses is unrealistic, because materials are unavailable for transmission of EUV;
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optical systems for EUV must therefore be all-reflective. Absorption at the surface

of each mirror is also highly significant at such short wavelengths. This motivates

the design of all-reflective optical systems using an absolute minimum count of

optical surfaces for both mask illuminators and projection optics. Projector

designs are already in service for 13.5 nm wavelength using 6 aspheric mirrors,

for feature dimensions down to 27 nm. More complex designs with 8 mirrors may

be required to increase numerical aperture (NA) to 0.7 for feature dimensions

below 10 nm [100]. It is clear that as for infrared optical systems there are

significant drivers for the reduction of number of optical surfaces in these designs;

moreover, advances can be realised by using freeform mirror surfaces of

considerable size – in excess of 500 mm. For several reasons, these mirrors are

likely to be made of glass or glass ceramic substrates but currently have not been

manufactured.

2.3 Demand for freeforms from scientific objectives

In addition to demands from commercial objectives outlined in 2.2 on page 8, as

discussed by Shore [10,5] demands from large scientific programmes have for a

long time advanced production technology for the highest precision surfaces.

Two important scientific application areas for freeform surfaces are outlined

below – acoustic thermometry and ground-based ELTs. It will become apparent

how these echo the two commercial cases: infrared and lithography optics, given

in sections 2.2.1 and 2.2.2 above.

2.3.1 Scientific case 1: acoustic thermometry

Currently the kelvin, the unit of temperature, is defined as the fraction 1/273.16

of the thermodynamic temperature of the triple point of water (�TPW) – in other

words the difference in temperature between absolute zero and �TPW is 273.16

kelvin. Given there is therefore only one reproducible point defining all

temperature measurements, scaling the unit at higher and lower temperatures

(that differ significantly from �TPW) is susceptible to increased uncertainty. A

technique called acoustic thermometry, involving the preparation of ultra-precise

freeform surfaces by the author, has been used in support of the redefinition of

the kelvin, and to promote more accurate temperature measurements in the

future.
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2.3.1.1 Revision of the SI base units

As part of a rationalisation of our entire system of measurement the “Comité

international des poids et mesures” (CIPM) has proposed a new definition of the

kelvin, in which it will take a value consistent with a defined value of the

Boltzmann constant [101]. This will be formally adopted in 2018 [102]. In our

current system of units, “Le Système International d'unités” (SI) the seven base

units are fixed in size and all quantitative measurements, beyond simple counting,

are based on these. These units have historically been tied largely to physical

artefacts and prototypes that define the units. The fundamental constants, such

as the Planck constant h and the Boltzmann constant kB, describe the

relationships between units through what are essentially the laws of physics.

Under the old scheme these constants, whilst themselves fixed and immutable

universal constants, can be determined only to a level of uncertainty and never

known precisely. This means the values of so-called constants are then a) subject

to change as better measurements are made, and b) dependent on the scale

(size) of the SI units. The SI units have been related to historical artefacts such

as the prototype kilogram, which are subject to actual variation [103] and so the

implications of (a) and (b) are considered unsatisfactory.

Under the CIPM’s proposed revision, the seven units will be defined based on

the value of fundamental constants (and the other base units). This is a

philosophical change that has significant consequences. The relevant

fundamental constants will be given fixed and precise values, based on the best

available data relating them to the existing unit definitions, thus preserving the

existing scale of the units. This will mean that seven fundamental constants (or

attributes) will have fixed values; the situation for other fundamental constants

will be as before.

The definitions of the seven base units will be in terms given in Table 2-2 below,

although the numerical values of the constants will be subject to minor revision

prior to the formal adoption of the proposals in 2018, but not thereafter. Note

definitions for mole and second do not depend on other base units, so there is no

circular dependence - the fundamental constants for the other base units have

been chosen carefully for minimal dependence on other definitions and minimum

uncertainty in measurement.
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Table 2-2: Proposed SI base unit and constant definitions

Quantity Unit Constant / attribute

name Symb. Name / description symbol value

Amount of
substance

mole mol Avogadro constant NA 6.0221415 ×1023 mol-1

Time second s Ground state hyperfine
splitting transition frequency
of the caesium 133 atom

Δν(133Cs)hfs 9,192,631,770 s-1

Length metre m Speed of light in vacuo c0 299,792,458 m·s-1

Electric current ampere A Elementary charge e 1.60217653 ×10-19 A·s

Mass kilogram kg Planck constant h 6.62606957 ×10-34

m2·kg·s-1

Thermodynamic
temperature

kelvin K Boltzmann constant kB 1.380 651 56 ×10-23

m2·kg·s−2·K-1

Luminous
intensity

candela cd Spectral luminous efficacy of
monochromatic radiation of
frequency 540 × 1012 hertz

K(λ555) 683 cd·sr·s3·kg-1·m-2

Philosophically, this scheme means that any measurement can be independently

referenced to experiments which are reproducible subject to experimental

measurement errors, giving the same results anywhere, at any time, without

requiring reference to a prototype standard. Practically, measurements will still

be referenced to national and international standards through traceability. The

difference after the redefinition takes place will be that each step in the traceability

chain is now equivalent, including the first step. Questions such as “what happens

if someone makes a more accurate measurement of the Planck constant, does

the kilogram need to be redefined?” are not problematic, because this is simply

the first step in the traceability chain performed (in concept at least) by a National

Measurement Institute (NMI) such as NPL in the UK. The definition of the unit

and its related constant will be unchanged; they will simply have improved the

quality of their calibration. This is clearly better than having to change the value

of a constant.

2.3.1.2 Measurement of the Boltzmann constant

In the context of preparation for the redefinition of the kelvin it is relevant to

consider techniques for its measurement in terms of the existing base unit

definitions; with reference to the foregoing (section 2.3.1.1 on page 16) this can

also be considered a temperature measurement.

Among techniques that can be used to estimate kB, according to Fellmuth [104]

acoustic techniques using monatomic gases are most suitable. These are based

on equation (2-1),
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�B =
��
��

���TPW�A

(2-1)

where �0 is the speed of sound in the gas, � is its molar mass, �0 is a thermal

characteristic of the gas, �TPW as before is the triple point of water (the

temperature at which the measurement will be made) and �A is the Avogadro

constant. �A is known with very low uncertainty [105] and �0 for monatomic gases

is exactly 5/3 - high purity Argon will come very close to this value (and the

uncertainty can be estimated). An experiment conducted at the triple point of

water therefore that measures � and �0 can determine the �B·�TPW product. The

reproducibility of �TPW for this experiment is important, but is the same

reproducibility upon which the current definition of the kelvin is founded; under

this definition it is exactly 273.16. Therefore, the experiment allows an estimate

of �B.

In Lord Rayleigh’s tour de force The Theory of Sound he published a detailed

analysis of the acoustic resonances in a hard-shelled spherical cavity as early as

1878 [106]. Bancroft in 1955 [107] recommended a spherical cavity for

undergraduate demonstrations of measurement of the speed of sound in a gas,

to show its pressure independence and the temperature dependence

represented in equation (2-1). So these relations were well understood in 1978

when Moldover [108] proposed using a spherical resonator to measure the speed

of sound in argon to determine the gas constant �, which is equivalent to the

Boltzmann constant, related by � = �A·�B. He had been motivated [109] by the

discrepancy between accepted data and a new low uncertainty measurement of

� by Quinn [110] performed using a cylindrical resonator. Tildesley identified an

error in Quinn’s calculation of the effects at limiting density [111] leading to

revision of the data [112] which then represented the best available measurement

of � and which agreed with previous data within calculated uncertainty.

The justification of the superiority of a spherical form over a cylindrical resonator

however is in the Q factor of the resonance – in other words the purity of the

frequency. The justification also reflects weak dependence of frequencies on

shape imperfections in the sphere, identified by Moszkowski in 1955 in respect

of spheroidal atomic nuclei [113]. Small order (volume invariant) smooth

perturbations to the shape induce a second order effect on resonant frequency,

so that a 1000 ppm tolerance on spherical form leads approximately to a 1 ppm
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uncertainty in acoustic resonant frequency. These ideas were formalised for

acoustic resonators [114]. The advantages of spheres (and painstaking

experimental technique) led Moldover to achieve an exceptionally low uncertainty

measurement of �, published in 1988 [115].

A critical improvement to the spherical resonator was suggested by Mehl in 2004

[116] which was use of a so-called quasi-spherical resonator. Moldover had

recognised in 1978 [108] that microwave resonances could be used to determine

the thermal expansion of a spherical resonator cavity – since the microwaves are

largely unaffected by the low-density gaseous medium. The behaviours of the

acoustic resonances and the microwave resonances have other important

differences. The radially symmetric acoustic modes are non-degenerate, which

is to say there is a single mode of resonance with spherical wavefronts describing

the whole gaseous body at a given frequency. By contrast, none of the microwave

resonance modes has radial symmetry; there are multiple similar modes in

different directions which, if the sphere is perfect, will all have the same

frequency. This is the sense in which the microwave resonances are degenerate

and the radial acoustic resonances are not. What this implies is that minor smooth

imperfections in the spherical surface have negligible impact on the radial

acoustic resonance, provided the volume of the sphere isn’t altered by them [113]

whereas such shape imperfections cause a broadening of the microwave

resonance peak (on a frequency versus amplitude plot) because there is a

multiple of very closely valued frequencies. This subjects the measurement of the

frequency of the microwave resonance to greater uncertainty. The new idea

suggested by Mehl [116] was that the degeneracy of the microwave resonance

modes could be broken by deliberately changing the shape of the sphere. The

suggestion was to split the sphere into four equal quadrants, and separate them

by two thin cylindrical washers just thick enough adequately to resolve the

different microwave resonance frequencies. Correctly designed, this could avoid

overlapping other microwave modes whilst not significantly perturbing acoustic

resonance. Such a quasi-sphere approximates a tri-axial ellipsoid and its acoustic

resonance analysis was also reported in 2007 [117]. A tri-axial ellipsoid is, by the

definition given in 2.1.1 on page 8, a freeform surface. The 2007 approach by de

Podesta [39] to the author was in order to find mathematical and machining

manufacturing techniques suitable to make a tri-axial ellipsoidal resonator to a
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sufficiently small tolerance – with an expectation that this would involve diamond

turning. This manuscript in part describes research towards its successful

manufacture.

2.3.2 Scientific case 2: visual wavelength telescope optics

The telescope was invented no later than September 1608; a letter of support for

Lippershey’s patent application is the earliest recorded evidence [118] – and it is

no accident that he was a spectacle maker. So, although spectacle lenses had

been made since the 13th Century, the telescope’s invention came about following

the introduction of new manufacturing techniques for glass lens making in the late

16th Century [119]. The demand for telescope lenses though quickly drove the

development of manufacturing technology [120] – market pull*. Whilst Galileo’s

telescope of 1609 was most likely based on the Dutch instrument brought into

Venice earlier that year [121], he was the first to make scholarly study concerning

lens quality and optical designs, and it was observations with his telescope that

spawned scientific astronomy. Gregory’s and Newton’s later 17th Century

reflecting telescopes were made possible through grinding and polishing of

mirrors [122,123] rather than lenses [124]; it was these precision techniques for

machining speculum metal† that sustained the advancement in the most powerful

telescopes [125] until Foucault’s 1864 invention of the metallised-glass reflecting

telescope [126]. Through the first half of the 20th Century, the emphasis was on

increase in size of primary mirror and the pinnacle of this phase of development

was the 200 inch Hale Telescope at the Palomar observatory completed in 1948

[127]; this was unsurpassed in optical performance for decades. The second half

of the 20th Century saw an emphasis on electronic detectors, instrumentation,

control and analysis as telescopes had more or less reached the achievable limit

of performance for the largest practical monolithic mirror size, reckoned to be less

than 10 metres. No high quality steerable single piece telescope mirror has ever

been made with an aperture larger than 8.5 m in diameter, and this limit is unlikely

now to be surpassed.

The age of segmented mirror telescopes effectively dawned (when the

performance of segmented mirrors could exceed a monolithic mirror) with the

* where the business demand for a product drives technological development to satisfy
the demand
† a white brittle alloy of around ⅔ copper and ⅓ tin which can take a high polish 
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construction of the Keck twins, Keck 1 being completed in 1993 although this was

far from the first example. In 1779 Erasmus Darwin had proposed and sketched

a telescope with a multi-mirror primary [128] although his actual attempts to

create one were unsatisfactory [129]. Guido Horn had begun successful

experiments with composite multi-mirror telescopes as early as 1932; with

practical observations beginning in 1935. His telescopes of the 1950s used

hexagonal segments [130], albeit on a much smaller scale than Keck [131].

Beckers gives a near-comprehensive account (neglecting Darwin) of the pre-

Keck development of multi-mirror designs [132]. Segmentation raises many

manufacturing issues, two of them major: a) the issue of off-axis optics production

and b) edge roll-off. The segments for Keck, 36 for each primary, were hexagons

1.8 metres across corners, each one part of an asphere, but substantially off-axis

– and thus freeforms according to the author’s definition (page 8). Nelson tackled

the manufacturing of these by developing stressed mirror polishing [133]. This

technique, which is suitable for so-called meniscus (< 200 mm thick) mirror blanks

and telescopes with lower departure from sphere, involves polishing with simple

techniques whilst the mirror is stressed with a departure from sphere which is

essentially the opposite of the desired figure. Round mirror blanks start as a best-

fit sphere approximating the final design shape, a bending harness that is

adjusted for individual optical design parameters then subjects them to high

stress, but within the elastic limit, and this harness holds the position whilst they’re

polished to a spherical shape, the bending harness effectively adding the required

departure from sphere. After release they relax close to the design shape. To

solve the roll-off issue, Nelson started with round blanks, which were then cut

hexagonal. This stressed mirror technique has the advantage of employing

conventional and relatively easy full aperture polishing and avoiding all sub-

aperture CNC grinding and polishing; there are disadvantages in the complexity

of harnesses and limitations in curvature. Final accuracy appears to be an issue

however. The figure accuracy for the Keck segments is reported to have been

more than 1 µm RMS [134] after polishing, which is comparatively large. Nelson

employed post-polishing Ion Beam Figuring (IBF) to achieve the required final

figure accuracy, which is now common to most process chains.

There are alternative process chains in use to solve the freeform issue. These

involve sub-aperture work to generate the freeform shape. The distinction
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between full- and sub-aperture techniques is that for a full-aperture technique,

the material removal tool contacts (usually along a curved line) across the whole

of the mirror’s surface so that the resultant surface form is a function of the size

of the tool and the angle between tool and workpiece spindles. This is reliable

and makes inherently smooth and symmetric forms – it’s what allowed high

quality optics to be made hundreds of years before the advent of machine control.

Sub-aperture processes use a tool that is smaller than the workpiece and travels

over the surface – accurate machine control is required to position the tool

(sometimes to orient it too) and the resultant surface form accuracy is in some

way dependent on the accuracy of motion. These processes also tend to rely on

metrology feedback to enhance the accuracy, so that the material removal

process is iterative, gradually approaching the designed shape – closer each

time. The IBF, used to figure correct the polished Keck segments, is itself a sub-

aperture process.

Manufacturing process chains that rely on sub-aperture processes usually have

two or more steps. The first generation step is grinding, which can be full aperture

(to make a spherical blank) or sub-aperture – which has freeform potential. Milling

is an occasional alternative. Sagem use a proprietary grinding process called

SAO employing a fluid jet stage followed by CNC lapping for the first stage

preparation of telescope optics. Details are not published, but it is claimed to

achieve 1 µm or less rms shape error [42]. The Large Optical Generator is a

famous moving vertical orientation spindle machine with a fixed workpiece

position, established in the 1980s [135]. It is used as the initial shape generator

for a range of primarily aspheric optics, up to 8 m diameter with typically single

digit µm rms form accuracies [136]. It has been modified to carry a variety of

machining heads, including polishing, but grinding is always a first step. No other

machine with the geometry of Box has been analysed, although there are

publications addressing its grinding mode. Jiang [137] considers the grinding

mode and assesses the kinematics of the tool path, but only as far as the contact

point with an assumption of perfection of the grinding wheel. Also relevant, Xie

[138] identifies a technique for considering the 2D profile of a wheel for freeform

grinding and claims a 37% improvement compared with an uncompensated

grind, although there is no indication of how the profile accuracy is determined or

how wear can be accommodated in the model. These treatments are the closest
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to a tool path design process for Box, however neither accommodates all the

required features, and particularly not the consideration of contact out of the plane

of the motion axes – this point is not addressed in publication.

2.4 Mathematical descriptions of aspheric surfaces

A mathematical expression for a surface is most useful for manufacture if it is of

functional form, where a set of inputs is related by the function to a set of outputs

with the property that each input is related to exactly one output (explicit form).

Typically, the input would be a combination of axial values (for instance of x & y)

within a limited domain and the output would be a unique value (for instance of

z) for that combination of input values. Sometimes, a surface is defined in

Cartesian space by an expression which is an implicit rather than explicit function.

It’s useful to look at analytical expressions for aspheric surfaces first.

Youngworth [139] defines an asphere as “a rotationally-symmetric (invariant)

shape represented with a sag equation � = (�), where � is a radial aperture

coordinate”. The simplest aspheres derive from shapes called conic sections.

The mathematical representation of curved surfaces dates to antiquity. 3rd

Century BCE Greek mathematicians were possibly the first to develop systematic

representations, considering conic sections and their surfaces of revolution [140];

the terms parabola, ellipse and hyperbola originate in these writings. A hyperbola

is a section parallel to the cone axis, a circle’s is perpendicular and a parabola’s

section is parallel to the cone angle. Any other section is an ellipse. These are

shown in Figure 2-2.

hyperbola

ellipse

circle

parabola

Figure 2-2: Conic sections
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Simple aspherics are formed by the rotation of conic sections on their own axes

(the minor axes shown in Figure 2-2) to make the 3-dimensional circular ellipsoid,

paraboloid and hyperboloid – or indeed a sphere with rotation of a circle. These

3D surfaces of revolution of a conic section are sometimes called conicoids.

The Greeks also considered their application in optics, as did the 10th/11th

Century Persian mathematicians specifically for lenses, building on the Greek

work [141]. Later, the mathematicians of the Renaissance introduced a more

recognisably modern treatment, again starting from Greek texts, as part of the

flood of mathematical and scientific ideas of the Age of Reason [142].

The whole class of surfaces related to these can be described by a general

multivariate (and implicit) formulation for second order aspherics of the form

[143]:

�(�,�, �) = ����
� + ����

� + ����
� + 2����� + 2����� + 2�����

+ 2��� + 2��� + 2��� + � = 0
(2-2)

Adopting the linear algebra representation of equations (2-3):

u� = (� � �) A = �

��� ��� ���
��� ��� ���
��� ��� ���

� u = �
�
�
�
� b�

= (�� �� ��)

(2-3)

a principal axes transformation, using the three eigenvalues �� and three

eigenvectors �� of the matrix A, can render the equation of the surface into

canonical form, equation (2-4) RHS, in a different co-ordinate system which is

based on the surface’s principal axes [144].

u�Au + 2b�u + � = �����
� + 2�����

�

���

+ � = 0 (2-4)

The principal axes transformation in general represents a rotation and translation

of the surface onto principal (and orthogonal) axes of the surface, w� =

(�� �� ��), one of which will be the rotational axis in the case of surfaces of

rotation. Renaming �1, �2 and �3 as the x, y and z axes for convenience, the

surface can be expressed by equation (2-5):

���
� + ���

� + ���
� + 2���� + � = 0 (2-5)

The following conditions can be introduced [143]:

1. ��� is either 0 or 1 (the whole equation can be divided by ��� to achieve that)
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It follows that if ��� is 1 then �3 is 0 and � can be eliminated by substitution

2. � is either 0 or -1 (the whole equation can be divided by – � to achieve that)

3. if �3 = 0 then �1≤ �2

4. if �3 ≠ 0 then �1≤ �2 and �2≤ �3

If these are satisfied, the particular second order surface given by equation (2-1)

exists in Cartesian space. We can introduce familiar (and geometrically

significant) semi-axes �� = 1 ��,⁄ 		�� = 1 ��,⁄ 		�� = 1 ��⁄ where � is real and �, �

can be imaginary. Three cases arise from the conditions above.

Where ��� and � are both zero we get the second order conical surfaces of

equation (2-6):

��
��
� +

��

��
� + ��

��
� = 0 (2-6)

where ��� = 0 and � = −1 we get second order centred surfaces of equation (2-

7)

��
��
� +

��

��
� + ��

��
� − 1 = 0 (2-7)

where ��� = 1 , � = 0 we get second order paraboloid surfaces of equation (2-8)

��
��
� +

��

��
� + 2� = 0 (2-8)

For each of the cases, if � = �, the surfaces are rotationally invariant.

The formulation used in optical designs now is of 20th Century origin. Scharzschild

introduced the conic constant that bears his name in 1905 [145,146] in the

general formula for a simple aspheric – formed as a surface of rotation of a conic

section – � in equation (2-9)

� =
ℎ�

��

�1 + �1 − (1 + �) ℎ�
��
� �

(2-9)

where ℎ is distance from the axis of rotation and � is a nominal radius of curvature

(ROC) – actually the ROC at the axis. This can be formed by substituting � ⟶

� − � in equation (2-7) (shifting z from the centre to the tip of the figure) setting

� = �, ℎ = ��� + ��, � = �� �⁄ , � = � �⁄ − 1 and then rearranging, or for equation

(2-8) setting � = �, ℎ = ��� + �� and then � = −��, � = −1 �⁄ . This formula is
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limited in scope because only these regular surfaces (Table 2-3, below) can be

represented.

Table 2-3: Conic constant

Conic constant Resultant shape

�<-1 hyperboloid

�=-1 paraboloid

-1<�=<0 prolate (sharp) ellipsoid

�=0 sphere

�>0 oblate (blunt) ellipsoid

More complex aspherics require an extension to the formula. This became

important with the invention of the Schmidt corrector in 1930; the vacuum formed

plate was closely represented (it transpired) by a 4th degree polynomial and this

was added to its aspheric formula to give (more or less) a form of the generalised

aspheric surface equation still in use today [147] – equation (2-10).

� =
ℎ�

��

�1 + �1 − (1 + �) ℎ�
��
� �

+ ℎ� � �����ℎ��
�

���
(2-10)

The ones given in Table 2-4 are rotationally invariant. The polynomial modifier is

similar to the one in equation (2-10) and these can be manufactured using

aspheric machining techniques, for instance spindle SPDT.

These explicit formulae are most useful where the departure from conicoid is low;

the implicit formulae in equations (2-6), (2-7), (2-8) and other more complex

formulae can be capable of representing aspheric surfaces with larger departure.

The use of these in optical design is less common, but has been accomplished

[148].
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Table 2-4: 2nd order rotationally invariant surfaces (simple aspheres)

Basic surface Power series modifier

Type Equation

(circular) ellipsoid,
hyperboloid, paraboloid,
sphere

ℎ�

� �1 + �1 − (1 + �)(ℎ �⁄ )��

� ��ℎ�
�

���
cone

�

�
�

plane 0

The ISO standard for aspheric surfaces ISO 10110-12 [149] uses a far more

general definition of an asphere; some of the surfaces included in its descriptions

are freeforms under most definitions. A more complex surface that can be made

using aspheric production techniques is a toric although this is a fourth rather

than second order surface. In the standard [149] these are described as “surfaces

of revolution; not coincident with coordinate axes”. This is expressed in the

standard as a surface of rotation around an axis parallel to X, rather than around

the Z axis. The same surface can be represented more simply as a surface of

revolution around the Z axis using the substitution ℎ = � − ��� + �� with � the

radius of rotation and � the perpendicular radius of curvature, as shown in Table

2-5.

Table 2-5: 4th order rotationally invariant surfaces

Basic surface Power series modifier

Type Equation

Toric
(ISO definition)

�(�,�) = �� ± ���� − �(�)�
�

− ��

�(�)

=
��

�� �1 + �1 − (1 + ��) �� ��� �
�

�

��(�) = ���
� + ���

�

+ ⋯
+ ��|�|�

+ ��|�|�

+ ⋯

Toric
(alt. definition) � = √�� − ℎ�, ℎ = � − ��� + ��, � ��ℎ�

�

���

The latest draft amendment to the ISO 10110-12 [150] includes a new formulation

for the power series modifier. This adopts the work of Forbes [151] which confers
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significant advantages to the use of orthogonal bases; these will be discussed in

the context of orthogonal polynomials in section 2.5.2.

2.5 Mathematical descriptions of freeform surfaces

The representations of freeform surfaces include [152,153]:

• Point clouds – the surface is represented by individual points, recorded as

number triplets (typically x,y,z) – the number, position or ordering of the

points is not prescribed. This is essentially the most basic form of freeform

surface representation. In order to gain or process surface information

some form of numerical manipulation is required to convert the point cloud

representation to one of the other forms.

• Polygonal meshes – a mesh of 2D geometric figures (triangles, squares,

hexagons etc.) is ‘laid’ over the surface and (3D) spatial co-ordinates of

the surface are recorded for each vertex, thus representing the surface

with a 2D array of number triplets – this is a standard representation in

computer graphics.

• Splines – definitions vary [154,62] but in this manuscript: polynomial

functions, piecewise-defined, with a high degree of smoothness where the

pieces connect or overlap, designed to represent curved figures in 2 or

more dimensions.

• Wavelets - functions used to localise a signal in both spatial and frequency

domains. An arbitrary function can be represented by linear combinations

of different wavelets which are scaled and translated from a prototype finite

“mother” wavelet. They have the advantageous property that they can

represent local as well as global features to an arbitrarily small tolerance.

• Analytical descriptions - which in general give a single-valued (functional)

expression for the value of one co-ordinate in terms of the others, e.g. � =

�(�,�) – these often include polynomials and can be arrived at empirically

or analytically [155].

• Orthogonal polynomials

• Radial Basis Functions
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2.5.1 Analytical descriptions

A common form of analytical description of freeform surfaces is similar to the

general aspheric equation (2-10) introduced to handle Schmidt plates, although

there are important differences. The ISO standard for aspheric surfaces ISO

10110-12 [149] does introduce rotationally non-invariant surfaces, some of which

are freeforms, so it’s useful to consider their representation here first.

The remainder of the surfaces described in the ISO standard not covered in

section 2.4, although derived from the second order aspheric equation (2-2) are

freeforms in terms of manufacture, because they are not rotationally invariant,

which in terms of equations (2-6), (2-7) and (2-8) arises when � ≠ �. These are

described by equation (2-11):

� = �(�,�) =

��
��
� +

��

��
�

1 + �1 − (1 + ��) �� ��� �
�

− �1 + ��� �
�
��� �

� (2-11)

This can be obtained from equations (2-7) and (2-8) in the same way as for (2-9)

except this time the substitutions are �� = �� �⁄ ,					�� = �� �⁄ − 1,					�� =

�� �⁄ ,					�� = �� �⁄ − 1 for equation (2-7) and �� = −��,					�� =

−1 ��,					�� = −��,					�� = −1 ��⁄⁄ for equation (2-8).

There are two other non-rotationally invariant cases to arise from the second

order aspheric equation (2-2). The first is a non-coaxial cylinder which can also

be expressed (as for the toric case in Table 2-5) with a change of variable to

make it coaxial and therefore rotationally invariant. The second is the (non-

circular) conical form which derives from equation (2-6) with � and � imaginary

rather than real. These are tabulated in Table 2-6.
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Table 2-6: 2nd order non-symmetric surfaces

Basic surface Power series modifier

Type Equation

ellipsoid,
hyperboloid,
paraboloid

��
��
� +

��

��
�

1 + �1 − (1 + ��) �
�
��
�
�

− �1 + ���

���
� + ���

� + ⋯
+���

� + ⋯
+��|�|� + ⋯
+��|�|� + ⋯Cone (� ≠ �) ���

�

��� +
��

��
�

Cylinder (ISO
definition)

��

�� �1 + �1 − (1 + ��) �
�
��
�
�

�

���
� + ���

�

+ ⋯ +��|�|� + ⋯
or

���
� + ���

�

+ ⋯ +��|�|� + ⋯

Cylinder (alt.
definition) ℎ = �, ℎ = ��� + �� � ��ℎ�

�

���

The draft ISO standard for Optical freeform surfaces, ISO 10110-19 [153]

indicates that two dimensional functions of the form � = �(�,�) or � = �(�,�)

serve as analytical definitions for freeforms. An unlimited range of analytical

descriptions is possible, although one example is commonly applied and is

introduced in the standard. It is an analytical description made up of two parts:

the base shape, a generalised conic section as already seen [149] in equation

(2-11) and a polynomial part, the final term shown in equation (2-12). This form

of analytical description is one often used for optical surfaces.

� =

��
��
� +

��

��
�

1 + �1 − (1 + ��) �� ��� �
�

− �1 + ��� �
�
��� �

�

+ � ��,��
�

�

�,���

��

(2-12)

The use of this formulation has grown out of the application of Zernike

polynomials for the description of optical wavefront distortion by aberrations in

optical systems although unlike Zernikes, the polynomials in equation (2-12) tend

not to be orthogonal. The use of these orthogonal polynomials is discussed next,

in section 2.5.2.
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2.5.2 Orthogonal polynomials

Zernike polynomials are orthogonal polynomials used for characterising

wavefront errors in optical systems. Zernike derived these in 1934 to test the

figure of a circular concave mirror, based on diffraction theory [156]. They are

defined over a circular pupil of normalised radius 0 ≤ � ≤ 1 and azimuthal angle

0 ≤ � < 2� as follows [157] in equations (2-13)(2-13) for different ranges of �:

��
���(�, �) = �2(� + 1)��

�(�) cos�� ,

��
���(�,�) = �2(� + 1)��

�(�) sin�� ,

��
���(�,�) = �(� + 1)��

�(�)

(2-13)

where � = [0,1,2, … ] is the radial order, |�| is the azimuthal frequency, � ≥ �

and � − |�| = [0,2,4, … ]. The order of the polynomial is � + |�|. Radial

polynomials ��
� are given by equation (2-14):

��
�(�) = �

(−1)�(� − �)!

�! �
� + |�|

2 − �� ! �
� − |�|

2 − �� !

(��|�|) �⁄

���

����� (2-14)

In this context, orthogonal polynomials such as the Zernike can be useful for

describing surface form or form deviations. There is a particular advantage

though when Zernikes are applied to wavefront error, in that the different terms

give balanced aberration descriptions which are useful to optical engineers [158].

��
� describes ‘piston’ (translation along � axis), ��

�� & ��
� describes tip & tilt

(rotation around � or � axes); these can usually be ignored as they relate to

position and orientation, rather than shape. ��
� is defocus, ��

�� & ��
� are

astigmatism, ��
�� & ��

� are coma, ��
�� & ��

� are trefoil, etc. – see Table 2-7.
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Table 2-7: Representation of first 21 Zernike polynomials

�
=

-5

�
=

-4

�
=

-3

�
=

-2

�
=

-1

�
=

0

�
=

1

�
=

2

�
=

3

�
=

4

�
=

5

�=0

�=1

�=2

�=3

�=4

�=5

Zernikes are an example of orthogonal polynomials which can also be used to

describe the shape of a surface, although there are others. A surface is

analytically defined in �, �, � space as: � = �(�,�) and is continuous over a region

� of �, � space. A series of polynomials ��(�,�) is defined as orthogonal over that

region when equation (2-15) is satisfied, in which �(�,�) is a weighting function

and these can be used (in sum) to represent the surface � = �(�,�).

���(�,�)��(�,�)�(�, �)���� = �
1
0

� = �
otherwise

∝ ���
�

(2-15)

Forbes, in a progression of publications from 2007 has advanced the case for

“facilitating the enforcement of manufacturability constraints during design” and

other design considerations, initially for axially symmetric aspheres [151,147] and

latterly freeform optics [159,160] through application of orthogonal polynomials to

describe surface departure from a base conicoid. Design and manufacturing

criteria are variously based on surface departure deviation, slope deviation etc.

[161,139,162], and orthogonal polynomial series can be optimised accordingly

giving rise to Forbes’ Q polynomials, which are gaining wide acceptance,

including in the draft standards for aspheric and freeform optics [150,153].
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The general advantage of an infinite series of orthogonal polynomials of

increasing frequencies is subtler than the Zernikes’ representation of aberrations.

Because the series is infinite and spans an infinite range of frequencies, it can

represent a surface with arbitrarily complex surface character, although the series

would have to be very long to describe high spatial frequency characteristics

[163]. Since the polynomials are orthogonal, techniques of linear algebra and

least squares can be used to find the coefficients for each polynomial that best

describe a surface – in other words, more (higher order) terms can be adjusted

independently to improve a fit without the existing terms’ coefficients needing

adjustment to compensate. This is a consequence of equation (2-15). Critically,

from a design or manufacturing point of view whilst the terms in polynomial series

in (2-10) and (2-12) also relate to spatial frequency, their inability to take

independent adjustment means coefficients can’t be toleranced. So,

mathematical robustness of fitting and intuitive understanding of coefficients are

the main motivation to adopt orthogonal polynomials in equation (2-12) to

represent a freeform’s departure from a conic base shape [162]. This is strongly

endorsed by several authors [139] although Brick has identified no advantage in

orthogonal over non-orthogonal polynomial representations in the design

optimisation process for non-imaging optics [164].

Zernikes are orthogonal only over a continuous circular pupil. ISO 14999-2 on the

interferometric measurement of optics [165] is at pains to point out that Zernikes

will give a poor representation for non-circular pupils. If the surface data is present

only in discrete points or portions of the pupil, Zernikes are no longer fully

orthogonal, although they approximate orthogonality well for high data density for

the lower order terms. In general, polynomial sets must be designed for a given

pupil shape – e.g. circular, Gaussian, rectangular, hexagonal. ISO 14999-2 [165]

indicates that it is possible to compute orthogonal polynomials over arbitrarily-

shaped areas asserting that although not new, this knowledge is not applied in

optics. Mahajan has developed polynomials of this type for optics for a variety of

pupils, reported in a series of articles from 1981 to present [166,167,168]. This

can also be accomplished to an extent by tightly enclosing the shape within a

circular pupil, as discussed by Forbes [159].

A general limitation of orthogonal polynomials appears to be the very high orders

required to capture even small quantities of features with small amplitudes of
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departure from the base form [169,162]. According to Mahajan [167] computation

of high order terms can be subject to numerical instability with the widely-adopted

Gram-Schmidt approach whereas Wang earlier [170] adopted Gram-Schmidt to

avoid potential stability issues with least squares orthogonalisation, which he

subsequently found to be stable. The origin of the actual instability can be traced

however to limitations of the dynamic range of numerical representations

commonly in use; for IEEE double precision numbers [171] this is around 2�� ≈

4.5 × 10��. Forbes identified a three term recurrence relation which avoids the

problems of relying on precise differencing between large numbers in the

computation of orthogonal polynomials [172]; his Fig 1 gives a particularly

compelling demonstration of the issue and its solution.

2.5.3 Splines

The use of splines to describe a freeform surface has been introduced in section

2.5 on page 28 where they were given this definition: “polynomial functions,

piecewise-defined, with a high degree of smoothness where the pieces connect

or overlap, designed to represent curved figures in 2 or more dimensions”. In the

context of freeform surface representation, clearly this is in 3 dimensions. Splines

were originally thin laths of wood used by loftsmen to lay out the curves for ships’

hulls or aircraft in the lofts of a factory (the only place with sufficient space to plot

at 1:1 scale), by bending them and holding the curves in place with weighted

‘ducks’ or ‘dogs’. This craft is certainly well over 100 years old [173,174] but

probably more than 300 [62]. In the early 1940s, this was put on a mathematical

basis in conic lofting and at around the same time splines were invented in the

modern sense by Schoenberg [63] working on aeronautical surfaces. He coined

the term B-spline (much later) for basis spline although de Boor [175] notes that

they were known earlier, for instance to Laplace or even Lobachevsky in the mid-

nineteenth century. B-spline (2D curves) are defined in equation (2-16).

C(�) = ���,�(�)P�

�

���

� ≤ � ≤ � (2-16)

� is a parameter that describes how far along a curve a point is. C(�) is the value

of that curve at a given � - in this case � and � co-ordinates calculated from a

fractional combination of control points. P� are the control points - there are �+1

of them, each with an � and � value. The polynomial basis functions (�) indicate
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how much of each control point is to be used in the combination (sum). The��,p(�)

are �-th degree polynomial functions of � and there are �+1 of them. Underlying

this there is a knot-vector which spans the � space between � and � dividing it

into intervals corresponding to � in the equation. Each element in the knot vector

is known as a knot.

The effect of this can be seen in Figure 2-3 where on the left a 2-D curve is

constructed from control points and on the right, an example of basis function

dependence on parameter � is shown for knots at �1 - �5 etc. Non-uniform b-

splines include a weighting term �� for each knot interval – and are made rational

with an effective normalisation, as shown in the definition for a �-th degree Non-

Uniform Rational B-Spline (NURBS) curve in equation (2-17).

C(�) =
∑ ��,�(�)��P�
�
���

∑ ��,�(�)��
�
���

� ≤ � ≤ � (2-17)

This is the construction that will be used in the formulation of NC programs for

control of toolpath in Scientific case 2: visual wavelength telescope optics.

The same concept represented in equation (2-17) can be extended for 3-D

surfaces where a second parameter � is added for the additional dimension, to

give equation (2-18) for a NURBS surface over an area parametrically defined by

intervals [�, �] for � and [�, �] for �.

S(�, �) =
∑ ∑ ��,�(�)��,�(�)��,�P�,�

�
���

�
���

∑ ∑ ��,�(�)��,�(�)��,�
�
���

�
���

, � ≤ � ≤ �, � ≤ � ≤ � (2-18)

Control points are now distributed on a rectangular grid in (say) (�, �) space

although each P�,� is 3-valued with �, � and � co-ordinates. The co-ordinate basis

can of course be non-Cartesian, although the grid will always be rectangular in

P3

P1

P0

P2

�0 �1 �2 �3 �4 �5

�1�0��(�)

Figure 2-3: Construction of b-spline curves



36

some 2-D space – this is perhaps the most significant limitation of NURBS

surfaces, which are otherwise extremely flexible in application, being indefinitely

differentiable and arbitrarily fine in their intervals – and therefore offering arbitrary

precision in their approximation to a freeform surface. Knot vectors and even

polynomial degree can be different between the different dimensions spanning

the space, as seen in equation (2-18), although the same polynomial derivation

is used for �, which is usually based on the de Boor recursive scheme [175].

Surface NURBS have been extensively applied to freeform surface engineering

as discussed in section 2.3. Their application specifically in optical-type surface

engineering (for ultra-precision machining) as required for “Scientific case 1:

acoustic thermometry” and “Scientific case 2: visual wavelength telescope

optics”, is less extensive. Rigler in 1971 [176] offered splines (2-D splines,

because an asphere is a surface of rotation) as an alternative to contemporary

polynomial aspheric definitions, which the author takes to imply explicit solutions

like equation (2-10) rather than (2-7), stating that in a ray-tracing design scenario,

these solutions were easier to optimise. In 1984, Stacy [177] gave the important

explanation of Rigler’s contention, that spline surfaces were better behaved than

conventional descriptions because spline coefficients directly represent surface

sags. This means that if path difference (related to sag) is an appropriate

optimisation criterion, spline coefficients will converge linearly, to the extent that

each area of the surface is independently controlled. There is of course local

influence between surface patches because of the ‘spread’ of basis functions

over more than one knot interval, depicted on the right of Figure 2-3, but this is

limited by proximity, and in any case, can be further limited by decreasing the

spacing of knots. These advantages are utilised in several studies and NURBS

representation is shown to be successful and accurate [178,179] although

implementation can be hampered by the limited NURBS capability of industry

standard optical design codes [180].

2.5.4 Polygon/mesh models

Mesh or polygonal model representations of surfaces have been most

extensively developed in the field of computer graphics for the visual rendering

of surfaces, and as such may not seem suited to precision surface representation.

They are nonetheless listed in the draft ISO 10110-19 standard for freeform optics

[153] as a standard form of representation. The representation is held in the form
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of vertices as a number triplet e.g. �� = (��,�, ��). Two vertices joined become an

edge. Three vertices connected by three edges become a triangle. More complex

polygons can be formed from assembled triangles, although only triangular

polygons are guaranteed to be planar, so triangular representations are the most

common. Simple rules are usually enforced for mesh models:

• no co-incident vertices

• no edge can intersect a polygon or another edge (not self-intersecting)

The advantage of polygon models is that they are simple to represent, store and

manipulate. Surface normals from triangles are easy to calculate – vertex normals

(a combination of adjacent polygon normals) only a little more difficult.

A mesh model cannot represent a real curved surface without error; to interrogate

the third axis (�) value from a given (�, �) co-ordinate, either the nearest neighbour

vertex or some form of interpolation between vertices must be used. On account

of this limited accuracy, mesh density may have to be set locally higher where

curvature is greater in order to achieve a required tolerance.

2.5.5 Point clouds

As defined in section 2.5, “the surface is represented by individual points,

recorded as number triplets (typically x,y,z) – the number, position or ordering of

the points is not prescribed”. Measurement data are often represented in this way,

this representation arising from surface metrology or reverse engineering, when

points are acquired individually for instance with manual control or from scanning

with data acquisition timing not precisely correlated with the position/velocity.

Point cloud models can be converted to any of the other representations through

a variety of means. Least squares techniques with an appropriate surface model

can optimise the parameters of a global analytical model based on specified fitting

parameterisations and criteria [181].

Shepard [182] in 1968 described a variety of interpolation methods for point cloud

data including inverse distance weighting and described an extension to this

which was effectively a piecewise polynomial representation, although not a true

spline as there were slope discontinuities. Franke [183] reviewed numerous

interpolation techniques, including splines.
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For conversion to a triangular mesh a Delaunay triangulation [184] is commonly

used, initially developed by Delone in 1934 [185]. This is reliable, but not always

optimal [186] though a definition of optimal triangulation in the context of freeform

surface fitting is hard to arrive at [187]. Sibson [188] introduced natural neighbour

co-ordinates and subsequently [189] their application to scattered data

interpolation, which is probably the most consistent interpolation basis for point

cloud data, is used in the Matlab function “scatteredInterpolant” and adopted

within this manuscript. Conversion to a spline surface definition may be

accomplished following triangulation [190]. Ren [191] discusses the appropriate

level of smoothness for such a spline surface definition based on measurement

data.

2.5.6 Radial basis functions

A radial basis function (RBF) is usually a function of Euclidean norm, � in equation

(2-19).

� = ‖�‖ = �����
�

���

= ���� + ���, in � = 2 dimensions (2-19)

A surface S(�) can be interpolated by a function �(�) which is a sum of radial

basis function values of �, a 2 or 3 dimensional � in this case, as in equation (2-

20)

�(�) = ������� − ����

�

���

(2-20)

where the RBF is �, each term in the sum (one for each of the � data points ��)

has a different weighting ��. The weighting coefficients are fixed by the �

interpolation conditions in equation (2-21)

S���� = �����, � = 1, …� (2-21)

and can be determined by the usual matrix methods. The RBF �(�) can be one

of several functions. This strategy was initially used only for interpolation of

scattered data; Chan [192] used for instance the Hardy multi-quadric (2-22) or

the thin plate spline (2-23) for interpolating antennae reflectors.

ℎ(�) = ��� + �� (2-22)
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�(�) = �� log � + �(�) (2-23)

This can be extended from interpolation to approximation by replacing the data

points �� in equation (2-20) with RBF centres, arbitrary �� which can be optimised

again using the usual matrix methods. Cakmakci investigated this for freeform

surfaces, and specifically Gaussian RBFs [193,194].

2.5.7 Wavelets

The technique of wavelet representation was first introduced in the 1940s in the

context of modelling seismic activity using overlapping travelling waves of

different lengths and amplitudes [195]. This technique has been developed

(wavelet decomposition/transform) and widely applied to represent data with

disparate spectral and amplitude characteristics, particularly in the fields of

computer graphics, data compression etc. and latterly freeform surface

representation [196,197]. Jester [198] has demonstrated a wavelet method based

on B-spline wavelets which can easily describe the low to mid-spatial

characteristics well handled by other methods (such as Zernike polynomials).

Interestingly the same method can also handle the higher frequency

characteristics associated with manufacturing tools and techniques typically used

for freeform machining, which are not so well handled by Zernikes etc.

The essential freeform surface representations have been well described in the

literature and all have been utilised in some way in freeform surface manufacture.

There has not however been a publication of a comprehensive approach to

freeform surface representation that is optimised for tool path generation, error

compensation and tool shape compensation.

2.6 Outline of metrology techniques for surfaces without

specular reflection

2.6.1 Suitability of CMM for freeform surface metrology

A specular surface, being reflective, can generally be measured using optical

techniques; conventionally most advantage can be obtained using wavefront

comparison, typically by areal interferometry [51]. In these techniques, departure

from the reference wavefront of the surface under test must be limited to a

relatively small number of wavelengths – in particular the relative phase change

for adjacent data points must be less than ½ wavelength. For freeform surfaces,
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departure from a conventional flat or (closest fit) spherical wavefront may exceed

this limit. This limitation can be addressed principally in three ways. The first of

these is a) generation of the freeform reference wavefronts using Computer

Generated Hologram (CGH) / auxiliary optics. The second is b) sub-aperture

techniques in which only a fraction of the aperture is examined before

repositioning to examine a different fraction; the relatively small number of

fractional or sub-apertures are later combined to give a single data set describing

the entire surface. The third is c) the use of relatively long wavelengths, e.g. LWIR

at more than 10 times visual wavelength. These wavefront comparison

techniques are however restricted (by the departure criterion) to surfaces with

relatively small Gaussian curvature.

For non-specular surfaces (which includes almost all ground and most turned

surfaces) these areal techniques are non-functional regardless of curvature and

single point metrology (whether optical, tactile or otherwise) must generally be

applied because the surface texture is such that the departure criteria above are

exceeded. Whereas the areal techniques for specular surfaces can acquire

millions of data points simultaneously, the single point techniques can acquire

only one data point at a time; there is a delay between acquisitions, accompanied

by a relative repositioning of surface under test and measurement apparatus.

Acquiring millions of points entails millions of relative motions and consequently

millions of consecutive delay periods. This combination of motion and the

passage of time results in additional measurement uncertainty, not least that

associated with thermally induced and other drifts in relative position.

A general-purpose metrology instrument applicable to single point measurement

techniques is the Co-ordinate Measuring Machine (CMM) an instrument with a

long history and profound impact on measurement practice in diverse

applications [199]. The most familiar Cartesian configuration is applicable to

freeform surfaces and in an industrial context is the most widely applied [200,51].

Other CMM geometries are also applicable: of note being the swing-arm

profilometer. The profilometer is adjusted so that a swinging arm, which carries a

point measuring probe, describes a circular arc which is a close fit to the surface

under test. It is applicable where aspheric departure (and relative normal angle)

can be held within a manageable limit imposed by the range of the point

measuring probe [201]; this applicability encompasses many optical surfaces –
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for instance a proportion of telescope mirrors. Where departure is larger, or a

generic metrology capability is also required of the same instrument, the swing

arm device can't be used. In such cases, Cartesian CMMs can still be used. Jing

[202] gives a pertinent example of comparison of Cartesian CMM discrete point

measurements with swing arm scanning profilometry, for the same ground optic.

Supranowitz [203] gives an example of Cartesian CMM scanning for an optic with

large aspheric departure, although several deficiencies were noted: a)

repeatability limited by shorter wavelength surface texture variations, even in a

polished surface; b) limited spatial resolution of measurement data; and c)

reliance on CMM software solid model capability with poor fidelity to the

mathematical design model.

Although the swing arm profilometers can produce scan measurements with

relatively low uncertainty, there are significant limitations for speed and coverage,

particularly for very high 3D spatial resolution mapping with near anisotropic

mapping density, as for interferometric tests. There are no published examples

of CMMs producing a high accuracy map with equivalent resolution to a full

aperture interferometric test.

2.7 Outline of freeform process chain rationale

A freeform surface can be manufactured, based on a surface description as in

2.5 above, and starting with a piece of material roughly shaped, for instance by

casting, forging or other forming. These initial shaping processes are generally of

relatively low precision* and accuracy†. Subsequently the accuracy of the surface

may need to be improved by an additional process step, or more usually steps,

which constitute a manufacturing process chain. This will normally involve an

improvement of accuracy at each step, although the purpose of the chain is subtly

distinct from that, in that the output quality demanded of each step is to satisfy

the input quality requirement of the immediately subsequent step. The output

quality demanded of the final step is to satisfy all design criteria for the surface.

The input quality demands for each step may be given in terms of an accuracy

specification which can be arbitrarily complex, possibly involving spatial

* precision is the degree of closeness to which repeated processes will produce the same
result
† accuracy is the degree of closeness to which a process will produce the correct result
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frequency as well as amplitude components. Each step will remove (or

conceivably add) an amount of material in an amount of time, using an amount

of energy and with amounts of financial and environmental cost. These amounts

may vary according to input quality, output quality requirements and even local

variations in the surface, such as slope, spatial frequency and amplitude.

Therefore, the optimisation of the process chain is generally highly complex [204],

involving the selection of process step methods and their parameters. Some

process steps can be either not well controlled (seemingly non-deterministic) or

necessarily limited in capability; for instance, in sub-aperture processes, limited

by the size and shape of a material removal function. This will entail the repetition

of a process step multiple times (possibly with interposing measurements), using

adapted process parameters, giving an improvement for each step, which will

critically depend on measurement at each step.

2.8 Knowledge gap

There is no published research regarding the treatment of contact points out-of-

plane (motion axes plane) while machining freeform surfaces with a fixed

orientation tool. Its requirement is an inevitable consequence of the Box

machining geometry, having only 3 axes in a cylindrical configuration.

There is no published research demonstrating high (near isotropic) 3D spatial

resolution measurement of a non-specular freeform. The advantage of uniform

high resolution data conferred by an interferometric test is not available after fine

grinding.

For optimal tool setting accuracy, a technique for aspheric and freeform surfaces

that can extract tool decentring offsets, utilising a full post-machining 3D surface

map is required, but unreported.
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3 RESEARCH APPROACH

3.1 Summary of aim

The hypothesis of this research (section 1.3) is essentially that it is possible to

make very high accuracy freeform surfaces using machines with minimal (three)

axes of motion, and that the considerable difficulties of having a fixed orientation

tool do not outweigh the advantages for motion performance conferred by the

relative simplicity of the machines. There is a tacit assumption moreover in the

aim for the research, that it will be possible.

The aim of the research is to create a mathematical framework for the

manufacture of freeform surfaces using 3-axis machines possessing fixed

orientation tools. The framework should also accommodate freeform

measurement, using an unmodified industrial standard CMM, to give surface

deviation maps with a spatial resolution which is the equal of full aperture

interferometric tests; maps which are suitable both for process validation and for

feedback error compensation for control of machining.

3.2 Research methodology and objectives

A literature review has identified gaps in knowledge; at the same time two projects

(essentially the case studies) associated with the research have specific

deliverables (freeforms to be machined and measured). The achievement of the

deliverables requires the closing of these knowledge gaps.

One component of the methodology is clear: a validation of the research will be

accomplished in the achievement of the deliverables; in each case study the

deliverable freeform surfaces (and to some extent, this research’s metrology

data) are required at a certain level of accuracy within the immediately

subsequent process step.

All three of the functional processes involved in this research are constrained in

a very particular way – they operate on a point by point basis, or on a zone which

is very small relative to the freeform surface. The machine’s motion systems have

just 3 axes in each case: BoX grinder, Moore UPL 350 and Leitz PMM-F CMM

(see chapter 4). Each translates its end effector whether that’s a grinding wheel,

diamond tool or probe stylus tip, over the surface, through a series of locations,

which ultimately are discretely computed.
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a) One element of this research therefore is to find a way mathematically to

describe these locations, with an ability to do this at an arbitrary resolution,

based on the description of the surface provided or available; freeform surface

representation.

b) Another element of the research clearly is to create a way to define the

connective sequence (and selection) of these locations in respect of each of

the three functional processes, and for this to be predicated on the

requirements of the process and the capabilities of the machines; end effector

path definition.

c) An associated element of the research is to find a way to represent the shape

of the tools (for the machining processes) which can inform the motion control

of the machines; it is recognised within the research question that the motion

path may not map in an obvious way to the connective location sequence in

b) above; tool shape representation.

d) A vital element of the research is to establish the capability to generate high

spatial resolution measurement maps of freeform surfaces with in the order of

1,000,000 points of data, in order to match the capability of interferometric

measurement, so that the data can be used in a similar way; CMM-derived

high spatial resolution measurement maps.

e) One research element interrelates the others, which is in the combination of

freeform surface representation, end effector path definition, tool shape

representation and CMM-derived high spatial resolution measurement maps

through a kinematic combination strategy to produce tool paths.

An essence of the adopted methodology is the division of the research into

discrete constituents, or work packages. There are four of these, which

correspond to the principal technical chapters of the thesis.

i) The first of these chapters is a comprehensive treatment of novel algorithms

in scanning CMM contact measurement of freeform surfaces. A

demonstration freeform surface is selected as the development artefact,

which is distinct from the case study surfaces. This has the property, by virtue

of its cellular support structure and thin section, of having a mix of spatial

wavelengths of freeform surface variation whilst retaining a relatively smooth

surface absent high spatial frequency artefacts. Consideration is given within
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the central requirement of high density data maps to alternative probing

techniques; the origin, implications and removal of measurement noise;

techniques for storage, retrieval, display, resampling of measurement data;

sources of error, enhancement of accuracy for different origins of error; and

the requirement and methods of parametric extraction.

ii) The second of the technical chapters presents the basis of the development

of freeform machining toolpaths – research which is common to the two case

studies, which includes the principles of tool path design which stem from

machining process requirements; influences on tool path design, which

include pre- and post-machining surface properties, tool shape, boundary

effects, machine capabilities including dynamics. Consideration is given to

error compensation within tool path design and then the reasons for and

techniques of tool path compression, including novel algorithms for optimal

compression.

iii) The third technical chapter presents research towards: Application of solution,

case study 1 – Boltzmann “quasi spheres”. This presents the implementation

of the research strategies of i) and ii) above, with novel developments specific

to this case.

iv) The fourth technical chapter presents research towards: Application of

solution, case study 2 – E-ELT. This presents the implementation of the

research strategies of i) and ii) above, with novel developments specific to this

case.

a) - e) represent the broad research objectives, together with validation through

iii) and iv).
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4 EXPERIMENTAL EQUIPMENT

4.1 Co-ordinate Measuring Machine (CMM)

4.1.1 Leitz PMM-F 30-20-10

The Leitz PMM-F 30-20-10 is a high-accuracy monolithic gantry measuring

machine with 3x2x1 m motion strokes in x, y, z respectively (see Figure 4-1) and

a large effective measurement volume.

��� (ISO 10360 − 2) = 1.9 + �/400 (4-1)

The author selected this model for purchase based on suitability for measurement

of large freeform surfaces (criteria listed in Table 4-1) and took delivery of the

UK’s first such instrument in 2007. Its maximum permissible error statement is

given in equation (4-1).

Z

Y

X

1m

2m

Figure 4-1: Leitz PMM-F 30-20-10
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Table 4-1: CMM selection criteria

Criterion Requirement PMM-F 30-20-10

measurement

uncertainty

class-leading class leading (1.9 +

L/400)

suitability for phase shift

interferometry

short term (~ 1 second)

stability < 50 nm

suitable for phase shift

interferometry

shortest horizontal

stroke

>1.5 m 3 m x 2 m horizontal

software capability flexible programming

environment

Quindos & PC-DMIS

4.1.2 Quindos Software

Quindos is a long-standing (since 1986) CMM-focused measurement software

package with open architecture. Despite some legacy issues related to its market

longevity, the requirements of backwards compatibility and its highly complex

command structure, in the opinion of the author it retains significant advantages.

Among these are a) the most comprehensive and flexible available programming

environment for sophisticated measurement control and preliminary data

processing and b) the highest level of flexibility for data structuring in preparation

for subsequent post processing in more powerful mathematical programming

environments. For these reasons, Quindos has been adopted for measurement

data acquisition and pre-processing for all contact-based dimensional

measurements within this work.

4.2 Diamond turning machine

The Moore Nanotechnology Systems range of diamond turning lathes adopt oil

hydrostatic guideways with linear motor drives for horizontal axes and a

horizontal axis air bearing workspindle with direct drive. This gives a market-

leading lathe performance (typically ~1 nm Ra surface finish, < 1 μm form 

accuracy) for rotationally invariant surface forms in ductile materials. The author

completed the purchase of this machine, taking delivery in 2004. Figure 4-2

shows the machine (left) installed and (right) without containment.
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4.3 Large optics grinding machine

The BOX (Big OptiX) large optics grinding and measuring machine was designed

and built at Cranfield University by a team led by the author; the author is cited

as inventor in all the associated patent applications [205]. The design was first

published in 2005, by the author [26] and the machine first publicly demonstrated

in 2006, by the author at the MACH 2006 machine tool exhibition and conference

[206].

The machine was designed for rapid grinding of freeform optical surfaces (in the

configuration shown) up to 1.5 metres diameter, with a surface form accuracy of

Z

C

X

Figure 4-2: Moore Nanotechnology Systems 350 UPL – left: machine
overview; right: motion configuration

Figure 4-3: BOX – Big Optix Grinder
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< 1 micrometre, with minimal subsurface damage. This level of performance is

secured through motions with high static and dynamic stiffness (high stiffness

guideways, low moving masses/inertias, direct drive high force/torque motors,

collocated motive and measurement transducers); and high accuracy (minimised

Abbe errors, precise temperature control) [9,12,25].

4.4 Matlab

Matlab is a numerical computing environment [207] and most pertinently here, a

proprietary fourth generation (primarily) interpreted and highly optimised

programming language with multiple available application toolboxes with very

wide industrial and academic use across engineering, scientific and economic

sectors – among others. It reputedly has well over 1,000,000 users worldwide.

With minor exceptions, all numerical data processing and visualisation within this

study is accomplished using Matlab.

X

Z

C
Grinding wheel

Workpiece

Figure 4-4: BOX – Big Optix Grinder motion configuration, solid model
picture credit: Roger Read
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5 ALGORITHMS FOR SCANNING METROLOGY OF

LARGE AREA SURFACES

Within the process chains for large freeform or other low curvature surfaces, there

are frequently multiple steps, each step refining the surface closer to its final

required condition. The parameters defining achievement of final condition

typically relate to the subsurface and to the surface topography. Each step will

have an output quality in these parameters that must meet or exceed the input

quality requirements of the subsequent step. Process chain design is often

complex. In order to optimise a process chain, it may be necessary to start with

the final process and allow its input requirements to guide selection of previous

steps. Typically, cost budgets and budgets for error, time, power, environmental

cost etc. may be involved; there may not be clearly obvious choices.

Clearly measurement is likely to be critical in optimising process chain design and

will be required within or between steps, for several reasons:

• as a certification that performance requirements of a previous step have

been met – this is particularly important if successive process chain steps

are performed by different production units – this also applies to final

verification of the surface

• to provide information (most simply, alignment to reference features, but

often more) required to initiate a process step

• as part of a process step, particularly where a process is iterative and

therefore dependent on measurement information

• related to the above – for process monitoring/qualification over a period of

time

• occasionally in-process as part of process control

For the smoothest large freeform surfaces, particularly optical surfaces,

interferometry is the principal measurement technique applied to verify final

figure/form. Within a freeform surface’s manufacturing process chain however

there are typically steps requiring accurate surface generation, for which

interferometry is inapplicable: perhaps due to the surface being non-specular, or

due to the time taken, or due to the geometry of the surface. The geometry may

create access or other difficulties, or require in-situ measurement (impractical on
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most machines), demand a large included range of curvature, or too large a

departure from best-fit sphere or flat etc. for interferometry to be accommodated.

There may still though be a requirement for high-density areal measurements

over a relatively large surface, even where interferometry cannot be applied. This

is the case in both of the case studies in this manuscript – most particularly for

Scientific case 2: visual wavelength telescope optics.

The motivation for this part of the research is to have interferometer type data for

a non-specular surface, in part to improve accuracy against alternatives, but most

particularly to allow a higher resolution so that measurement data can be used

for error correction of the surface creation process. In Scientific case 2: visual

wavelength telescope optics this is applied at the fixed abrasive manufacturing

step and as an input into the first free-abrasive machining stage, which is most

typically a neutral removal step. A neutral removal is a (polishing) process step

designed to remove an even, thin, depth of material over a surface, thereby

leaving surface form unchanged but at the same time improving surface finish

sufficiently to make interferometry possible. It is frequently difficult to establish full

aperture interferometry on a large optic, owing to the minimal departure capability

of a full-aperture test. The capability to give interferometer-quality data for a

surface moreover affords the possibility of useful measurement of freeforms that

would be outside the capability of an interferometer, at least without an expensive

and surface-specific null compensator, CGH etc. whether they are specular or

not. Successful application of the measurement technique may obviate the need

in this scientific case for the neutral removal altogether – leading to improved

process chain efficiency, so that figure corrective polishing could commence

without an interferometric step. For this reason, high lateral as well as vertical

resolution is desired, with improved accuracy, beyond the 10-micron regime

capability of a CMM of suitable size.

The algorithms developed and reported here apply in principle to any scanning

instruments for freeform surfaces which could include swing-arm profilometers.

However, there are disadvantages with swing-arm profilometers which are

difficult to surmount in this application. Swing arms in general need to be mounted

on the production machine to avoid the disadvantages of a lack of general fiducial

capability in transferring from machine to machine – however a machine

optimised for productive capability such as BoX (Section 4.3) is not suitable for
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inclusion of a swing arm, due to mechanical and other constraints. CMMs also

are widely available and routinely provide traceability to the international standard

of length, as well as possessing the fiducial capability for accurate workpiece

transfer – and so are strongly preferred.

The presented technique assumes that contact errors are due to surface

dirt/contamination and are randomly/uniformly distributed, and because of that

uniformity that their treatment on an individual basis has no influence on the

measurement of underlying form. Figure 5-1 shows an overall view (from a

Quindos output) of high amplitude contact errors on a surface measurement.

These data are processed outside Quindos and reloaded into Quindos for

display. All the other displayed data in this chapter are programmed outputs from

Matlab. It can be seen from the figure that these contact errors are not surface

features, given their different locations in four distinct scan directions; this

supports the assumption of a uniform distribution of contact errors. The contact

errors are associated with dust/particulate contamination, either on the freeform

surface, or on the stylus tip. Their effects need to be removed from the

Figure 5-1: Tactile scanning measurement spikes
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measurement data without affecting measurement of underlying form. Their

removal is required partly for visualisation demands, but also because being all

positive (away from the surface) and large compared to the surface form,

waviness and other roughness, they would otherwise influence measurement

parametric results.

Choice of scanning speed, measurement density and separation distance of scan

lines have been made to accommodate a suitable volume of data, a feasible

length of measurement time and a useful degree of redundancy in measurement.

Some influences of scanning speed on measurement performance will be

discussed. For instance, an ESO E-ELT segment is of hexagonal shape,

nominally 1.46 metres across corners (AC). This is an area of approximately

�27 64⁄ (AC)� = 1.3845 m2. A measurement process that is no slower than the

grinding process is required, so that measurement does not become a production

bottleneck. The grinding process is capable of approximately 10 hours/m2

production rate implying the measurement needs to be at least as quick – less

than 15 hours for an E-ELT segment.

The measurement density must also be sufficient to avoid aliasing of known

surface features, such as the scalloped pattern from grinding with a formed tool

or of diamond turning. Typical final pass grinding marks have a profile with a

repeating pattern of ~ 1 mm – for instance BoX optics are often ground in a spiral,

with a repeating pitch of 1 mm, using a grinding wheel of toric shape with a 2nd

radius of 300 mm. This is made up of a track (or tracks) caused by the curved

shape of the tool where it engages with the workpiece surface. The track cross-

section is scalloped with a cusp height in the order or microns. This gives a cusp

height of at least 0.42 µm (ℎ = �� 8�⁄ , from the pitch – � and the tool radius - �).

There are additional height influences in grinding spindle asynchronous errors

motion. This sets a minimum data size more or less from the Nyquist (frequency)

criterion. Other grinding geometries produce different cusp heights and pitches.

A similar geometrical effect is caused in diamond turning, although here the

scallops are hundreds of times narrower and shallower. A critical function of the

measurement is to determine the position of the cusps, in particular their z

position as a function of x-y to a sub-micron precision; this is critical determinant

final figure accuracy. This requirement imposes restrictions on areal density of
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the measurement data. The data points must either correspond well in terms of

location to the trough of the cuspate cross-section, or be of sufficient density to

be able to sample it effectively – or if the cuspate height is negligible (as in finish

diamond turning) these considerations may be unimportant.

5.1 Selection of demonstration surface

As an illustration of the technique, a ground concave silicon carbide light-

weighted mirror provided by Boostec company (Figure 5-2) is measured, of a type

used for space telescopes.

This is particularly appropriate, since whilst the structural light-weighting on the

reverse side (Figure 5-3, left) is not visible at all on the functional surface side, it

does produce tiny variations in the mirror sheet’s perpendicular stiffness across

the surface. These local variations in stiffness give rise to micron-level variation

in deflection during the application of grinding force. This in turn leads to a ‘print

through’ effect which is not visible after grinding, but can nevertheless be

measured (Figure 5-3, right) using the techniques in this chapter, revealing the

underlying light-weighting structure, when the surface patches spring back on

release of the grinding force.

This print through pattern is useful in the evaluation of a metrology technique as

it exposes the finesse of the measurement and its ability to represent complex

form, of relatively high spatial frequency, more or less without the noise

Figure 5-2: Silicon carbide large optic (610 mm diameter, spherical
concave ~ 2 m Radius Of Curvature) – near specular surface after fine

grinding
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associated with other contact measurement techniques. These new techniques

operate at a quality normally associated with full aperture (or stitching)

interferometry – the latter techniques however can’t be applied to a ground

surface. This type of (high-density) data allows compensations to be applied

within the grinding program which couldn’t normally be achieved. Faithful

recording of this structural print-through in metrological data would offer a

particular challenge to measurement techniques using any type of window or

apodization function-based filtration to handle noise, because the structure’s

spatial frequency is relative close to the measurement sample frequency, so this

is a particularly severe test. In addition, the apertures offer an additional

complication and afford a mix of straight and curved edges.

5.2 Measurement by single point touch

Multiple single-point measurements are the standard technique for CMM

measurement; used to establish relative location/orientation (the 6 rigid-body

degrees of freedom) as well as geometrical information relating to dimension and

conformance to specification. Specifications will frequently include form (such as

flatness), but measurements of form most commonly are not based on large

numbers of points. The capability within a CMM to gather large numbers of points

for form assessment does however exist, as seen in Figure 5-4 where ~ 3,500

points were measured on the functional (smooth) side of the SiC large optic.

Figure 5-3: Silicon carbide large optic - left: reverse side light-weighting
pattern; right: scan probing technique
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Single point measurement is regarded as the CMM’s most accurate

measurement mode although there are some difficulties associated with its use

for large data sets:

speed: gathering single points is relatively slow, typically ~ 3 seconds

per point

data: CMM native software support for handling large point cloud sets

of freeform surface data is generally very limited

noise: particulate contamination can degrade the process so that there

is missing or unusable data

The measurement in Figure 5-4 represents about 3 hours CMM measuring time,

and can be fitted to spherical or ellipsoidal form within CMM operating software,

but not easily to advanced freeform shapes. These data are shown with the fitted

sphere removed, so that only departure from spherical shape is plotted. Although

noise filtration is available within CMM programs, the effects on form

measurement accuracy are unclear. The fitting of orthogonal polynomials, which

are commonly used with interferometers but not available on CMMs, is moreover

prone to significant inaccuracy using discontinuous pupils with limited resolution.

The trade-off between speed, data volume and feature loss due to noise filtration

is not advantageous to the measurement of large freeforms – in order to gain

enough spatial resolution to mitigate the effects of noise and filtration on feature

Figure 5-4: High density single point probing map; left: 2D, right: 3D
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measurement accuracy, much longer measurement times are required. This

raises the issue of stability of measurement equipment, method and the freeform

surface itself over this period of time.

Some critical measurement performance parameters relate to the handling of

what are termed mid-spatial frequencies, which for the relevant stage in optics

manufacturing process chains have spatial wavelengths between around 2-50

mm. These are the spatial frequencies which are difficult to control with the final

figuring techniques such as Ion-Beam Figuring (IBF), Reactive Atom Plasma

(RAP) figuring or computer numerical controlled (CNC) polishing, such as the

techniques developed by Zeeko and others. For all these processes, this difficulty

is due to removal function shape and size, but crucially, these frequencies may

be produced as artefacts of (and potentially controlled by) the prior manufacturing

process chain steps such as BoX grinding (see section 4.3). In order to measure

features within this mid-spatial range with acceptable accuracy, the measurement

technique needs to have a lateral spatial resolution capability down the lower limit

of the mid-spatial range (around 2 mm). In a full-aperture (full surface width)

measurement, this is normally the province of interferometry. Unfortunately, at

this stage of manufacture, interferometry is unavailable, due to the low strength

and nature of the optical reflection from the functional surface. This level of

performance is also realistically not possible with single point probing-based

measurement. In the data of Figure 5-4 – a 3-hour measurement, despite the

conventional wisdom that this is the highest accuracy mode for CMM

measurement, an 8.5 mm measurement spatial resolution is inadequate,

because of the mid-spatial wavelength lower limit at around 2 mm. There is a

square law with measurement time as a function of resolution (or as a function of

surface dimension) and the issue of missing data and lost feature measurement,

which is clear in the figure, is tough to resolve. At this resolution, and under the

laboratory conditions encountered, the proportion of lost data is just under 2% (as

shown particularly in Figure 5-4 left). A 2 mm resolution on this 600 mm diameter

(0.25 m2 diameter) optic would take 16 times longer to achieve, and the same

performance on a 1.5 metre class 2 m2 diameter optic would impose another 8-

fold increase in measurement time – well over a week of continuous

measurement in total. A higher speed, higher resolution technique that has a

similar accuracy capability is certainly called for.
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5.3 Proposed scanning metrology technique

In order to acquire high density data with a CMM to meet the mid-spatial

requirement, scanning will be required. Scanning is capable of acquiring contact

measurement data at high rate with a high lateral and vertical resolution. The data

rate may approach 1000 times higher than for single point measurement,

although at very high data rates, handling the associated large volumes of data

becomes prohibitively difficult – even with access to higher powered computers

operating the measurement.

The measurements detailed in this chapter are carried out and represented in

Cartesian co-ordinates, although occasional reference is made to spherical co-

ordinates. The proposed technique is based on linear scan measurements, which

are nominally parallel to the x and y axes and approximately equally spaced when

projected onto the x-y plane on the CMM (Figure 4-1) and onto to the (parallel) x-

y plane of the freeform surface’s co-ordinate system as in Figure 5-5. Scans

nominally parallel to x and y, for low slope surfaces, ensure probe deflection is

effectively limited to two directions, primarily in one, and that motion reversals are

minimised.

In the scanning technique used, the scanning is semi-closed loop, which is to say

that a scan vector is pre-programmed. Once scanning has commenced, closed

loop control is maintained over the probe head deflection (by adjusting the x, y &

z axes of the CMM) so that near-constant contact force is applied to the surface

Figure 5-5: Spherical co-ordinate system – θ is azimuth, ϕ is elevation
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through the stylus. Depending on the surface geometry, this may entail departure

from the pre-programmed scan trajectory.

In the example of Figure 5-6 the pre-programmed scan trajectory would include

the gradual curve, but not the cusps on the path; the cusps would be handled by

the closed-loop force-controlled surface following.

This strategy can result in paths which are not entirely straight or smooth; this

can give an effect of slight variations in scan speed and linearity, as shown in

Figure 5-7 (on a magnified scale) looking at the x-y variation of a nominally x-

direction scan. A view of the same scan in the x-z plane gives the more expected

path shape, as in Figure 5-8. The scallops are present in the data, but on a scale

Figure 5-6: (Simulated) scan line on surface

Figure 5-7: scan speed and direction uncertainty
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large enough to see the curvature, their cusps are too small (at just 1 µm in height)

to be discernible.

The overall surface scan data are assembled from multiple parallel scans in the

x-direction and the same in the y-direction – two separate raster patterns. All the

scans in one directional set are performed in the same direction; if reverse

direction scans are used, these are done in a separate phase. This grouping is

maintained in case reverse direction scans require separate treatment in data

processing, and to give consistency of conditions.

The overall strategy for the scanning data processing algorithm is in three

phases:

Phase 1, filter out contact errors; this phase does not intrinsically alter any values;

the principle is that some individual points (a low percentage, typically 2%, set by

threshold value of +ve deviation rather than a proportional population pruning

target) are removed and then replaced with values interpolated from

neighbouring points in the same data set.

Phase 2, some assessment and potentially adjustment is made for differences

between or within directional measurement sets to account for distortions,

thermally-induced or otherwise.

Phase 3, fitting Zernike polynomials to get a geometrical description which relates

both to optical parameters, but also to adjustable parameters of machining and

setup, such as distortion due to machining forces on the face cells, centring error,

tilt etc., all of which can then be independently corrected.

Figure 5-8: Scan line data
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Figure 5-9 shows a number of parallel scans in actual scan co-ordinates. A full

surface map has over 200 scan lines, so this represents a small sub-set of an

entire scan.

5.3.1 Scan data presentation

Whereas figures up to this point have largely shown scan data with z height

represented (as in Figure 5-9) the remainder of this chapter will show scan data

only with deviation from best fit sphere, which is the nominal shape.

Individual linear scan measurements encompass several data phenomena:

• Wide band measurement noise

• Discrete measurement spikes

• Low spatial frequency form variations

Figure 5-9: Scan lines showing actual data

Figure 5-10: Scan line data showing deviation from best fit – the
rectangular area is reproduced in Figure 5-11
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• (depending on the machining mode) high spatial frequency machining pitch

marks

• These phenomena are shown in Figure 5-10 from real scan data. Figure 5-11

shows an expanded view of grinding scallops. At this spatial scan density,

there is sufficient scan resolution to avoid aliasing the grinding scallops. This

is important to avoid confusion with machining form error artefacts that might

otherwise need correction.

5.4 Surface contact dynamics

In addition to single-point spikes, the contact probe can pick up debris which can

stay adhered – at least for a time. This leads to discrete sections of elevated data

– elevated at least by a few microns, where the particle is interposed between

stylus and surface. Moreover, such elevated sections can extend to the edge of

the data set.

Individual spikes can be detected in one of several simple and familiar ways but

Figure 5-12 depicts particularly problematic cases where there are clearly scan

defects that are:

a) connected to the edge

b) in contiguous chains along the scan direction

c) with points in several adjacent parallel scans affected

In the case shown in Figure 5-12, there is a region where all three cases exist

together. A particularly novel strategy is required both to identify and essay a

correction for these data errors.

Figure 5-11: Expanded view from Figure 5-10
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The contact errors have particular characteristics arising out of the engagement

of a contaminant particle and its adhesion either to the surface being measured

or the contact probe stylus tip. Both surface and stylus are cleaned before a

measurement process, although laboratory air contains numbers of dust particles

per unit volume. In the still widely recognised but long obsolete US Federal

Standard 209E, room air was described as containing archetypically 1,000,000

particles of ≥ 0.5 µm minimum dimension per cubic foot; the lowest class (Class 

100,000) of cleanroom under that standard correspondingly had 100,000/ft3;

Class 10,000, 10,000/ft3 etc. In its superseding ISO standard 14644-1, these

latter two specifications would be equivalent with ISO Classes 8 and 7

respectively, and these are typical of the operating environments of precision

metrology CMMs [199], such as the one used in this study. Some of these

airborne particles inevitably settle on the surface during a measurement

operation, which for some large surfaces may take many hours.

5.4.1 Contact event, case 1

At the time a contaminant particle on the surface is encountered by a scanning

probe stylus tip, among the possibilities it may be unmoved by the impact, pushed

Figure 5-12: Scan lines (from Figure 5-9) showing deviation – i.e. gross
figure removed
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aside or otherwise remain on the surface. In this case, there will be an

instantaneous upwards (+ve) deflection of the probe, followed by a more gradual

return to contact on the surface. The gradual return will be governed by the

dynamic response of the probe system. Typically, this is described by an

underdamped second order differential equation and gives rise to damped

‘ringing’ – a decaying oscillation at a frequency characteristic of the CMM’s probe

head. In the case of the Leitz LSP-S2 probe head used in this study, this is a few

Hz.

Figure 5-13 shows a collation of several such typical contact events. In this graph,

scan height is on the vertical axis and scan length on the horizontal. Contact

events have been height offset adjusted so that all start at zero – for a realistic

height comparison. Scanning speed is 10 mm/sec and there are approximately

30 points recorded per second – an equivalent lateral resolution of around 1/3

mm. This implies that the precise moment of particulate impact is unlikely to be

captured, meaning that the measurement (and therefore probably Figure 5-13)

typically underestimates maximum probe excursions.

Figure 5-14 shows (on the left) a magnified view of the 7th spike from Figure 5-13

and (on the right) spectral data for the spikes in Figure 5-13, taken as a group. It

Figure 5-13: Spiked contact errors – showing the consequence of particle
adhesion to surface
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can be seen from these that the probe ringing frequency is in the region of 10 Hz,

but that the sampling rate of 3 Hz means that the oscillation amplitude is

underestimated, which also explains the relative imprecision of the FFT

frequency estimate. The response in the most severe of these contact events (the

13th or 14th in Figure 5-13) is damped out within 12 mm of scan travel, but this

will render up to 50 scan points unusable, since there is no surface contact during

this distance of scan.

5.4.2 Contact event, case 2

At the time a contaminant particle on the surface is encountered by a scanning

probe stylus tip it may, as an alternative to Contact event, case 1, become

attached to the probe stylus. In this case, there is likely to be an instantaneous

upwards (+ve) deflection of the probe and at some level, the upwards deflection

will be maintained for a time, for as long as the particle is interposed between

probe stylus and surface, giving an effective increase in measured height.

Figure 5-15 shows a collation of such events – six are shown. In the first three,

there are two steps, one when the particle is first interposed and the second

where it suddenly ceases to influence the contact, either redeposited on the

surface or otherwise displaced. In the latter three cases, there is only a single

sudden step, then a gradual return to normal contact, but over a much longer

period than for the spikes of case 1 (5.4.1) – perhaps 100 mm of scanning (10

seconds) and without the ringing. This is due to the particular geometric condition

Figure 5-14: Spike characteristics – left: time domain, right: frequency
domain
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of a low slope surface: as the scanning progresses, the angle of contact on the

spherical stylus tip gradually changes.

As shown in Figure 5-16, this will change the effective depth of the particle and

eventually it will cease to influence the contact. All the contact errors are positive

- in other words the CMM stylus can pick up adherent particles increasing its

effective radius, and can encounter particles on the measurement surface, or it

can bounce away from the surface, but it cannot under ordinary circumstances

Figure 5-15: Stepped contact errors – showing stylus particle adhesion
consequences

Figure 5-16: Stepped contact error – particle adhesion to stylus
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penetrate the surface. In fact, the author, among others, has reported ductile

materials being impacted or scratched by CMM styli, with a consequent negative

contact error (in the order of 10-100 nm) [8], although direct evidence of that has

not been sought in this study. This should be reflected in the adopted algorithmic

strategy for detection and correction of errors. In order to detect locally positive

deviations, comparisons with neighbouring points on either side of the scan

should be made, rather than applying a threshold to a unidirectional gradient,

recording the rate (or value) of height change in the linear scan data itself.

Comparisons moreover should deliberately be made in a direction perpendicular

to the scan motion, since comparisons along a scan exhibiting persistent positive

departure from the surface would otherwise fail to detect an error. Lastly, given

that multiple adjacent scans can be affected (as in Figure 5-12 and Figure 5-22)

comparisons with several parallel scans are required, otherwise it’s possible no

positive deviation will be observed.

5.5 Surface Data Storage and Representation

Surface data are stored in two distinct ways within this study: as scan data or as

a point cloud interpolant.

5.5.1 Raw scan data

Storing scan data, for each scan line there are four linear arrays of data, three

representing x, y and z co-ordinates of the scan contact points on the surface,

and the fourth representing the deviation from the design or numerically fitted

surface. It is this deviation data (rather than the z co-ordinate) which is depicted

on the surface maps in this part of this manuscript. For a scan line with � points

(��, ��, ��) with ��, the representation is as in the equations (5-1)

�� = [�� �� �� ⋯ ��]

�� = [�� �� �� ⋯ ��]

�� = [�� �� �� ⋯ ��]

�� = [�� �� �� ⋯ ��]

(5-1)

There are typically 250 scan lines (the workpiece aperture breaks the central lines

into pairs) with up to 1600 points or more, per line, but the number of scan points

varies from line to line, on account of varying line length, due to surface geometry

and the issues referenced in Figure 5-7. A single surface map contains scan

points therefore on an imperfectly rectangular grid, with scan lines separated by
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around 3.3 mm and scan points within each line spaced at approximately 0.33

mm. This gives a point density of 90 per sq. cm or 900,000/m2. With a surface

area of approx. 0.25 m2, the optic in Figure 5-2/Figure 5-22 is scanned in one

direction with just under a quarter of a million points. The scan speed is set to

keep data loss through the mechanisms of section 5.4 to a minimum, whilst

keeping total scan time to a reasonable duration (< 24 hours), both for practicality,

and to limit non-repeatability through thermal effects on workpiece and measuring

system.

Although scans are made with continuous motion, scan data are composed of

discrete points as shown in Figure 5-17, which depicts actual scan data. Each

rectangle, some of which are labelled, represents a single actual scan point with

an (x, y, d) triple – x & y are represented by the centre of the rectangle’s top-line,

and d by the height of the coloured band above. The parallel scans are taken at

nominally equally spaced x-coordinates: ��−3, ��−2, ��−1, ��, ��+1 etc.; for this data

set the line separation (in x) is approximately 3.4 mm. Points within one scan line

are also nominally equally spaced: ��−3, ��−2, ��−1, ��, ��+1 etc.; for this data set

the point spacing (along the scan line) is approximately 350 µm. Whilst a scan is

Figure 5-17: Scan co-ordinate alignment
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being taken, individual co-ordinate triples are recorded for each point. These

correctly capture the stylus contact location at an instant (corrected for probe

deflection) but, depending on a number of factors, including surface topography

and scan start position, points cannot be guaranteed to be precisely equally

spaced, nor can points in adjacent scans be guaranteed to be aligned. Figure

5-18 shows the level of consistency in scan line and point spacing.

The red dash-dot line (in Figure 5-17) of equal y-coordinate aligns only to one of

the parallel scans’ acquisition y-positions, thereby showing this effect; the others

are not aligned. This is because there is a non-deterministic shift in the alignment

of discrete points in adjacent scans, although their y-coordinate position is

correctly recorded. This factor is significant in the detection and correction of

contact errors, since it is desired to reject as few points as possible comparisons

for the same x-value must be made.

Therefore, scan lines cannot be represented in a (filled) rectangular matrix, so for

a set of � scan lines (numbered �) made in the x-direction (with nominally set y

co-ordinate) the full representation is as given in Equations (5-2) where the �

points per scan line may be a different � (��) for each of the � scan lines.

Figure 5-18: Consistency of (left) mean scan line separation and (right)
scan point spacing



70

��,� =

⎩
⎪⎪
⎨

⎪⎪
⎧

��,� = [��,� ��,� ��,� ⋯ ���,�]

��,� = [��,� ��,� ⋯ ���,�]

��,� = [��,� ��,� ��,� ��,� ⋯ ���,�]

⋯ 

��,� = [��,� ��,� ��,� ⋯ ���,�]

(5-2)

There are similar equations for �, � and �. For the x-direction scan lines � values

span the surface, whereas � values within each line are very close (nominally

constant). For y-direction scan lines, the opposite is the case, where � values

within each line are very close and y values span the surface. The linear arrays

for (e.g.) � for all the scan lines can be concatenated to make single vectors for

efficient storage as in equation (5-3) and similarly for �, � and �.

� =
[��,� ��,� ��,� ⋯ ���,� ��,� ��,� ⋯ ���,� ��,� ��,�

��,� ��,� ⋯ ���,� ⋯ ��,� ��,� ��,� ⋯ ���,�]
(5-3)

5.5.2 Point cloud interpolant

The second surface data storage scheme is a fully flexible point cloud configured

for a Delaunay triangulation so that the methods of Shepard [184] and Sibson

Figure 5-19: Delaunay triangulation of realistic scan point locations –
small segment of surface (visualisation colours are not significant)
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[188] (for interpolation/extrapolation) as well as the more advanced manipulations

given below can be easily accomplished.

A Delaunay triangulation maximizes the minimum angle of each triangle by

selecting groups of three points accordingly, to form the vertices of the triangles

in the net (see Figure 5-19). This avoids as much as possible sliver triangles,

although given the relative spacing of scan points and scan lines here, high

aspect ratio triangles are hard to avoid. Sibson’s natural neighbour interpolation

is then applied when height/deviation values are required for points intermediate

between actual scan points.

Figure 5-20 shows the natural neighbour interpolation technique on a subset of

scan data locations from Figure 5-19. On the left is shown the initial triangulation

net. An interpolation is desired at the black point. On the right is shown a revised

triangulation net, as it would appear if the new point was introduced to the

triangulation set. The coloured patches on the right are called Voronoi cells and

these are polygons with vertices made of the centroids of the triangles in the net

– conversely this implies that our interpolation points are at the centres of the

Voronoi cells. Returning to the left diagram, a cluster of Voronoi cells from the

original net are shown surrounding the new point. The proportion of each cell in

the cluster which would be lost to the new Voronoi cell around the new point

dictates the weight of each related scan point that is lent to the interpolation value,

Figure 5-20: Natural neighbour interpolation
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and these weights are indicated numerically on the diagram and with the size of

the green dot at the scan point location.

The underlying function (�, the deviation from spherical fit) can then be

interpolated to give a continuous function � using the numerical weights � as in

equation (5-4), summed over � relevant scan point neighbours. The ‘�’-ordering

of the interpolant neighbours here does not correspond in particular to the (�, �)

ordering of the scan points in the earlier equations.

�(�,�) = ���(�,�)�(��,��)

�

���

(5-4)

By using the natural neighbour interpolation technique, a smoother interpolation

is achieved than with alternatives, although it is computationally more expensive.

Extrapolation cannot be achieved with natural neighbour technique, so nearest

neighbours are used for extrapolation instead, where extrapolation simply takes

the value of the nearest actual point in the interpolant data set. Extrapolation is

performed at or close to the edges of the workpiece where interrogated points lie

close to or outside the convex hull of the data set. If an interpolation is desired for

a point outside the convex hull, extrapolation must be used. This need can occur

in particular where there are missing data due to contact errors (see section 5.4).

5.5.3 Surface display

Conversions between the pseudo-rectilinear storage scheme, as used for the raw

scan - and unordered point cloud interpolant storage schemes are possible – and

in fact necessary; in the first case to enter new scan data into an interpolant set,

and in the second case in particular for display.

Figure 5-21 and Figure 5-22 (the difference between them is solely resolution)

use a colour map to represent the third axis - surface deviation. The colour map

used is Matlab’s Parula, which is designed (having a gradual dichromatic colour

transition) to eliminate the incorrect perception of differences in data due to hue

differentials, which occur in any rainbow style mapping; Parula is perceptually

relatively neutral throughout its scale, avoids several colour-blindness issues and

maps to a linear progression in greyscale [208].
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Parula’s perceptual neutrality is particularly important for visualisation of subtle

differences and is therefore appropriate for presenting this application – although

it doesn’t affect automated measurement in any quantitative sense. In order to

prepare the data for display, a rectangular grid of co-ordinates is selected (in

Figure 5-21 this is 1280x1280 pixels – corresponding to 0.5 mm resolution on the

surface).

Interpolated values for surface deviation are obtained for each of those 1.6

Megapixels using the natural neighbour interpolation presented in Section 5.5.2.

Approximately 240,000 (~16%) of these are beyond the edges of the surface,

represented by NaN (see Section 5.6, page 78) and not displayed. These points

are either outside the circular edge or inside the apertures in the surface.

Figure 5-21: High interpolation resolution false colour diagram of
deviation from design form – entire surface shown; deviation in Z

indicated by colour (bar on right gives scale). The marked rectangle is the
area in Figure 5-9 and Figure 5-12
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Figure 5-22 shows the same image but at a resolution of 192x1920 pixels, which

is more natural because it relates to the scan’s actual resolution. In either case,

the underlying information is the same – in the latter case the 192 vertical lines

(horizontal resolution) correspond to the scan lines and the 1920 horizontal lines

(vertical resolution) to the scan points on the surface. The latter representation

clearly makes a worse presentation of edges although a possibly better

presentation of contrast of contact errors. In either case, the point cloud

interpolant is the same and the measurement results will be unchanged by

display resolution.

Figure 5-22: False colour diagram of deviation from design form – entire
surface shown; deviation in Z is indicated by colour (the bar on the right

gives the scale). The marked rectangle is the area shown in Figure 5-9 and
Figure 5-12 – natural grid interpolation, along scan lines
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5.6 Identification and evaluation of contact errors

Equation (5-5) gives the essence of the author’s contact error evaluation

algorithm:

ℎ� = min

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

max

⎝

⎜
⎛

���� ,��� − ������,���,

���� ,��� − ������,���,

���� ,��� − ������,���,

���� ,��� − ������,���⎠

⎟
⎞

max

⎝

⎜
⎛

���� ,��� − ������,���,

���� ,��� − ������,���,

���� ,��� − ������,���,

���� ,��� − ������,���⎠

⎟
⎞

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

(5-5)

the criterion being that if ‘ℎ�’ exceeds a threshold level (1 µm was used in Figure

5-24, left) a contact error is indicated. Describing it in words: a difference is found

between the measured height of a scan point and heights of scan points either

side of it in a direction perpendicular to the scan, but in the plane of the surface.

The maximum difference of those to the left, and separately on the right, are

found. The lesser of the two maxima is taken as the +ve height deviation ‘ℎ�’.

Figure 5-23 shows the points involved. Only the indicated rectangle for (��, ��)

represents an actual scan point – the others (��−3, ��), (��−2, ��), (��−1, ��) etc. are

derived by the techniques for interpolation of scattered data of sections 2.5.5 and

5.5.2, since actual scan points are not available precisely at the required co-

ordinates. The interpolated points (here) do lie on scan lines, so the accuracy of

interpolation will be very high, since the natural neighbour interpolation of 5.5.2

will give most significance to the available adjacent data in the same line, by virtue

of its likely proximity.

The logic of the approach in equation (5-5) is as follows: a contact error will be

positive (away from the surface). Examination of e.g. Figure 5-22 (and numerous

similar measurements) as described in section 5.4, indicates that contact errors

occur either as spikes affecting a few consecutive scan points in a single scan,

caused by particulate adherence to the surface; or as elongated tracks, caused

by particulate adherence to the stylus tip.
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In the case of relatively low-slope freeform surfaces, the gradual change of

surface normal angle may lead to adjacent scans experiencing effects from the

same particle adhered to the stylus tip – of course this would not be the case with

spikes since the distance between adjacent scans far exceeds particle size. In

either case, comparisons with data within the same scan line as the point in

question will frequently give erroneous results, because of the continuous nature

and extent of contact errors. Moreover, comparisons which rely on filtered or

model-based data will have slope limitations and may require iteration as the

model-fit is improved.

The approach based on equation (5-5) is non-iterative, computationally cheap,

has a deterministic cycle time and is almost independent of surface geometry and

design. The sole exception to that is a limitation on slope set by the chosen

deviation threshold and the scan line spacing – in this case 1 in 104 or 1 micron

for three scan line separation gaps, totalling 104 microns. The approach can be

modified to accommodate higher slope surfaces (most easily by reducing the

scan line separation) – moreover higher curvature freeforms will almost always

Figure 5-23: Scan contact error detection co-ordinate alignment
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be much smaller in dimension so that the incentive (to reduce scan time) which

led to large scan line spacing, is much diminished.

The inclusion of multiple adjacent lines in equation (5-5) is made in order to

accommodate multiple adjacent contact errors, such as highlighted in Figure

5-22. This highlight area depicts an occurrence of more than two adjacent contact

errors, which in the author’s experience is very rare, so inclusion of four scan

lines either side of the central point in the equation is considered adequate for all

likely eventualities.

Figure 5-24 indicates the algorithm’s efficacy in detection; with a contact error

threshold of 1μm, essentially all of the discernible contact errors in Figure 5-22 

have been identified (marked in black in Figure 5-24 left) and subsequently

corrected (Figure 5-24 right). 2.27% of the points have been removed and

replaced with interpolated data – the remaining 98% are utterly unmodified,

preserving metrological characteristics.

Figure 5-25 makes the same comparison, concentrating on the potentially

problematic area highlighted in Figure 5-22.

Figure 5-24: The same surface data as Figure 5-22, left: stylus contact
errors marked in black; right: those data regenerated from unaffected

neighbouring points (scales removed for clarity)
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The algorithm of equation (5-5) evaluates the maximum +ve comparison, rather

than a mean or gradient – this is so that adjacent (but similar) contact errors will

not evade detection. A final algorithmic feature (taking a minimum of maxima to

either side) is a subtlety designed to accommodate contact errors at the edge of

a surface. A contact error close to an edge may not have a lower neighbour

towards the edge (or may have no neighbours at all in that direction). Use is made

here of the quiet NaN (propagating NaN) to represent height data outside the

convex hull (or within the apertures of the freeform). A signalling NaN can be the

result of a failed computation causing execution to stop – in contrast a

propagating or quiet NaN, as used here, represents missing values to be handled

in a particular way without disrupting bulk numerical processing. In this way, if a

NaN is encountered in the comparisons, only the maximum from the other side

of the scan line will be considered.

The threshold for comparison in equation (5-5) could be selected empirically, but

there is a justification (given below) for its choice at the level of 1μm for this data 

set. When the equations’ deviations are computed for all ¼ million scan data

points, a histogram of the deviations can be constructed.

The histogram in Figure 5-26 shows two clear ‘regimes’: below ~1μm a smooth 

distribution, associated with surface figure (slope variation) and minor

measurement noise; above ~1μm an extended distribution which we can deduce 

(on examination of Figure 5-12 or Figure 5-22) is associated with contact errors.

This distinction (between regimes) becomes starker as the scan line spacing is

reduced.

Figure 5-25 (Left): the surface data of Figure 5-12 - showing (right) the
effect of reinterpolating the points with contact errors > 1 μm (scales 

removed for clarity)
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The fact that 1μm is at that local minimum in the histogram is a justification of the 

selection of 1μm as a deviation threshold, and this can also be used 

algorithmically to determine a precise threshold. Figure 5-27 shows the

computation of the local minimum, based on a gradient (derivative) calculation.

Figure 5-26: Scan point count as a function of neighbourhood deviation,
with a histogram (right scale) and a threshold % cut (left scale)

Figure 5-27: Derivative of scan point count as a function of
neighbourhood deviation – the zero crossing is taken as the threshold for

contact error detection
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This selects for the zero gradient associated with the scan point count population

local minimum. Figure 5-28 shows a histogram of the same measurement data,

but with the > 1μm contact errors removed, as in Figure 5-24 right. 

5.7 Data accuracy enhancement

In order to mitigate any slope/displacement errors due to the combination of scan

speed and frequency response or latency, bidirectional scans are combined. In

general, taking the mean of two surface heights (the same x and y co-ordinates,

but scanned in opposite directions on the surface) would appear to suffice –

however there are complexities:

a) for any scan, the precise trajectory (even parallel to x or y) is not without

uncertainty, since there is compliance in the probe assembly i) affecting

scan speed in the scan direction and ii) position (parallel to the surface)

perpendicular to the scan direction. Therefore, positive and negative

direction scans cannot precisely overlay, even if programmed to do so

b) within scan lines, there are frequently ‘spikes’ (see Figure 5-1) caused by

scanning across surface contaminant particulates; where this happens

spike data for that location need to be rejected in one direction of scan and

Figure 5-28: Scan point count as a function of neighbourhood deviation,
with a histogram (right scale) and a threshold % cut (left scale) after scan

points with contact errors have been regenerated
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therefore duplicate scan points will not be available in those positions –

although this is an advantage of bi-directional scanning – that missing data

can be mitigated, moreover scan points may be entirely absent for some

areas where scan data in forward and reverse directions are rejected –

cases with duplicate, single or missing data points need to be handled

differently

c) some time has passed between subsequent scans of the same point – an

adjustment may need to be made to account for thermal (or other) drift

between successive scans when combining their data

d) in addition to thermal drift, there may also be stylus tip wear; this is not

specifically addressed in this study, although it could ultimately be

analysed from the data

There are numerous well-documented contributions to CMM uncertainty [199],

not least thermal, but in almost any scenario, there is potential for accuracy

improvement through data redundancy, so there may be benefit in multiple full-

surface scan measurements. The directional influence of the scan motion can be

mitigated to some extent by employing forward and reverse direction scans (using

independently angled styli) in some combination.

Figure 5-3 (right) shows the stylus angled at 20 degrees to the horizontal, facing

away from the direction of scan. This angle is adopted to give minimal scanning

friction, which reduces the effect of induced vibrations during scanning, whilst

giving sufficient clearance angle to accommodate the freeform surface’s slope.

This approach does require one stylus for each directional scan – easily

accommodated by automatic probe changer and automatic stylus calibration on

the CMM.

Figure 5-29 and Figure 5-30 show the results of the four scans in different

directions – the parameters are otherwise the same in each case. Scan direction

(by the long arrow) and step direction (by the short, curved arrow) are indicated

in each case, together with the sequence of scanning, indicated by number.
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5.7.1 Residual contact error treatment

There are some barely perceptible contact errors remaining on these surface

maps, which are below the 1μm threshold. There is a subtle advantage in this 

procedure, in respect of the redundancy in the scans. Given that contact errors

are all positive going, by a principle akin to common mode rejection, subtraction

from any scan set, of the mean of the other three scan sets, gives effective

1 3

Residual
contact
error

Figure 5-29: X Direction forward (left) and reverse (right) scans, after > 1
μm contact errors have been removed 

24

Figure 5-30: Y Direction forward (left) and reverse (right) scans, after > 1
μm contact errors have been removed 
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cancellation of all of the shorter wavelength surface form – including the light-

weighting print-through pattern.

What remains is only high spatial frequency noise due to contact errors - and low

spatial frequency noise due to (principally) thermally induced changes to the

measurement system and workpiece, over the duration of the 4 measurements.

All of the positive-going errors in the difference pattern are contact errors in the

single set – the contact errors in the subtracted sets are each reduced by a factor

of three (due to the mean) and in any case negative. For this reason, application

of equation (5-5) to the difference surface can identify much smaller errors,

because with the surface form substantially removed, the distribution of

neighbourhood deviation is smaller. Whilst the absolute height value of the

difference surface is non-zero, the contact error detection algorithm of equation

(5-5), which operates only on local neighbourhood, is largely unaffected.

An error threshold of below 400 nm is now suggested (see Figure 5-31) and this

removes almost another 1% of scan points due to contact errors. The additional

contact errors are indicated in Figure 5-32 by the black lines and dots. Points at

these locations will be re-interpolated in the final data set to remove the errors’

effects. Some 97% of the scan data remain unmodified at this stage of the data

processing.

Figure 5-31: Histogram and contact error calculation threshold as derived
from difference surface in Figure 5-32
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5.7.2 Scan comparisons and combinations

Figure 5-33 and Figure 5-34 show the four difference scans with all contact errors

> 0.4 μm removed and with mean (z – height) offset also removed. 

Some asymmetry is apparent, particularly in (and between) the x-directional

scans. Asymmetry here can arise out of relative movement between

measurements. For a near-spherical shape, of the 6 rigid-body motions, which

can be resolved into translation in x, y & z and rotation around x, y & z: the surface

is (nearly) invariant for z rotation; z translation (piston) is adjusted with z centre

shift Zernike n=0. Given the overall spherical shape of the surface, although here

the data being displayed all have the nominal sphere shape removed as a fixed

radius component, any offset in x or y-directions for the nominal spherical centre

(or rotations about x and y axes) will give an apparent asymmetry to the data.

Residual error
identified and

addressed

Figure 5-32: Difference of X forward scan and the mean of 3 other
directions – black lines indicate additional contact errors detected above

threshold in Figure 5-31
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For a sphere, x or y axis rotation is indistinguishable from an x or y centre shift

by analysis of the concave spherical surface alone. These will appear as an

inclination: Zernike n=1, m=-1/+1 (see Table 2-7 on page 32 - akin to adjustment

of the z mean) although in the x-y plane. These can be adjusted using the generic

methods described below in Section 5.8, or with a specific simple fitting of �0 and

�0 (the centre offsets) in equation (5-6) by rearrangement into the five groupings

in equation (5-7). This can be solved using least squares and the techniques of

Figure 5-33: X Direction forward (on the left) and reverse (on the right)
difference scans, after > 0.4 μm contact errors have been removed 

Figure 5-34: Y Direction forward (on the left) and reverse (on the right)
difference scans, after > 0.4 μm contact errors have been removed 
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linear algebra, or related methods via the solution for the constants in equations

(5-8).

� − �� = −��� − (� − ��)� − (� − ��)� (5-6)

{�� + �� + ��} + �{�} + �{�} + �{�} + �{1} = 0 (5-7)

�� = − �
2� , �� = − �

2� , �� = − �
2� , �

= ���� + ��� + ��� − �
(5-8)

The author favours singular value decomposition [184] in respect of this and other

linear fits owing to robustness against the limits of numerical representation of

small differences between large numbers for large data sets. This asymmetry

(centring error) however results in what would appear as an inclined plane in a

deviation plot of a fitted sphere, so if this is a cause of asymmetry in the x-direction

difference scans, it’s not the only cause, since the asymmetry is something other

than or additional to a tilted flat.

Offsets in centring could arise out of thermal or other distortions of the surface,

its location/support apparatus or the measuring system over the duration of the

measurement, or in positional lag in motion direction during scanning. In respect

of lag, it may be pertinent that the x-direction scans are moving a mass

approaching 3 tonnes, using a two-motor gantry drive on the CMM in order to

transport a small probe (see Figure 4-1); the moving mass for y scans is much

lower, as a consequence of the construction of the machine. Another potential

source of asymmetry in these patterns is the effects of the z direction reversal

that occurs as the scanning probe passes the centre line of a concave surface.

This could be expected however to give similar effects in x- and y-direction scans,

which appears not to be the case here, unless combined with hysteretic

behaviour which may be stronger in x than in y, perhaps for the ‘lag’ reason given

above.

In order to analyse the bidirectional, potentially hysteretic behaviour, a

comparison between forward x and reverse x scans can be made. Whilst it’s

possible that (thermally induced or other) distortions may occur within the

timescale of a full surface scan, which takes around 2 hours, within the timescale

of a single scan line (less than a minute) these will be negligible. For the x-axis

scans this relative asymmetry (between forward and reverse scans) is persistent

across the lines (from top to bottom of Figure 5-33). There is additionally an
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asymmetry in the other direction, with the lower portion of the right hand side

image in particular showing a more positive trend, but this can be adjusted with

centre shift and may be due to thermal action or uncertainty in probe calibration

before a scan set commences.

Figure 5-35 (left) shows the difference (reverse subtracted) between the two x-

direction scans. A pattern, which is highly consistent from top to bottom, is

evident, and on the right is the mean cross-section. This is very unlikely to be due

to thermal or other changes because it is so consistent; the duration of each full

scan was the same as the time interval between them, so if thermal changes

were the cause of this difference, there would be less consistency from top to

bottom. The conclusion is that this is an artefact of the measurement system

scanning in the x-direction; since its profile is consistent at a range (> 600 mm)

of different y-values, it appears independent of surface form.

It is not present on the same scale in the y-direction scans. Figure 5-36 shows

the means in the perpendicular direction. For both x and y scans, the steps

between scan lines have been made in the same direction in forward and reverse

scans (see the small curved arrows in Figure 5-29, Figure 5-30). Therefore, these

data cannot be used in corroboration of speed dependence for asymmetry – this

could be rectified in future work – they do however give an indication of the

Figure 5-35: Mean (at every horizontal co-ordinate) of all the differences
(at different Y values) between X forward and reverse scans once the

centre adjustments are made
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repeatability of the form measurement capability – and these are based on

comparisons over several hours.

Each of the four sets of scan data possess relatively high lateral resolution, but

are not recorded at precisely identical scan point x and y co-ordinates. Therefore,

in combining them in to composite data (for instance by sorting the data points

from each into order in one single data set), there is a risk that a consistent

(however small) offset between two data sets might lead to high frequency

artefacts.

Figure 5-36: Mean (at every vertical co-ordinate) of all the differences (at
different X values) between Y forward and reverse scans once the centre

adjustments are made

Figure 5-37: Simulated signal combination showing ‘aliasing’ from
staggered data locations and signal offset



89

These would be caused by composite points’ alternating between one data set

and the other, aliasing a signal at half the sample frequency. This should be

avoided in any combination technique. This pitfall can be illustrated by way of a

simulation as in Figure 5-37.

An improved scheme is shown in 2-D Figure 5-38 and represented in 3-D in

equations (5-9). In this scheme, abscissa points from both (all) data sets are

combined and ordered to make up a larger data set. Separately, interpolated

values for each data set are obtained at all the abscissa points. The mean of all

ordinates for a given abscissa value is taken as a new interpolant value. This

scheme, which will be called co-interpolated, can operate in n-dimensions.

�1(�, �) = ��1�(�,�)�1(��,��)

�

���

�2(�, �) = ��2�(�, �)�2���, ���

�

���

�� = ���	���																			�� = ���	���

�(��,��) =
�1(��,��) + �2(��,��)

2

�(�, �) = � ��(�,�)�(��,��)

���

���

(5-9)

Equations (5-9) show the scheme in which the larger interpolant data set is

generated by interpolating the values for d in each of the combining interpolants

Figure 5-38: Simulated signal combination showing improvement by using
the mean of co-interpolation
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using the combinations of x and y points from each combining data set – and then

taking the mean at the common (x, y) values. In equations (5-9) for the combined

set, the weights ��, as for previous sets, are computed from a fresh Delaunay

triangulation of the net (��, ��) of interpolant points.

5.7.2.1 Compensation for longer period distortion (thermal)

A proposed technique will now be outlined which will to some degree compensate

thermal distortions using combinations of scan data; for ultimate effectiveness

this will require greater repeatability of bidirectional scans in the x-direction –

some strategies to achieve this will be presented in section 5.9.

The proposed technique is based on an assumption that parallel linear scans

performed as in Figure 5-29 & Figure 5-30 will exhibit minimal effects from

thermal distortion in the direction along a scan line (which takes seconds to scan).

This can be compared with potential distortion effects experienced in a direction

perpendicular to the scans, a direction which is travelled during the scanning in a

timescale of many minutes or some hours.

By combining the rapid and relatively stable scans in one direction with similar

data from scans in a perpendicular direction, a compensation for the presumably

larger thermal drift during a single scan set can potentially be made.

This approach would require a demonstration of stable and (short term)

repeatable linear scans. This has not been achieved in the x-scan data set, but

has (Figure 5-36) for the y-scans. Taking the mean values of the difference

between co-incident y-scans made in opposite directions gives a variation across

the whole surface of ±150 nm, which is impressive performance for a CMM on a

m2 optical surface with a sag of 20 mm, even if the comparison is made over the

relatively short timescale of a single scan.

Additionally, the means of the same data taken in the perpendicular direction

(Figure 5-39 right) although comparisons based on a much longer timescale,

show variations of barely more than ±200 nm. This suggests that the y scans do

offer the stability to demonstrate an error compensation technique.

A technique, analogous to the one proposed can therefore be demonstrated,

using the y scans as a potentially lower uncertainty measure to adjust the x scans.
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Given that y scans are demonstrating repeatability (even if this says little about

accuracy per se) they can be used to align the x scans to them, whilst preserving

the high spatial frequency data within x-scans. This can be done by intersecting

x and y scans. Where they intersect, the z-height (or more correctly d-height) of

the x scans can be adjusted to match that of the y scans – the intervening x scan

data can be adjusted (preserving its relative height variation) to interpolate

between the intersects.

In the following, double stroke letters are used to represent an interpolant. ����

represents an interpolant built from forward direction scans parallel to the x-axis,

����� an interpolant built from reverse direction scans parallel to the y-axis, etc.

“�.pts” are the (��, y�) interpolant’s network of points and “�.val” are the �� values

of the interpolant at those points.

�.�ts = ���� .�ts ∪ �����.�ts

�.val =
����(�.�ts) + �����(�.�ts)

2

(5-10)

Equations (5-10) generate an interpolant which is a mean of forward and reverse

y-scans. � can be formed in a similar way. Mean scan combinations are shown

in Figure 5-40.

Figure 5-39: Mean for difference between X forward and reverse scans
(left) and between Y forward and reverse scans (right) perpendicular to

the means in Figure 5-35 and Figure 5-36 respectively
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Equations (5-11) form an adjustment interpolant which takes the values of the x

interpolant at the points of the y interpolant.

�.�ts = �.�ts �.��� = �(�.�ts) (5-11)

This can then be combined with the x interpolant itself to capture the high spatial

frequency data in the x scans, fitted to the form variation in the y scans, by the

manipulation given in equations (5-12). This small difference is shown (Figure

5-41 left). Note that this is with a highly magnified colour scale (modified for

Figure 5-40: Mean scan combinations for X (left) and Y (right) scans

Figure 5-41: X scan residual adjustment (left) to capture high spatial
resolution data and final surface deviation measurement (right) capturing

X scan residual adjustment
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display only) with ± 1 µm full scale, to accentuate the differences. This is then

added, also in equations (5-12), to the y interpolant itself to give the resultant

composite scan interpolant � – shown in Figure 5-41 right. This represents the

most repeatable measurement of the surface from the available data.

�.�ts = �.�ts ∪ �.�ts

�. ��� = �(�.�ts) − �(�.�ts) + �(�.�ts)
(5-12)

Close examination of Figure 5-41 right reveals (near circular) spiral surface

texture effects due to grinding in a clarity exceeding any of the other

representations. This is due to the retention of the high spatial resolution data

from the x-scans, without loss of the repeatable fidelity of the y-scans. The details

of the surface geometry can be further analysed with the techniques of Section

5.8.

5.8 Zernike decomposition

Section 2.5.2 introduced orthogonal polynomials, and in particular Zernike

polynomials. These can be used to characterise specifically wavefronts or more

generally surfaces. The advantage of their orthogonality is that they can represent

separable solutions to a surface description which can be independently derived

and combined. Their orthogonality ensures that subtracting a multiple of one

Zernike polynomial from surface data does not affect coefficients of the other

Zernike polynomials that remain. This implies that there is no necessity to

compute large sets of Zernike polynomials if only a small number are of interest

– it further implies that the techniques of linear algebra can be used to obtain the

polynomials’ coefficients. An advantage of the particular polynomials due to

Zernike is that they correspond to geometric factors which relate directly to optical

characteristics of a system. A further advantage here is that some – and in

particular the lower order polynomials – correspond to manufacturing and

mounting issues which may be adjusted to correct or compensate surface errors

– and that’s why they’re adopted here. In the following, Zernike polynomials for a

circular ‘pupil’ of the same radius as the surface are used. An assumption could

be made that the apertures, which represent together < 12% of the area of the

surface, have minimal effect on the fitting of the Zernike polynomials; which

seems safe on the basis of the arguments [165,159] presented on page 33 in

discussion of continuous circular pupils and the fitting of lower order orthogonal
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polynomials. This can however be verified with simulated test surfaces with

Zernike polynomials fitted both with and without apertures – see Figure 5-42.

The test surfaces are identical, except for the presence of the apertures. For both

there is a set of test offsets applied in order to measure the effect of the apertures

on the measurement of alignment parameters by Zernike analysis; thereby

testing the efficacy of polynomials optimised for continuous circular pupils on this

alternative geometry. These offset parameters are given in Table 5-1.

Figure 5-42: Simulated surface with cellular form and off-centre spherical
deviation both with (right) and without (left) apertures (colour scale is

±0.01 mm)

Figure 5-43: Comparison of results from fitted Zernike Polynomials both
with (right) and without (left) apertures (colour scale is ±0.005 mm)
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Table 5-1: Simulated test surface parameters

Parameter Value

Nominal radius 2028 mm

Radius error -0.3 mm

X centre shift 7 µm

Y centre shift -10 µm

Figure 5-43 shows the result of (simultaneously) fitting four Zernike polynomials:

n = 0, m = 0; n = 1, m = -1, n = 1, m = 1; n = 2, m = 0 – representing piston (Z

shift), tilt around x-axis, tilt around y-axis and defocus respectively.

These four polynomials are frequently numbered 1 (or ��
�), 2 (or ��

��), 3 (or ��
�) &

5 (or ��
�) in ordered lists of Zernike polynomials. Since these polynomials satisfy

the orthogonality condition, neglecting 4 (or ��
��) & 6 (or ��

�) (representing

astigmatism) from the computation, does not affect the accuracy of the calculation

of coefficients. Since these data are of deviation from best fit sphere, the nominal

radius cannot be extracted from the processed Zernike coefficients – however,

knowing the nominal radius, the radius error can be computed. There is no

significant additional error arising from the presence of the apertures. In the case

of a much lower resolution measurement (such as for the single point probing

map of Figure 5-4) the apertures could become significant. The error caused by

the apertures is a function of the resolution of the scans; a low resolution leads

to the failure of the Zernike orthogonality in the case of discontinuous pupils.

Subtracting the fitted ��
�, ��

�� ��
� & ��

� leaves all the other Zernike polynomials

(such as astigmatism) in the data as an infinite series – effectively this is the full

surface shape, including all noise, once centring and radius adjustments have

been ‘zeroed out’.

The four fitted and removed polynomials are effectively the rigid body degrees of

freedom – in this special case of a nominally spherical surface, x axis tilt and y

axis tilt are indistinguishable from y direction shift and x direction shift. The only

degree of freedom (DOF) therefore not explicitly measured is z axis rotation, but

this DOF is embodied in the pattern – the surface figure, as shown in Figure 5-44.
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These same measurements: x, y & z offsets, together with residual surface figure

after removal of nominal radius of curvature, are the ones required to optimise

freeform surface manufacture. Some higher order Zernike polynomials may

additionally be of interest in respect of surface mounting effects, such as ��
�� &

��
� (astigmatism) and ��

�� & ��
� (trefoil).

Figure 5-44: Simulated test surface - residual data once four low order
Zernike polynomials are removed: piston, tilts & defocus

Figure 5-45: Actual surface (from Figure 5-41, right) – Zernike polynomials
fitted for piston, tilts and defocus
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Figure 5-45 shows the fitting Zernike polynomials for piston, tilts and defocus for

the real dataset (from Figure 5-41, right). The centring offsets in Figure 5-45

(piston is automatically zeroed when the dataset is assembled in Quindos) reflect

the alignment of machined surface form relative to the alignment datum features

on the grinding fixture which are used to establish a co-ordinate reference system

for grinding set-up and to transfer the surface to the CMM for measurement.

These are manually aligned for grinding, but automatically assessed for CMM

measurement. The delta radius is a machining error and represents excess

curvature (around 2 microns here, across the diameter of the surface).

Figure 5-46 shows the final form of the ground surface. As in Figure 5-44, this

represents the performance of the grinding process on this surface. Here, the

form is dominated by the deflection of the thin face sheet by the high normal force

of the grinding. The form RMS is nevertheless below 800 nm, even including the

face sheet deflection.

5.9 Summary and discussion

A method and algorithmic treatment for high spatial resolution measurement of

continuous freeform surfaces has been presented. These techniques are

designed to give high resolution areal measurement data from a CMM with the

same ease of application, and to an equivalent resolution, as full-aperture

interferometric measurements. The data are processed with techniques designed

Figure 5-46: Actual surface (from Figure 5-41, right) – Zernike polynomials
for piston, tilts and defocus have been removed
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to give a measurement uncertainty that approaches or exceeds a low resolution

single point probing-based measurement. The aim is to create a suite of

measurement and data processing techniques to permit measurement of non-

specular surfaces with a fidelity that is high enough to support the manufacture

of surfaces and provide measurement data suitable for the first stage of an

iterative figure correction process, such as CNC polishing. There was not a

specific uncertainty target. High resolution at adequate uncertainty can help to fill

the gap in surface quality between what is usually the final output of the grinding

stage and what is required as the input quality for an interferometric surface

measurement. Successfully filling this gap can obviate the need for an entire

processing step – the neutral removal step required to make a surface specular

for interferometry. Currently even this step is sometimes not enough to establish

a continuous interferogram, due to excessive departure from a test wavefront;

this new measurement technique can avoid this requirement altogether.

5.9.1 Achievement of objectives and contribution to knowledge

5.9.1.1 High lateral resolution contact scanning measurement of smooth

freeform surfaces

A first objective was to achieve a high lateral resolution for measurement data. A

scanning scheme using suitably position parallel tracks in multiple directions has

been demonstrated. The choice of parallel tracks based on a Cartesian geometry

gives a uniform measurement density, in contrast to a polar scheme. Given the

(typically) polar machining geometry for large freeforms, a polar measurement

scheme would be difficult to align with the machining pattern; any misalignment

would significantly alias machining marks. Crossed measurement tracks give

(welcome) redundancy to the measurement at thousands of locations distributed

across the surface. Scan motions which are essentially aligned to motion axes

have been chosen to minimise motion uncertainty. The demonstration dataset

has a resolution of 1/3 mm on the surface, which equates to > 2000 pixels on this

surface. This was deliberately chosen a) to be equivalent to a competitive

interferometric full-aperture optical test of the surface and b) to be high enough

to exceed the Nyquist sampling criterion for the minimum grinding pitch in

operation, which is around 1 mm. Even this close to the Nyquist limit, grinding

marks are clearly visible in the data graphs and can yield process diagnostic and
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even correction information – not possible at any lower measurement resolution.

This information can be used in targeted first stage polishing to give complete

coverage in the first stage interferometry. A scan resolution of 0.3 mm however

is not the limit of the scan measurement resolution capability. At the same

measurement speed, data can be acquired at 10 times higher resolution or more,

although there is a penalty in data volume. The penalty is that a different

programming scheme would be required in Quindos for data handling, due to the

data volume issue, so that the measurement data would be stored separately on

a per-scan line basis, rather than as a single element for the entire surface, as is

the case in the current scheme. The data handling capacity in Matlab is not close

to exhaustion at this level, although the programming for flexible visualisation (as

used for the generation of the figures in this chapter) is computationally intensive

and this computational burden increases as the square of the resolution.

Interpolation time also increases as the square of the linear resolution, but the

code for natural neighbour interpolation from a Delaunay triangulation is highly

optimised although not so easily multithreaded, owing to the volume of data that

must be duplicated per thread. Visualisation is however of limited necessity,

except perhaps at a final output stage.

5.9.1.2 Detection and removal of scanning contact errors

A second contribution is in the detection and removal of contact errors, caused

primarily by particulate contamination of the stylus/surface interaction. This has

proved to be a highly successful part of the research. Utilising the scanning

geometry and data storage scheme, a highly selective and accurate contact error

detection and correction algorithm has been demonstrated which handles both

classes of observed contact error, as explained in a simple contact error model.

An objective sensitivity threshold calculation has been shown, based on a

statistical analysis of each measurement data set. Application of this technique

has resulted in data sets of exceptional smoothness, for which > 95% of original

data points are unmodified. This data ‘filtering’ has moreover been employed

without the direct application of time or frequency domain-based filtering, which

could have a detrimental effect on measurement uncertainty.
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5.9.1.3 Compensation of errors due to changes in measurement accuracy during

measurement

A third contribution is in the compensation of errors due to changes in

measurement accuracy over the period of a measurement, although this has

been only partially successful. The application of scans in 4 directions has

revealed a strong asymmetry in X +ve and -ve direction scans at the selected

scan speed – an asymmetry which is essentially absent from the Y direction

scans. The X direction asymmetry is consistent in scale and shape throughout

the measurement and at all Y co-ordinate values, independent of surface slope,

so is therefore an artefact of the X axis motion system, which is gantry-controlled

and has a very large moving mass. Rotation of the measurand surface, so that

all measurements could be taken in the Y direction, would entail loss of

registration of the surface, so is impractical from an uncertainty standpoint. A

compensation scheme using higher repeatability direction scans to compensate

lower repeatability ones was proposed and demonstrated, which yielded extra

measurement detail. In the absence of the x-axis hysteresis issue, this could also

afford a reduction in measurement uncertainty.

5.9.1.4 Application of orthogonal polynomial error separation to a ground

freeform surface

A fourth contribution, the extraction and separation of data required for correction

of errors in grinding geometry has been achieved. Separation using Zernike

polynomials is standard for large optic measurements, although its application to

high resolution CMM scans appears novel.

5.9.2 Further work

5.9.2.1 Hysteresis anisotropy

Scan hysteresis should be investigated on the basis of direction, including the

performance of different CMM types.

5.9.2.2 X axis gantry – treatment of scanning hysteresis

The scanning hysteresis apparent in the X axis for this CMM can be investigated

as a function of speed and as a function surface geometry. Differences in

scanning styli can be eliminated (as part of a diagnosis) by using a common stylus

and lower speeds.
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5.9.2.3 Accuracy improvement through improved stylus calibration

Stylus scan calibration is only available as standard in a plane perpendicular to

the stylus shaft. A calibration artefact could be used which exercises the contact

zones on the stylus relevant to the surface scan in a specifically-developed stylus

calibration.

5.9.2.4 Uncertainty investigation through artefact calibration

A suitable specularly reflective calibration artefact can be employed which has

been calibrated using a known uncertainty full-aperture interferometric system.

5.9.2.5 Repeatability investigation through rotate and move

A stable artefact, supported on a kinematic location, can be employed for

repeated measurements placing the artefact in different orientations and different

locations on the CMM bed – comparisons can yield repeatability measures for

the measurement technique.

5.9.2.6 Selection of scanning speed/data point density, as a function of surface

geometry

Aspects of the metrology technique, including the filtration algorithm, can be

optimised against surface shape, size and texture.

5.9.2.7 Higher spatial frequency form compensation

Particularly in the context of light-weighted optics, the level of measurement

resolution and fidelity available as a result of the presented technique opens up

for the first time the possibility of form compensation for face-sheet deflection, or

other relatively high spatial frequency features. This can be exercised on the Box

grinder.
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6 TOOL PATH GENERATION

Machining describes any of a number of processes by which material is modified

using a controlled removal process - what is now often called subtractive

manufacturing by an antonymic formation from the more recently developed (but

with a longer-standing name) processes of additive manufacturing. Traditionally,

machining is a mechanically-forced process operating on metal, but almost any

solid material is responsive to some form of machining. Relative motion between

tool and workpiece materials can be assumed to be required in all but the most

esoteric of examples. Imparting this relative motion (and usually applying

machining force) is the function of the eponymous machine, and the trajectory of

that relative motion is also called a toolpath or tool-path. Tool path design is a

widely-studied subject, and it can encompass anything from pre-planning the

operation of manually driven hand-cranked screw-induced motions to a full CAD-

CAM process. The latter can be a process in which a design for a workpiece’s

final shape, based on a functional specification, is produced on a computer and

then algorithmically converted to a set of machine motion instructions,

automatically transferred and finally executed without any human intervention.

6.1 Influences on tool path design and its implications

6.1.1 Machine motion configuration

The motion system configuration of a machine has a strong influence over the

choice of tool path geometry. Figure 4-2 (right) and Figure 4-4 show two motion

system configurations on two very different machines. One machine applies

machining normal forces typically in milli-Newton ranges, for finish ductile

machining of soft metals; the other applies machining normal forces (through an

interposing grinding spindle) typically a million times larger (~1000 N) for rough

grinding of hard ceramics. Despite their very different applications (and axes’

orientation & stroke) their relative motion geometry, often called cylindrical

geometry, is the same in each case and this has the same influence over their

tool path design geometry. This is frequently most strongly linked with tool path

design; conversely some chosen tool paths dictate the selection of machine

motion configuration. There are many other influences; some relevant to this

study are given below.



103

6.1.2 Pre- and post-machining workpiece surface shape

Process chain design is discussed a little further in section 5 on page 50; primarily

and most obviously however, for any process step, the shape of the volume of

material between the input (pre-machining) and output (post-machining) surfaces

dictates the amount to be removed as a function of position on the surface. This

position may be identified for instance in Cartesian or spherical co-ordinates

(Figure 5-5) or by a parametric description. A great deal of tool path design

research has related to the most efficient traversal of that inter-surface volume,

taking into account the potentially infinite variety of combinations of simultaneous

motions of multiple axes – often five axes. This is less of an issue in the context

of this research for the reason that both of the machines identified above have

cylindrical motion configurations with only three axes. Since both also employ

convex tools with finite formed radii, there is (with one subtle exception as

described in chapter 8) a unique combination of individual axes positions for each

machining point and once this combination is determined, the general pattern of

the tool path is more or less driven by the other factors.

6.1.3 Tool shape

There are two machining processes under consideration in this study, single point

diamond turning (SPDT) and formed wheel fixed abrasive grinding. In each case,

at the moment of surface creation, a common contact vector is normal to the

created surface on the workpiece and normal to the cutting surface on the tool;

this could be called the normality condition of surface creation.

For SPDT, the tool’s cutting surface is often considered as a cutting edge formed

by the intersection of rake faces on the tool. Even after tool wear has occurred,

for the purely geometric exercise of tool path design the cutting surface can be

modelled as a line lying in a plane which is normal to the workpiece surface at

the point of contact. In either case - grinding surface (Figure 6-1) or cutting line

(Figure 6-2) - for the purposes of tool path design, the contact normality condition

given above still holds.
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Therefore, for the machines involved in this study (where the tool orientation is

fixed) given purely convex tools with radii of curvature less than the smallest

concave (designed) curvature of the workpiece, the tool position to cut any

surface location seems to be uniquely determined. This conjecture, if true,

Figure 6-1: Surfaces contact with common normal vector – 3D tool cutting
surface

Figure 6-2: Surfaces contact with common normal vector – 2D tool cutting
edge
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simplifies tool path generation, since the infinite variety of possible paths for 5+

axis machining is avoided, provided some simple choices are made; we’ll return

to this point briefly in chapter 8.

On the basis of the tool-workpiece positional relationship for any given workpiece

surface location being determined by a) the slope angle of the surface at that

point and b) the unique portion of the tool’s cutting edge or surface selected by

that slope angle, tool path design is the process of devising the locus of workpiece

surface co-ordinates (in 3D) which must be traversed by the tool, and the speed

at which the cutting edge or surface is desired to traverse the workpiece surface.

This is calculated based on the tool-workpiece positional relationship for any

given workpiece surface location being determined by a) the slope angle of the

surface at that point and b) the unique portion of the tool’s cutting edge or surface

selected by that slope angle. The tool path can be computed in a determined way

thereafter from the path-specific slope variation of the workpiece final surface and

the shape of the tool. There are other influences on that locus and speed, which

follow.

6.1.4 Material processing parameters

The optimisation of machining parameters for productive capability, as used in

this study, is detailed widely: for instance, [209] for SPDT of ductile materials or

[12] for optical fine grinding of brittle ceramics. This leads to a process-

appropriate machining force vector (a combination of normal and tangential

machining forces). Machining forces can however affect the accuracy of a

surface.

Machines have finite static stiffness, and even if apparently infinite static stiffness

can be achieved through advanced control, this is only at the point and

direction(s) of feedback measurement. It is effectively impossible for this

feedback point to be precisely at the varying point on the tool responsible for

surface creation. It is clear from both Figure 6-1 and Figure 6-2 that whenever

the design surface local slope varies, a differing point on the fixed-orientation tool

will be selected by the contact normality condition as the point responsible for

final surface creation. For this reason, finite machine static stiffness can cause

surface generation shape errors if the machining force varies across the shape.

This is an encouragement to design machining tool paths which maintain
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constancy of machining force throughout the path. This does have implications

to the input surface shape and condition requirements. The surface condition

should be uniform, most easily achieved by applying uniform previous stage

machining parameters.

A strategy adopted within this study is to have a constant depth of material

removal (requiring that input and output surfaces are parallel at all co-ordinates)

and to design tool paths with constant material removal rate; and where this is

not possible, to have a removal rate which varies slowly at most. This last

alternative at least allows compensation for varying machining force to be more

easily applied.

6.1.5 Surface texture

Table 6-1: Typical SPDT finish parameters used in this study

Parameter Value

Workpiece radius of curvature 62 mm

Tool radius of curvature 1.6 mm

Workspindle rotation 200 rpm

Tool-work path speed up to 1300 mm/sec

Relative radial feed per revolution 10 µm

Depth of cut 10 µm

Geometrically resultant cusp height 7.8 nm

Equivalent Rq 2.4 nm

Equivalent Ra 2.1 nm

There are influences from tool path design on roughness and waviness which

may dictate an approach to tool path design. For a typical tool path in a cylindrical

geometry – a spiral as indicated in Figure 6-2 – a dominant influence on texture

may be from the spiral path; this is revealed strongly in any radial assessment of

profile. For SPDT this has a typical pitch (which causes cyclic variation in the

profile assessment) by design in the region of 5 µm, which is a cause of

roughness as assessed by any common surface texture filter cut-off length.

For the finish grinding mode adopted in this study, the equivalent typical pitch is

in the region of 1 mm, which is a cause of waviness as assessed using short to

median standard filter cut-off lengths. In either case, this produces scalloped
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profile features, with cusp height approximated very closely for circular arc-

shaped tools by the well-known formula ℎ = �� 8�⁄ , where ℎ is the cusp height,

� is the feed pitch, � the tool radius in the plane of the radial feed direction and

� ≪ �. Typical finish machining parameters used in this study are indicated in

Table 6-1 for SPDT.

Table 6-2: Typical finish grinding parameters used in this study

Parameter Value

Workpiece radius of curvature 70 m

Tool radius of curvature 300 mm

Workspindle rotation up to 14 rpm

Nominal tool-work path speed 25 mm/sec

Relative radial feed per revolution 1 mm

Depth of cut 50 µm

Geometrically resultant cusp height, ℎ 272.2 nm

Equivalent Rq 129.1 nm

Equivalent Ra 111.2 nm

Tool spindle rotation 2200 rpm

Tool spindle axial synchronous unbalance error 100 nm p-v

Tool spindle induced ripple along tool-path, � 0.68 mm

Equivalent Rq 35.0 nm

Equivalent Ra 31.2 nm

Another aspect of tool path design is the intended tool-work relative feed speed

along the path. For grinding, this choice is often related to optimisation for

productive capability (section 0), although in either machining mode, any

frequency of relative tool-work surface normal motion will impart surface

inaccuracies. In the particular case of relative motion at the workspindle rotation

frequency, this will give shape errors or impart a tilt because it is synchronous

with the work rotation; for other frequencies, roughness or (for harmonics of the

workspindle frequency) waviness will result. For grinding, an unbalanced tool

spindle is a source of such relative motion and a spatial wavelength along the

tool path of � = � �⁄ will result, where � is the wavelength, � the relative speed

and � the frequency. The amplitude of such texture may be comparable with ℎ
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above, from the tool radial feed – this will depend on the amplitude of tool-spindle

error motions. Typical finish machining parameters used in this study are

indicated in Table 6-2 for grinding.

It can be seen from Table 6-2 that tool spindle-induced ripple along the tool path

and the scalloped feed marks from the formed grinding wheel may be within the

same order of magnitude in both wavelength and effective profile, for this typical

tool path and process parameter combination.

6.1.6 Machine dynamics

In addition to workspindle-induced vibration (for a grinding machine) for any

machine generating freeform surfaces, there will be changes in acceleration,

especially cyclic changes, which will create force variations in its motion system,

which in combination with the dynamic stiffness of a machine (more completely,

its modal behaviour) will induce errors in its motion accuracy. Given sufficient

information, these errors are to some extent correctable, which means that some

compensation may be applied to reduce the effect of dynamic motion errors and

this compensation might be applied through modification of the tool path. This

can be applied based on predictive correction, following a comprehensive modal

analysis, or based on error compensation, following measurement of the resulting

surface. Neither technique is likely to be completely corrective; both require

interpretation of a non-linear response and both are subject to possible non-

repeatability. The latter technique has been adopted in this research.

6.1.7 Boundary effects

The desire for constant machining conditions to mitigate effects of finite machine

stiffness is challenged by various boundary effects. Some are detailed below.

6.1.7.1 Edge effects on machining conditions

As the tool reaches an edge of a workpiece surface during machining, there are

two prominent effects influencing tool path design. The first is a reduction in

contact zone size and a change in its shape. For a given force-related deflection

of the machine’s tool, machining pressure over the smaller contact area will need

to be higher. This fundamental feedback mechanism is in operation during all

machining and in the case of a smaller contact zone is likely to lead to deeper

material removal. The second edge effect is that the surface normal stiffness of

the material is reduced due to reduced bulk support. This will lead the tool to
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plunge deeper into the material. Both of these effects lead to increased material

removal at edges and directly affect workpiece surface accuracy; more material

is removed and this leads to what is called edge roll-off (Figure 6-3).

Edge roll-off is almost inevitable, although its amount is highly dependent on

machine stiffness – stiffer machines exhibit less of this effect. It is also dependent

on machining process and material parameters – stiffer materials and higher

force processes producing larger effects. The edge roll-off width is typically

comparable to the contact zone width and although its depth is very difficult to

predict accurately it tends to be repeatable for otherwise constant machining

conditions. Tool path strategies for dealing with this include:

• a deliberate reduction in contact zone width through selection of a different

tool or different machining conditions to reduce roll-off width

• the application of a second tool with modified parameters (as above)

specifically applied only to edge zones

• tool paths (or parts thereof) specifically aligned to edges

• high lateral spatial resolution surface measurement feedback to apply

detailed error compensation to the edge

1 2 3 4

Figure 6-3: Edge effects – reduction in contact area, increase in pressure
leads to roll-off – regulated by the machine/tool stiffness
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The latter strategy has been adopted within this work due to the availability of

exceptional metrology (chapter 5) developed as part of this research. See also

section 6.2.

6.1.7.2 Motion capability limits

The application of a given tool path strategy may lead to a demand for

unachievable speed or acceleration motion from the machine’s axes, for instance

maintaining constant material removal rate with a fixed feed pitch on a spiral path

(as in Figure 6-2) implies infinite rotation speed at centre. In the case of a grinding

tool path, once maximum rotation rate is reached (limited by the machine’s

capability) as the tool nears workspindle centre, there needs to be some

compensation for the reduced material removal rate. The reduced removal rate

reduces the machining normal force. A reduced force acting against the

machine/tool stiffness (represented as the spring in Figure 6-3) causes ‘the

spring’ to extend plunging deeper into the workpiece – deepest at the centre

where the removal rate (and normal force) are the lowest. There are various

possibilities to compensate this effect:

• the pre-machining surface may be left (conically) higher to give a thicker

layer of material to remove closer to the centre, thereby restoring the

machining force to a constant level

• the feed pitch distance can be increased closer to centre, to compensate

the reduction in removal rate

• the tool path can (conically) lift higher as centre is approached to

compensate for the effect of reduced machining force

The latter approach can be achieved by predictive compensation, based on a

process model and machine stiffness data, or by high lateral spatial resolution

surface measurement feedback to apply detailed compensation to the centre. A

combination of predictive and feedback compensation can also be applied; this

has been adopted within this work.

6.1.7.3 Momentum and discontinuities

a) In the case of intermittent machining, for instance due to machining

polygonal workpieces using a spiral path, process efficiency demands a

rapid motion whilst ‘machining air’.
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b) Machining in a spiral either ends or begins on centre, or could pass across

the full diameter of the workpiece whilst it rotates, leading to double

machining the entire surface, passing through the centre and machining

every radius twice. The latter option is not favoured for reasons of

efficiency and a requirement for a longer feed stroke - and in any of these

three cases, machining the centre poses a particular challenge. Neglecting

any intrinsic speed in the tool, such as with the surface speed of a grinding

tool, there is zero relative workpiece-tool speed at centre, which can tend

to cause atypical surface and subsurface damage. The contact patch

moreover has a finite size and at some point extends both sides of the

workpiece centre. This implies that in any of these three cases, a portion

of the workpiece is double machined. In any either of the two favoured

scenarios, a high relative acceleration of tool-workpiece is required to

minimise the over-machining (past centre) as the change in linear

momentum of the radial feed has to be achieved very quickly.

c) There has been a tacit assumption hitherto of zero slope at centre – i.e. of

a workpiece surface that at the centre is perpendicular to the axis of

rotation. If this is not the case, there is a requirement for very high

acceleration at centre, and possibly a discontinuity in tool path. Tool paths

used in this study assume zero or very low slope at centre. This also

relates to tool-path program adjustment for centre alignment of the

workpiece. This is also addressed chapter 8.

6.2 Error compensation

Capability for error compensation is necessary within any scheme for tool path

generation for precision freeform surface manufacture. There are several

reasons for this, given below.

6.2.1 Motion accuracy

Motion accuracy influences the relative position of tool and work directly. This can

be addressed by single and multiple axis error compensation (such as volumetric

compensation) following various forms of machine calibration. This is likely to be

inadequate however for ultra-precision freeform surface generation, where the

machining forces’ interactions with machine stiffness (which may have a

frequency domain component) are not taken into account. Application of the
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artefact technique for machine calibration is the most powerful, where the output

from machining a representative artefact is measured and the machine’s

calibration requirements deduced from that. Where the artefact is actually the

freeform surface itself, in a (short) series of iterative machine-measure-adjust

cycles, the achieved accuracy can approach the measurement uncertainty,

limited primarily by the repeatability of the machining and measurement

processes.

6.2.2 Tool compensation

Whilst the shape of the tool is central to the computation of tool path, based on

the surface slope selecting the cutting portion of the tool for any given slope

angle, any difference between the tool’s design shape and actual shape will

directly affect finished accuracy, or conversely, demand an appropriate

modification to the tool path. If the tool has been mapped by a tool calibration

process, and remains convex, the original tool path calculation can be repeated

with an updated tool shape, so given up to date knowledge of the tool shape, the

tool-path calculation procedure is unaffected.

For a non-convex tool however, there exists a probability of multiple distinct tool

contact zones for any workpiece surface slope. This study makes an assumption

of convex tool shape. As an alternative to tool compensation, a compensation

based on the artefact technique (section 6.2.1) can be applied.

6.2.3 Thermal effects

Thermal effects can change the motion accuracy of a machine, as well as the

size and shape of both workpiece and tool. These thermally induced changes are

most likely to take place during machining, because the machining process and

the implications of the associated motion control are the most significant source

of non-constant energy within the system. Thermal effects are among the most

difficult to compensate.

6.2.4 Predictive compensation

Where the errors are predictable or can be computed, a compensation may be

applied pre-machining, or during operation. Examples include predicting tool

wear based on a machining program, measuring temperature at various locations

and employing a system thermal model to compute distortions. These are in

effect feed forward techniques for surface accuracy control.
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6.2.5 Analytical (measurement feedback) compensation.

An alternative approach (which can also compensate the errors in section 6.2.4

and perhaps others) is used in what is in effect closed loop feedback by

measuring the accuracy of the workpiece surface output and then modifying the

design (target) surface to compensate. The amount of the modification

adjustment is usually equal, at any workpiece surface location, to the measured

error; this assumes a linear relationship between input and output surface

adjustments – this is likely to be a good model for high spatial density data at

typical curvatures.

Either type of compensation: predictive or analytical; relies on process

repeatability for its success. Analytical compensation can work for any process

errors providing they are repeatable, whereas predictive compensation can only

work for known or measured factors that are fed forward. The potential advantage

of predictive compensation is that it can work when faced with a change in design

shape, or material, or tool etc. whereas analytical compensation must iterate a

previously operated process identically for its success.

6.3 Surface representation

Surface data representation is key to the process of tool path generation because

there are several quantitative functional descriptions that must be extracted from

the representation. These include surface height (�) as a function of lateral co-

ordinates (�, �) or more properly (generally) a third co-ordinate with a close

equivalence to a surface normal as a function of two others; these might for

instance be � as a function of � and � as in Figure 5-5 in section 5.3. Another key

quantitative function description is of the precise angle of the surface normal. This

is needed to calculate the required tool centre point (TCP) from a knowledge of

the surface generation (cutting) location and the surface slope or surface normal

there. TCP is a familiar name for the tool position control point, although referring

to it as a centre point makes an assumption duplicated in Figure 6-2 of circularity

(2-D) or sphericity (3-D, not depicted) so that a TCP is always equidistant from

the cutting location. A more general definition would be of Tool Control Point for

which there is a defined geometric relationship between the tool’s cutting points

(which are selected by workpiece surface slope) and a fixed point on the tool.
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Surface representations have been considered in detail in section 2.5 with

particular consideration given to point clouds in section 5.5.2. Of the candidate

representations: analytical descriptions, polygonal meshes, orthogonal

polynomials, point clouds, splines, wavelets and radial basis functions only

analytical descriptions give an exact representation of surface co-ordinates and

surface normals from any surface parametric co-ordinate pair and are also likely

to be computationally cheap, so this description should be preferred whenever

available.

Polygonal meshes are in effect a subset of point clouds in the interpolant

representation of section 5.5.2; the additional flexibility of point clouds and their

relevance for measurement data with irregular locations means polygonal

meshes can be neglected from further consideration. Orthogonal polynomials

give high facility in the representation of optical properties of surfaces and the

global properties relating to machining adjustments such as centring. These

properties are more relevant to post-machining measurement analysis and whilst

surface co-ordinates and normals can be calculated with orthogonal polynomials,

the computational cost of their use rules against their adoption for tool path work,

given the depth of polynomial order that must be utilised to achieve sufficient

representational fidelity for a generic freeform.

Point cloud representations have been used for the measurement data, which will

be combined (as measurement feedback) with design surface representations in

the preparation of tool paths. This is used in section 5.5.2 in combination with

natural neighbour interpolation to generate data with as high a resolution as

desired; in fact, the representation in Figure 5-46 shows that even in the presence

of real measurement noise, this scheme offers exceptional smoothness.

Therefore, using data generated from surface design parameters (so that data at

the cloud points are definitely error free) offers more than adequate

representation in the case of a point cloud as a data source. The extension to an

RBF representation will offer no extra accuracy and less computational efficiency

in co-ordinate computation.

Whilst wavelets show promise for wide spatial-wavelength spectrum surface

representation, splines offer the greatest flexibility in combination with the

analytical and point cloud representations already selected. The reason for this

is that splines (and in particular Non-Uniform Rational B Splines) can operate
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over a deliberately selected region relative to known points, either locally or

globally using the same algorithmic approach. Their principal parameters (control

points) are expressed in the same co-ordinates as surface data. Spline

representations can be transferred with minimal alteration into CNC systems that

directly support the use of spline data for control. They are computationally

deterministic (once generated) and a relatively low spline order can provide high

accuracy approximation from point cloud data; the low order spline polynomials

can be easily transformed to provide surface co-ordinate and surface normal

data.

6.4 Tool path representation

6.4.1 Chordal path representation

Chordal tool paths are a series of points (ordered sequentially) with associated

interval times (or speeds) for each point. Each tool path point needs to provide a

value for each of the involved axes of motion. The value can be interpreted as an

absolute position co-ordinate, or a so-called incremental position, which gives the

signed difference from the previous position. Where the tool path curves in the

co-ordinate space of the representation, points are assumed to be joined by

straight chords. If the chords are short enough, this path representation

approximates the intended curved path adequately; alternatively, the CNC

system may use its own spline-based interpolation scheme, together with tool

path look ahead, to generate a genuinely curved path through the programmed

points. The chordal program design and representation can however lead to

prodigiously-sized tool path programs, sometimes exceeding 1,000,000 lines.

This can pose problems even for modern control systems in terms of memory

size, visualisation, single stepping, feed hold/pause, block processing

bottlenecks, etc. and under some circumstances even machining accuracy. In

order to explore techniques capable of reducing data volume, and processing

speed requirements, an arbitrary and deliberately convoluted path is shown in

Figure 6-4 chosen as a model of a complex tool path, albeit a very short one in

freeform machining terms. This exhibits higher curvature than would be required

in a machining spiral path. This is given in Cartesian co-ordinates. The model

data has over 5,000 data points, whereas a typical machining spiral path program

for a large optic (1.5 m diameter), at 1.5 mm spiral feed pitch, has over 800,000
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points. The tight curvature in Figure 6-4 is deliberately chosen to offer a

challenging proposition to tool path representational schemes.

A short G code (ISO 6983) [210] segment representation is shown in Table 6-3

which uses absolute commands for the X, Y and Z positions defining the co-

ordinates. This shows 7 randomly-selected consecutive points out of the 5,663

for the data in Figure 6-4.

Table 6-3: Short program segment – absolute positioning, Cartesian

‘Absolute’ command lines

X41.118970 Y13.197091 Z-29.871234 F15

X41.067902 Y13.239942 Z-29.871716 F15

X41.017121 Y13.283133 Z-29.872194 F15

X40.966629 Y13.326662 Z-29.872668 F15

X40.916428 Y13.370526 Z-29.873139 F15

X40.866520 Y13.414724 Z-29.873605 F15

X40.816909 Y13.459253 Z-29.874068 F15

Also expressed is the feed rate ‘F’, which defines the vector speed by equation

(6-1)

� = ���� + ��� + ��� (6-1)

Figure 6-4: Model data in Cartesian co-ordinates
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These data are defined in a constant velocity mode; hence, the constant feed rate

– the ‘F’ data word in the table entries. This represents a constant material

removal rate.

Table 6-4: Short program segment – incremental positioning, cylindrical

‘Incremental’ command lines

X-0.065922 C0.043739 Z-0.000482 F13

X-0.065846 C0.046136 Z-0.000478 F12

X-0.065766 C0.048567 Z-0.000474 F12

X-0.065682 C0.051033 Z-0.000470 F12

X-0.065594 C0.053533 Z-0.000466 F12

X-0.065501 C0.056069 Z-0.000463 F12

X-0.065404 C0.058641 Z-0.000459 F11

In the cylindrical geometry of the machines in this study, taking an arbitrary

rotation centre of (X = 30, Y = 20) as indicated by the dashed line in Figure 6-4,

these same data will appear as in Table 6-4 where here the command data are

given in incremental mode, showing differences between consecutive positions.

Axes are now X, C (rotary) and Z. The feed rate ‘F’ is also redefined in terms of

the cylindrical co-ordinates as in equation (6-2), which is dependent on the units,

and here degrees are used for the rotary axis C.

� = ���� + ��� + ��� (6-2)

The constant vector velocity from Table 6-3, due to the transformation into

cylindrical co-ordinates, is no longer constant.

6.4.2 NURBS path representation

An alternative chordal tool path representation can be made using the NURBS

spline representation as in equation (2-17) on page 35. As indicated in section

2.5.3 this can be an efficient storage format with a significant reduction in data

volume and other key advantages. Table 6-5 gives a NURBS segment in absolute

positioning as coded for a Fanuc CNC. This is one of the 15 segments, which

contains 7 of the total 118 control points that together replace the 5,663 original

data points.
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This is a reduction in data volume by a factor of around 50. The reduction ratio is

a function primarily of curvature, required fitting tolerance and the efficiency of

the segmentation and fitting algorithm; for regular spiral machining paths and

appropriate tolerances, the ratio can exceed 1,000:1.

The first line in Table 6-5 defines the start of a NURBS segment (G06.2); P gives

the rank of the spline, so that P4 is 4th rank (3rd degree); (X, C, Z) the co-ordinates

of the segment’s initial control point; and (F) gives the feed rate for the whole

segment. The remaining lines containing (X, C, Z) triples are the other control

points in the segment and G01 indicates the termination of the NURBS segment.

The K values represent the knot vector. In the author’s technique, the knot

vector’s values are formed from a parameterisation of the entire curve, so that

each NURBS segment has a unique K value set, although this is not inherently

necessary.

Table 6-5: NURBS program segment – absolute positioning, cylindrical

‘Absolute’ command lines

G06.2 P4 K0.347925 X66.961721 C40.508571 Z-28.734666 F17

K0.347925 X67.035010 C38.886862 Z-28.743803

K0.347925 X66.945107 C35.268218 Z-28.771696

K0.347925 X66.218944 C30.200921 Z-28.827442

K0.354796 X64.633448 C24.581115 Z-28.908625

K0.368349 X63.106873 C21.014910 Z-28.970818

K0.388660 X62.181455 C19.136296 Z-29.005421

K0.414424

K0.414424

K0.414424

K0.414424

G01

Figure 6-5 shows graphically the entire NURBS representation for the original

data from Figure 6-4. The fitted data points lie so close to the raw data line, and

are so numerous, that they completely obscure it in the figure. Each NURBS

segment is shown in a different colour (data in Table 6-5 is from the fifth segment)

with the control points numbered starting from 1 for each segment. At segment
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end-points, the curve’s vector is shown as an arrow; for each junction between

segments the end vector of one is the start vector for the next. The spacing of the

control points is as large as possible within tolerance constraints which were set

for the fitting quality of the NURBS representation. A point to note is that for the

NURBS control implementation used (for FANUC 30i) each NURBS segment has

a single feed rate. This limitation can be treated by using a larger number of

NURBS segments, although this is not necessarily at the expense of the total

number of control points, so program size can still be orders of magnitude smaller

using NURBS representation. The tolerance set for the NURBS segmentation is

determined by the requirements of machining.

For the model data, the (arbitrarily) selected tolerances are given in Table 6-6

and the percentage of tolerance exploited for each point plotted in Figure 6-6.

Figure 6-5: Model data in cylindrical co-ordinates, showing NURBS
segmentation and control points
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Table 6-6: NURBS fitting tolerances – on a per-axis basis

Axis Tolerance

X 0.01 mm

C 0.001 radians

Z 0.0001 mm

Composite

(magnitude)

0.001005

The NURBS segments fit without error at segment end-points where NURBS

control points are co-incident with the underlying data curve; this happens 16

times in the case of 15 segments. In between these points, tolerance exploitation

may approach, but never exceed 100%.

6.4.3 Generation of NURBS representation

A simple and robust NURBS segmentation and fitting strategy has been devised

by the author for this work, which was used to create the NURBS representation

in Figure 6-5. The input to this process is a chordal tool path representation, for

instance the full data set, of which Table 6-4 is a subset.

6.4.3.1 Strategy

The presented NURBS representation strategy is broadly as follows. Following

global parameterisation of the whole curve, it is split into a number of segments

Figure 6-6: Tolerance exploitation in fitting NURBS segments
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(as seen in Figure 6-5). Each segment is then individually approximated by a set

of control points and associated knot vector. These are selected to give a higher

density of control points where the curvature is higher, since high curvature in

general leads to larger departure for the spline representation from the intended

path. Again, this can be seen in Figure 6-5. For each approximation or

interpolation, techniques of linear algebra are used to solve for the unknown

control points, based on the initial parameterisation (which is in essence retained

throughout) and a knot vector calculated on the basis of tool path local curvature.

An initial interpolation is performed with a large number of control points and in

order accurately to calculate the curvature throughout the segment, in this sole

instance, these control points extend beyond the end of the segment.

Subsequently, the number of knots (subject to curvature-related distribution, as

above) is reduced and successive approximations performed until the tolerance

allowance for the fit is nearly fully exploited. The end result is a minimal number

of control points for each segment.

6.4.3.2 Parameterisation

�(��) = ��(��), �(��), �(��)� � ≤ �� ≤ � (6-3)

Equation (6-3) introduces the parameterisation of the data set. Whilst �, � and �

are the co-ordinates of the data points, taking data points in the tool path’s

connective sequence we can introduce a parameterisation based on the

dimensionless quantity �� (the parameter) which runs from � for the first data point

in sequence to � for the last. By convention a parameterisation runs from � = 0 to

� = 1, although this is not a required parametric span. For a tool path, a logical

parameterisation is on the basis of distance travelled, particularly where the tool

path is designed for constant machining parameters, such as constant material

removal rate. Distance travelled for the �-th point is given by the equality in

equation (6-4) and is very close to the approximation where chord length is small.

distance = � ��
��(��)

���
�

�

+ �
��(��)

���
�

�

+ �
��(��)

���
�

�
���

�

���

≈ ����� − �����
�

+ ��� − �����
�

+ ��� − �����
�

�

���

(6-4)
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Therefore, the parameterisation for the �-th point in a tool path with � points in

total is given by equation (6-5), normalised by the total path length in the

denominator to give the anticipated result that ��� = 1; ��� can be taken as 0 on

the basis of zero distance travelled at path start.

��� =
∑ ���� − �����

�
+ ��� − �����

�
+ ��� − �����

��
���

∑ ���� − �����
�

+ ��� − �����
�

+ ��� − �����
��

���

(6-5)

This then associates a distinct ��� parameter value with each point. This

parameterisation is essentially retained throughout, although parameter

refinement is applied – see section 6.4.3.5.

6.4.3.3 Segmentation

Segmentation is the process of splitting the point data set into groups for NURBS

approximation. Boundary conditions are set so that each segment ends with a

curve tangent which is co-incident with the initial curve tangent of the next

segment. Curve tangents’ directions are indicated in Figure 6-5 by the pale blue

arrows and tangential ‘velocity’ by the arrows’ lengths. Segmentation can be

performed arbitrarily, on the basis of an expectation of the ratio of data volume

reduction (e.g. every 1,000 points) or based on the parameterisation (e.g. every

0.05 increase in parameter value). NURBS approximation can be performed on

an arbitrarily long segment, there is a reason however to avoid long segments, in

the context of preparing NURBS for CNC control. In most CNC NURBS

implementations, each segment is executed with a single feed rate. So in the

case of a requirement for a variable feed rate along the tool path (for instance

following Cartesian to polar conversion in going from Table 6-3 to Table 6-4), the

granularity of segmentation should be fine enough to avoid sudden large changes

in feed rate, which would give non-uniform machining response. For instance,

tool path data segment boundaries can be created each time there is an integer

feed rate change in feed units per minute. Feed units are a consequence of

vectored multi-axes moves, i.e. in equation (6-2) feed units are derived from

normalising x & z velocity (in mm/minute) with c velocity (in degrees per minute).
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6.4.3.4 Basis function computation

Fundamental to the calculation of NURBS splines is the computation of the��,p(�)

�-th degree polynomial basis functions of section 2.5.3 and their derivatives. The

author’s efficient modification of a procedure in [211] combines natural and

derivative basis functions computation and is given in Appendices - A.4 Program:

ComputeBasisFunctions, together with supporting code in A.1 Program:

FindSpan to identify knot vector engagement from a parametric value or values.

6.4.3.5 Segment interpolation

Once the original tool path data are segmented, each segment is taken in turn.

Accurate approximation with a minimal control point set requires that derivatives

at the segment end points are accurately known (to give directional information).

It is convenient therefore to interpolate the tool path using the whole segment,

and in addition point data a little beyond the end of the segment (say a quarter of

the way into the next segment) to give good accuracy. Spline interpolation of the

data can then yield directional information for any point – including segment

boundaries. For the first and last segments, directional information for the first

and last points respectively are known due to the basic design of the tool path.

All of the other end point vectors can be calculated as indicated. Interpolation

involves setting one knot (and later one control point) for each existing data point.

This is accomplished in A.2 Program: CreateInterpolationKnotVector. Two

additional control points (and two additional knots) are introduced, one in second

place and one in second to last place in the point order. These two do not

correspond to data points but together with the terminal points, define the

directions of the terminal vectors for the segment; Figure 6-7 shows control points

1 and 2 for the second segment in the figure both lie on the terminal vector

indicated with the dashed arrow. Control points can then be determined using the

matrix/linear algebra techniques of simultaneous equation solution, e.g. by

solving equations (6-6) which give the �+2 data points (including the 2 inserted

points, �� and ��), where �� are the original � data points.

[��,��,�� ⋯����,�� ,��] = �(���) = ���,�(���)��
�

(6-6)

Interpolation also gives an opportunity to build a (�� parameterised) representation

of curvature along the segment; the curvature is required subsequently to
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influence the relative density of control point placement. The magnitude of the

local curvature is given by the Euclidean norm of the parametric rate of change

of the unit tangent vector in equation (6-7), or in terms of co-ordinate system

independent position (�) where here ′ denotes a parametric derivative. 

� = �
��

���
� =

�‖��‖�‖���‖� − (�� ∙ ���)�

‖��‖�
(6-7)

Equation (6-8) gives the same curvature measure in the cylindrical co-ordinate

system.

� =
�(����� − �����)� + (����� − �����)� + (����� − �����)�

���� + ��� + ����
�
��

(6-8)

6.4.3.6 Segment Approximation

The central process of NURBS tool path approximation used in this work is a

constrained minimisation problem which can be solved using the standard

Lagrangian multiplier technique [211]. The solution is governed by constrained

equations, which give the two end points of the segment and the directional path

vectors at the end points – recall that NURBS curves have fixed end points and

for a smoothly differentiable segmentation must also have fixed end directions

(1st derivatives with respect to the parameterisation). This totals 4 constraints for

each segment treated independently. These requirements ensure both curve

continuity and curve 1st derivative continuity between segments.
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The requirement is depicted in Figure 6-7 where control point 16 of the first

segment is identical to control point 1 of the second; the first derivatives at those

control points are also identical (matching arrows), thereby satisfying the

continuity requirement.

The unknowns are the n control points and 4 introduced Lagrange multipliers to

match the 4 constraints. We can now produce a partitioned (n + 4) x (n + 4)

system of equations. The system of equations can be solved for the 4 unknown

multipliers and then for the n control points. Following the notation of [211], � in

equation (6-9) is the set of Lagrange multipliers as a vector, � the control points,

� the unconstrained set and � the constrained set, each with one column per

each of 3 dimensions.

� = [��], �� = �, �� = � (6-9)

The fitting errors will be � – �� and the sum of the weighted squares of these

errors will be minimised with the �� – � constraints, so in the technique of

Lagrange multipliers, expression (6-10) below needs to be minimised.

(�� − ����)�(� − ��) + ��(�� − �) (6-10)

Differentiating and setting the derivative to 0 for the minimum, gives equation (6-

11), in matrix form.

Figure 6-7: NURBS segment continuity requirement
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��
��� ��

� 0
� �
�
�
� = ��

���
�

� (6-11)

Matrix solution (using inverses) and linear algebraic manipulation gives the

solutions for � and � in equations (6-12).

� = (�(����)����)��(�(����)������ − �)

� = (����)������ − (����)�����
(6-12)

The code in A.5 Program: FitWithEndConstraints is generalised to apply the

Lagrange multiplier technique for any number of dimensions and any depth of

differentiable continuity requirement, but is applied for this study as described

above only for first derivative continuity. The solution procedure is partly adapted

from [212,211] for NURBS. In addition to unlimited derivative continuity depth

capability, the code is substantially improved by adjusting the parameterisation

(which is initially based on tool path distance) iteratively for better fitting of the

NURBS curve. This algorithmic extension is particularly valuable where the

control point set is relatively sparse (as is desired) compared with the tool path

data. Following the constrained minimisation of equations (6-9) - (6-12) there will

be errors due to non-optimal parameterisation of the original data points.

Figure 6-8 illustrates in 2-D that whereas data points (��, ��), (��+1, ��+1) etc. lie

close to the fitted curve, their corresponding fitted data points ��(���),�(���)�,

��(�����),�(�����)� etc. have parameterisation errors which lead to their positions

along the curve not being the closest approach to the data points. Exactly the

same spline is a better match to the actual data with a slight re-parameterisation

that translates the points along the spline curve to the position of closest

approach. This requires a (per point) minimisation of the distance between the

fitted spline and the actual data by adjusting the parameters for each point.



127

This could be achieved for instance using quadratic minimisation or Newton’s

iterative method [213]; the latter is adopted in A.5 Program:

FitWithEndConstraints to optimise the parameterisation for the tool path points,

in which a new estimate ��′� of ��� is created as in equation (6-13).

��′� = ��� −

��(���)
���

���(���)
����

� ,

� = (�(���) − ��)
� + (�(���) − ��)

�

(6-13)

This converges very rapidly (within two or three iterations) for fractional

parametric tolerances > 10-8. Newton’s method is particularly convenient here,

because the components of the derivatives of �(���) are immediately available

from A.4 Program: ComputeBasisFunctions. Once the parameterisation is

refined, the control points can be re-fitted, enhancing further the quality of fit with

respect to the (still, as always) un-modified data points and improving the ability

to achieve an accurate representation with fewer control points.

The knot vector for approximation, and therefore the control point placement, is

deliberately influenced by the parametric curvature, which was stored in the

procedure of 6.4.3.5 above, given in equation (6-7). Where the curvature is higher

(tighter) a relatively higher density of control points is required, since otherwise

the higher curvature portions of the tool path would exploit a larger fraction of the

tolerance. This is implemented in A.3 Program: CreateApproximationKnotVector

Figure 6-8: Newton’s method applied for re-parameterisation
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and helps to limit the overall number of control points required to represent the

tool path.

6.4.3.7 Control point set reduction and parameter refinement

In order to achieve data volume reduction in the tool path representation, by

exploiting the tolerance allowance (as in Figure 6-6), the number of control points

per segment needs to be reduced from the initial attempt (interpolation with the

same number of control points as data points) as described in section 6.4.3.5.

This process, and indeed the overall NURBS path representation, are controlled

by A.6 Program: SegmentedFitControlPts.

A procedure of binary search successive approximation is used to find the

smallest number of control points that can fit a segment without exceeding the

fitting tolerance allowance. The final optimised number of control points will (of

necessity) be at least as many as the rank of the spline and will (by design) be

expected to be less than 50% of the number of data points. If for a data set this

latter part of the assumption turns out to be untrue (meaning the data points are

close to an optimal control point set for the tolerance allowance before set

minimisation begins) the binary search will fail. In that case, as a fall back, the

Figure 6-9: Illustration of 4-iteration binary search for minimal control
point set
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data point set will be accepted as input to an interpolation instead of an

approximation. The makes the strategy unconditionally safe, although in any

example of real data, this will never occur. Figure 6-9 maps the possibilities of a

4-iteration binary search; in this process, the uppermost path (here, just 4 tests

with tolerance exceeded) would result in “drop through” and interpolation using

the same number of control points as data points.

For the binary search, based on the minimum number of knots, which is

equivalent to the rank of the representation (typically the maximum possible rank

in the CNC NURBS implementation, which itself is usually 4), a deterministic

number of iterations of successive approximation can be calculated – as in

equations (6-14). Here “floor” or integer-part-rounding-down is denoted by ⌊ ⌋, �

is the number of iterations, � is the initial number of knots (as used in the initial

interpolation) and � is the rank. The initial value of �, the number of knots or

control points, is also given in equations (6-14). This initial value (the value for

the first iteration represented in Figure 6-9) is half way between the minimum

number of knots and the maximum number to be tested, which is itself half or

more of the number of data points.

� = �
ln(� − �)

ln 2
� , �� = � + 2��� − 1 (6-14)

The recurrence relation for the number of knots derived during iterative tests is

given for the �-th iteration in equation (6-15), incorporating the test for tolerance

satisfaction following fitting of the NURBS spline, where “ceiling” or integer-part-

rounding-up is indicated by ⌈ ⌉; � and � are as before. There will typically be

more than 4 iterations; 4 are chosen in Figure 6-9 for clarity of depiction.

���� = �� + �
2������

test fails

−2������
test passes

� (6-15)

The refinement of parameterisation (6.4.3.6) becomes particularly significant as

the number of control points is reduced close to the minimum needed to satisfy

the tolerance requirement.

In the discussion of fitting tolerance in 0 and specifically in Table 6-6 and Figure

6-6, different tolerances are assigned to each dimension and then used in the

optimisation of knot vector and control points. In fact, the least squares
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minimisation of equation (6-12), which is essentially the line reproduced below

from A.5 Program: FitWithEndConstraints

“ControlPts = (PN-PM*(pinv(M*PM)*(M*PN-[Pts([1,end],:);
varargin{1:end}])));”

takes no account of the differing tolerances – in fact it doesn’t take account of

tolerances at all. It inherently minimises the squares of the residuals treating all

dimensions equally. The strategy, which is coded in A.6 Program:

SegmentedFitControlPts, takes advantage however of the invariance of NURBS

under affine transformation to set one tolerance across all dimensions, by scaling

all the data (and their tolerances) so that in effect they all have equal tolerance

size; the data are scaled back after all the fitting is complete.

6.5 Summary and discussion

Influences on tool path design have been detailed and analysed qualitatively and

quantitatively in the context of smooth freeform surface generation with both edge

and surface acting tools. The importance of error compensation has been

considered and an analysis of applicable techniques given. These cement the

relevance and importance of the work in chapter 5 in its influence on surface

representation for ultra-precision freeform surface generation. This leads to a

consideration of appropriate tool path representations, including chordal and

spline. NURBS have been adopted as the appropriate tool path representation

and a detailed presentation given of novel techniques for their creation,

compression and refinement subject to manufacturing-driven constraints.

6.5.1 Achievement of objectives and contribution to knowledge

6.5.1.1 Identification of a surface representation scheme for smooth freeforms

An objective was the identification of a surface representation scheme for smooth

freeforms that could accommodate surface design methods (including analytical

and CAD), measurement feedback and other error compensation techniques and

provide capability for the generation of tool paths. A scheme was presented which

was based on a surface design expressed mathematically and then processed

into a point-cloud based interpolant for incorporation of error compensation. This,

as detailed and validated in chapter 8 meets this objective effectively.
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6.5.1.2 Automated design of appropriate tool paths based on machining criteria

and compensated surface shape data

A second objective was the automated design of appropriate tool paths based on

machining criteria and compensated surface shape data. A spiral path in a

cylindrical geometry machine benefits from nearly constant velocity or at least

low acceleration motions in all three motions, for any but the most extreme

departure freeform shapes. For this reason, it is the most obvious choice for either

of the generating machines involved here. Low acceleration is of key importance

because regardless of machining process, machines can maintain higher

accuracy and more constant machining conditions under low acceleration where

machine dynamics have minimal effect on path following accuracy. This objective

will be more fully explored in chapters 7 and 8 where the different requirements

of edge- and surface-acting tools will be considered.

6.5.1.3 Optimised condensed tool path representation

A third contribution is an optimised condensed tool path representation for optimal

machining. This has been considered in detail. A novel procedure for optimising

a condensed tool path subject to differing tolerances for each motion axis has

been presented, which achieves a re-parameterisation and minimisation of

control point representation through an efficient binary search procedure. Path

accuracy has been demonstrated.

6.5.2 Further work

6.5.2.1 Binary search improvement

The binary search is in principle efficient in determining a result where there is no

analytical pre-information regarding the result of the search. In the case of

NURBS optimisation however, as suggested by the use of curvature as an

estimator of eventual optimum relative density of control points, information is

potentially available. Monte Carlo methods may be applied to establish stronger

alternative relationships between optimum control point density and known

factors by way of a predictive starting point.

6.5.2.2 Re-parameterisation-control point shift Interplay

The relationship between the adjustment of parametric value for the original data

points and the fitting of control points is not known to be unconditionally



132

converging. Very rapid convergence has always been observed, but the

mathematical influence of re-parameterisation could be investigated to ensure

these are not antagonistic.
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7 APPLICATION OF SOLUTION, CASE STUDY 1 –

BOLTZMANN “QUASI SPHERES”

7.1 Demands

The background and essential requirements for the Boltzmann “quasi-sphere”

cavity are given in section 2.3.1. Details of the meticulous experimental procedure

and analysis behind the determination of the value of the Boltzmann constant are

given by the team led by de Podesta, including the author [3] for the

measurements using the cavity.

Further details are given again by de Podesta’s team with the author in [4,6,8] for

some of the techniques used to measure the cavity itself as part of the uncertainty

budget for the experiment. The particular concern of this manuscript however is

the demand for, and nature of, the freeform surfaces involved and how their

manufacturing process is designed and supported. The distinct techniques used

to measure the cavity in support of its manufacture, which were devised and

conducted by the author, are explained in chapter 5 with an outline of further

additional techniques given below.

Figure 7-1: Schematic representation (left) of quasi-sphere and (right)
quasi-sphere in isothermal vessel for acoustic resonance thermometry [3]
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The cavity called a quasi-sphere is deliberately non-spherical. It is by design an

ellipsoidal cavity with tri-axial or scalene character, meaning it has no parametric

degeneracy and is by almost any definition a freeform surface with no invariance

under any translation or rotation. In the standard Cartesian co-ordinate definition,

equation (7-1), the inequalities are enforced for a tri-axial ellipsoid surface. Here

the eccentricities are aligned in a direction simplifying the surface’s manufacture.

Given manufacture by turning on the Z axis, the eccentricity of the equatorial

ellipse being less than that of the polar ellipse gives a beneficial minimisation of

the synchronous motion required during turning.

��

��
+
��

��
+
��

��
= 1, � < � < � (7-1)

The cavity space bounded by the surface is defined where the left hand side of

the equality in equation (7-1) is less than 1. That equation can be rewritten in

terms of the eccentricities �1, �2 as in equation (7-2).

��

��
+

��

��(1 + ��)�
+

��

��(1 + ��)�
= 1, 1 < ��, �� (7-2)

The design for the cavity, which was made by the author for the experiment, has

dimensions given in Table 7-1.

Table 7-1: Cavity parameters

Parameter eccentricity Value

Nominal radius, a 0 62.000 mm

Semi major axis, b 0.0005 62.031 mm

Semi major axis, c 0.001 62.062 mm

These parameters were set by the team so as to be a positive compromise

between the difficulties of generation or surface measurement – tending to

minimisation of: actual size, ellipsoidal eccentricities, weight; and the demands of

experimental uncertainties – tending to the maximisation of those same

quantities. The quasi-sphere is made from two hemispheres. Each was initially

rough-machined from 150 mm copper bar (BS C101: ISO Type Cu-ETP). The

choice of copper as the cavity’s envelope material was driven by similar

compromises between machinability, ease of measurement, ease of damage and

experimental demands. Although achievement of the cavity’s geometrical
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specification was the major challenge for the author, some additional features

and parts were also manufactured including “spider” (clamp) components in

copper, functional apertures and their plugs etc. Some of these other components

are depicted Figure 7-2 but their details are outside the scientific scope of interest

of this study.

External features of the quasi-spheres are diamond turned, and some of these

are key datum/alignment surfaces critical to its assembly. For this reason, they

are machined where possible at the same time and in the same set-up as the

internal cavity. There are also a number of apertures cut into the cavity to be used

for acoustic transducers and sensors. These apertures in the cavity are plugged

from outside and diamond machined flush in-situ along with the rest of the cavity’s

internal surface, so as to provide a minimally perturbing effect to acoustic

resonances; the plugging device perturbations are modelled and characterised in

[3].

Successive machining cuts of the internal surface are made, each with a

progressively larger nominal radius adhering to the final ellipsoid eccentricity

specifications, until the correct (final) radius is achieved.

After intermediate cuts and especially the penultimate cut, a measurement is

made of the internal surface using the techniques of section 7.3, adapted from

chapter 5. A thorough numerical analysis of the measurement data permits the

adjustment of cutting tool path on subsequent cuts to compensate for machining

errors, and specifically and separately tool offset positions. Each cut, performed

Figure 7-2: Additional quasi-sphere mounting components
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in a temperature-controlled environment, takes less than an hour, during which

time the machine, workpiece and coolant are experiencing temperature variation

of less than 0.25 °C. No final measurement is made using these techniques after

the last cut, in order to avoid impact damage to the cavity surface. The surface is

subsequently measured using the techniques described in [8] prior to its use in

acoustic resonance thermometry.

Table 7-2: Finish machining parameters used for Quasi-sphere

Target parameter Value

Workpiece radius of curvature 62 mm

Freeform (spherical) departure 62 µm max.

Surface form error (peak) < 3 µm

Surface roughness < 10 nm Ra

Machining time < 1 hour

Selected machining parameter Value

Path shape Out-in, spiral

Tool radius of curvature 1.60867 mm

Tool top rake 0°

Workspindle rotation 200 rpm

Relative tangential feed per revolution 10 µm

Depth of cut 10 µm

Consequential factors Value

Number of turns 9739

Machining time ~ 49 minutes

Path length 2415.3 m

Peak tool-workpiece relative speed 1.298 m/sec

Geometrically resultant cusp height 7.8 nm

Equivalent Rq 2.4 nm

Equivalent Ra 2.1 nm

The machining parameters for the cavity were set by the author based on the

requirements for geometry, surface finish, surface form accuracy and machining

time. These requirements are discussed in the text and in [3,4,6,8,1].
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7.2 Tool path generation

7.2.1 Tool path design

The diamond turning is performed with a fixed-orientation diamond tool having a

nominal 1.6 mm tool edge radius with 110 degree included angle and a zero-

degree top rake. Zero-degree top rake dramatically simplifies the geometrical

basis of the tool path computation; the full complexity of a 3-dimensional tool will

be considered in chapter 8. The tool is set to a mid-point angle (45 degrees to

workspindle axis – see Figure 7-3) so that a full quarter circle path can be cut

without repositioning the tool. The configuration is shown on the Moore

Nanotechnology 350 UPL in Figure 7-3 – (see Figure 4-2 for mounting position in

machine context).

The internal surface form in equation (7-1)/Table 7-1 clearly is not rotationally

symmetric, so the tool path is not a regular spiral even if the machine motion

system were to move without error, if the tool were made without error and if it

were set without error in 6 degrees of freedom.

Figure 7-3: Diamond turning configuration (solid model picture credit:
Roger Read)
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For a conventional zero rake diamond tool selected for fixed-orientation sphere

cutting, one of the degrees of freedom might in any case be irrelevant due to

rotational invariance (rotational symmetry) around a central axis normal to the

tool’s top rake face. The character of the path is shown in Figure 7-4.

On the left of Figure 7-4, the 3-D path shows a cut path (the locus of the travelling

cutting point) and a TCP path (the locus of the Tool Centre Point). The TCP path

is shown on the right in two lines: one for X, one for Z co-ordinate. Two ordinates,

each as a function of the rotation of the workpiece (the abscissa) during turning;

in both cases the feed pitch is extremely exaggerated, at 15 mm per revolution,

which is >1000 times larger (for graphical visualisation) than the feed pitch

actually used.

By design, the tool path has three phases with different path shapes (in the tool-

workpiece relative co-ordinate space):

1. ‘cutting’ air – describing an elliptical cylinder

2. cutting copper – describing a tri-axial ellipsoid

3. retracting from surface – describing a helix

Some characteristics of the tool path are evident:

Figure 7-4: Diamond turning tool path – exaggerated feed pitch and
eccentricity
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• x and z are continuous functions of c throughout and between each of

three phases; this is necessary to avoid surface discontinuities

• x and z also have continuous first derivatives w.r.t. C (the workpiece

rotation angle)

• the retraction path is designed to have acceleration continuity as the

cutting point reaches centre

Acceleration continuity is ensured by maintaining a constant XTCP velocity and the

result is a work-tool relative spiral path on retraction, as seen inside the cavity in

Figure 7-4 (left).

Figure 7-5 gives a confirmation that the clearance path (the tighter spiral in Figure

7-4, left) falls inside the cutting path so that this retraction motion will not cause

surface modification, despite motion continuing past centre. This is critical, since

the workspindle rotation is continuous and the machining tool path may not

demand instantaneous change of velocity.

The tool used for finish turning has a nominally circular arc cutting edge, formed

from the intersection of a plane (set parallel with the turning axis) and a cone (with

conical axis normal to the plane) – see Figure 7-6. The cutting edge shape is

characterised by its radius and its included angle. Given the tool’s use in a fixed

Figure 7-5: Diamond turning tool path parameters – exaggerated feed pitch
and eccentricity



140

orientation, the location of the cutting edge in space can be entirely characterised

by Tool Centre Point.

It can be seen from Figure 7-7 (left) that whereas the workpiece contact point’s

surface slope is described with two angles – � and ϕ – only � will play a part in

selecting the contact point on the tool’s cutting edge. In this unique situation

where the tool’s top rake angle is zero, the cutting geometry (for the purposes of

deriving the tool’s cutting point relative to the TCP) is independent of the angle

ϕ. This is the major reason for the dramatic simplification of tool path generation

for a zero rake tool. Figure 7-7 (right) shows the selection of tool contact normal

Figure 7-6: Diamond turning tool – simplified geometry

Figure 7-7: Selection of tool contact angle by workpiece surface slope –
exaggerated feed pitch and eccentricity (right)
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angle as a function of rotation of the workpiece during cutting, again with feed

pitch exaggerated for visualisation.

7.2.2 Analytical tool path derivation

In a turning operation for the quasi-sphere, we can parameterise the operation in

terms of number of turns and feed per revolution. For convenience we can set an

integer number of turns � as in equations (7-3) based on a nominal (spherical)

cavity radius �, where �’ is the nominal feed-pitch per revolution, � is a quarter

turn circumference and � is the modified feed per revolution.

� =
�

2
�, � = �

�
��� � , � =

�
�� (7-3)

As a result of the 1:1 correspondence for a fixed (spherical) feed-pitch per

revolution between workpiece rotation and angle in the �-� plane, we can directly

deduce the ranges and relationships of workpiece rotation angle � and � as given

in equations (7-4), where � is the spherical angle from the centre of the ellipsoid.

0 ≤ � ≤ 2��, � = �
4�� , 0 ≤ � ≤ �

2� (7-4)

The effects of eccentricity on variation of machining parameters (compared with

a purely spherical cavity) are negligible for diamond turning so the spherical

approximation is appropriate for calculations of feed rate etc. (though not of

precise co-ordinates). In the relative Cartesian geometry of equation (7-1),

precise co-ordinates are now obviously as given in equations (7-5), from the

eccentricity � = �� = �� 2⁄ of Table 7-1.

� = � cos� cos�,

� = � (1 + �)cos� sin�, � = �(1 + 2�) sin�
(7-5)

Given the 1:1 correspondence of � to � in equations (7-4), these equations are

parametric in a single parameter - �. In the cylindrical co-ordinates of the machine

(�, �, �) where � = ��� + �� the cutting point locus is therefore given by

equations (7-6) and this is the simple basis of the tool path program.
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0 ≤ � ≤ 2��

� = � cos �
�

4�
��cos� � + (1 + �)� sin� �

� = �(1 + 2�) sin �
�

4�
�

(7-6)

This is exactly correct for the cutting point in the cavity, as a function of �.

7.2.2.1 Tool radius compensation

The tool path program must be written for a single point on the tool, independent

of the contact point; the position of the latter will vary around the tool’s cutting

edge depending on the workpiece’s local surface angle. The logical single point

is the Tool Centre Point and the locus of that can be obtained from equations (7-

6) by adding the offset from contact point to TCP, which can be obtained using

sine and cosine of �, which is determined by the local angle of the workpiece

surface where it contacts the tool.

Although � and � are related, they are not equivalent, except in the case where

the cavity is purely spherical. The slope of the elliptical section in the �-� plane is

given by the ratio of the parametric partial derivatives of � and � and its slope

angle by equation (7-7). A point to note is that although � and � are related by a

constant of proportionality in equations (7-4), this is solely in the definition of the

tool path. Across the surface of the cavity in general, � and � are differently

related, and as the partial differentiation in equation (7-7) is in the �-� plane, � is

invariant.

� +
�

2
= tan���

��
���

��
���

� = tan��
−�

� tan��
(7-7)

In equation (7-7) the well-known two-argument high precision variant of atan2

should be used for the arctangent computation, as given in equations (7-8), since

both numerator and denominator of equation (7-7) are inevitably close to zero at

one or other end of the tool path.



143

atan2(�,�) =

⎩
⎪⎪
⎨

⎪⎪
⎧2 tan�� �

�

√�� + �� + �
� if � > 0

2 tan�� �
√�� + �� − �

�
� if	� ≤ 0	and	� ≠ 0

� if � < 0 and � = 0
undefined if � = 0 and � = 0

(7-8)

This gives the analytically correct tool path for generation of the tri-axial ellipsoid

in the absence of error, as shown in equations (7-9), where �, �, �, � & � are

given in the foregoing and � is the tool radius.

0 ≤ � ≤ 2��, ���� = � + � sin�, ���� = � + � cos � (7-9)

7.2.3 Sources of error in the tool path.

Five sources of error are considered: tool shape error, variations in machining

force, dynamic positioning errors, tool setting errors and motion system static

errors.

7.2.3.1 Tool shape (radius) error

The cutting edge of a radius tool is subject to error due to a number of factors

including uneven tool wear and lapping efficacy against crystalline anisotropy

during shaping of the tool for its manufacture. The higher accuracy “controlled-

Figure 7-8: (Left) - measurement of typical controlled-waviness tool radius
w.r.t. selected tool angle [211], (right) – representation of the highest

commercially available quality, after [212]
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waviness” tools exhibit a waviness (radius variation) which is typically ≲ 500 nm

as mapped by the author [214], and commercially available (exceptionally) down

to a claimed 50 nm p-v [215].

A tool map, such as the ones shown in Figure 7-8 can be used to improve the

tool path. In this case equations (7-9) can be modified to give � as a function of �

where � can be given by a simple interpolation of the tool error map.

The tool error map can be built from the techniques described by the author in

[216,214]. The contribution of these errors is typically ≲ 500 nm for controlled-

waviness tools.

7.2.3.2 Machining forces

Cutting forces for machining of ductile metals in this removal regime are

measured in milli-Newtons [217] and typically < 100 mN, whereas dynamic

forces, particularly for slow-slide machining of non-rotationally symmetric parts

are very much larger, as will be seen. For each successive turning operation on

the cavity’s internal surface, nominal (spherical) cavity radius target � is

increased by the depth of cut. In this way, the tool path design gives uniform un-

deformed chip thickness throughout a cut as the cavity shape is maintained; the

radius is increased uniformly across the surface.

The chip width is dependent on the feed per rev; any increase material removal

rate per unit path length is a product of un-deformed chip thickness and increase

in feed per rev. The effect on machining forces however will be dominated (in

machining at a constant rpm) by variation in relative surface speed, which

decreases to zero at centre. Nevertheless, peak force, which will occur when

relative workpiece-tool surface speed is greatest (at the cavity ‘equator’) is still ≪

1N and slowly varying, operating against a machine stiffness measured in 10’s

N/µm or > 107 N/m.

7.2.3.3 Dynamic motion forces

Empirically, dynamic motion forces have been assessed to be the largest factor

affecting accuracy – potentially larger than all other sources combined. Dynamic

motion errors are (broadly) an increasing function of the magnitude of

acceleration, although frequency domain analysis is necessary fully to quantify

the effects. The author has analysed the machine to assess its suitability and
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limits for dynamic machining of freeform surfaces [18] in developing a

compensation strategy for freeform machining.

Figure 7-9 shows the dynamic position data from [18] for the Z axis; data from

the X axis shows the same characteristic in that dynamic accuracy is maintained

at a high level up to a frequency of a few Hz. These data are captured by

comparing a programmed sinusoidal command against the response measured

in two places by capacitance gauging. The measurement positions are 1) close

to the machine’s measurement feedback encoder and 2) at the position of the

turning tool. The graph plots the amplitude ratio (ordinate) of response to

command for a sinusoidal excitation of 7.5 µm amplitude as a function of

frequency (abscissa) in the range 1 – 40 Hz. Significant departure of amplitude

ratio from 0dB indicates dynamic motion errors in response to a sinusoidal motion

command at that frequency. The graph indicates response at the location of the

machine’s position encoder (indicating the quality of servo control) and separately

at the tool height, which indicates its functional performance for turning, including

the effects of bearing stiffness etc. Two cursors at specific frequencies are added

to the graph, which have particular significance for this study. 200 rpm has been

selected as the workspindle speed for this research, on the basis of adequate

dynamic stiffness at that frequency for dynamic control.

Machining the tri-axial ellipsoid at 200 rpm imparts a sinusoidal motion at twice

the rotation frequency (400 min-1 or 6.67 Hz) with an amplitude (in X) up to 31

Figure 7-9: Dynamic response of Z axis
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µm. The response amplitude error at tool height to a sinusoidal excitation of that

nature is 93 nm, with a phase lag of 1.1°, based on the analysis of measurements

in [18]. This is at or below the level of the contribution to surface form error from

tool shape error of a controlled-waviness tool.

For comparison to the machining forces, a calculation can be made of dynamic

stiffness at this frequency; the quantitative comparison is not entirely accurate

since the dynamic reaction force is through the centre of mass rather than at tool

height, but the comparison is at least indicative.

� = � cos��, �̈ = −��� cos�� = �(�)
��

(7-10)

In equation (7-10) the moving mass � is approximately 100Kg, the sinusoidal

amplitude � is at most 31 µm and the angular frequency � is approximately 42

radians/sec, which indicates a peak sinusoidal force of around 5.5 N and a

dynamic stiffness of 60 N/µm at that frequency, subject to the proviso regarding

centre of reaction, above. In comparison with the dynamic motion forces,

variations in the largely uniform machining force, whose absolute value is in any

case substantially below 1N, can be neglected.

7.2.3.4 Tool setting errors

An ultra-precision tool setting system has been developed by the author and

reported previously [216,214] which measures setting parameters directly by

optical/image processing-based examination of the tool. In this instance however,

tool setting data were extracted from measurement of the machined cavity and

adjustments fed back to the machining program. This will be discussed in section

7.3.

7.2.3.5 Motion system static errors

The diamond turning machine has inherent positioning errors which will

contribute to the accuracy of any finished surface. These motion system errors

can be tackled in conventional ways 1) by Machine Tool Builders’ machine

calibration procedures, and 2) by measurement feedback from the finished

surface, to adjust the machining program, as discussed in sections 6.2 and 7.2.4
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7.2.4 Error compensation

The process of error compensation can be adopted to benefit where

measurement errors are lower than the combination of machining errors, and in

particular motion system errors; if that is not the case, measurement feedback

will introduce larger errors. Where this is the case, the strategy of 6.2 can be

used. Either the contact point path can be adjusted according to the

measurement error and then the correction for TCP applied using the surface

normal vector from the unmodified contact point path - or the surface

representation will need to be made into a point cloud and surface normals

generated from it.

The accuracy of the machining in the case of the quasi-spheres is high enough

for there to be no advantage in error compensation from measurement feedback,

although this technique will be fully detailed in the much more complex case of

large optics grinding, in Chapter 8.

One aspect of measurement data for the quasi-spheres is however fed back for

compensation, which is the data extracted from the measurement in respect of

tool offset and workpiece orientation.

7.3 Measurement Procedure

Figure 7-10: CMM measurement of internal cavity surface form
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The measurement procedure adopted and used in support of manufacture is

broadly that of chapter 5, adapted for high curvature surfaces. Measuring an

internal hemisphere using CMM scanning, requires a stylus shaft which is parallel

to the spherical rotation axis (Figure 7-10) in order to avoid mechanical

interference. This is distinct from the (mechanical) technique of chapter 5 where

an inclined stylus shaft is used, and although it has some influence on achievable

scanning speed, it has no influence on the mathematical approach.

7.3.1 Establishment of co-ordinate reference frame

Figure 7-11 shows probing, using the same measurement set-up as for the cavity,

of the external alignment features. The alignment features are machined on the

same set-up as the cavity. This ensures that alignment of these external features

on assembly will yield an internal surface with minimised equatorial

discontinuities.

The indicated angular constraints (constraining degrees of freedom of alignment)

are given as �x, �y and �y – linear constraints as x, y and z. These external

alignment features are used on the CMM to establish the co-ordinate reference

system for the scan measurement.

Figure 7-11: CMM measurement of quasi-sphere alignment features:
external cylinder (constraining x & y), flat (constraining �z) and equator

(constraining �x, �y & z)
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7.3.2 Scan line trajectory

Scans of the cavity surface are taken primarily radially or as circles. In agreement

with the strategy of section 5.3; this minimises probe reversals (maintaining

monotonicity of probe deflections) during each scan line.

7.3.2.1 Probe radius compensation

Probe radius compensation is applied within the CMM program, based on a

spherical measurement assumption. The maximum error in this assumption is

calculable, and is vanishingly small for a low eccentricity ellipsoid. Based on a

Taylor Series expansion for arctangent, the maximum error is given in equation

(7-11) and for this ellipsoid is below 1 nm.

���. �����rad comp = ������ �1 − cos�� 2� �� ≈ 0.3 nm (7-11)

These probe radius corrected measurement data are given in Figure 7-12 as

linear scans

7.3.3 Measured data processing and parameter extraction

The same data are represented in Figure 7-13 , Figure 7-14 and Figure 7-16 as

3D projections of conformal Azimuthal maps of the hemisphere, with the equator

at the outside circumference and the pole at the centre, as departure from a fitted

surface.

Figure 7-12: Actual CMM measurement data: radial (left) and circular
(right) scans
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Figure 7-13 shows the ellipsoidal departure from best fit sphere. Note the vertical

scale of 65 microns. The expected scalene character of the ellipsoid can be seen,

with 62 microns of departure at the axial (Z) pole and 31 microns at the Y poles

– as indicated by the colour scale. Note that in these surface maps, the plotted

value is departure or deviation normal to the surface, not height error in the

Cartesian Z co-ordinate.

Figure 7-14 shows the same data, but with the ellipse removed, so the map

shows no eccentricity. What is visible is primarily the consequence of tool setting

Figure 7-13: Actual CMM measurement data giving ellipsoidal departure
from sphere

Figure 7-14: Actual CMM measurement data with nominal ellipse
subtracted
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error giving a familiar ‘M’-shaped profile [218] for a tool past centre on a concave

rotationally symmetric turned form. It is seen here in a surface of rotation in a 3-

D representation, although Figure 7-16 shows the more familiar cross-section,

taken from the same data.

Two factors in particular should minimise workpiece offset errors in the

measurement: 1) the same diamond tool in the same machining set-up from

within the same CNC program turns the external cylindrical face and equatorial

face for the quasi-sphere as turns the cavity, although this is not possible with the

flat; 2) the CMM probe measures these alignment features and references cavity

measurement to them. This should ensure minimal z alignment offsets and

minimal �x, �y alignment angle offsets. The �z alignment relies equally on a

manual measurement and setting on the diamond turning machine, on the CMM

measurement of a relatively short flat and on the sinusoidal phase lag during

machining, which is (Figure 7-9) approximately 1.1 degrees. Therefore, this and

the tool-setting centre offset are potential sources of surface error location and

shape error respectively. These can be assessed through analysis of the cavity

measurement.

7.3.3.1 Extraction of machining adjustment parameters

Taking as a starting point equation (7-1) we can introduce terms for the axial-

rotation of the ellipsoidal form, by an angle �, and the radial-shift of the tool by an

offset �, in the machine’s x direction. Tool shift in the z direction is not relevant

since it has no effect on shape or shift relative to the alignment features. Tool

shift in the machine’s y direction has a much smaller, near negligible effect on

shape error [218] and can be independently adjusted by visual inspection of the

Figure 7-15: Actual CMM measurement showing cross-section from Figure
7-14
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centre defect after turning. A z-axial rotation, a (machine) x-shift, and workpiece

x shift �0 are represented for x in equation (7-12) and similarly for y.

�
��rotation,��shift
������������� (� cos � − � sin � − ��)� �1 −

�

��� + ��
�

�

(7-12)

This gives a modified Cartesian representation of the ellipsoid as in equation (7-

13).

�
(� cos � − � sin � − ��)�

��
+

(� sin �+� cos � − ��)�

��
� �1 −

�

��� + ��
�

�

+
��

��
= 1

(7-13)

This is a non-linear fitting problem: find the five unknowns �, �, �, � & � which

represent the best fit to the x, y, z data set. There are several ways to tackle this,

and clearly the Levenberg-Marquardt [184] algorithm (or similar) is suggested.

However, by inspection, it’s clear that solution values of � will be independent of

the relationship between � and �, � so a simplification is possible. Setting � to 0

to solve for �, we can multiply equation (7-13) out and group terms in powers of

x, y and z2 to give equations (7-14) – z is deliberately omitted.
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(7-14)
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7.3.3.2 Extraction of alignment parameters

A solution can be found for �0, �0 and � by minimising the sum in equation (7-15)

over all � data points (the set in the preceding figures have 140,000 data points)

to find the set of � values, using the usual techniques of linear algebra; the author

favours singular value decomposition.

��������
� +

�

�������
� + �������

� + �(��)���� + �(�)�� + �(�)��

+ �(�)�� + �(�)

(7-15)

Simple manipulations then yield values for �, �0 and �0 in equations (7-16).
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(7-16)

7.3.3.3 Extraction of tool offset parameter

To solve for the tool offset � and the ellipsoid semi-major axes �, � & � it is

convenient to regenerate data shifted to centre and rotated to alignment by

applying the computed offsets, as in equations (7-17) and recreating the ellipsoid

equation.

�r = � cos � − � sin � − ��, �r = � sin � + � cos� − ��

�
(�r − ��)�

��
+

(�r − ��)�

��
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�

��r
� + �r

�
�

�

+
(� − ��)�

��
= 1

(7-17)

Repeating the procedure of equations (7-14) with the regenerated data, gives

coefficients in equations (7-18).
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Higher order terms in � can be neglected, given the high ratio of ellipsoid radius

��� + �� to tool offset �. Repeating the procedure of equation (7-15), the

coefficients can be obtained as follows in equations (7-19). In equations (7-19),

� is a normalising factor used to ensure coefficients are scaled so that the RHS

in equations (7-1), (7-2) and (7-13) is set equal to 1. Offsets �0 & �0 (and indeed

z0) should be very close to 0 following previous data regeneration but can be

adjusted in this fitting.
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(7-19)

This gives however a degenerate solution pair for �, although the values of the

independent equalities are very close and a suitable evaluation can be obtained

by taking a mean. As an alternative, values for the semi-major axes can be

obtained from (7-14) and the data regeneration in (7-17) can produce a data set

mapped to a sphere. In that case � can be obtained from the fitting coefficient in

equation (7-20) since the ellipsoid is now degenerate (spherical) with a single

radius value giving instead a single equality for �.

�
�
�������

������
� �

= −
2�

�� (7-20)

This approach has an equivalent issue however, since the initial fitting of � and �

(and their ratio) will be to some extent dependent on the actual value of �. The



155

approach of equations (7-19) has proved highly accurate and entirely

satisfactory. This approach is validated in Figure 7-15 where for the same

measurement data as shown as in Figure 7-12, Figure 7-13 and Figure 7-14, here

the tool offset has been adjusted using the parameters obtained in equations (7-

16) and (7-19) and the tool offset effect is absent.

These fitted parameters are now used to adjust the machining program for the

final surface cut.

7.4 Results

The quasi-spheres, as well as being measured by the technique explained herein

have been measured at Cranfield using stitching interferometry to confirm shape

and at NPL a) using a different CMM procedure [8], using pyknometry [4] and

using microwave resonance techniques [8]. These measurements have

confirmed, to an overall uncertainty of < 11 nm the absolute value of the radius

at within 500 nm of design target and moreover that almost the entire surface is

within 1000 nm of its design target, in terms of absolute size and shape; i.e.

including form error and absolute dimension. This represents a considerable

achievement for freeform machining and is an important factor in ensuring that

the acoustic resonance thermometry conducted using the quasisphere (Figure

7-17, left) was the most accurate performed, with the lowest uncertainty, and will

Figure 7-16: Actual CMM measurement data with residual error after
rotation, centring, tool setting and best fit ellipse have been numerically

removed



156

have the largest influence on the new definition of the Kelvin and value of the

Boltzmann constant, to be adopted in 2018.

7.5 Summary and discussion

The geometric and surface quality demands, set by an experiment in acoustic

thermometry, for a tri-axial ellipsoidal cavity in copper have been considered in

respect of the most suitable manufacturing technique of Single Point Diamond

Turning. Whilst the surface finish is easily achievable with diamond turning, the

surface form accuracy requirements are demanding, given the complex interplay

of freeform geometry with: parametric programming, machine dynamics, tool

radius compensation, tool/workpiece setting offsets and full surface metrology

and parameter extraction.

The mathematical treatment of surface geometry has been considered in respect

of tool path creation including the requirements of control path continuity, time

derivative continuity, process efficacy-oriented machining parameters, and

flexible tool radius compensation. Sources of error in tool path generation were

analysed and a quantitative comparison made. The relationship between critical

Figure 7-17: (Left) finished quasi-sphere assembled, (right) CMM
comparator measurements (picture credits, NPL)
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dynamic positioning errors and surface accuracy has guided the optimal choice

of machining rate. The key parameters of the other potentially uncontrolled error

source, tool and workpiece setting, have been directly inferred from

measurement data to provide a precise adjustment regime.

7.5.1 Achievement of objectives and contribution to knowledge

A team of scientists (including the author) led from NPL have carried out a new

low-uncertainty measurement of the Boltzmann constant [3]; this can be

described as the most accurate temperature measurement ever performed [39].

The experimental error budget called for a surface form tolerance of 3 µm

maximum error from design surface – to include shape and radius errors. The

final achievement [8] was just over 1 µm, made up of 487 nm ± 11 nm of radius

error just over ± 500 nm of form error for a freeform surface made using

synchronous motion (slow-slide) diamond turning. One of the dimensional

confirmation procedures was comparator measurements with a spherical

standard at NPL – see Figure 7-17 (right). The represents the achievement of the

specific objective.

7.5.1.1 An effective machining strategy for a tri-axial ellipsoid

A contribution is the development a tool path programming scheme for a tri-axial

ellipsoid, using an assessment of machine dynamics and other error sources.

This has been achieved with exceptional results.

7.5.1.2 A high resolution & accuracy surface measurement of a hemi-ellipsoid

The second contribution is the use of high resolution scanning metrology, based

on the principles of chapter 5 (developed for low-slope surfaces) adapted for a

full hemisphere. The success of this approach has been demonstrated by the

corroboration with multiple low uncertainty measurement principles at NPL.

7.5.1.3 Accurate extraction of tool and work offsets from a free-form surface

measurement

The third contribution is the development of a method for the extraction of work

and tool setting errors from the measurement of a freeform surface. This has

been demonstrated in that it was the sole setting technique employed for setting

adjustment. Tool setting adjustment is absolutely critical for full hemisphere
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cutting, so the achievement of the low uncertainty machining result is a validation

of this new tool setting technique.

7.5.2 Measurement strategy

The final surface is not measured by the CMM scanning technique, so as to avoid

surface damage. The surface is measured after the penultimate cut and then

another 10 µm depth cut is taken using a program modified only in terms of

radius. Thereafter the surface is not measured with a contact scanning technique.

The Leitz PMM-F uses a low force probe head with 180 mN probing force. Even

this force is enough however to cause non-negligible surface damage to a

diamond-turned copper surface. Surface damage was analysed by the team led

from NPL (including the author) [8] for single point measurements.

Unpublished work [219] by members of the team has included single point and

scan measurements at various levels of probe force made with an 8mm diameter

ruby ball stylus tip and Zeiss UPMC 550 CMM. Figure 7-18 shows a single point

indentation of 650 nm depth made with 100 mN force at 5 mm/sec approach

speed. Figure 7-19 shows scan measurement indentations in copper made with

100 mN probe force and 1 mm/sec scan speed. Indentation depth approaches

100 nm.

Both figures show measurements made using white light interference

microscopy. With a reduction in approach speed, single point probing

measurements’ impacts can be reduced to an almost unmeasurable level,

whereas this is not possible with scanning.

Figure 7-18: Impact indentation from single point probing of copper
(picture credit, NPL) [216]
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An alternative non-contact measurement technique investigated for confirmation

of final surface form was carried out on-machine using a Fisba μPhase 2 OT 

Twyman Green Phase Shifting Interferometer carrying a 12/12 (60°) NA=0.5 lens.

Figure 7-20 shows the interferometer mounted on machine so that it could be

used within a machining operation cycle, although not in process.

Accuracy using stitching proved inadequate to surpass the achievements of the

CMM scanning technique. Contributions to uncertainty include stitching

numerical accuracy, 6 DOF mounting alignments of the interferometer, calibration

uncertainty of the lens. Figure 7-21 shows typical interferograms and an error

map showing P-V 3 microns of departure from the spherical wavefront over a 60

Figure 7-19: Indentation (scratch) from scan measurement of copper
(picture credit, NPL) [216]

Figure 7-20: (Left), Twyman Green phase shifting interferometer mounted
in-situ for on-machine measurement; (right) solid model picture credit:

Roger Read
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degree view. The interferometer must be aligned so that the focal point of the

lens is close to the geometric centre of the quasi-sphere.

7.5.3 Further work

7.5.3.1 System identification

The diamond turning was conducted at a speed low enough to satisfy the

tolerance requirement based on an assessment of dynamic motion errors at a

range of machining frequencies. The relatively low turning spindle speed of 200

rpm limits the machining rate at the expense of total machining time (thermal drift)

or feed per revolution (scallop height). A full system identification, including an

assessment of mode shapes could permit a much higher rotation rate including

fuller compensation for dynamic machining errors.

7.5.3.2 Feedforward and feedback compensation

The only error compensation applied was in respect of parametric extraction of

alignment offsets for tool and workpiece from the scan-measured workpiece

surface form. The highly accurate measurement data could be used for surface

form error compensation, in the procedure of Chapter 8, see Figure 8-1.

Additionally, tool error maps can be generated with extremely high precision [214]

– consideration can be given to feedforward compensation based on tool error

mapping.

Figure 7-21: Interferograms and surface map from the cavity surface – the
central map is for the interferogram on the left
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7.5.3.3 Non-linear numerical fitting of offset parameters

Tool offset fitting using equation (7-19) does give a degenerate solution, which

although successfully applied can be improved with a non-linear fitting solution,

such as Levenberg-Marquardt.
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8 APPLICATION OF SOLUTION, CASE STUDY 2 – E-

ELT

8.1 Demands

The scientific demands for the large freeform surfaces required for E-ELT are

outlined in 2.3.2. The technical surface demands are given below.

A surface must be ground using BoX, a 3 axis machine possessing a fixed

orientation “cup” wheel grinding spindle, with its axis inclined at 20 degrees to the

rotary axis of the workspindle. The machine configuration is shown in Figure 4-3

and Figure 4-4. The demand in this context, for machining the E-ELT mirror

segments, is to devise an approach to toolpath generation for these freeform

surfaces, which can accommodate the motion configuration and wheel shape

design of the machine, and utilise the measurement feedback information

described in chapter 5 for freeform optics – the example of chapter 5 having been

ground on the BoX machine.

8.2 Approach to toolpath generation

Tool path generation for the 3D case is highly complex, made particularly difficult

by two factors: 1) the unusual tool geometry of the case study and 2) the related

difficulty of Cartesian to polar transformation in the case of out of plane (X-Z

plane, see Figure 4-4) co-ordinates. This latter difficulty is subtle (see section

8.2.6) but its consequence is that the transformation for the tool contact point is

different from the transformation for the tool control point, and in general there is

no mathematically closed solution for an expression of the correspondence

between the Cartesian and polar co-ordinates for the tool centre/control point.

The reason for this is that the conversion from a given tool contact point in

Cartesian co-ordinates to polar co-ordinates in general actually selects a different

contact point on the wheel and at a different instant of time between the distinct

co-ordinate systems of wheel and work. This entails a conversion process which

goes beyond simple co-ordinate transformation.
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The principal elements of the devised strategy for generation of a tool path are

shown in Figure 8-1. The form definition and associated error compensation

(perhaps from previous iterations) define the desired finished shape for the

workpiece and are expressed in the workpiece’s co-ordinate system. The path

definition and process parameters are also expressed in the workpiece’s co-

ordinate system and relate to the locus of the contact (machining) point on the

workpiece. The tool (wheel) definition is a geometric description of the functional

surface of the wheel – a convex surface of rotation – and defined in its own co-

ordinate system. The kinematics conversion is the complex mathematical

scheme for combining all three input sets to generate a tool path program in the

cylindrical co-ordinate system of the machine.

8.2.1 Process parameters

The designs for process parameters: speeds, feeds and depths, have been

reported in previous Cranfield research [7] [9] [12] and most extensively [220].

These primarily relate to the optimisation of grinding conditions regarding normal

and tangential force, specific material removal rate and damage depth which are

highly dependent on workpiece material and tool design. There are other factors

in process design which relate to machine dynamic performance, available

machining time, thermal control, asynchronous workspindle errors, contact zone

shape and size, coolant delivery, influence on mid-spatial power spectrum and

follow-on process etc. The author has performed additional research in

optimisation of these, which contributed to the achievement of the work but is

outside the research scope of this manuscript. Typical finish (fine) grinding

•feed width

•feed speed

•depth of cut

•wheel speed

Process parameters

•2D
represention

•spiral or
raster

Path definition

•parametric
description
•cross-sectional
spline

•axis co-ordinates

Tool definition

•geometrical
correspondence
•analytical or
interpolant

Form definition

•point cloud
interpolant

•thermal
feedforward

Error compensation

•tool radius comp.
•surface normal

•non-affine trans.
•unclosed soln.

•NURBS reduction

Kinematics conversion

Figure 8-1: Elements of toolpath generation
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parameters are given in Table 8-1 for materials such as Zerodur, ULE® or fused

silica.

Table 8-1: Typical finish grinding parameters used in this study

Parameter Value

Workpiece radius of curvature ≥ 0.35 m (concave)

unlimited (convex)

Tool radius of curvature 300 mm

Workspindle rotation up to 14 rpm

Nominal tool-work path speed 25 mm/sec

Relative radial feed per revolution 1 mm

Tool spindle rotation 2200 rpm

Depth of cut 50 µm

8.2.2 Path definition

As in the case of SPDT (chapter 7), a spiral machining mode is a natural choice

here for a machine with a cylindrical co-ordinate geometry, although this is not

actually a definite requirement. A non-spiral path may be an option where relative

tool-workpiece feed rates are low; this implies that machine motion element

inertias can be low and that acceleration demands may not be prohibitive. The

machine however has 3 axes of motion and all must be engaged in any but the

most trivial examples of machining. Where machining is taking place close to the

workpiece rotary axis, any (non-trivial) mode that is not spiral will require high

acceleration of the workpiece rotary axis. Therefore, whilst a raster

implementation exists, in general a spiral mode is adopted by the author, except

where the entire workpiece surface is substantially off-centre, where a raster path

may be beneficial in terms of process efficiency.

Figure 8-2 presents path simulations for spiral and raster paths. The polar plots

represent a planar projection of the cylindrical co-ordinate system of the machine.

These plots each contain two lines, showing (blue) program and (red, dotted)

contact point loci for a concave spherical workpiece, although the path is defined

by the contact points – the program points are computed at the end of the process

of kinematics conversion (see Figure 8-1) and these form the basis of the

instructions passed to the control system.
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The plot for the raster program also demonstrates handling of intermittent

machining; the spiral by contrast is in continuous contact.

Figure 8-3 shows a uni-directional machining approach (the same data as Figure

8-2 right) where on the return path the grinding wheel disengages from the

surface and there is rapid feed to the start of the next machining raster line. This

is done to ensure any hysteretic effects due to machining direction do not

influence the final surface accuracy, and although the ‘retrace’ speed is high, it

does reduce the overall machining rate.

Figure 8-2: Path simulation (left) spiral and (right) raster

Figure 8-3: Raster path simulation showing intermittent cut
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8.2.3 Tool definition

The tool’s functional surface is a surface of rotation, formed of a 2D (curved line)

description rotated around the wheel spindle’s axis of rotation. The wheel spindle

axis is at 20° inclination to vertical (the work spindle’s axis is vertical). In order to

distribute wear, and to be able to grind concave workpieces, the 2D definition of

a cross-section of the wheel must be convex, and of a smaller maximum radius

of curvature than the minimum radius of curvature of the workpiece; Figure 6-1

illustrates this point, where a toric wheel machines a concave workpiece – the

workpiece must have a larger radius than the wheel.

Using a knowledge of 2-D profile, together with the relative positions and

orientations of the truing spindle and wheel spindle axes, a 3-D surface

description of the wheel can be gained. The convex 2-D wheel profile is by design

a circular arc. This is formed by conventional CNC machining of a truing roller,

which is then coated with coarse abrasive material. For this reason, the wheel’s

profile curve may be of relatively low accuracy. The shape this imparts to the

wheel must be known to high accuracy however, because it is a strongly

influencing factor in the final machining accuracy of the overall process. This can

either be 1) directly measured or 2) inferred. In this research, the profile has been

inferred in three ways (alternatives):

a) By calculation from the design profile and relative positioning of axes

b) By direct measurement of a dressing stick, after wheel dressing

c) By measurement of the workpiece, after grinding

Figure 8-4: Wheel geometry formation
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Figure 8-5 shows the principle of b) above, performed here on graphite, although

this process can be automated on machine using its integrated probe

measurement. This is the most direct method of the three above, and avoids the

difficulty of measuring the wheel’s abrasive surface.

8.2.4 Workpiece form definition

The workpiece’s form definition must be of an interrogable nature (and essentially

explicit) so that given an (�, �) co-ordinate pair, a z co-ordinate can be obtained,

with a surface normal vector (��, ��, ��). Suitable definitions include analytical

descriptions e.g. an ellipsoid description as in equation (8-1), or a spline surface

description; descriptions of these kinds are differentiable, so it is easy to obtain

surface normals.

�(�, �, �) =
(� − ��)�

��
+

(� − ��)�

��
+

(� − ��)�

��
− 1 = 0 (8-1)

Equation (8-1) can be made explicit - equation (8-2),

� =
�

�
��� − (� − ��)� − (� − ��)� + �� (8-2)

and either form is differentiable to yield surface normals, for instance, the implicit

form, equation (8-1), where in equation (8-3), i, j and k are the standard unit

vectors.

Figure 8-5: Wheel geometry measurement
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The purpose of this definition is directional - scale of the combined vector is

unimportant, so it can be normalised using the Euclidian distance, as in equation

(8-4).

� =
∇��(�,�, �)�

�∇��(�,�, �)��
(8-4)

It is possible to develop surface normal evaluations from other descriptions, such

as point clouds, but these are non-deterministic and depend on selection of

interpolation/approximation parameters. Deterministic representations are

preferred, such as those based on defined polynomials.

8.2.4.1 ESO E-ELT form definition

An optical prescription for an ellipsoid equivalent to equation (8-1) is often given

in the form of equation (8-5), where by design �0 & �0 are assumed zero and �0;

can be set to exactly -� to place �=0 at the tip of the ellipsoid. � is the base radius

of curvature (� = �� �⁄ ) and � is the conic (Schwarzschild) constant

(� = � �⁄ − 1). This is a restatement of equation (2-9), the general equation for

rotation of a conic section.

�(�,�) =
�

1
��

(�� + ��)

1 + �1 − (1 + �) �
1
��

�

(�� + ��)

(8-5)

Here, for the E-ELT M1 primary mirror, at the time machining was carried out, the

prescription was defined* as given in Table 8-2 [221].

Figure 8-6 shows an example segment, from the extremity of the M1 primary

telescope mirror, in the co-ordinate system of the entire mirror. Its sag of ~3 mm

is not discernible due to its inclination in the frame of reference of the co-ordinate

system.

* The design of M1 has since been changed to a smaller diameter with a higher f-number
(smaller radius of curvature)
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Table 8-2: Ellipsoidal parameters [221]

Parameter Value

Workpiece radius of curvature at vertex of M1 84 m ± 200 mm

Conic constant -0.993295

x-y plane-projected regular hexagon, across flats 1.228448375 m

Minimum ‘radius’ (in hexagon orders) 6.24

Maximum ‘radius’ (in hexagon orders) 21

The same segment, shown in its own co-ordinate system, placing the centre

“vertex” (C0 from Figure 8-6) at 0,0,0 has a discernible shallow curvature.

8.2.5 Error compensation

Error compensation is likely formed from empirical data and as seen in section

5.5.2 is most suitably based on a point cloud interpolant. In this toolpath

Figure 8-6: Segment “16.15” at periphery of E-ELT M1 mirror – in M1 co-
ordinates

Figure 8-7: Segment “16.15” in local co-ordinates
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generation scheme, error compensation data are used to modify the form

definition of section 8.2.4. For a low-slope surface, such as the E-ELT mirror in

this case study, the slopes are low enough that an error compensation scheme

operating in a single direction (not with orientation-flexible surface normals) is

adequate – particularly in an iterative context.

In this case, the error map (formed from an interrogable point cloud interpolant

as in Chapter 5) generates correction data at whatever granularity is required by

the tool path generation. These correction data are then simply added to the form

definition; this is the simplest possible scheme.

8.2.6 Kinematics conversion

The kinematics conversion (as suggested in the process workflow diagram in

Figure 8-1) has multiple stages.

8.2.6.1 Phase A - Path definition

Initially, chosen material processing parameters dictate the dimensional factors

(if not the topology) of the path definition; the path definition is then given by two

linear arrays (of the Cartesian planar variables � and �) describing the path shape

and two further arrays which are created by explicit functions of � and � as in

equations (8-6).

x co-ordinate of machining point = [�� �� �� ⋯ ��]

y co-ordinate of machining point = [�� �� �� ⋯ ��]

velocity magnitude of machining point = �(�, �)

clearance from machining point = ��(�,�)

(8-6)

The velocity value is also determined by material processing requirements. The

clearance value is zero during machining and is positive (away from the

workpiece) when the path takes a rapid (non-grinding) route to the next grinding

position, indicated in green in Figure 8-3 and labelled “(rapid)” in the graph’s

legend. In the final kinematics conversion, positions intermediate between the

points defined in equations (8-6) will be interpolated at whatever density is

required by the form accuracy tolerance requirement or the block processing

speed limitations of the machine controller. By way of an example, the spiral

machining path for an ESO E-ELT segment is generated as follows. Table 8-1

gives the feed width (spiral feed per revolution, �) and path speed (�) as 1 mm
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and 25 mm/sec respectively. So for a 1.5 m diameter (�) circular workpiece, the

path could be described by equations (8-7).

number of turns (+2 past centre) � = �
2��

angle 2�� ≥ � ≥ −4�

radius 																	� =
��

2��

																	� = � cos �

																	� = � sin�

speed 																	� = 0.025

clearance 															�� = 0 (� ≥ 0)

clearance (5 is arbitrary slope) �� = −5� (� < 0)

(8-7)

A representation is given in Figure 8-8 (left) of the path, with geometrical factors

altered for easy visualisation. In the same figure it is shown (right) in 3-D with the

TCP path included.

8.2.6.2 Phase B - Contact path in workpiece co-ordinate system

The second phase is the generation of the error-compensated workpiece form

definition and the mapping of the contact path onto it. Again taking the E-ELT

example for the case study, the form definition function is given in equation (8-5)

and its surface normal vector (which will be required) can be derived by inspection

Figure 8-8: Spiral contact path
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from equations (8-3), (8-4) and (8-5) as in equations (8-8) in terms of the optical

prescription preferred constants.

�∇��(�, �, �)�� = � = 2 �
�� + ��

��
+
��

��

= 2�
�� + ��

��
(� + 1)��

+
��

��
(� + 1)��

�(�,�) =
2(� − ��)

���
(� + 1)�

�+
2(� − ��)

���
(� + 1)�

j+
2(� − ��)

���
(� + 1)��

k

(8-8)

The optical prescription, equation (8-5), must be modified by any error

compensation data – which will be obtained as from equation (5-12), the

equivalent to the data in Figure 5-41 (right). Note that the surface normal vector

has been obtained from the analytical form description of the surface, and not

from the form description modified by the error compensation data. There is an

error associated with this approximation, but we can show that it is negligible.

Taking wildly pessimistic values, the error compensation might add an absolute

maximum additional slope variation given by the peak error between adjacent

scan measurements (0.4 µm over 3.4 mm, see Figure 5-31) a maximum (� =

0.007 degrees). The additional tool radius correction error for surface normal

approximation would be � = �(1 − cos �) = 2 nanometres, where � is the tool

radius of ~300 mm.

So now the contact point path on the workpiece surface, given in the workpiece

co-ordinate system is defined by an interpolation of the points in equations (8-7),

given from a parameterisation of � for the spiral to yield (�,�, �, ��) combined with

the workpiece definition as in equations (8-5) and compensation from equation

(5-12), restated in equation (8-9).

�. ��� = �(�.�ts) − �(�.�ts) + �(�.�ts) ⇒ �error = �(�,�) (8-9)

The combination gives a contact path defined in the workpiece co-ordinate

system, given in equations (8-10).
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2�� ≥ � ≥ −4�, � = �
��

2�� � cos � , � = �
��

2�� � sin�

�(�,�) = �(�, �) + �� − �(�, �), = (tool path)

�(�,�), = (surface normal)

(8-10)

8.2.6.3 Phase C – Tool radius compensation

The application of tool radius compensation is relatively straightforward, at least

in the co-ordinate reference frame of the workpiece.

With reference to Figure 8-9, the controlled point (TCP) is the lowest point on the

wheel, the point where the slope is nominally zero – in other words the contact

point normal is parallel to the workpiece’s rotary axis. By inspection of the figure,

the co-ordinates of the controlled point relative to the wheel centre are as given

in equations (8-11).

� = 0, � = �� cos�, � = −�� sin� − �� (8-11)

Similarly, the contact point co-ordinates relative to the wheel centre are given in

equations (8-12) in terms of the construction angles and the wheel toric radii, r1

and r2.

Figure 8-9: Geometry simulation



174

� = −(�� + �� sin(� + �)) sin�

� = (�� + �� sin(� + �)) cos� cos � − �� sin � cos(� + �)

� = −(�� + �� sin(� + �)) cos� cos� − �� cos � cos(� + �)

(8-12)

The equivalent of “tool radius compensation”, the adjustment applied to the tool

contact point to obtain the tool control point, is simply the difference between

equations (8-11) and (8-12), given fully in equations (8-13).

� = (�� + �� sin(� + �)) sin�

� = �� cos� − (�� + �� sin(� + �)) cos� cos � + �� sin� cos(� + �)

� = (�� + �� sin(� + �)) cos� cos � + �� cos� cos(� + �) − �� sin� − ��

(8-13)

In the foregoing, � is the fixed wheel tilt angle – set at 20° on the machine. � and

� are geometrical construction angles, set by the surface normal of the desired

workpiece surface form – the surface normal angle. Given ��, �� and �� are the

components of � we can obtain � and � in terms of �, the surface normal, as in

equations (8-14).

� = tan��
���� + ��� cos � − �� sin��

�

�� sin� + �� cos �
− �

� = tan��
��

�� sin� − �� cos �

(8-14)

So in terms of the quantities �, � and � in equations (8-13) we can now express

more directly the control point in terms of the contact point, using just the wheel

radii and single tilt angle as given in equations, and this is in the polar (cylindrical)

co-ordinate system of the machine.

�TCP = �(�contact + �)� + ��

�TCP = �contact + �

�TCP = sin��
�

�TCP
+ �contact

(8-15)

There are two significant issues with this treatment.

a) This assumes a high degree of fidelity between mathematical model and

wheel geometry. Fidelity in the direction of rotation of the wheel (� angle

fidelity) will be very good as this is generated (during wheel forming) by
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spindle axis rotation with a high degree of averaging. This is not true however

for the � angle fidelity, which is reliant on the profile fidelity of the truing wheel.

b) The calculation of surface normal is performed in the machine’s �-� plane, for

which � = 0. The point which is then selected on the wheel (except for the

trivial � = 0 case) is not in the x-z plane, so it will not contact the workpiece

at the programmed point – it will contact it out of the plane, at a different point,

at a different angle.

For these reasons, a different treatment is required. Given the first of these points,

it’s clear that absent an analytical definition of the wheel shape, a closed

mathematical solution will not be available, and a numerical solution must be

sought.

The profile is shown in Figure 8-10 (green dashed line). In this figure, the contact

patch can be seen for a flat surface, at the lowest point on the wheel’s surface

with the surface normal shown as a solid black line.

Figure 8-10: Contact patch for grinding a flat surface
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8.2.6.4 Iterative solution to phase C

The approach based on the analytical description of the wheel can be modified

to accommodate both of the issues identified in the previous section. There are

two elements to a solution.

a) The surface normal angle from the workpiece selects a unique position on

the convex wheel expressed with the two angles � and �. Equations (8-

14) give a correct solution for their identification. Angle � is one of the co-

ordinates to describe a position on the wheel. A slice through the wheel

perpendicular to the wheel’s rotary axis will give a circle. The wheel profile

(as seen in Figure 8-4 and Figure 8-5) is by design a circular arc, however

it is not accurate. The profile can be inferred by measurement and

represented by spline approximation. Angle � can then select a unique

position within the spline and in combination with � provide a unique

position within the wheel’s surface. This can be used to give an improved

representation for equations (8-13).

Figure 8-11 shows why an in-plane (X-Z plane) contact point is in general not

possible with a sloped workpiece surface. The wheel “cuts” the surface out of the

Figure 8-11: In-plane contact not possible for non-zero �y/�z
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plane, and since the motion system can only move in X or rotate the workpiece,

it’s impossible to grind at the desired position. The only way the correct grinding

geometry can be achieved is if the workpiece is rotated and the contact point is

out of the plane. The required rotation angle is a function of the surface normal

angle, the co-ordinates of the contact point and the geometric parameters of the

wheel.

b) The second element to the solution addresses the out of plane issue.

Since there is no mathematically closed solution, an iterative approach to

a solution can be used to find a rotation angle C for the workpiece, which

moves the contact point out of the plane and at the same time rotates the

surface normal (in the co-ordinate reference system of the wheel) until a

match is found with a point on the wheel. Since the wheel’s radii of

curvature are unconditionally smaller than the E-ELT’s radius of curvature

at all points, and the wheel is unconditionally convex whilst the workpiece

is unconditionally concave, a solution must exist if the wheel’s surface is

wide enough, so a suitable search technique must be able to find one. One

potential difficulty is that there could be more than one solution – a

situation that can occur under exceptional circumstances where there is

Figure 8-12: Out of plane contact correctly achieved
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relatively high workpiece slope close to the workpiece spindle’s rotation

centre. This is detected by the code implementation.

c) Figure 8-12 shows the same contact point as in Figure 8-11 but with the

workpiece rotated so that the contact point aligns with the wheel so that

their surfaces are in parallel contact. This must be addressed in the

transformation from contact point path to TCP path; for each point on the

path, there is a different non-affine co-ordinate transformation, and each

is a non-closed mathematical solution.

8.2.6.5 Implementation of solution to phase C

In the plane of the wheel profile, the profile can be described by z as a function

of y – where y and z correspond to the Cartesian co-ordinates of the machine as

in Figure 4-4.

The profile is approximately circular, as in equation (8-16) – it is by design circular

but subject to significant manufacturing tolerances.

� = �� sin� , � = ��(1 − cos�)

� = �� − ���� − ��
(8-16)

Measurement can give a more accurate profile which can be approximated with

a standard cubic spline of the form ������ which is designed to minimise the sum

in equation (8-17). In that equation �, the smoothing parameter is chosen to give

appropriate smoothing – typically � ≈ 1 (1 + ℎ� 6⁄ )⁄ where ℎ is the mean spacing

between values of �.

����� − �������
�

�

���

+ (1 − �)��
���(�)

��
�

�

�� (8-17)

The angle normal to the profile at any point is described (in radians) by the

spline’s derivative, as can be seen by differentiating equation (8-16) to give

equation (8-18).

��

��
=
���� − ���� − ���

��
=

−�

���� − ��
=

−�� sin�

�� − �
=

−�� sin�

�� − ��(1 − cos�)

= tan� ≈
���(�)

��

(8-18)
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Utilising standard smoothing spline implementations [184] (including standard

expressions for their derivatives) with � as indicated above, we have a mapping

to go from y to tan� (or indeed �) by using the derivative of the spline. Since this

is not an analytical function, we can’t rearrange it to make it explicit in y, for going

from � to y, but we can build a table of values for tan� and use another smoothing

spline to construct another mapping to infer y from tan�, since there is a 1:1

correspondence for y to tan�, over the range of angles involved.

�� �tan�� ���′(�)�� ≈ � (8-19)

This spline, equation (8-19) then gives us the ability to get a y value (and

therefore, z) from an angle � and is superior to table lookup, since it gives infinite

resolution.

In order to achieve the alignment in Figure 8-12, the requirement is to find the

rotation angle (of the machine’s C axis) needed to get the surface normal to align

to a surface normal for the wheel at a mutual contact point. An iterative search is

used to refine an estimate of the rotation angle. For each iteration, the surface

normal from the contact point is rotated by a trial C rotation angle. The two angles

(relating to the � and � of Figure 8-9) are obtained in the co-ordinate frame of

reference of the wheel. The values of � and � select a unique point on the wheel.

The distance out of plane (y-direction) in the workpiece co-ordinate system must

be the same as the value for distance out of plane in the wheel frame of reference.

The y value in the workpiece co-ordinate system is given by simple trigonometry,

and the y-value in the wheel co-ordinate system is given by equation (8-19) from

�. This y-value (and its associated x and z values) give the relationship between

the contact point and control point. Optimised code has been written to achieve

rapid convergence in fitting within 2 or 3 iterations for each point in the control

program, so that relatively rapid conversion is possible (approximately 10,000

program points’ conversion per second).

8.3 Results

Two validations of the technique of this chapter are offered. The first is the surface

produced and measured in Figure 5-46. The residual error of below 800 nm

includes distortion of the surface due to machining forces as well as errors in the

CMM and the BoX grinding machine. It does however have the usual optician
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corrections of tilt and defocus removed, since these can always be adjusted on

assembly alignment and test of an optical system, without detriment to imaging

quality.

The principal validation is in the machining of an E-ELT segment.

The Zerodur segment was machined on the BoX machine using the tool path

generation technique reported here. Figure 8-13 and Figure 8-14 show the

segment in context, during a grinding operation.

Figure 8-13: Machining ESO E-ELT segment on BoX

Figure 8-14: Machining ESO E-ELT segment on BoX (close-up)



181

Figure 8-15 and Figure 8-16 show the machined segment in context, being

measured on the PMM-F 30-20-10 CMM.

Figure 8-15: Measuring 1.5 m diameter ESO E-ELT segment on CMM

Figure 8-16: Measuring ESO E-ELT segment on CMM – curvature visible
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Figure 8-18 shows the measurement performed using the techniques of chapter

5. The measured form error is 691 nm rms over the entire surface to within 0.5

mm of the segment edges. The map shown is the difference between the freeform

design shape of the surface, and its measured shape. No terms are removed

other than height offset (piston) and tilt, so this represents the severest

evaluation.

Figure 8-17: Error from Figure 8-18 (ordinate) plotted against radial
distance from workpiece centre (abscissa)

Figure 8-18: Measurement result
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Three E-ELT segments have been machined with similar performance (all under

1 µm rms form error with only tilt removed) and a similar number of other large

optics with similar performance. Figure 8-17 shows the same error data as in

Figure 8-18 (1,200,000 data points) plotted against radial distance from the

rotation centre of the workpiece.

Figure 8-19 and Figure 8-20 show Fourier transforms of again the same data

giving the error amplitude as a function of respectively spatial frequency and

spatial wavelength, assessed in a radial direction from the rotation centre of the

workpiece.

8.4 Summary and discussion

A method for tool path generation for smooth freeform surface machining has

been presented that can be applied for machining using complex 3-D tool

Figure 8-19: FFT of error against radial distance (vs. spatial frequency)

Figure 8-20: FFT of error against radial distance (vs. spatial wavelength)
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geometries and highly challenging motion configurations. The method is

designed and has been demonstrated to achieve very high accuracy whilst

utilising a minimum (3-axes) motion configuration. Starting with a novel process

workflow concept, this is accomplished by utilising a flexible and full freeform

geometric model of the workpiece and tool shape and solving the mathematical

problem of relating motions in one co-ordinate system through a necessarily non-

affine transformation to the motions of a different point in another co-ordinate

system.

The method has been validated in the successful machining, to sub-micron

precision, of three prototype segments for the M1 primary segmented mirror of

the forthcoming ESO E-ELT ground-based telescope (completing a research

objective) which in the 2020s will become the world’s largest full aperture

telescope.

The measurement for Figure 8-18 was performed without the additionally

described compensation or Zernike decomposition techniques of chapter 5 being

applied; the machining work on the prototype segments was carried out before

these measurement process extensions were developed. The available

measurement data was used for error compensation feedback, as described in

the foregoing. In place of the Zernike treatment, for error compensation feedback

only, zero phase low-pass spatial filtering was applied to ensure that any short

wavelength artefacts (at 1 mm or below) had minimal influence within the

measurement feedback. Attenuation for wavelengths above 5mm was limited to

0.1 dB (around 1.1% attenuation) of error. This technique has been subsequently

rejected in favour of an optimised Zernike decomposition so that more strategic

choices can be made over signal rejection within the error compensation

feedback loop.

Through the finesse of the underlying measurement technique, circular form error

patterns (rings) are clearly discernible within the measurement in Figure 8-18.

These can be analysed with the accumulated radial plot of Figure 8-17 and its

Fourier transform in Figure 8-19 and Figure 8-20. There are several observations

to make.

• The area over the corners of the hexagonal segment, where there is

intermittent machining during a rotation, exhibit the largest error, due to
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variations in grinding conditions. This accounts for the “fluffing” of the trace

above 600 mm radial distance in Figure 8-17. Although this is an artefact

of machining process parameters, it can be corrected with error

compensation; this aspect of error compensation has been substantially

improved with the adoption of Zernike decomposition of error maps,

although this treatment was not implemented at the time the segments

were processed.

• Between around 100 mm and 600 mm radial distance from the centre, the

character of the error trace is consistent with an envelope at around 2

microns p-v. Around 300 nm of this is geometrically inevitable from the

scalloping due to the wheel profile and feed (see Table 6-2). Surface

roughness in this grinding mode, would contribute around 150 nm Ra [220]

or 1000 nm Rt, and some will be due to asynchronous spindle motions,

although these contributions cannot be directly summed. The error

envelope reduces dramatically toward centre where there is considerable

grinding overlap, so the error envelope elsewhere is due motion errors and

errors in the wheel profile (the machining point on which will vary as the

workpiece rotates, for a freeform surface).

• The FFT traces show strong signatures at 1 mm wavelength (the feed step

of the grinding toolpath) and strong signals at around 36 mm and 300-400

mm, which are visible in all the forms of the data Figure 8-18 - Figure 8-20.

Linear feed in the radial direction is synchronous with workpiece rotation

angle, but not with time, so the strongly repetitive signal at 36 mm is not

due to temporal cycle; this is again due either to motion errors, such as

due to magnetic pole pitch.

• The long wavelength errors represent errors that have been apparent with

long (hours) time variation and are possibly thermal in origin. Errors with

this wavelength are very well treated by the error compensation technique

and therefore reflect non-repeatability in the machine-measure cycle of

around 1 µm P-V amplitude; this does not reflect on the work reported in

this manuscript.
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Although the 700 nm rms error result is impressive, its traceable uncertainty is

limited by the recognised capability of the CMM, given by its MPE at a figure

which is almost an order of magnitude larger than the 700 nm. The improvements

offered by the measurement algorithm, also remain non-traceable. Nevertheless,

successful use in this iterative cycle does demonstrate full-cycle repeatability

(including grinding and measurement) at the micron level, which is a highly

significant result for freeform surfaces on this scale and puts them easily into a

regime where a first stage polish in the succeeding process chain step can

produce functional full-aperture interferometry.

The operational influence of a truing roller, as opposed to a cup wheel to perform

grinding wheel forming is unclear. Certainly the geometrical implications of the

freeform (near) toric wheel to tool path generation are considerable. Even though

the achievement of tool path generation method for this combination is one of the

contributions of this research, the non-deterministic shape preparation of the

grinding wheel is a source of error, which can even after this research only be

controlled by inference of its error profile. How much error is contributed to the

surface shape is unclear. It is notable however that even where a wheel profile is

specifically designed for a concave freeform surface of such as the 1.5 m

diameter E-ELT mirror segments, at most 75 mm width of wheel forming roller is

engaged. This 75 mm has in some way a 1:1 correspondence in terms of slope

with the concave freeform surface, in terms of which part of the truing wheel

affects which part of the freeform surface. In this circumstance, at best there is at

least a 750:75 = 10:1 lateral expansion of any imperfections on the truing profile

onto the freeform surface. This is a minimum ratio; in the machining described in

this chapter, 15 mm of wheel’s width was used to grind 750 mm of workpiece

radius. Therefore a single grit defect on the truing roller that has dimension of 260

microns may have an effect on a zone > 12.5 mm wide on the finished freeform

surface and this may be the origin of some of the imperfections in Figure 8-18

and Figure 8-17. The author strongly advocates the adoption of a spherical wheel

and spherical forming approach in which the forming process has transverse

action, so that there is a great deal of averaging in wheel shape creation, almost

completely avoiding the magnification effect described above and ensuring a high

fidelity of wheel form.
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8.4.1 Achievement of objectives and contribution to knowledge

8.4.1.1 Comprehensive tool path generation strategy

The achievement of this represents the most complete realisation of the kinematic

combination strategy objective. In particular a comprehensive tool path

generation strategy to support the operation of the BoX machine for freeform

grinding has been developed. A multi-element strategy was devised (represented

in Figure 8-1) which succeeded in its application to making a number of prototype

segments and other freeform surfaces. This strategy is generic for other machine

tool motion configurations.

8.4.1.2 3 axes to machine freeforms

A second contribution was to find a method to covert a contact point to tool centre

point for a fixed orientation toroidal tool used in a 3-axes cylindrical geometry

machine tool and applicable to any tool path on a smooth freeform surface. This

objective was met and is represented in 8.2.6.4

8.4.1.3 Tool radius compensation for a freeform tool, using a spline

representation of the tool shape

The third contribution is to find a representational basis for a freeform convex tool

and through this an extension to 8.4.1.2 to accommodate any convex tool shape

produced as a surface of rotation.

8.4.2 Further work

8.4.2.1 Extension of tool path design for high slope surfaces

A potential limitation of the developed strategy is that tool paths are originated in

a 2-D representation, which for low-slope surfaces is scarcely a limitation. For

higher slope surfaces, this would need to be modified directly to devise

appropriate paths on a 3D freeform surface. This is work which has been

addressed to some extent for 4/5 axes machines where the contact point on the

tool can be made largely deterministic, based on reorientation of the tool for the

surface normal vector. The situation for a 3-axes machine is more complex.

8.4.2.2 Anomalous kinematics conversion to investigate redundant solutions

An anomalous situation can occur where there are multiple solutions to the

kinematics conversion represented in Figure 8-11 Figure 8-12. This is identified



188

in the developed algorithms, although not deeply investigated in the existing

research. Whilst it can only occur for relatively high slope close to the rotation

centre for the workpiece, this eventually is not deterministically predicable, and

so it is difficult automatically to design tool paths to avoid it.

8.4.2.3 Non-zero slope on centre

Whilst it’s always possible to place a zero slope at centre, it may not be the most

efficient machining proposition, as it may place a higher peak slope elsewhere

within the work zone. An investigation can be carried out of the potential of

handling finite non-zero slope at workpiece centre. Some unreported

demonstration grinding has been done using a diametric path across centre

which can be extended.

8.4.2.4 Modified tool path combinations

There is a possibility of combined tool path geometries such as combining raster

with spiral, but the issue of discontinuities at path junctions should be

investigated. The tool path strategy, as reported in this chapter, lends itself to this

approach, as it separates the designed tool contact path from the remainder of

the generation algorithm.

8.4.2.5 Treatment for edge effects

Specific treatment (other than error compensation) for edge effects could be

employed, such as tool path trajectories that run always parallel to edges. This

could help significantly with edge roll-off.

8.4.2.6 Improved centre region handling

For spiral machining, the peak workpiece spindle rotation speed limits the

achievable machining parameters. This leads to a reduced tool-work relative path

speed, below design parameters. This can lead to a conical depression towards

the centre of a workpiece. This is currently successfully treated using error

compensation, but also be tackled in a deterministic way using path

modifications.

8.4.2.7 Adaptive modelling of tool wear and predictive compensation

The developed algorithms hold information on material processing parameters

and have a full time-based trajectory model for the position of the mechanical

contact point on the tool. This information can be used to predict the distribution
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and amount of tool wear and to feed forward compensation for tool wear into the

tool path program. This offers the potential to reduce the iterative requirement of

machine-measure to achieve a given tolerance of free form surface.

8.4.2.8 Spherical wheel forming

An investigation of the degree to which the ‘rings’ effect may be due to wheel

forming accuracy could involve some spherical wheel forming, using a cup-type

forming wheel. This would simplify the tool path formation.
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9 CONCLUSIONS AND SUMMARY OF ACHIEVEMENT

Chapters 5-8 contain their own discussions on pages 97-100, 130-131, 156-160

and 183-187 respectively. These are summarised here within a discussion

relating to the overall work.

The focus of this work has been the manufacture of smooth freeform surfaces. In

particular, two principles at the core of precision engineering are engaged in the

basis for this research.

a) Determinism: an underlying thesis has been that the precision of freeform

surface manufacture can be reinforced by using a minimum possible number

of machine axes of motion. The justification for this is that in adding motion

complexity, particularly by adding stacked axes, additional errors,

uncertainties and sources of non-repeatability are also added due to less than

perfect degrees of constraint, differential expansivities, additional compliance

etc. This is held to be case under any circumstance, but particularly so where

high energy density or high dynamic forces are involved.

b) Measurement: the critical underpinning of precision manufacture; it is only by

achieving low uncertainty measurement/test of whatever aspects of an entity

are functionally important that these aspects can be made correct; this may

be equivalent to a saying often attributed (most fittingly in this context) to

Kelvin: “If you cannot measure it, you cannot improve it”. The actual quote is

subtly different [222] but the paraphrased version is a reasonable first principle

for ultra-precision manufacturing.

This research has been guided by the above principles, with the consequent

requirements, below.

a) A consequence of using three axes machines, in both of the case study

applications, has been the additional complexity of generating tool paths,

owing to the degree of reliance placed on knowledge of the tool’s location and

geometry, and the precise control of which part of the tool is engaged in the

machining. In terms of mathematical ‘load’, this is a high price to pay, but the

rewards – as evidenced by the achievements of the machining, particularly

related to repeatability - are great. A similar (minimal motion system

complexity) approach was applied by the author and others in the pioneering

manufacture of monolithic multi-mirror image slicers for the integral field
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spectroscope units in the Mid Infrared Instrument of NASA’s James Webb

Space Telescope [10] [40] [223], also with great success.

b) In both case studies, through the application of iterated feedback of measured

parameters, measurement at a leading level of precision, has been a sine qua

non of this enterprise – in both cases for validation and adjustment of

machining strategy; in case 1 the high lateral resolution being essential in and

of itself, and in case 2 (subtly, due to the degeneracy of the fit) to the accuracy

of tool adjustment.

9.1 Contribution to knowledge

Contributions to knowledge are detailed in the relevant sections, and collated

here.

Algorithms for scanning metrology of large area surfaces

1) High lateral resolution contact scanning measurement of smooth

freeform surfaces

2) Detection and removal of scanning contact errors

3) Compensation of errors due to changes in measurement accuracy during

measurement

4) Application of orthogonal polynomial error separation to a ground

freeform surface

Tool path generation

5) Identification of a surface representation scheme for smooth freeforms

6) Automated design of appropriate tool paths based on machining criteria

and compensated surface shape data

7) Optimised condensed tool path representation

Application of solution, case study 1 – Boltzmann “quasi spheres”

8) An effective machining strategy for a tri-axial ellipsoid

9) A high resolution & accuracy surface measurement of a hemi-ellipsoid

10) Accurate extraction of tool and work offsets from a free-form surface

measurement
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Application of solution, case study 2 – E-ELT

11) Comprehensive tool path generation strategy

12) 3 axes to machine freeforms

13) Tool radius compensation for a freeform tool, using a spline

representation of the tool shape

9.2 Impact of research

Based largely on research presented in this manuscript, the author wrote

“Enabling UK Manufacturing in Ultra Precision and Structured Surfaces” one of

Cranfield University’s 23 Impact Case Studies for REF 2014 (one of 3 in the

Manufacturing Engineering discipline). In addition, there are 27 refereed

publications (of which 12 are journal articles) resulting from this research. The

contents of this manuscript, which are being aired for the first time, will elicit

further publication.

The know-how in the creation and implementation of the algorithms of Chapter 8

was a key part of the founding IP in the Cranfield University spin-out, Loxham

Precision Ltd. and was similarly fundamental to the delivery of a €5,000,000

contract, awarded to Optropreneurs Limited, to supply prototype segments for

the E-ELT, supported by Cranfield University through EPSRC funding.

In 2018, the BIPM will formally adopt a new definition of the kelvin, in which it will

take a value consistent with a defined value of the Boltzmann constant. The

research described in this manuscript will have made a key contribution to this

redefinition of one of the 7 base SI units of all measurements worldwide, and to

the newly defined value of the Boltzmann constant. Of the author’s contribution,

the NPL Project Leader and Science Ambassador, Michael de Podesta said

[224]:

“The perfection of the inner surface was without a doubt the key to the

low uncertainty. Nothing else would have worked without your magic.”
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10 RECOMMENDATIONS FOR FURTHER WORK AND

EXPLOITATION

Chapters 5-8 contain their own recommendations for further work on pages 100-

101, 131-132, 160-161 and 187-189 respectively. These are collated here, with

a discussion of the direction of the overall work.

Algorithms for scanning metrology of large area surfaces

1) Hysteresis anisotropy

2) X axis gantry – treatment of scanning hysteresis

3) Accuracy improvement through improved stylus calibration

4) Uncertainty investigation through artefact calibration

5) Repeatability investigation through rotate and move

6) Selection of scanning speed/data point density, as a function of surface

geometry

7) Higher spatial frequency form compensation

Tool path generation

8) Binary search improvement

9) Re-parameterisation-control point shift Interplay

Application of solution, case study 1 – Boltzmann “quasi spheres”

10) System identification

11) Feedforward and feedback compensation

12) Non-linear numerical fitting of offset parameters

Application of solution, case study 2 – E-ELT

13) Extension of tool path design for high slope surfaces

14) Anomalous kinematics conversion to investigate redundant solutions

15) Non-zero slope on centre

16) Modified tool path combinations

17) Treatment for edge effects
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18) Improved centre region handling

19) Adaptive modelling of tool wear and predictive compensation

20) Spherical wheel forming

In the wider context, future exploitation of these techniques for freeform surface

machining may lie in the development of embedded CAD-CAM capability to use

them. A lot of research into the enhancement of CAD-CAM capability is focused

on the facility of high axis-count machines, where the application of machine

intelligence is required to assist in optimisation (for efficiency) of machine tool

path, where there would be choices – perhaps infinite choices - of trajectory.

Optimisation for machined surface quality (which has wide industrial application)

might entail use of a minimal axis-count machine, and this is where generic

commercially available solutions do not currently exist.

The techniques of treatment of data for scanning measurement could also apply

to non-contact scanning technologies, which are increasingly available on high

accuracy CMMs. Although the character of the errors is different for a non-contact

system, particularly in that the errors are not uni-directional, there is much

commonality, and scope for application of this research.
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APPENDICES

A. MATLAB PROGRAMS FOR NURBS COMPUTATION

Some programs developed for this thesis are reproduced here in 9-point

monospaced font “Inconsolata” in order to accommodate long lines with

readability. All programs are coded in Matlab; no additional toolboxes are used in

the NURBS code. Refer to relevant thesis text for an explanation of their

application.

A.1. Program: FindSpan

function [Spans, length, width] = FindSpan(KnotVector, rank, Parameters)
%FindSpan Finds which spans in "KnotVector" contain "Parameters"
% Spans are 1-indexed
% "Spans" is returned as a row vector
% "KnotVector" and "Parameters" inputs can be row or column vectors
% if Knot Vector is not monotonically non-decreasing an error is thrown
[k,P] = meshgrid(KnotVector(rank:end-rank+1), Parameters); [length, width] =
size(k);
if (min(diff(KnotVector))<0), error('Ill conditioned Knot Vector'); end
a = P(:,1:end-1) >= k(:,1:end-1) & P(:,2:end) < k(:,2:end); % find span for
each parameter
% fill missing spans (out of limits)
a(Parameters >= max(KnotVector),end) = 1; a(Parameters < min(KnotVector),1) =
1;
[~,Spans] = find(a); width = width+rank-2;
End

A.2. Program: CreateInterpolationKnotVector

function KnotVector = CreateInterpolationKnotVector(rank, Parameters)
%CreateInterpolationKnotVector Makes a knot vector for global interpolation
% Assumes end derivatives specified
% Second and second to last Control Points define the end derivates
% according to:
% Psub(2) = Psub(1) + Dsub(1)*(usub(rank+1)-usub(2))/(rank-1)
% Psub(n-1) = Psub(n) + Dsub(n)*(usub(n-1)-usub(n-rank))/(rank-1)
% where n is the number of control points = number of points + 2
% (2 knots and control points added for the constraints imposed by the end
derivatives)
% filter applies a flat ‘median’ filter to smooth any variation across
segment boundary
F = filter(ones(1,rank-1), rank-1, Parameters);
KnotVector = [cumsum([Parameters(1), zeros(1,rank-1)]), F(rank-
1:size(Parameters,2)), cumsum([Parameters(end), zeros(1,rank-1)])];
end

A.3. Program: CreateApproximationKnotVector

function KnotVector = CreateApproximationKnotVector(rank, NumControlPts,
Parameters, density)
% Create Approximation Knot Vector
% uses supplied density array of same size as Parameters array to influence
distribution of knots
% make a knot vector with knot spread controlled by density
% knot value is then set from 'Parameters' by linear interpolation
nParameters = length(Parameters); nSpans = NumControlPts - rank + 1;
if min(density) <= 0 || any(isnan(density)), error('dens function ill
formed'); end
% + min(density) below is an eps: normalise density and then choose j based on
desnity function
density = density+(nSpans*max(density)-sum(density)+density(1))/(nParameters-
1-nSpans)+min(density);
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% j is floating point index, i is integer part, b is fractional part
j=interp1(nSpans*(cumsum(density)-density(1))/(sum(density)-
density(1)),1:nParameters,1:(nSpans-1));
i = floor(j); b = j - i;
% set KnotVector by linearly interpolating Parameters, padded with P(1) and
P(end) in the usual way
KnotVector = [cumsum([Parameters(1), zeros(1,rank-1)]), (1-b).*Parameters(i) +
b.*Parameters(i+1),...

cumsum([Parameters(end), zeros(1,rank-1)])];
end

A.4. Program: ComputeBasisFunctions

function N = ComputeBasisFunctions(rank, KnotVector, parameters, order)
%ComputeBasisFunctions Compute B spline basis function from Knot Vector or
their derivatives
% rank is usually 4 (cubic polynomials) - 4 is the maximum for the Fanuc,
but it's unlimited here
% Knot Vector by convention is [0, 0, 0, 0, ...., 1, 1, 1, 1] for 4th rank
% with .... consisting of the open interval (0,1) although different min/max
are possible
% parm (vector) runs in the closed interval [0,1] or from min to max of the
Knot Vector
% (parameter values outside interval are taken as min/max for the purpose of
basis function calcs)
% order is derivative order - 0 = none, 1 = first, 2 = second etc.

if nargin < 4, order = 0; end
if rank <= order, error('Rank must be larger than order'); end
[Spans, nparms, nspans] = FindSpan(KnotVector, rank, parameters); % find

KV span for each parm
P = cumsum([parameters', zeros(nparms,rank-2)],2); % column duplicated

parms array, fast access
S = cumsum([Spans, ones(nparms,2*(rank-1))],2); % index array into KV for

neighbouring spans
KV = KnotVector(S); N = ones(nparms,1); % span neighbour KV vals and

initial (deg 0) basis funcs
for deg = 1:rank-1 % use relevant span neighbours to limit calcs to non

zero vals and avoid NANs
fac = N./(KV(:,rank+1:rank+deg)-KV(:,rank-deg+1:rank));
if deg < rank-order % recurrence relation for basis functions

NLeft = (P(:,1:deg)-KV(:,rank-deg+1:rank)).*fac;
NRight = (KV(:,rank+1:rank+deg)-P(:,1:deg)).*fac;

else % recurrence relation for derivatives of basis functions
NLeft = deg.*fac; NRight = -deg.*fac;

end
N = [NRight(:,1), NLeft(:,1:end-1) + NRight(:,2:end), NLeft(:,end)];

end
N = sparse(cumsum(ones(nparms,rank),1),S(:,1:rank),N,nparms,nspans); % put

non-0 vals in matrix
end

A.5. Program: FitWithEndConstraints

function [ControlPts, Parms, FittedPts, dist] =...
FitWithEndConstraints(rank, KV, Parms, Weights, Pts, varargin)

% FitControlPtsWithInOutVectors fit NURBS to Pts&KV
% end points and arbitrarily deep end point derivative chain constrained
% Fit control points based on fixed end points and fixed derivatives at end
points
N = ComputeBasisFunctions(rank, KV, Parms(2:end-1), 0);
S = Pts(2:end-1,:); W = diag(Weights(2:end-1),0); % internal points
m = cell(nargin-4,1); n = cell(nargin-4,1); s = cell(nargin-4,1);
for i = 1:nargin-4

[m{i},n{i},s{i}] = find(ComputeBasisFunctions(rank, KV, Parms([1,end]), i-
1));

m{i} = m{i} + 2*(i-1);
end
M = sparse(cell2mat(m),cell2mat(n),cell2mat(s),2*(nargin-4),size(N,2)); % end
points and derivatives
PNSQ = pinv(N'*W*N); PN = PNSQ*N'*W*S; PM = PNSQ*M';
ControlPts = (PN-PM*(pinv(M*PM)*(M*PN-[Pts([1,end],:); varargin{1:end}])));
% Do point projection and slight reparameterisation (preparation for computing
max norm deviation)
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conv = zeros(size(Parms)); eps1=1e-5; eps2=1e-8; % point scaled and fractional
convergence tolerance
for iter = 1:10

FittedPts = ComputeBasisFunctions(rank, KV, Parms, 0)*ControlPts;
errors = FittedPts - Pts;
der = ComputeBasisFunctions(rank, KV, Parms, 1)*ControlPts; derabs =

sqrt(dot(der,der,2));
dists = sqrt(dot(errors,errors,2)); dotprod = dot(der, errors, 2);
Ddotprod = dot((ComputeBasisFunctions(rank, KV, Parms, 2)*ControlPts),

errors, 2) + derabs.^2;
OldParms = Parms; Parms(~conv) = Parms(~conv) -

(dotprod(~conv)./Ddotprod(~conv))';
Parms(Parms < KV(1)) = KV(1); Parms(Parms > KV(end)) = KV(end); % peg to

ends
conv = conv | dists' < eps1 |

(sqrt(dot(dotprod,dotprod,2))./(derabs.*dists))' < eps2 |...
(Parms - OldParms).*derabs' < eps1;

if min(conv) >= 1, break, end % all converged
end
if min(conv) < 1, error('iteration limit reached'), end
dist = max(dists);
FittedPts = ComputeBasisFunctions(rank, KV, Parms, 0)*ControlPts;
end

A.6. Program: SegmentedFitControlPts

function [segnumber,CParameters, CSegFittedPts, CSegKnotVector,
CSegControlPts, CSegIOV, CSegF] =...

SegmentedFitControlPts(rank, Pts, F, tol, maxptsper, VectorIn, VectorOut)
%SegmentedFitControlPts - break curve into segments and NURBS approximate each

% F is feed rate, tol is array of tolerances in dimension order
% segmentation by feed rate not implemented, but is trivial to add
% maxptsper is maximum number of points per segment
% pre-design segmentation
factors = max(tol)./tol; tol = max(tol); % scale factors based on

tolerance ratios ...
% use NURBS invariance under affine transformation to set one tolerance

across all dimensions
% by scaling them all for equal tolerance on each - scale back afterwards

at the end
nPts = size(Pts,1); % number of points
nDims = length(factors); % number of dimensions (e.g. 3 for X, C, Z co-

ordinates
Pts = bsxfun(@times, Pts, factors); % multiply up by the tolerance factors
VectorIn = VectorIn .* factors; VectorOut = VectorOut .* factors;
IParms = [0 cumsum(sqrt(sum(diff(Pts).^2, 2))')]; chordlength =

IParms(end);
IParms = IParms/chordlength; % 0 to 1 parameter based on total length of

curve
minknots = rank; % minimum number of knots
minpts = minknots*2; numpts = nPts;
nSegs = ceil(numpts/maxptsper); % number of segments - based on an even

split
numuse = (numpts-1)/nSegs + 1;
if maxptsper <= minpts || floor(log(floor(numuse) - minknots)/log(2)) < 2

error('too few points per segment');
end
% iterate the segments
SegIOV = [chordlength * VectorIn / sqrt(sum(VectorIn.^2, 2));

zeros(1,nDims)];
CParameters = cell(nSegs,1); CSegKnotVector = cell(nSegs,1);

CSegControlPts = cell(nSegs,1);
CSegIOV = cell(nSegs,1); CSegFittedPts = cell(nSegs,1); CSegF =

zeros(nSegs,1);
fprintf(1, '\n '); % prep for live console progress

indicator
for segnumber = 1:nSegs

fprintf('\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\bsegment %5d of
%5d', segnumber, nSegs);

first = round((numuse-1)*(segnumber-1)+1);
last = round((numuse-1)*segnumber+1); use = last - first + 1; %

indexes into Pts/Parms
ilast = min([ceil(last + use/4), numpts]);
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if ilast < numpts, SegIOV(2,:) = Pts(ilast,:)-Pts(ilast-1,:);
else, SegIOV(2,:) = chordlength * VectorOut / sqrt(sum(VectorOut.^2,

2));
end
% interpolate the segment to get curvature at each point and a fitted

outvector
IKV = CreateInterpolationKnotVector(rank, IParms(first:ilast));
N = ComputeBasisFunctions(rank, IKV, IParms(first:ilast), 0);
% fit control points by solving simultaneous equations
ICP = [N(1,:); [-1, 1, zeros(1,size(N,2)-2)]; N(2:end-1,:);...

[zeros(1,size(N,2)-2), -1, 1]; N(end,:)] \ ...
[Pts(first,:); SegIOV(1,:)*(IKV(rank+1)-IKV(2))/(rank-1);

Pts(first+1:ilast-1,:);...
SegIOV(2,:)*(IKV(end-1)-IKV(end-rank))/(rank-1); Pts(ilast,:)];

CSegF(segnumber) = mean(F(first:ilast));
D = ComputeBasisFunctions(rank, IKV, IParms(first:last), 1)*ICP; %

first derivative
DD = ComputeBasisFunctions(rank, IKV, IParms(first:last), 2)*ICP; %

second derivative
k = sqrt((dot(D,D,2).*dot(DD,DD,2)-dot(D,DD,2).^2)./dot(D,D,2).^3); %

curvature (mag of)
SegIOV = D([1,end],:);
% approximate the segment
loopiters = floor(log(use - minknots)/log(2)); nKnots = minknots +

2^(loopiters-1) - 1;
found = 0; BestP = IParms(first:last);
% use successive approximation to minimise number of knots, subject to

tolerance constraint
for iter = 1:loopiters

% create knot vector with
SKV = CreateApproximationKnotVector(rank, nKnots, BestP, k' +

max(k));
[SCP, TestP, FittedPts, dist] = ...

FitWithEndConstraints(rank, SKV, BestP, k + max(k),
Pts(first:last,:), SegIOV);

if dist <= tol % log best so far
found = 1; BestP = TestP; BestFittedPts = FittedPts; BestSKV =

SKV; BestSCP = SCP;
end
nKnots = nKnots + (1-2*(dist<=tol))*2^(loopiters-iter-1); % do

successive approximation
end
if ~found % this shouldn't often happen; use segment interpolation

instead of approximation
fprintf('interpolating segment number = %d of %d\n

', segnumber, nSegs);
BestSKV = CreateInterpolationKnotVector(rank, BestP);
N = ComputeBasisFunctions(rank, BestSKV, BestP, 0);
BestFittedPts = Pts(first:last,:);
BestSCP = [N(1,:); [-1, 1, zeros(1,size(N,2)-2)]; N(2:end-1,:);

...
[zeros(1,size(N,2)-2), -1, 1]; N(end,:)] \ ...
[Pts(first,:); SegIOV(1,:)*(BestSKV(rank+1)-BestSKV(2))/(rank-

1); ...
Pts(first+1:last-1,:); ...
SegIOV(2,:)*(BestSKV(end-1)-BestSKV(end-rank))/(rank-1);

Pts(last,:)];
end
CParameters(segnumber) = {BestP}; CSegKnotVector(segnumber) =

{BestSKV};
CSegFittedPts(segnumber) = {bsxfun(@rdivide, BestFittedPts, factors)};
CSegControlPts(segnumber) = {bsxfun(@rdivide, BestSCP, factors)};
CSegIOV(segnumber) = {SegIOV ./ [factors; factors]};
SegIOV(1,:) = SegIOV(2,:); % out vector is in vector for next segment

end
fprintf(1,'\n');

end


