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The quantum electrodynamics (QED) of electrons is considered as a theory with a 
passive dilatation invariance which is perturbed by the electromagnetic coupling to ha- 
drons and muons. A stability criterium is introduced and evaluated in lowest order of 
the perturbation. The resulting expression for the electron-muon mass ratio in terms of 
the vacuum polarization can be tested in e ÷ - e -  colliding beam experiments. 

1. Introduction 

Suppose one has a quantum field theory with a passive dilatation invariance. By 
this we mean that the theory allows for a continuous set of solutions (given as irre- 
ducible representations of the field operators in a Hilbert space) which are related 
to each other by dilatations, defined by the well-known algebraic transformations of 
the field operators. For that to occur it is necessary and sufficient that the basic 
theory does not contain any constant of non-vanishing mass dimension. 

In order to avoid a continuous mass spectrum the passive dilatation symmetry 
is assumed to be spontaneously broken [1,2]. This is equivalent to the statement 
that one cannot obtain the other solutions of the theory by a unitary transforma- 
tion of one of the solutions in its representation space (in contradistinction to the 
case of a "good" symmetry). Still another way of expressing the same is: the alge- 
braic dilatation transformation of the field operators is not representable by a uni- 
tary transformation in the space of a solution [3]. 

For a more detailed discussion of the present, somewhat unconventional, point 
of  view on spontaneously broken symmetries in which also the relation to the usual 
definitions and Goldstone's theorem is shown, see ref. [~]. 

To calculate physical quantities, one has to choose one member of the set of so- 
lutions (representations) and for a theory to be a useful one, each of the solutions 
should describe the whole of the physics of the system. Also each of these different 
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descriptions should give the same physical predictions as any of the other ones. Con- 
sequently the representations may differ from each other only with respect to quan- 
tities which are not actually measurable. In the case of dilatation invariance these 
are all quantities which have a non-vanishing mass dimension; only dimensionless 
quantities as mass ratios have a physical meaning. Such quantities are indeed inde- 
pendent of the arbitrary mass unit with characterizes any special solution belonging 
to the mentioned infinite set of the, only in a mathematical sense, non-equivalent 
representations. 

Suppose in a system, described by a theory of the above type, a perturbation is 
introduced containing a small component which breaks the passive dilatation invari- 
ance, because of the occurrence of a numerical quantity of non-vanishing mass di- 
mension. Now the various descriptions of the unperturbed system, viewed as zero 
order approximations to the solution of the perturbed system, are not anymore phys- 
ically equivalent and will lead to physically quite different first and higher order 
corrections. In this sense the perturbation, how weak it may be, has introduced an 
absolute mass scale into the original system [5,6]. 

At this point there arise two different logical possibilities: 
(a) The introduction of the perturbation renders the theory incomplete. One 

must explicitly give a number which characterizes the ratio between the mass scales 
of the original system and the one of the perturbation. 

(b) The introduction of the perturbation does not change the property of the 
theory of being a complete one. 

In the latter case the small perturbation "chooses" among the (now) physically 
quite different representations a particular one which for some reason is preferred. 
The basic question in this case is: by which criterium is this choice governed? 

In this paper we shall apply the described idea to the QED of electrons perturbed 
by the coupling with muons and hadrons through the vacuum polarization. As will 
become clear, from the present point of view the mass renormalization praxis of 
introducing the experimental electron mass as a parameter in the theory amounts 
to the adoption of possibility (a); it effectively means that one resigns oneself to 
not understanding the experimental value of the electron mass. We shall investigate 
possibility (b). 

In sects. 2 -5  the model, the adopted stability criterium and the results of its ap- 
plication are described. The assumptions made in the present treatment, together 
with some observations, are collected in the last section. 

Throughout the paper we ignore the possibility that weak, gravitational or un- 
known interactions could be important for the problem; if this assumption should 
be incorrect the present model would need at least a modification. 

2. Model and criterium 

Consider the QED of electrons and photons in the absence of other types of par- 
ticles. It is clear that in this case the absolute value of the electron mass has no phys- 
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ical importance and serves only to set the mass scale which is used. This is what one 
would expect in a theory with a spontaneously broken dilatation symmetry and in 
fact, both the usual formulation of  the QED of  electrons with infinite bare mass as 
well as the formulation with zero bare mass [7,8], have this property. We therefore 
shall consider the theory of  the electron-photon system as having a spontaneously 
broken dilatation symmetry and possessing a continuous set of  mathematically non- 
equivalent solutions of  which each member can be characterized by its value m e of  
the electron mass. Because the dilatation and 3'5 currents are not conserved, difficul- 
ties with Goldstone bosons do not arise [4]. 

We now break the passive symmetry of  the electron-photon system by introducing 
the, in reality present, electromagnetic coupling with the muon and all the other re- 
maining charged particles like hadrons, quarks, heavy leptons, etc. They will be de- 
noted by the subscripts 12 and r respectively. The lowest order perturbation of  the 
electron selfenergy is graphically given by 

- i A  ~"~. = (- i  A ~-S.~ ) + ( - i  A )-:. r ) 

" i " + J" ", 
e (1) 

Whereas for the uncoupled electron theory the values of  all dimensionless quan- 
tities are independent of  the representations, this is evidently not any more true af- 
ter the coupling; now dependences on various mass ratios like mu/me, which vary 
with me, occur. 

Assuming the dilatationally non-invariant part o f  the perturbation to be indeed 
small one has just the situation described in the introduction and the alternatives 
(a) and (b) mentioned there do arise. The usual mass renormalization procedure 
chooses possibility (a) by simply fixing the electron mass to be equal to the experi- 
mental mass. In the following, possibility (b) will be discussed. 

In that case the question o f  the stability criterium, mentioned in sect. 1, comes 
up. The fact that in perturbation theory one has the freedom to arbitrarily choose 
the mass o f  the electron in relation to the ones of  the perturbing fields without runn- 
ing into a contradiction, means that the stability criterium has to be explicitly im- 
posed, at least in perturbation theory. Whether such a criterium can be derived from 
the complete theory, as known at present, or demands a generalization o f  the theory, 
is another question which will not be discussed here. In fact the general problem of  
the stability of  spontaneously broken symmetry solutions in relativistic quantum 
field theory has not yet been resolved. 

The present situation is reminiscent o f  the well-known one in quantum mechanics 
in which the Hamiltonian possesses a certain "good" symmetry which is broken by 
a small perturbation [5]. There one has the task of  determining in a set o f  zero or- 
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der eigenstates, connected by the symmetry transformations, the ones which are 
nearest to the new eigenstates, in particular to the one of  lowest energy. This has a 
strong similarity with the present problem of  selecting from the manifold of  non- 
equivalent representations of  the theory of  electrons and uncoupled muons and ha- 
drons, the stable one which is nearest to a representation of  the coupled theory.  The 
analogy suggests that the stability criterium should be a minimalization procedure 
o f  the type o f  the Ritz variation principle [9]. As in lowest order the inequivalent 
representations do not  mix, we have the simplification that we need to minimize 
only with respect to one parameter, the zero order electron mass. 

As the vacuum energy by relativistic invariance always vanishes, a generalized 
form of  the variation principle will be considered, according to which one finds a 
stationary state with certain fixed values of  some (also by  the perturbation) con- 
served quantum numbers, by minimizing the energy, allowing for competi t ion only 
states with the fixed values of  the quantum numbers. Taking the value one for the 
electron number and zero for the momentum, the analogous procedure for our case 
would be to select as the stable representation the one which minimizes the elec- 
tron self-mass, and this is the stability criterium which we adopt.  The "physical"  
idea is that, if one switches on the perturbation in an electron world with the wrong 
electron mass, the electron will decay by 3' emission until it has its lowest possible 
mass. 

There still remains the question o f  the unit in which the electron mass, which is 
to be minimized, should be expressed; but  fortunately the answer to this question 
is essentially unique. The stability criterium for which we look should be invariant 
under the addit ion to the perturbation o f  a small symmetric part (in which no other 
mass than the one o f  the electron occurs), because such a part could have been put 
in the zero order approximation without  appreciably changing it. In particular 
should the criterium be identically fulfilled if the perturbat ion is symmetric or van- 
ishes. Therefore the lowest order electron selfenergy, calculated for a certain zero- 
order representation, should be expressed in a quanti ty of  mass dimension in that 
representation. The choice of  this unit is indifferent. For simplicity taking the elec- 
tron mass m e (characterizing the representation) itself as unit and, multiplying by  a 
factor m 2 for convenience, we obtain the criterium 

2 d AY ' (m2 'm2)  
m e - 0 ,  (2) 

dm 2 me 

with m e denoting the zero-order electron mass and m i the masses occurring in the 
perturbation.  Any symmetric part in the perturbat ion results in a contr ibution to 
A ~  which for dimensional reasons is proport ional  to m e and consequently does not 
affect the criterium, as required. 

The criterium constitutes an equation for the electron mass, assuming the muon 
mass and the hadron vacuum polarization to be given. Of course any stability crite- 
rium should be gauge independent.  This can be explicitly verified for criterium (2), 
as is not surprising because of  the gauge invariance of  a self-mass. 
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3. The muon contribution 

We start with the muonic perturbation which is given by A~ u of  expression (1). 
One has in lowest order of  a 

AN#= -ic~ f d4k V~24 - 47r3 me ")'v ADu(k2) , (,p" = me) , (3) 

with 

a b .  = fdK20u(K 2) 1 

and p~t(r 2) being the spectral density of  the photon propagator caused by the muon 
vacuum polarization, given by 

+ 2 m 2 ]  4m 2 
p u ( K 2 ) = ~ - ~ O ( r 2 - 4 m 2 )  7~ (1 - 7 ]  K2 (4) 

First the approximate form 

, t~ 0 (t~ 2 -- 4m2) 1 (5) P .  (K2) = ~ U ~:2 

will be used, because this simplifies the calculation and the result for the full expres- 
sion (4) can be given in terms of  the one following from the approximation (5). For 
the corresponding contribution to the photon propagator one finds 

1 a 1 - k 2  
a .(g2) = fdK2 p~(K 2) k 2 _ K 2 - 3Tr k 2 In + (2m")2 (6) (2mu) 2 

This contribution has no pole at k 2 = 0 because that part of  the muon vacuum polar- 
ization which leads to a change in the effective coupling constant at small k 2 values 
has been taken out and included in the (infinite) charge renormalization. This is for 
our considerations important,  as the charge renormalization may be dependent on 
m z. The expression corresponding to (6) which directly follows from the calculation 
of  the vacuum polarization graph, with the quadratic subtraction from gauge invari- 
ance included but before the charge renormalization has been applied, is of  the form 

AD~(k 2) = a 1 - k 2  + (2mu) 2 
~-~ ~ in A 2 (7) 

in which A is a large mass characterizing a general convergence factor or cut-off of  
the theory. The charge renormalization connecting the expressions (7) and (6) 

t amounts to transferring the k 2 pole in ADu given by 
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a 1 (2mu)2 
In - -  (8) 

37r k 2 A 2 

to the free photon propagator,  in effect decreasing its coupling constant. In a theory 
in which only the muon would occur, A would be proport ional  to the muon mass. 
In this case expression (8) would be independent of  m u and the charge renormali- 
zation would not  matter  for the criterium. However if also a much lighter particle is 
contained in the theory in the same way as the muon, there is no reason anymore to 
take the cutoff  proport ional  to the muon mass. In fact we shall assume that the non- 
dilatationally invariant part of  the ultra-high momentum dependence of  the photon 
propagator is to a good approximation governed by  the mass of  the lightest point- 
like charged particle, the electron. This assumption guarantees that the other parti- 
cles really only cause a small perturbation of  the passive dilatation invariance of  a 
pure electron theory. It allows one to take all cutoffs proport ional  to the electron 
mass without introducing an unwanted dependence o f  renormalized coupling con- 
stant on any other mass. 

With respect to the validity of  the above assumption it should be remarked that 
perturbation theory has nothing to say on the involved finite part of  the infinite sub- 
traction term. One may argue that for Green functions symmetrically dependent  on 
fields o f  particles which are approximately related as dilatational transforms (like 
the electron and muon), any large momentum will relative to the lightest mass be 
more asymptotic that relative to the heaviest one. Therefore both  vertex-cut-off or 
increased propagator singularities will at very large momenta have the tendency to 
be dominated by the lightest mass, in particular if  it is very small, as the electron 
mass is. But other possibilities are conceivable and it is an open question whether 
one can neglect the dependence on the heavier masses. We adopt this assumption 
because it leads to a simple and unambiguous result; even if it would turn out to be 
incorrect a modification of  the present treatment might be possible. 

The muon contribution to the criterium (2) may now be calculated by  the inser- 
t ion o f  expression (7), instead of  AD, in eq. (3). We define the logarithmically diver- 
gent electron self-energy integral in eq. (3) by  a suitable cu to f fNm e, with suffi- 
ciently large N. Introducing new variablesby taking m e as the mass unit one obtains 

_ -k2  + 4m21m 2 
N v 1 l l n  u e , , AZu -ia2 f d4k ")'v (~ = 1) (9) 

m e 127r4 21 lX-4~-  1 k 2 A21m 2 

and 

2 d ~AZul_- io~2  i'd4 k ,),v 
me ~'7m2 t ~ i -  1-~7~4.J 

e 

1 4mJ/m2 
/ r - l / (  - 1 % ,  k 2 ( k  2 _ 4m2ulm2 ) ' 

where we have used the assumption that  the cut-off is proport ional  to m e . 

( ~ =  1) ,  

(10) 
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Expression (10) is convergent and a standard Feynman parameter calculations 
gives 

- -  = - -  F 4m~  ( 1 1 )  m 2 d (AEu I O~ 2 ( 7 )  
u dm 2 \me ] 6~r 2 

e e 

with 

and 

F ( x ) : O ( 4 - x )  [~x-  }~x21nx- 2(~x+ l ) ~ a r c t g 2 X / x - ¼ x 2  

+0(x  4) [ -~x-¼x 21nx- (½x+l )~ /~-x  2 - x l n ( - ~ x - l - ~ ¼ x  2 - x ) ] ,  

(12) 

lim F ( x ) = - 3 1 n x - ~  . 
X --)- o o  

The use of the full expression (4) gives instead of eq. (7) 

A 2 

AD;(k2) = f dK 2 PU(K2) (k2 1 g2 1 - k~. l . ( 1 3 )  

Inserting this perturbation in criterinm (2), taking again m e as mass unit and apply- 
ing the m 2 differentiation under the integral, one obtains the same way as above 

2 d [AEu~ ct 2 [4m2\ 
me dm--~ t--~-f ) :  ~ 2 G ~---~e ) ' (14) 

with 

1 1 
3 dyy 3 X/1 - 1/y F(xy),  G (x) =~- 1 

lim G(x)=--}  l n x -  13 + 3 In 2.  (15) 

4. The  contr ibut ion  o f  the  o ther  particles 

To first order in c~, the spectral density of the photon propagator can be written 

p(~2) : pe(¢2) + pu(K2) + pr(K2), (16) 
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where Pr contains the contributions of  the hadrons and of  all other charged particles 
except the electron and muon. If  some of  these are pointlike fermions one will have 

R(~) 
Or(K2) ~ 3-~ K2 (17) 

with R (oo) a positive constant. 
Suppose M is a mass which is sufficiently large (but otherwise arbitrary) so that 

pr(K 2) for K 2 > M  2 has already reached its asymptotic behaviour. We divide pr(K 2) 
in two parts: 

with 

pr(K 2) = pl(/~2) + p2(K2) , 

Pl(K2) = Pr(K2) 0(M 2 -- K2), 

P2(K 2) = pr(K 2) 0 (K 2 -- M "2) ~- ot R(oo) 0 (K 2 - M2) .  (18) 
3~r K 2 

The contribution of  the second part can be evaluated as the expression (5) in the 
muon case, using the same assumption on the dominance of  the lightest mass in the 
deviations from dilatation invariance at ultra-high momenta.  

The result is analogous to eq. (11): 

d AZ2 _;:2R(oo) F[M 2 ] 
m2 dm 2 me v,, ~m2 ] " (19) 

For large values ofM2/m 2 one has from eq. (12): 

m2 _ _ d  (AZ2 ] 0t 2 R (oo)(_~ M2 3] 
e a m  2 \-~-e ] ~ 2  m 

e c 

The entire contributions of  all non-pointlike charged particles and the low energy 
parts o f  the pointlike ones to the spectral density of  the photon propagator are con- 
tained in pl(K2). The corresponding self-energy, after taking me as the mass unit for 
the k integral, is 

M 2 N 1 
AY'I---ia f dK2pr(K2) f d4kTV _ ~ _ 1 7 V k  2 r2/m 2 ( p ' = l )  
me 4rr 3 _ ' , 

M 2 N 
[ A ~ I ~  --i~ 1 --K 2 m 2 d Jf dK2pr(K2) f d4k,),u 

e ~dm 2 14\--~e ] =--4rr3 . / r - J ( -  1 ")'d 2 
e me 

(k 2 - t~2/m2) 2 ' 
(p'= 1). (22) 
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The k integral in eq. (22) is convergent and one obtains: 

m 2 ~ (A~I  ~ a M2 
e dm 2 \m'----~] =2-~ / Pr(K2)H(K2/m2) dK2' 

e 

with 

(23) 

H (x) = 0 (4 - x)x .  1 - Ix  In x + 2 ~  arctg 

I1 x2-2x--21n(lx--l--N/~x2--x)] , 
+ O ( x - - 4 ) x  --½xlnx 4X/h~x 2 - x  

xlLrn ~ 3 H(x) = + ~. (24) 

Taking into account that the electron is very much lighter than all other charged 
particles one has 

M 2 
" \[AY'I.I e~ 3 2) . (25) m2 dm---~ed ~'-~'-e ! ~-ff 2 f pr(K dK 2 

The total contribution of the charged particles besides the muon, for the actual 
case that all their masses are very large compared to the electron mass, is from eqs. 
(20) and (25) 

m2 dm---~ \ - - ~ e / - ~  2L-'~- f Or(~2) dK2-R(~)  ln~e2+½ " (26) 

The r.ti.s, of this equation is independent of M, due to the asymptotic behaviour (17) 
of pr(K 2). This independence is of course necessary for the consistency of our ap- 
proach, becuase of the arbitrariness in the choice of M 2. 

5. Result and comparison with experiments 

Taking into account that the electron mass is very small compared to the masses 
of all other charged particles, we can to an excellent approximation use the asymp- 
totic expressions (15) and (26) to obtain 

2 d (A e; ) 0t2 [_ [4m2~ 
= _ _  ]n ~--~e2 J me dine 2 4rr 2 

M 2 

---g + 21n 2 + --if- pr(K 2) dK 2 -- R(~) In + = 0.  (27) 
m e 
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The solution of this equation for the electron-muon mass ratio is 

M 2 

m e ((-3zr/a) f Pr(K2) dK2+R(°°)(ln(M2/m2)+~)+l-~} 
m--~ = exp  2 [1 + R(oo)] . (28)  

In the  f r a m e w o r k  o f  our  a s sumpt ions  there  can be  no  o t h e r  mass  o f  a charged l e p t o n  

w h i c h  is very l ight  c o m p a r e d  to all o t h e r  charged part icles.  

F r o m  eq. (27)  follows: 

d 2 A(~_e)=m2 d 2 d A ~  ~ ot 2 [l  +R(oo) ]  > 0  (29)  
( d l n m 2 ) 2  e d m  2 me dm 2 me 4rr2 " 

Consequently the electron mass has indeed a minimum as required by the variation 
principle. 

Taking m~ as the mass unit (m~ = 1) and y = In (E/m~), one may write eq. (28) 
also more compactly as 

m e = exp ~ + 13 (28') 
1 + R ( o o )  ~ ' 

with R = Pr/P~," 

Ca 

(0.23) 

2O 

/ ~ ~  i (03I) ~ ~ 

2.5 

/ 
/ 

/ 

JYR(y')dy' ./ / /  

2 
' 3b  

.............. : 6~YR(y,)dy, / / / / / 

3 4 E(GeV)5 \.. 
i %. I 3'.5 I y=lnE 4..0 

m~ 

Fig. 1. The full curve is a sketch of the function R(y) extracted from published e + - e -  annihil- 
ation cross sections [ 12-16 ]; experimental uncertainties are of the order of 20%. For clarity, the 
narrow ~ and ~ peaks are cut and their areas indicated. The broken curve represents 
fYR(y') dy'. The dotted curves show the type of behaviour demanded by eq. (30) i fR(~)  is 
zero. 
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From the experimental value m e = 0.00484 follows: 

[1 + R ( ~ ) ] - 1  f JR(v) - R(oo)] dy ~ 6.4.  (30) 
5 

The function R(y)  is measurable in e + - e -  annihilation. Results [12-16]  of  
present experiments (see fig. 1) do not yet extend to sufficiently high energies to 
give a clear indication of  the value of  R (~), but colliding beam measurements up to 
9 GeV centre of  mass energy (y = 4.44) are being planned [ 16]. The available ex- 
perimental results which are subject to considerable systematical and statistical un- 
certainties are still compatible with R (~) = 0, i.e., with the electron and muon be- 
ing the only pointlike charged particles. In this case the validity of  eq. (30) would 
require a sharp drop to zero o f R  (y) (see fig. 1) in the not yet measured domain 
y > 3.86. In any case for this equation to be true, R (y)  should first reverse it pres- 
ent rising behaviour before obtaining an asymptotic value. 

6. Concluding remarks 

For clarity we give a list of  the main assumptions which have been made in the 
course of  our treatment and add a few remarks: 

(i) Only electromagnetic interactions have been taken into account. It is not 
clear that the introduction o f  weak [ 17], gravitational or other interactions is neces- 
sary for the present problem and these interactions would cause a great arbitrariness 
as they are not sufficiently known. 

(ii) We assumed that the value o f  the electron mass in principle does not need to 
be given as an extra ingredient to the theory, but is determined by the existence of  
a stable solution. We took as stability criterium condition (2), which is based on an 
analogy and has not yet been derived from a general principle. It gives the correct 
result for a dilatational invariant perturbation and is gauge invariant. 

The general question o f  the stability of  spontaneously broken symmetry solutions 
in relativistic quantum field theory is open. As it seems not unlikely that the ob- 
served approximate symmetries of  elementary particles could be described as spon- 
taneously broken passive symmetries [2,11 ], the problem of  the stability of  a solu- 
tion of  such theories might be essential for a quantitative understanding of  the ob- 
served symmetry breakings [2, I 1,1 8] which are usually incorporated as foreign 
elements into the theory. 

(iii) We assumed that at ultra high momenta the photon propagator to a good ap- 
proximation depends only on the momentum squared and on the mass o f  the lightest 
charged pointlike particle, if this is very light compared to all other charged particles. 
This last condition is actually fulfilled for the electron but not for the muon. The 
analogous discussion for the muon, in which the electron and muon are intercharged 
as compared to the present treatment, is therefore not valid, even if the basic theory 
is symmetric in respect to the electron and muon. 



348 D. Dillenburg, Th.A.J. Maris/On the electron.muon mass ratio 

If  future deve lopments  would  show that  one or  more  o f  the above assumptions 

would  have to be modif ied  one might  hope that  a t r ea tment  along the lines o f  the 

present paper wou ld  still be possible. 
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