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Abstrac t  

The Glauber approach to the gluon density in a nucleus, suggested by A. Mueller, is developed 
and studied in detail. Using the GRV parameterization for the gluon density in a nucleon, the value 
as well as energy and Q2 dependence of the gluon density in a nucleus is calculated. It is shown 
that the shadowing corrections are under theoretical control and are essential in the region of small 
x. They crucially change the value of the gluon density as well as the value of the anomalous 
dimension of the nuclear structure function, unlike that of the nucleon. The systematic theoretical 
way to treat the corrections to the Glauber approach is developed and a new evolution equation 
is derived and solved. It is shown that the solution of the new evolution equation can provide a 
self-consistent matching of "soft" high energy phenomenology with "hard" QCD physics. 
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1. I n t r o d u c t i o n  

In this paper we discuss the QCD evolution for the gluon density in a nucleus. The 

gluon density is the most important physical observable that governs the physics at high 
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Fig. 1. The structure of the patton cascade in the Glauber formula. A denotes the nucleus, N the nucleon, 
G* (Q2) the virtual gluon and o-/v(r]) is the nucleon cross section. 

energy (low Bjorken x) in deep inelastic processes [1]. Dealing with a nucleus we 
have to take into account the shadowing corrections (SC) due to rescattering of the 
gluon inside the nucleus, which is the main point of interest in this paper. We show that 
SC can be treated theoretically in the framework of perturbative QCD (pQCD) and can 
be calculated using the information on the behaviour of the gluon structure function for 
the nucleon. 

Our calculations were performed in the double log approximation (DLA) of pQCD, 
or, in other words, in the GLAP evolution equations [2] for the region of low x (high 
energy). In the DLA we consider the kinematic region where as ln(1 /x)  l n ( Q 2 / Q ~ )  ,-~ 1 

while cesln(1/x)  << 1 and a s l n ( Q 2 / Q ~ )  << 1 as well as as << 1, where Q2 is the 
virtuality of the photon and ~xs is the QCD coupling constant. In terms of the anomalous 
dimension (see the next section for details) it means that we restrict ourselves to 
considering only the leading term in the anomalous dimension, namely as << y << 1. 

The advantages of the DLA are (see Fig. 1 for notations) the following: 

(1) We can neglect the change in the distance between quark (gluon) and antiquark 
(gluon) rt during the passage of the q~ (GG) pair through the nucleus. This 
simplifies the derivation of all formulae for the SC and leads to an eikonal picture 
of classical propagation of the qc7 (GG) pair with high energy which receives 
independent kicks due to rescattering in a nucleus. 

(2) The cross section of the qO (GG) pair with transverse separation rt can be ex- 
pressed through the gluon deep inelastic structure function for a nucleon. 

We will discuss both points in the next section in more detail. However, it is worth- 
while mentioning that the DLA allows us to obtain a simple expression for the SC in 
DIS with a nucleus. 

The main goal of the paper is (i) to present a study of the SC in the Glauber approach 
using available information on the gluon distribution in the nucleon based mainly on new 
experimental data from HERA [ 3 ] and on the solution of the GLAP evolution equations 
[2]; and (ii) to find the generalization of the Glauber approach which will give the 
theoretical basis for the self-consistent description of the gluon structure function for 
nuclei. 

Considering the deep inelastic scattering (DIS),  we have to answer two principal 
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questions: (i) why and how the cross section of DIS with a nucleus, which is equal to 
o-(y*A) = Ao-(y*p) at x ~ 1, changes its A-dependence and becomes o-(y*A) ~ A 2/3 

at x ---+ 0; and (ii) why o-('y*A), which is proportional to A 2/3 at small values of x 
and Q2, approaches to o-(y*A) = Ao-(y*p)  at large values of Q2 even in the region 
of small x. The last statement is obvious from the intuitive physical picture because 
at large values of  Q2 o-(y*p) is small and the virtual photon probes the number of 
nucleons in a nucleus. 

The first question has been answered in the framework of the parton model (see 
Refs. [4-6] ) and the answer is based on the space-time picture of DIS in the rest frame 
of the nucleus. Indeed, the incident electron penetrates the nucleus and radiates the 
virtual photon whose lifetime ~'z,* ~ 1 [4]. We can recover three different kinematic 

m y c  

regions: 
(1)  ~-~. = -~ < RNN, where RNN is the characteristic distances between the nucleons 

of the nucleus. This virtual photon can be absorbed only by one nucleon and the 
total cross section is o-(y*A) = Ao-(y*p) .  

(2) RA > ~'~,. = ,~x > RNN, where RA is the nucleus radius. In this kinematic region 
the virtual photon can interact with the group of nucleons. However, o-(y*A) is 
still proportional to A since the number of nucleons in a group is much less than 
A. 

(3)  ~'7" = 1 > RA. Here, before reaching the front surface of the nucleus, the virtual 
photon "decomposes" into a parton cascade which then interacts with the nucleus. 
It can be shown [ 5 ] that the absorption cross section of the virtual photon will 
now be proportional to the surface area of the nucleus o-(y*A) oz A 2/3, because 
the wee partons of the parton cascade are absorbed at the surface and do not 
penetrate into the centre of  the nucleus. 

However, the above simple picture cannot help us to answer the second question. 
Indeed, we can use it to explain the A-dependence of the initial partonic distributions 
but in the GLAP evolution equations the A-dependence is factorized out and do not affect 
the Q2 evolution. Therefore, we have to change the evolution equations to incorporate 
the physical phenomenon which we have formulated as the second question. To recover 
the physical origin of the new evolution equations in the nucleus let us consider the 
oversimplified structure of  the parton cascade: the virtual photon decays only in a 
quark-antiquark pair. In this case the cross section can be written in the form 

1 

o-(y*,A) c< I dz I d2rt ~(z '? ' t ) ° 'A ( za° ' r2 ) ' l I t * ( z ' r t )  ' (1) 
0 

where O'A is the cross section for qq interaction with the nucleus, z is the fraction of 
energy of the photon (Q0) carried by quark and r t is the transverse separation between 
quark and antiquark. ~ is the wave function of the virtual photon, which is known 
and I 12 is equal to a Z K 2 ( a r t ) [ z 2 +  (1 - z ) 2 ] ,  where K1 is the McDonald function 
and a 2 = Q2z ( 1 - z ). The main contribution in Eq. (1) comes from the region where 
art <~ 1. Expanding K1 and integrating over z (1 - z) < ~ < ¼ we derive 
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to 2 
1 f drt , Qo 2, 

[ mAO'A(--~-T~2,rt) . (2) o'(y*,  A)  c~ - ~  J rt ~d rt 
4..5_ 
9. 2 

For very small rt the cross section in QCD is small and proportional to r 2. Such a small 
cross section leads to O'A O( A~-r In Q2, since the probe with small cross section interacts 

with all nucleons in the nucleus. One can see that this is the first term of the GLAP 

evolution equations. With a more complicated parton cascade we are able to reconstruct 
the GLAP evolution equations in full. However, even at small r 2, O'A = AO'N only if the 

rescattering of cTq-pair in a nucleus is small. The parameter which controls the value of 
the rescatterings is the number of collisions which is equal v = 2o'NpRA, where p is the 
nucleon density in the nucleus. If  p << 1 we can neglect the rescatterings, but if v >> 1, 

O'A = 2¢rR2A and does not depend on nucleon cross section. Therefore, we can trust the 
lnQ 2 contribution in Eq. (2) only for v = r2tpRA < 1 or for Q2 > pRA. Really, this 

condition depends on x too, since the nucleon cross section is a function of x, and we 

will show that O" N Of. ret x a (  x, +) .  

Therefore, the lesson to be learned from this simple exercise is that we can trust the 
GLAP evolution for the nucleus structure function only for Q2 > Q2(x) .  This means 

that we have to solve the GLAP evolution equation with the initial condition on the line 
Q2 = Q2(x  ) or we have to change the evolution equations if we want to solve them in 
the usual way, namely, starting from the structure functions at Q2 = Q02. 

The previous attempts to attack this problem were related to the GLR equation 

[1,7], in which the interaction (recombination) between two partons from different 

parton cascades was taken into account (see Refs. [7-12] ). It was shown that the 
GLR equation is able to describe the main features of the experimental data on the 

deep inelastic scattering off nucleus [ 13,14]. The applications of the same ideas to the 

description of other processes such as J / ~  production [ 15] and the Drell-Yan process 
[ 16] also met with reasonable success [ 17,18]. 

However, the GLR equation was derived in the limited kinematic region where more 

complicated recombination processes have been proven to be negligible. Roughly speak- 
ing, we can trust the GLR equation only for small x and large values of Q2. 

In this paper we reanalyse the situation with the shadowing corrections in QCD for 

the nucleus gluon structure function starting with the Glauber approach. The Glauber 
formula for the gluon structure function in the nucleus has been proven by A. Mueller 
in Ref. [ 19] but this remained unnoticed by the majority of experts because his paper 
was devoted to a quite different problem. However, several calculations based on the 
Mueller-Glauber approach have been done, mostly for the diffractive production of the 

vector mesons in deep inelastic scattering [20-22]. 
We show here that the Glauber-Mueller approach gives only a small correction to the 

gluon structure function of nucleon in the HERA kinematic region, but this approach 
generates significant shadowing corrections in the nucleus case. Then, it is shown that 
the further iterations of the Glauber-Mueller formula does not seem to be an efficient 
way for the calculation of the nuclear gluon densities and their QCD evolution. We 
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Fig. 2. Kinematics of diffractive production of a gluon pair. Q* is the virtual colorless probe of the gluon 
density. 

suggest a new evolution equation which has the correct GRL and Glauber-Mueller 

limits. We solve this new evolution equation in a semiclassical approximation with a 

specific initial (boundary) condition, which we discuss in the paper. We compare our 

approach with the GLR approach. 
The paper is organized as follows. In Section 2 we rederive the Mueller formula and 

discuss the main properties of  the Glauber approach in QCD. 
In Section 3 we present the result of  our calculations based on the Glauber approach 

and point out which information on the nuclear gluon distribution is needed in order 

to provide a reliable calculation. We adopt a gluon distribution in a nucleon, solution 

of  the GLAP equation, as input in order to study the mechanism and amount of  SC in 
the nuclear gluon distribution. In particular, we use the GRV parameterization, which 

describes quite well the current experimental data. However, our main priority in this 

paper is rather to study of  the main properties of  the SC than to provide reliable 
predictions for an experiment. 

In Section 4 we consider the correction to the Glauber formula and discuss the 
generalization of  the Glauber approach for deep inelastic scattering off a nucleus. Here, 
we discuss the GLR evolution equation which was the basis of  all previous attempts 
to go beyond the Glauber approach and suggest and solve a more general evolution 
equation which is correct in the whole kinematic region without the limitations of  the 

GLR equation. 
A summary and final discussion are presented in Section 5. 

2. The Glauber approach in QCD 

In this paper we will use the following notation (see Fig. 1 and Fig. 2):  
• Q2 denotes the virtuality of  the gluon in deep inelastic scattering (DIS) ;  
• m is the mass of  the proton; 
• Bjorken x = XBj = Q 2 / s  where v/s = W is the c.m. energy of  the incoming gluon. 
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• kt denotes the transverse momentum of the quark or gluon; 
• z is the fraction of energy of the fast virtual photon carried by the quark or gluon. 

• x '  = ~ 2 , / z ( 1  - z ) s .  

• rt is the transverse separation between quark (gluon) and antiquark (gluon); 

• bt is the impact parameter of the reaction which is the variable conjugated to the 
momentum transfer (qt) ; 

• lit  denotes the transverse momentum of the gluon attached to the quark-antiquark 
(gluon-gluon) pair. 

We will use the GLAP evolution equations [2] for the parton densities in momentum 
space. For any function f ( x ) ,  we define the moment f ( w )  as 

1 
/ *  

f (oa)  = / d x x ~ ' f ( x ) .  (3) 
, J  

0 

Note that the moment variable w is chosen such that the ~o = 0 moment measures 

the number of partons, and a~ = 1 measures their momentum. An alternative moment 

variable N = co-  1 is often found in the literature. The x-distribution can be reconstructed 

by considering the inverse Mellin transform. For example, for the gluon distribution it 

reads 

x G ( x , Q  2) = ~ doJx-° '  g ( o j , e 2 ) ,  (4) 

C 

where g(og, Q2) is the moment of the gluon distribution. The contour of integration C 

is taken to the right of all singularities. 

The GLAP evolution equations have solutions of the form 

g(~o, Q2) = g(o))e~,(w)lna 2 ' (5) 

where y (w)  denotes the anomalous dimension, which in the leading In(1/XB) approx- 
imation (LLA) of pQCD is a function of o~s/~o and can be presented as the following 

series [23] : 

y ( w )  = asNc + (6) 
g ~ ~ + °  \<o5) ' 

where ~'(3) is the Riemman zeta function, and Nc is the number of colors. In DLA, 
only the first term in the above series is taken into account. 

The amplitude is normalized such that 

do- 12 
d---i = 7 r l f  ( s '  t )  , (7) 

O' to  t ---- 477" Im f ( s, 0) , ( 8 ) 

and the scattering amplitude in bt space is defined as 

1 f 2). a(s ,  bt) = ~ d2qt e - iq"b ' f ( s ,  t = --qt (9) 
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In this representation 

O'tot = 2 f d2bt Im a(s, bt ) ,  ( 1 0 )  

J d2btla(s, bt)12. ( 11 O-el ) 

The normalization of the nucleus wave function ~[t a ( r l  . . . . .  ri, rA ) is 

A 

f 1 [Pa  ( rl  . . . . .  ri,  ra ) 1t~ ( rl  . . . . .  ri, rA ) I I  ri = ( ) d 3 A,  1 2 
i=1 

where A is the number of  nucleons in the nucleus, and the nucleon form factor in the 
nucleus is defined as 

FA (qz, bt) = f dzl e iqz zl ~_t a (Zl, bt, r2 . . . . .  r i ,  ra ) ~ (Zl, bt, r2 . . . . .  r i ,  ra ) 

A 

X I Id3r i  . (13) 
/--2 

Throughout this paper we use the Gaussian parameterization for FA (qz, bt), namely 

A ( b2 R2a q 2) (14) 
Fa(qz,bt) = ~ e x p  R~ 4 z , 

where the mean square radius of the nucleus R2A is equal to 

R2A = 2R~vs, (15) 
5 

and Rws is the size of the nucleus in the Woods-Saxon parameterization [24], which 
we choose as Rws = ro A1/3, with r0 = 1.3 fro. 

In the non-relativistic theory for the nucleus we can neglect the change of energy for 
the recoil nucleon. Its energy is Ep, = m + q2/2m in the rest frame of the nucleus and 
q2/2m << qz. 

2.1. Passage of the 7tq (GG) pair through the target 

The idea of how to write the Glauber formula in QCD was originally formulated 
in Ref. [25] and it has been carefully developed in Ref. [19]. It is easier to explain 
the main idea considering the penetration of quark-antiquark pair, produced by the 
virtual photon, through the target. While the boson projectile is traversing the target, the 

R k, distance rt between the quark and antiquark can vary by an amount Art ~x A-if, where 
E denotes the energy of the pair in the target rest frame and RA is the size of the target 
(see Fig. 2). 

The quark transverse momentum is kt ~ 1/r t .  Therefore 

Ar t oc E ~< rt , (16) 
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and it is valid if 

r2t s >> 2mR, (17) 

where s = 2mE. In terms of Bjorken x, the above condition looks as follows: 

1 
x << 2mR (18) 

Therefore the transverse distance between quark and antiquark is a good degree of 
freedom [ 19,26,27]. As has been shown by A. Mueller, not only quark-antiquark pairs 
can be considered in such a way. The propagation of a gluon through the target can be 
treated in a similar way as the interaction of gluon-gluon pair with definite transverse 
separation rt with the target. It is easy to understand if we remember that virtual colorless 
graviton or Higgs boson is a probe of the gluon density. 

The total cross section of the absorption of gluon(G*) with virtuality Q2 and Bjorken 
x can be written in the form 

1 

O-Ato t (G*)=fdz f  d2rt 5_#_ f a2b, G* 2 --~-~-g*± (Q ,r , ,x ,z)  
o 

x2{1 - e x p [ -  1 o-(rt2 ) S(b 2) ] } [!F~* (Q2, r,, x, z ) ]* ,  (19) 

where z is the fraction of energy which is carried by the gluon, !/'~* is the wave function 
of the transverse polarized gluon and o-(rt 2) is the cross section of the interaction of the 
pair with transverse separation rt with the nucleon, and S(bt) is the profile function of 
a nucleus which we will specify later. 

The physical interpretation of Eq. (19) is very simple, if one notices that the factor 

in curly brackets is the total cross section for the GG pair with transverse separation rt 
passing through the nucleus 

sc f d2bt "1 e -l~rN(r~)S(bz~) } (20) O-to t (r ,)  = 2 ---~--{ - 

Indeed, the above formula is a solution of the s-channel unitarity relation 

2Ira a ( s ,  bt) = [a(s, bt)12 q- Gin(S, bt) , (21) 

where a denotes the elastic amplitude for the GG pair with a transverse separation rt, 
and Gin is the contribution of all the inelastic processes. The inelastic cross section is 
equal to 

o'in=fd2btGin(s,  bt)=fd2bt(l-e-'TN(rt'q2--°)s(b2)). (22) 

We assume that the form of the final state is a uniform parton distribution that follows 
from the QCD evolution equations. Note that we neglect the contribution of all diffraction 
dissociation processes to the inelastic final state (in particular to the "fan" diagrams 



A.L. Ayala et  a l . /Nuc lear  Physics B 493 (1997) 305-353  313 

• q l ±  

~OO00 
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n 

Fig. 3. The structure of patton cascade in the Glauber (Mueller) formula. 

which give an important contribution), as well as diffraction dissociation in the region 
of small masses, which cannot be presented as a decomposition of the G G  wave function. 
We evaluate this input hypothesis in Section 4. 

In the language of Feynman diagrams, Eq. (20) sums all diagrams of Fig. 2 in which 

the G G  pair rescatters with the target, and exchanges "ladder" diagrams each of which 

corresponds to the gluon density. This sum has already been performed by Mueller [ 19], 

and we will only comment on how one can obtain the result, without going into details. 
We borrow the presentation of the end of this subsection as well as the next two ones 

from Ref. [28]. 
The simplest way is to consider the inelastic cross section (see Refs. [ 19,1,29] ), 

which has the direct interpretation through the parton wave function of the hadron 
(see Fig. 3), as all partons that are produced are on the mass shell. In leading In 1 I x  

approximation we have two orderings in time: 
(1) The time of emission of each "ladder" by the fast G G  pair, which should obey the 

obvious ordering for n produced "ladders" (see Fig. 3) 

t l  > t2 . . . .  > ti > t i+l . . . .  > t n ; (23) 

(2) Each additional "ladder" which should live for a shorter time than the previous 
one. This gives a second ordering (see Fig. 3): 

I I . (24) t l  - t~ > t2 - if2 > . . .  > ti - t i > . . .  > tn - t n , 

Each "ladder" in the leading log approximation is the same function of ti  - t~ which 
we denote as cr(t ~ 2 - t ,  r t ). This fact allows us to carry out the integration over ti a n d  

ti - t~, which gives for n emitted cascades 

t t - - t  t 

' / I  - - - t I , r t ) . ( 2 5 )  o'n (n!) 2 d t l  d ( q  t~)  o ' n ( t l  t 2 

For the case of the G G  pair, both last integrations are not logarithmic, and in the leading 
log approximation we can safely replace the above integral by 

1 t 2 
o-n - ( n ! ) j o ~ ( t  - t ,  r t ) ,  (26) 
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where t - t' is of the order of 1/qll due to uncertainty principle, where qfl = Q2/s" One 
n! is compensated by the number of possible diagrams, since the order of the "ladders" 
are not fixed. Therefore, the contribution of the nth "ladder" exchange gives 

o-n = l o ' n ( x ,  r~) . (27) 

Applying the AGK cutting rules [29] we reconstruct the total cross section which results 
in Eq. (20). 

2.2. o-(rt, q2t ) at qt = 0 

The expression for or(r t ,qT)  at qt --- 0 was first written down in Ref. [25] (see 
Eq. (8) of this paper). It turns out that o- can be expressed through the unintegrated 
parton function 05 first introduced in the BFKL papers [30] and widely used in Ref. [ 1]. 
The relation of this function to the Feynman diagrams and the gluon density can be 
calculated using the following equation: 

QZ 

ces(Q2)xG(x,  Q2) = i 20l 2 al, s(l,)05(x,t, 2). (28) 

Using the above equation we reproduce the result of Ref. [25], which reads 

16CF f 05(x, It 2) {1 -- e il''r' } 
o/s(/2) d21t 

o-(rt, q2 t ) = N~ - 1 re2 2qr 12 , (29) 

where 05 = OxG(x, Q2)/OQ2. 
We evaluate this integral using Eqs. (4), (10) and (11) and integrate over the 

azimuthal angle. Introducing a new variable ( = rtlt, the integral can be written in the 
form 

O<3 

16c"°<s [ 2@// i o'( r t ,q 2) = -~c 7 7  d x-° '  g(o))y(o))(r2t)l-e(°>) d~ 1 - ao(~) (()3-2y(w) " (30) 
c o 

Evaluating the integral over ~: (see Ref. [ 31 ] (11.4.18) ) we have 

8CFCeS ~ d o )  o) (~_ )  i-~,(o)) 
o_(rt, q2t) _ -~---- ~¢re ~ i  x -  g(o))y(o)) F(y(O)))F(I(F(2 - Y(o)))) 2 -  y(o)))  

c 

(31) 

In the double log approximation of pQCD where y(o)) << 1 the cross section for Nc = 
3 reads 

o'(rt, q2)= as(3 r~) q'r2rt2 ( XGGLAP ( x ' 4 )  r--g) . (32) 

This result coincides with the value of the cross section given in Refs. [32,33] (if we 
neglect the factor 4 in the argument of the gluon density). We checked that Eq. (2.16) 
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of Ref. [34] also leads to the same answer, unlike the value for o- quoted in Ref. [34] 
(see Eq. (2.20)) .  

In the case of  the passage of the GG pair, Eq. (32) reads (for Nc = 3) 

3ces (~)r r2r2(xGGLAP(x,_~t) )  (33) o'(rt, q2 = O) -- ~ 

Eqs. (32) and (33) are valid only on DLA of pQCD because we obtained these 
expressions considering lit ~ kt  and neglecting the longitudinal part of the momentum 
li (/ill ~ l i t ) .  It is very essential to realize this limitation of our approach for all further 
applications. 

2.3. The bt dependence of  the scattering amplitude with a nucleon 

To deal with the SC we need to know the amplitude not only at qt = 0, but at all values 
of momentum transfer, so that we can calculate the profile function of the amplitude in 

impact parameter space. The gluon density in a nucleon depends only weakly on qt in 
the GLAP evolution (see Ref. [ 1] for details). Therefore, all the qt dependence comes 
from the form factor of the G1G2 (glq) pair with the transverse separation rt and the 
form factor of the target nucleus. 

The form factor for a G1G2 (clq) pair with transverse separation rt is equal to 

F c , 6 2 ( q 2 ) = ~ i  ( ( k l t 2 k t ) )  f * ( ( k l t - k 2 t )  ) GG - " r t  ~GG "-~ " r t , (34) 

where k and k 2 denote the momentum of gluon 2 before and after collision (the 
momentum kl is not modified, see Fig. 2). Each of the wave functions is an exponential, 
and a simple sum of different attachments of gluon lines gives 

=e' 2 ( 1 - e  ' l ' ' r ' )  . (35) FC, G2 ( q2 ) q-~ . 

We have absorbed the last factor in the expression for the cross section, while the 
transform gives the qt dependence of FG~2. After integration over the azimuthal angle 
it has the form 

FG~GE(q2t) = Jo (q tr t~  \ 2 J "  (36) 

The target form factor cannot be treated theoretically in pQCD. In our problem it 
consists of  the nuclear form factor and the nucleon distribution in the nucleus. For our 
purpose the phenomenological exponential parameterization for the nucleon form factor 
will suffice, namely 

= e - ~ q '  , (37) FN(q2t ) ~ 2 

with the slope B = 10 GeV -2 [ 35 ], extracted from experimental data on hadron-hadron 
collisions, if  we put the pomeron slope a t = 0 [35]. For nucleon distribution in a 
nucleus we use Eq. (14). Finally, the resulting bt distribution looks as follows: 
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S(b 2) = f SN ( ( b t -  bit) 2) FA (qz,b't) - -  d2b~ , (38) 
. I  "17" 

where 

1 f 2 ibt.qt 2 2 SN(b 2) = ~ d qte FG~G2(qt)FN(qt) 
J 

-~-~Io(bt-~Bt)e -(bz'+r2/4)/B . (39) 

Considering R2A >> B >> r 2 one notices that the bt dependence in gluon-nucleon in- 
teraction can be safely neglected. Indeed, SN(bt) is a steep function of bt in comparison 
with Fa(qz, bt). It means that we can do the integral over b'  t in Eq. (38) putting bit = bt 
in FA(qz, blt). The result is 

Sa(bt) = FA(qz, bt) • (40)  

2.4. The qz dependence of the nucleon density (gluon lifetime cutoff) 

To calculate the value of  qz we have to consider the process of  diffractive dissociation 
pictured in Fig. 2. This process is the AGK cut with small multiplicity of  the produced 
hadron of  the first diagram for the SC [29].  We can find qz from the obvious equation 

(Q + q)2 = M 2, (41) 

which gives 

M e + Q2 M 2 
- -  + r e x ,  (42) 

qz - 2Q0 - 2Q0 

Qz = Qo - ~ ~ Qo. since 

Now, we have to calculate M 2 through kt and the fraction of  energy z (see Fig. 2) .  
Using the technique of  Ref. [35], one obtains 

M 2 = (kl  "q- k2) 2 = k2 -Jr- /¢2 k2 
z (1 - z--------~ = z (1 - z ) "  (43) 

To calculate z we have to consider the gluon structure function that enters the value 
of  O'N(r 2) (Eq. (32)). Indeed, using ( k -  l)2= 0 (see Fig. 4) we have 

(k  - 1) 2 = k 2 - 2 ( k j  ~) + l 2 = 0 .  (44) 

Since 12 << k 2, we have from Eq. (44) 

( 2~0 12 ) k 2 = - k  2 = 2 ( k ~ l * ' ) = 2  k o l o - ( k o +  ) ( I 0 + ~ 0 )  

l 2 
= - ko ~o = -2zQox'm,  (45) 
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Fig. 4. The vertex of a virtual colorless probe (Q*) to two gluons. 

which gives 

z - 2x~Qor n • (46) 

Substituting z in the expression for M 2 we have M 2 = 2xtmQo. Finally 

qz 2 = (x '  + x)2m 2 , (47) 

where x ~ > x. 

Eq. (47) has to be substituted in Eq. (14) to obtain the dependence o f  the nucleon 

distribution in a nucleus on qz. The physical meaning of  this qz dependence is very 
simple. The lifetime of  the virtual gluon is equal to 

Q0 1 
~- - - ( 4 8 )  

Q2 2rex 

I f  7" is smaller than the size of  the nucleus ~- < RA, the gluon cannot interact with all 

nucleons in a nucleus. The number of  possible collisions is of  the order of  

P 
P~"-  2rex '  (49) 

where p is the density of  nucleons in a nucleus. Eqs. (14) and (47) give us a practical 
way to introduce the finite lifetime of  the virtual gluon in our calculation. 

2.5. The wave function o f  virtual gluon 

Here we are going to discuss the last ingredient of  O'Atot ( G* ) (Eq. (19) ), namely, 
the wave function o f  initial gluon with virtuality Q2. Actually, it was done by Mueller 
in Ref. [ 19], however, we will discuss it in this section to clarify the approximations 
that we have to make to get Mueller's answer. It is easier to discuss the colorless probe 
with virtuality Q2 that interacts with gluons than the virtual gluon. There is a number 
of  such probes, for example, the graviton or Higgs meson. We do not need to specify 
what particle we use as a probe. We only need to write down the momentum structure 
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for the meson-two gluon vertex. For a scalar particle such a vertex has the following 
structure: 

JN~ = g (( k l k2 )g~ ,  - kl~k2v) , (50) 

where all notation is clear from Fig. 4 (see, for example, Ref. [36] for the vertex of 
the Higgs meson to two gluons). 

We intent to use a frame in which the nucleon with momentum p is essentially at 
rest (p+ << Q+) and where 

Q2 
O = ( Q + , Q - , Q t )  = ( Q + , - ~ _ _ , 0 ) .  (51) 

To find the wave function we can use the technique developed in Ref. [37]. However, 
before doing so we need to specify the polarization of gluons that work in our case. 
The problem is that we know that the gluon which interacts with the target in Fig. 4 (k2 
in our case) has a longitudinal polarization at high energy (small x),  while the second 
gluon indeed has been produced on mass shell and has only transversal polarization 
(see, for example, Ref. [1] for a detailed discussion). It means that we cannot treat 
the first gluon as a real particle on the mass shell, where gluons have only transverse 
polarization. Therefore, before introducing the wave function of the probe we have to 
make use of  the polarization vectors and the Weizs~icker-Williams transform from a 
longitudinal polarized gluon to a transverse one. Indeed k(~.) • e(~ i) = 0, where e}j ) is the 

polarization vector of the 'ith' gluon. Therefore 

klo .elli) = - k ~ o  .e} 0 . (52) 

only components along Q+ of vectors klll) and k12 ) are big, we obtain Since 

Z ~q e (i) t . e~i) i ~ +  _ = - k ( i )  

o r  

t . e~i) 
Q + e °  ) = - -  k ( i )  (53) 

Zi 

Finally, using Eq. (53), we can rewrite the vertex F ~  in the form 

t t k~k~, 
F ~  = g z  ( 1 - z-----~) ' ( 5 4 )  

where we sum over two possibilities: gluon 2 interacts with the target and gluon 1 
interacts with the target. 

We anticipate that sufficiently small transverse distances (rt) will contribute to the 
1 processes (rsoft >~ rt >> ~ ) .  In this ease all interactions between gluon 1 and 2 before 

the interaction with the target are small since they are of the order of c~s(rt 2) and 
as (rt)  << 1. Therefore we have to calculate only the contribution of the two-gluon state 
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to the wave function and using the technique of  Ref. [37] and Eq. (54) for Fg~ we 
have 

t t gk~ku 1 
W l z P ( z ' k t ) = ~ (  Q- - k,---~k2 -- ~2+k2 ) Z(1 -- Z) 

t t gk~ku 
= ~/z(1 - z)  ( a 2 z ( 1  - z)  + k~) " (55) 

Going to the r t representation one obtains 

1 
gtl~l,(rt, z) = -V~V~Ko(ar) v/z(  1 _ z)  ' (56) 

where a 2 = Q2z(1 - z )  and Ko(ar) is the McDonald function. Making use of  the 
properties o f  the McDonald functions we derive 

1 {a2K2(ar) rt~tv aKl(ar)6~u} (57) 
~ "  - , / z ( 1  - z )  7 ' 

where /z ,  v = 1,2. 

2.6. The Mueller formula 

Now we have all ingredients that we need to derive the Glauber formula for the 

percolation of  a GG pair through the nucleus. Using the well-known relationship between 
cross section and the deep inelastic structure function we can derive the following 
formula for XGA (x, Q2) for Nc = 3 (see Ref. [ 19] ): 

1 

XGA(x. Q2) = ~ idz i d2@ i ~,~[¢(rt.z)122 {,_e-½.W<x'.d)s(b,)} . (58) 
o 

where x / = 1/r2tzQo. To specify the region of  integration we should use in Eq. (58) the 
wave function of  Eq. (57) 

Ig" (r, ,  z) t  2 = ~-'~q~(rt, z)g'*(rt, z) 

1 a2K2 (ar) aK1 = z ( 1 - - z )  (a t )  + ~ ( a K l ( a r ) )  2 , (59) 

where y ' ~  represents the sum over the polarization of  the gluon. The main contribution 
in Eq. (58) comes from the region of  small z (art << 1), where 

2 
I ~ ( r . z ) l  2 z r  4 , (60) 

which can be easily derived from the expansion of  the McDonald function for art << 1. 
In all terms of  the expansion, except the first one, the integral over z is convergent. 
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The condition of  art ~ 1 means that 

1 1 
Z(1 - Z )  < Q 2 r---~t < -~ . 

Introducing the new variable 

/ 1 
x - 2zQor2 m 

instead of  z, one sees that Eq. (61) can be rewritten in the form 

Q2 
x~ > 2mQo = xN = x .  

Substituting Eqs. (60) and (61) into Eq. (58) ,  we derive Mueller 's  formula, 

(61) 

(62) 

(63) 

1 oo  oo  

XGA(x, Q2)=-~ --Z j crr4 2 1 
x 4_  0 

Q2 

I a a ( x ,  2) ( 2 ) ' 1  - -  ---2OrN e r t - S - b t  . (64) 

The lower limit in rt integration comes from Eq. (61) .  
It is easy to see that the first term in the expansion of Eq. (64) with respect to o- 

gives the GLAP equation in the region of  small x. Using a Gaussian parameterization 
for S(bt)  (see Eq. (14 ) )  we can take the integral over bt and obtain the answer 

(Nc = N f  = 3 )  

1 

2R A f f ,tr; {c xGa(x'Q2) = ~.2 j - f f - j  r 4 
x 

+ ln(KG(x' ,  rt 2) ) + E1 (K~(x ' ,  rt 2) ) } , (65) 

where C is the Euler constant and Ea is the exponential integral (see Ref. [31] ,  
Eq. (5 .1 .11))  and 

t 2 3as A~rr2 t~GLAP~ t I 
K~(x , rt ) - 2R----~A X Cr u [ , X ,  7~t2 ) . (66) 

To understand the physical meaning of  this equation it is instructive to write down 
the evolution equation for the gluon density. Indeed, 

°2XGA(x'Q2) =ANCaSxGGLAP(x, Q2) 2 V "  ( - 1 )  k 1 
O l n ( 1 / x ) O l n Q  2 ~r + ~  ~= ( k q - l ) ( k +  1)v. (R2Q2) k 

× (7rNc AasxGGLAr'(x, QZ) ) k+l 
2 (67) 

The first term corresponds to the usual GLAP equations, while the second one takes into 
account the SC. It should be stressed that the term with k = 1 ( i f  treated as an equation 
[ 1 ] ), is the same term that appears in the non-linear GLR equation which sums the 
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Fig. 5. The interaction with nucleons that is not taken into account in the Glauber (Mueller) formula. 

"fan" diagrams. This term has been calculated using quite a different technique [7,38]. 
The coefficient in front of  the other terms reflects the fact that all correlations between 
the gluons have been neglected, despite the fact that gluons are uniformly distributed in 
the disc of  radius RA. 

Mueller's formula is not a non-linear equation; it is the analogue of the Glauber 
formula for the interaction with a nucleus, which gives us the possibility to calculate 
the shadowing corrections using the solution of the GLAP evolution equation. Hence, 
this formula should be used as an input to obtain the complete effect of the SC, for the 
more complicated evolution equation, such as GLR [ 1 ], or the generalized evolution 
equations (see Ref. [39]) .  

Calculation of the subsequent iterations of the Mueller formula provides a way to 
estimate the value of the SC from more complicated Feynman diagrams that have to be 
taken into account (diagrams such as in Fig. 5). Certainly, the iteration of Mueller's 
formula is not the most efficient way to calculate the SC correction in the region of 
extremely small x, but it could give sufficiently reliable results for the HERA kinematic 
region. 

At first sight Eq. (67) looks like the operator product expansion. However, it should 
be stressed that the Mueller formula itself takes into account not only the high twist 
contributions to the deep inelastic structure function but also crucially changes the 
leading twist term since it contains the full integral over ft. 

2.7. An instructive example 

Before discussing the numerical results of  integration of the Mueller formula (65) 
we will consider one example which gives the physical picture originated there. 

The first observation is that the Mueller formula itself gives a natural cutoff for the 
large distance contribution and can be used as a model for the behaviour of the gluon 
distribution in a target even at very small values of Q2. 

Doing all calculations in double log approximation of pQCD (or, in other words, 
using the GLAP evolution equation in the region of small x),  we have to assume that 
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the anomalous dimension y(w) << 1. It means that we can confidently take the gluon 
density independent of the integral at the low limit rt 2 = 4/Q 2 and only integrate over 
the factor r~ in the expression of o -GG. Straightforward integration leads to 

1 

XGA(x, Q2 ) _ N2c - 1 / dX'R2 2 {C + l n ( K c )  + (1 + KG)EI(tCG) + 1 e -'~a} -~'~ ~ AQ -- , 
x 

(68) 

where 

KG ( x ~ ) - 3asqrA xtGGLA P (Xt 
2QZR2A , , Q2).  (69) 

The last integration over x / has to be done numerically. 
One can see from Eq. (68) that the answer mostly depends on Ko. For Kc << 1 

Eq. (68) gives 

1 

XGA(x, Q 2 ) = 3 o t s A f d x t x t G G L A P .  t ( Q 2 )  
g j - 7 7 -  u t x , Q 2 ) l n  Q~(x') ' 

x 

(70) 

where Q2(x') is the solution of the equation too = 1. 

This result is very close to the GLAP equations. The difference is due to the fact that 
one cannot substitute the gluon structure function at the low limit of integration over 
rt for the first term of the expansion of Eq. (65). This particular contribution is of the 
order of  1 /y(o)) .  It is necessary to improve Eq. (68) by adding a term 

1 Q2 

AXGA(x, Q2)=Ncas f dx' f dQa qT" X' Q,2 xGGLAP(x" Q2) 

x m~,(00~,o0~(x,) } 
1 

Ncols f dxtxtGGLAP(xt ()2, ( Q2 ) 
- cr -77 . . . .  In max{Q~,Qg(x')} 

x 

(71) 

where Q2 is the initial virtuality from which we start the GLAP evolution. Eq. (70) 
illustrates the important point that the SC provides us with a new scale in the evolution 
which crucially depends on x t. It means that the first correction for the evolution 
equations can be found, just introducing this scale, namely 

1 Q2 

XGA(x, Q2 ) = 3asA dx I dQ xIGGLAPrX~ t..12 ~ 

X QZo(Xt ) 

(72) 

In Fig. 6 are plotted the contours of t~ for a nucleon target (A = 1 in Eq. (69))  that 
give an idea in which kinematic region we expect big SC. 
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Fig. 6. The contours of  K for Nucleon, Ca and Au. 

The large SC corresponds to KG >> 1 where Eq. (68) gives 

1 
2 2 2 / dx~ XGA(x,Q 2) = -~RAQ --~ (C + ln(Ka))  . 

x 

Sum of Eqs. (72) and (73) gives the answer 

(73) 

1 02 
XGA(x,O 2) =0  (0  2 - - a g ( x ) )  3~sA~. / ~dx' f dQ '2 , GLAP , 

- -  J - - ~ - x  G u ( x  , Q 2 )  

x Q~(x') 

1 

2 2 e (C + ln (KG))  (74) "q--O (02(X)  - - 0  2 ) - ~ e a a  / dX! 
-2- 

x 

Eq. (74) is very approximate but Fig. 7 shows that this equation describes the full 
formula quite well except for the region where Q2 ~ Qg(x). The nice feature of this 
equation is that it illustrates in an explicit way how the SC work. First, they provide the 
new scale for the transverse momentum inside the parton cascade (Qo(x)). It means 
that we expect the GLAP evolution only for distances rt < 1/Qo(x). Second, the SC 
generate the surface term (the second in Eq. (74))  which gives o- o( A 2/3 as for the 
normal hadron-nucleus interaction. Of course, all these properties have been anticipated 
(see Refs. [4,6,40] ) and Eq. (74) gives the simplest example of how they manifest 
themselves in the case of deep inelastic scattering. 

Now, let us try to understand the x ~ dependence of our integrand. In our formula it is 
implicitly assumed that each gluon can interact with all nucleons in a nucleus. This is 
not the case because each gluon lives a certain time, which is TG = A/mx t, where the 
coefficient A is not quite well known, but ,~ > 1/2. It means that the gluon can interact 



324 A.L. Ayala et aL /Nuclear Physics B 493 (1997) 305-353 

2.0 . . . .  , . . . .  , . . . .  , . . . . . . . .  

R 

1.0 
% . . . . . . .  ~ 

Q~=I. Gev ~ Ca 
,. =5. Gev a Ca 

0.5 =10.Gev 2 Ca 

0 . 0  , , , , I , , , , I , , , , I . . . .  I . . . .  

0.0 4.0 8.0 12.0 16.0 20.0 

In(l/x) 
Fig. 7. Ratio xGAPPr°x/ ~full XLr A . 

only with T (=  R2Ap~'G) nucleons. Substituting T instead of  A we have the fol lowing 

answer for Eq. (72) :  

l Q2 

I ' "  Q . tf~GLAPIxt ,,a2x XGA(X, Q2 ) = 3ceSqr T(x ' )  --Q-~'- '~ I d u  t , ~  ) ; (75)  

x Q ~ ( x ' )  

at x '  > XA = A/mRA we have no log integration over x ~. Therefore, basically, the GLAP 

equation can be reduced to the form 

XA 0 2 

XGA(X, Q2) = 3 a s A  dx I Q .I,-,6LAP,xl ,-~2, - ~  - - ~  - -Q-~ .x ,  t..r u ~ , ~ ) .  (76)  

x O~(x') 

One can see in Eq. (76)  that a new cutoff in x appears in the GLAP equation which 

has been discussed two decades ago in Refs. [41,42].  

2.8. Theory status of the Mueller formula 

In this section we recall the main assumptions that have been made to obtain the 

Mueller  formula. 

(1)  The gluon energy (x)  should be high (smal l )  enough to satisfy Eq. (18)  and 

c~s ln (1 /x )  ~< 1. The last condit ion means that we have to assume the leading 

In( 1 Ix)  approximation of  perturbative QCD for the nucleon-gluon structure func- 

tion. 

(2)  The GLAP evolution equations hold in the region of  small x or, in other words, 

ors In( 1/r 2) <~ 1. One of  the lessons from HERA data is the fact that the GLAP 

evolution can describe the experimental data. 
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(3) Only the fastest partons (GG pairs) interact with the target and there are n o  
correlations (interaction) between partons from different parton cascades (see 
Fig. 3). 

(4) There are no correlations between different nucleons in a nucleus. 
(5) The average bt for a GG pair-nucleon interaction is much smaller than RA. 

The first assumption allows us to treat successive rescatterings as independent and 
simplifies all formulas reducing the problem to an eikonal picture of the classical prop- 
agation of a relativistic particle with high energy (E  >>/z -1, where / ,  is the scattering 
radius in the nuclear matter) through the nucleus. The second one simplifies the calcu- 
lations but we may also consider the BFKL evolution [30] instead of the GLAP one. 
The third assumption is an artifact of the eikonal approach and we shall discuss it in the 
following sections. The last two are the usual assumptions to treat nucleus scattering. 
We have used the specific Gaussian parameterization for the bt dependence. Also, one 
can easily generalize our formula to a more general case, such as the Woods-Saxon 
parameterization [24]. 

3. pQCD calculations from the Mueiler formula 

We use the GRV parameterization [43] for the nucleon-gluon distribution, which 
describes all available experimental data quite well, including recent HERA data at low 
xBj. Moreover, GRV is suited for our purpose because (i) the initial virtuality for the 
GLAP evolution is small (Q0 ~ ~ 0.25 GeV2), and we can discuss the contribution of 
the large distances in Mueller formula having some support from experimental data; 
(ii) in this parameterization the most essential contribution comes from the region 
where as In Q2 ~ 1 and as In 1/XBj ~ 1. This allows us to use the double leading log 
approximation of pQCD, where the Mueller formula is proven [37]. It should be also 

stressed here that we look at the GRV parameterization as a solution of the GLAP 
evolution equations, disregarding how much of the SC has been taken into account in 
this parameterization in the form of the initial gluon distribution. 

However, in spite of the fact that the GLAP evolution in the GRV parameterization 
starts from very low virtuality (Qg ~ 0.25 GeV 2) it turns out that the DLA still does 
not work quite well in the accessible kinematic region (Q2 > 1 GeVZ, x > 10-4). 
In the DLA, the anomalous dimension 3/(09) = cesNc/rro~. However, it turns out that 
corrections of  the order as to the anomalous dimension give an important contribution. 
We can understand this, modeling the complicated expression for y(o~) by a simple 
formula [44] : 

Y ( w ) = a s N c { 1  - -1}  ' - q r  --oJ (77) 

which has the correct DLA limit at small oJ and satisfies the momentum conservation 
constraint (y(w = 1) = 0) [20]. The typical values of w in all available parameter- 
ization, even in the GRV one, which is the closest to the DLA, is oJ ~ 0.5 (see the 
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next subsection). Therefore, we have about a 50% correction to the DLA and it cannot 

provide a reliable estimate for the gluon structure function. 
On the other hand, our Eq. (64) is proven in DLA. Willing to develop a realistic 

approach in the region of not ultra small x (x > 10 -4) we have to change Eq. (64). 

We suggest to integrate Eq. (67) and substitute the small x kernel for the full GLAP 
kernel in the first term of the r.h.s. This procedure gives 

xaA(x, Q2) = xaa(x, Q2) (Eq. (64)) + AxGGNRV(x, Q2) 

1 Q2 

_ A a S N c f f d x ' d Q  t2 t.-.~RV, t 
rr x' ~ x t ~ /  t x , Q ' 2 ) .  (78) 

x 002 

The above equation includes also AxGCRV~x ~2~ U k , 40 J as the initial condition for the gluon 
distribution and gives AxG~RV(x, Q2) as the first term of the expansion with respect 

to Kc. Therefore, this equation is an attempt to include the full expression for the 
anomalous dimension for the scattering off each nucleon, while we use the DLA to take 
into account all SC. Our hope, which we will confirm by a numerical calculation, is that 

the SC are small enough for x > 10 -3 and we can be not so careful in the accuracy of 

their calculation in this kinematic region. Going to smaller x, the DLA becomes better 
and Eq. (78) tends to Eq. (64). 

To better understand Eq. (78) let us rewrite it for the double differentials. One can 

see that instead of Eq. (67) we have 

02XGA(X, Q2) = AO2XG~u~V(x, Q2) 

Oln(1/x) lnQ 2 31n(1/x) lnQ 2 

2 ~ (--1) ~ 1 lasNcorAxGGRVIk+'_ 
+ ~ -  

( k +  1 ) ( k +  1)! (R2AQ2) k 

(79) 

We will use Eq. (78) in all our further calculations as our master formula, denoting 

it as ME 

3.1. The gluon structure function for the nucleon 

In this subsection we are going to check how Eq. (78) describes the gluon structure 
function for a nucleon, which is our main ingredient in the Mueller formula. We calculate 

first the ratio 

RN = xGa(x, Q2)(Eq. (78)) 
xGGRV ( x ' Q2) (80) 

for A = 1, which is shown in Fig. 8. From this ratio we can see the general behaviour of 
the SC as a function of I n ( l / x )  and Q2. When compared to the GRV gluon distribution, 

the xGa distribution presents a suppression which increases with In ( i /x )  and decreases 
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Fig. 8. The SC for nucleon (A = 1 ) as a function of In (1 Ix) and Q2, where ratio R1 compares x G  A with xG 
(GRV) distribution. 

with the virtuality Q2. In the region of the HERA data, 3 < I n ( l / x )  < 10, and 
Q2 > 2 GeV z [3],  the SC are not bigger than 15%. The SC give a contribution bigger 
than 20% only at very small value of x, where we have no experimental data. 

In the semiclassical approach (see Ref. [ 1 ] ), the nucleon structure function is sup- 
posed to have a Q2 and x dependence as 

z (z,) 1 (o,) 
XGN(x ,  Q2) cx {Q } { x  } . (81) 

We can calculate both exponents using the definitions 

0 l n ( x G u ( x ,  Q2) ) 
(w) = 0 In(1 /x)  ' (82) 

O ln( xGlv( x,  Q2) ) 
(Y) = O l n ( Q 2 / Q  2) (83) 

Eq. (82) gives the average value of the effective power (w) of the gluon distribution, 
x G ( x , Q  2) cx x -(°'), which is suitable to study the small x behaviour of the gluon 
distributions. Fig. 9 shows the calculation of (w) for the nucleon distribution calculated 
using Eq. (78) and the GRV gluon distribution, both as functions of I n ( l / x )  for different 
values of Qa. From the figure we can see that the effective powers of XGA(A = 1) 
and xG(GRV) have the same general behaviour in the small x limit but the nucleon 
distribution is slightly suppressed. We calculate als0, in the same kinematical region, the 
exponent (y), given by Eq. (83). This is the average value of the anomalous dimension, 
which describes the effective dependence of the distribution in Qa variable. Fig. 10 
shows (y) for the nucleon and GRV distributions, indicating that the Q2 dependence is 
slightly softened by the SC. 



328 

2.0 

< 0 3 >  

1.5 

1.0 

0.5 

0.0 
0.0 

G R V  Q"=0 5 Gev" 

I ~  =1.0 Gev 2 
- - - =5.0 Gev 2 

I ~ ~ =10. Gev 2 

i i r i I i 

5.0 

A.L.  Ayala et  a l . / N u c l e a r  Physics  B 493 (1997) 305-353  

, , i N L J C L E O N  

i p i i i i i i i i i i i i i i i i i i i i i i i i T t i i i i 

10.0 15.0 0.0 5.0 10.0 15.0 20.0 

In(11x) 
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Fig. 10. The effective power of Q2 dependence calculated for X G A ( A  = 1) and the GRV distribution. 

Comparing Figs. 9 and 10, we can conclude that even these more detailed character- 
istics of  the gluon structure function have not been seriously affected by the SC in the 
nucleon case. 

We also use the GLAP evolution equations to predict the value of the deep inelastic 
structure function F2 from the xG A gluon distribution. Summing the GLAP evolution 
equations for each quark flavor, the function F2 may be written [45] 

Q2 1 - x  

/ F2=?-g~e j [ z 2 + ( 1 - z )  2] 
q Q2 0 

x GN( x , Q ' 2 ) ,  (84) 
1 - z  1 - z  

where the sea quark distributions have been neglected in comparison with the gluon dis- 
tribution. Fig. 11 shows the prediction for/72 from XGA and from the GRV distribution, 
compared with experimental data. As we can see, the magnitude of  the suppression due 
to the SC is less than 10% in the region of  the HERA data and this suppression is 
smaller than the experimental error. 
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Fig. 11. /72 from xGa and the GRV distribution, compared with experimental data [3]. 

From the above results we can conclude that Eq. (78) gives a good description for 

the gluon structure function for nucleon and describes the available experimental data. 

The MF provides a good description of the SC and can be taken as a correct first 
approximation in the approach to the nucleus case. 

3.2. The gluon structure function f o r  nucleus 

In the framework of the perturbative approach it is only possible to calculate the 
behaviour of the gluon distribution at small distances. The initial gluon distribution 
should be taken from the experiment. Actually, the initial virtuality Q02 should be big 

enough to guarantee that we are dealing with the leading twist contribution. Our main 
assumption is that we start the QCD evolution with a small value of Qg considering that 

the MF is a good model for high twist contributions in DIS off nucleus. 
The scale of the SC is governed by the value of KA, namely they are big for K A > 1 

and small for K A < 1. F i g .  6 shows the plot of KA = 1 for different nuclei. One can see 

that the SC should be essential for heavy nuclei starting from Ca at the experimentally 

accessible kinematic region. 
Now we extend the definition of R1 for the nucleus case 

XGA (x, 0 2) 
R1 = AxGGNRV ( x, Q2) ' (85) 

where the numerator is calculated using Eq. (78). Fig. 12 shows the results for the cal- 
culations of R1 as a function of the variables l n ( l / x ) ,  In Q2 and A ]/3. Fig. 12a presents 
the ratio R] for two different values of Q2 and for different nuclei. The suppression due 

to the SC increases with ln(1/x)  and is much bigger than for the nucleon case. For 
A = 40 (Ca) and Q2 = 10 GeV 2, the suppression varies from 4% for ln(1/x) = 3 to 
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Fig. 12. R1 as a function of In(l/x), A 1/3 and ln(Q2/GeV2): (a) R1 as a function of In(l/x) for different 
nucleus and different values of A; (b) R1 as a function of ln(Q2/GeV 2) for different values of xB for Au; 
(c) and (d) Rt as a function of A 1/3 for different Q2; 9e) and (f) R1 dependence on Q2 for Ca and Au. 

25% for l n ( 1 / x )  = 10. For A = 197 (Au)  the suppression is still bigger, going from 6% 

to 35% in the same kinematic region. Fig. 12b shows the same ratio for different values 

of  Q2 for gold. The suppression decreases with QZ. Figs. 12c and 12d show the R1 ratio 

as a function of  A 1/3 and x for a fixed value of  Q2. As expected, the SC increases with 

A. An interesting feature of  this figure is the fact that the curves tend to straight lines as 

x increases. This occurs because, as x grows, the structure function xG (G RV )  becomes 

// ...... %, 
. . . .  10 -3 
_ _  _ _  = 1 0  -2 

i i r I = i i ~ [ i i i i I i = ~ r I f ~ ~ = 
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Table 1 

Values of R1N and ce for parameterization R1 = R1N A - a  

331 

Q2 = 1 GeV 2 Q2 = 10 GeV 2 

x R1N ~ R1N 

10 -2  0.94 0.0416 0.98 0.014 

10 -3  0.92 0.0616 0.94 0.034 
10 - 4  0.88 0.094 0.92 0.0563 
10 -5  0.8 0.145 0.86 0.093 

smaller, and the correction term of (78) proportional to K dominates. Since K is pro- 
portional to A 1/3, the curves behave as straight lines. The decrease of the suppression 
with Q2 is illustrated in more detail in Figs. 12e and 12f which present Ra as a function 
of In Q2 for different values of x for Ca and Au, respectively. The effect is pronounced 
for small Q2 and x and diminishes as In Q2 increases. 

Fig. 12 shows also that the gluon structure function is far away from the asymptotic 
one. The asymptotic behaviour R1 --+ 1 (see Figs. 12e and f) occurs only at very 
high value of Q2 as well as in the GLR approach (see Ref. [9] ). The asymptotic 
A-dependence (Rl e ( A - l / 3 ) )  has not been seen in the accessible kinematic range of 
Q2 and x (see Figs. 12c and 12d and Table 1). This result also has been predicted 
in the GLR approach [8]. We also want to mention that the parameterization R1 = 
R1NA - ~  does not fit the result of  calculations quite well for 1 GeV 2 ~< Q2 ~< 20 GeV 2 
and 10 -2 ~< x ~< 10 -5. For x ~ 10 -2 the parameterization R1 = R1N -- RIA 1/3 with 

p a r a m e t e r s  R1N and R'  for each value of Q2 works much better, reflecting that only the 
first correction to the Born term is essential in the Mueller formula. 

We also extend the calculation of the exponents (w) and (y) of the semiclassical 
approach for the nuclear case. We calculate the effective power of the nuclear gluon 
distribution (w) using the expression 

0 l n ( x G a ( x ,  Q2) ) 
(w) = 0 ln (1 /x)  (86) 

Fig. 13 shows the results as functions of l n ( l / x )  for different values of Q2 and different 
nuclei. The SC decreases the effective power of the nuclear distribution, giving rise to 
a flattening of the distribution in the small x region. 

It is also interesting to notice that at small values of Q2 the effective power tends 
to be rather small, even in the nucleon case, at very small x. However, it should be 
stressed that the effective power remains bigger than the intercept of the so-called "soft" 
pomeron [46], even in the case of a sufficiently heavy nucleus (Au),  for Q2 > 1 GeV 2. 
Nowadays, many parameterizations [47] with matching of "soft" and "hard" pomerons 
have appeared, triggered by new HERA data on diffraction dissociation [48]. These 
parameterization used pomeron-like behaviour namely, x G ( x ,  Q2) ~ x-~(a2) .  However, 
if the pomeron is a Regge pole, oJ cannot depend on Q2, and the only reasonable 
explanation is to describe ~o(Q 2) as the result of the SC. Looking at Fig. 13 we can 
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claim that the SC from the MF cannot provide sufficiently strong SC to reduce the value 
of o~ to 0.08, a typical value for the soft pomeron [46], at least for Q2/> 1 GeV 2. 

The calculation of the effective value of the anomalous dimension y may help us to 

estimate what distances work in the SC corrections. This effective exponent is given by 

O ln(xGA(X, Q2)) 
(Y) = (9 l n ( Q 2 / Q ~ )  (87) 

Fig. 14 shows the results as functions of ln(1/x)  for different values of Q2 and for 
two nuclei. We see that the values of y at l n ( l / x )  ~< 5, for both Ca and Au, is very close 
to the results for GRV and for the nucleon case. At smaller values of x, the anomalous 
dimension presents a sizeable reduction, which increases with A. For ln(1/x)  > 15, 
(y) tends to zero unlike in the GLAP evolution equations (see Fig. 10 for the GRV 
parameterization). Analysing the QZ dependence, we see that (y) is bigger than 1 only 
for Q2 = 0.5 GeV 2. For Q2 = 1.0 GeV 2, the anomalous dimension is close to 1/2, and 

for Q2 > 5.0 GeV a it is always smaller than 1/2. 



A.L. Ayala et al./Nuclear Physics B 493 (1997) 305-353 3 3 3  

Using semiclassical approach, we see that 

K oc ~-7(Q2) ~' (88) 

and if 3' >/ 1, the integral over rt in the MF (78) becomes divergent, concentrating at 
small distances. 

I f  1 > 3/~> 1/2, only the first SC term, namely, the second term in the expansion of 
the Mr, {½asNcrrAxGGRVff +1, is concentrated at small distances, while higher-order 
SC are still sensitive to small rt behaviour. Fig. 14 shows that this situation occurs for 
Q2 > 1 GeV 2, and even for Q2 = 1 G e V  2 at very small values of x. We will return 

to the discussion of these properties of the anomalous dimension behaviour in the next 
section. In Subsection 2.4 we have discussed that the virtual gluon can interact with the 
target only during the finite time ~- (see Eq. (48))  undergoing p~- < pRA collisions. 
In the framework of the Glauber approach the easiest way to take into account the 
finite lifetime of the gluon is to include in our calculation the longitudinal part of  the 
transferred momentum (qz) to a nucleon during the collision We will use Eq. (78) in 
all our further calculations as our master formula (see, for example, denoting it as Mr. 
Ref. [49]) .  Using Eqs. (40) and 47, we obtain 

1 

XGA(x, Q2) =AxGN(x, Q2) - ACe;Nc f f dxt dQ'2 x I Ql2 'L(qz)XIGN(x"Qt2) 
x 

1 

I 

--~--j--~- {C ÷ln(L(qz)KG(x',r2)) 
x 1_ 

Q2 

+El (L(qz) KG (x' ,  r~) ) },  (89) 

where 

R2 2 I 2 
L( qz) = e-Tin (x+x ~ . 

Fig. 15 shows the result of our calculations. Comparing this with Fig. 12, one can see 
that the finite lifetime of the virtual gluon affects the behaviour of the gluon structure 
function only at sufficiently large x (x ~> 10-2), diminishing the value of the SC in 
this kinematic region. Being interested in the small x behaviour of the gluon structure 
function in nuclei we neglect the finite lifetime of a gluon through all calculations below. 

4. Beyond the Glauber approach 

In this section we discuss the corrections to the Glauber approach (the Mueller 
formula of  Eq. (65))  as well as the way to construct a more complete theory for deep 
inelastic scattering off a nucleus. 
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4.1. The second iteration o f  the MueIler formula 

To understand how big the corrections to the Glauber approach could be we calculate 
the second iteration of the Mueller formula of Eq. (65). As has been discussed, Eq. (65) 
describes the rescattering of the fastest gluon (gluon-gluon pair) during the passage 
through a nucleus (see Figs. 1 and 2). In the second iteration we take into account 
also the rescattering of the next to the fastest gluon. This is a well-defined task due to 
the strong ordering in the parton fractions of energy in the parton cascade in leading 
ln( 1/x) approximation of pQCD that we are dealing with. Namely 

XB < x n  < . . . < X l  < 1, (90) 

where 1 corresponds to the fastest parton in the cascade. 
Therefore, in the second interaction we include the rescatterings of the gluons with 

the energy fraction 1 and xl (see Fig. 5). Doing the first iteration we insert in Eq. (65) 
GN(X, Q2) = G~NRV(x, Q2). For the second iteration we calculate the gluon structure 
function using Eq. (65) substituting 

xG1a ( x, Q 2) G~NllV , 
x G u  - A x (x ,Q  2) (91) 

where xG 1 is the result of the first iteration of Eq. (65) that has been discussed in 
detail in Section 3. 

Fig. 16 shows the need to subtract xGGu ~v in Eq. (91) making the second iteration. 
Indeed, in the second iteration we take into account the rescattering of gluon lt-gluon 
2 ~ pair off a nucleus. We show in Fig. 16 the first term of such an iteration in which 
the GI,G2, pair has no rescatterings. It is obvious that it has been taken into account in 
our first iteration, so we have to subtract it to avoid a double counting. 

One can see in Fig. 17 that the second iteration gives a big effect and crucially 
changes R1, (7>, and (w>. The most remarkable feature is the crucial change of the 
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value of the effective power w(Q 2) for the "pomeron" intercept which tends to zero 

at the HERA kinematic region, making possible the matching with "soft" high energy 

phenomenology. It is also very instructive to see how the second iteration makes all 
properties of the behaviour of the anomalous dimension more pronounced ((y)) that 
we have discussed. The main conclusions that we can draw from Fig. 17 are (i) the 
second iteration gives a sizable contribution in the region x < 10 -2 and for x ~< 10 -3 
it becomes of the order of the first iteration; (ii) for x < 10 -3 we have to calculate the 

next iteration. It means that for such small x we have to develop a different technique 

to take into account rescatterings of all the partons in the parton cascade which will be 
more efficient than the simple iteration procedure for Eq. (65). However, let us first 

understand why the second iteration becomes essential to establish small parameters that 

enter our problem. 

4.2. Parameters of the pQCD approach 

As has been discussed, we use the GLAP evolution equations for gluon structure 

function in the region of small x. It means that we sum the Feynman diagrams in pQCD 

using the following set of parameters: 

as << 1 as In 1 Q2 Q2 1 ' -x < 1, as In Q---~ < 1, as In--Qg In-x ~ 1. (92)  

The idea of the theoretical approach of rescattering that has been formulated in the GLR 

paper [ 1 ] is to introduce a new parameter 

NcasrrA 
K = 2QZR2A xG(x, Q2) (93) 

and sum all Feynman diagrams using the set of Eq. (92) and K as parameters of the 

problem, neglecting all contributions of the order of as, asK, as l n ( l / x ) ,  as ln(1/x)K, 
as ln(Q2/Qg) and c~s ln(Q2/Q~) K. It should be stressed that the Mueller formula gives 

a solution for such an approach. Indeed, Eq. (65) depends only on K absorbing all 
(as  ln(QZ/Q 2) ln (1 /x) )  n contributions in xG(x, Q2). However, it is not a complete 

solution. To illustrate this point let us compare the value of the second term of the 
expansion of Eq. (65) with respect to o-(r]) with the first correction due to the second 

iteration in the first term of such an expansion. In other words, we wish to compare 
the values of the diagrams in Fig. 18a and Fig. 18b. The contribution of the diagram of 

Fig. 18a is equal 

f f Q,2 AxG(x, Q2)(Fig. 18a)= R2a dx' dQIZK2(x,,___~_) 
-U 

(94) 

where x' and Q,2 are the fraction of energy and the virtuality of gluon 1 in Fig. 18a. 
The diagram of Fig. 18b contains one more gluon and its contribution is 
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asNc 
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,/7. 

(95) 

where x '  ( x ' )  and Q,2 (Q,2)  are the fraction of energy and the virtuality of gluon 1 
(1 ' )  respectively in Fig. 18b. Therefore, Eq. (95) gives the contribution which is of 
the order of  Eq. (94) in the kinematic region where the set of parameters of Eq. (92) 
holds. It means also that we need to sum all diagrams of Fig. 18b type to obtain the 
full answer. In the diagram of Fig. 18b not only one but many gluons can be emitted. 
Such emission leads to so-called "triple ladder" interaction, pictured in Fig. 18c (see 
Ref. [ 1 ] ). This diagram is the first from the so-called "fan" diagrams of Fig. 18d. To 
sum them all we can neglect the third term in Eq. (67) and treat the remaining terms 
as an equation for xG(x ,  Q2). It is easy to recognize that we obtain the GLR equation 
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[ 1,7]. Generally speaking the GLR equation sums the most important diagrams in the 
kinematic region where cesln(1/x)  ln(QE/Q 2) >> 1 and K < 1. Using the MF we 

can give more precise estimates for the kinematic region where we can trust the GLR 
equation. Indeed, in Fig. 19 we plot the ratio 

Rc = xGa(x ,  Q2) (Eq. (78)) - AxG~RV(x, Q2) • (96) 

If Rc = 1,  all the SC can be evaluated within good accuracy by the second term in 

Eq. (67). 
From Fig. 19 one can see that for Ca we can safely restrict ourselves to the second 

term in the MF and use the GLR equation to take into account the interaction of all 
partons in the parton cascade even for low values of Q2 in the HERA kinematic region 

(x > 10-5). However, for the nuclei we have to develop a more general procedure for 
the iteration of the MF than the GLR equation for x < 10 -2. 

We need to make some very important remarks, concerning the whole approach based 
on the Glauber-type shadowing corrections. It has been proven [50,51] that keeping all 
parameters of Eqs. (92) and (93) and summing all Glauber-type interactions, as the 
Mueller formula does, is not enough. It turns out that the interaction between partons 
from different parton cascades that interact with the different nucleons are important. 
Fig. 20a shows the first interaction of such a type that has to be taken into account. This 
diagram should be compared with Fig. 20b, which shows the interaction included in the 
Mueller formula as well as in the GLR equation. Fortunately, these new contributions 

are proportional to ~ and we will neglect them, considering Nc is large enough. The 
general procedure how to sum all corrections of the order of ~ at least for the GLR 
equation has been developed in Ref. [39]. In spite of the small parameter ~ the parton 
self-interaction can be essential for the case of a nuclear target but we postpone a 
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Fig. 20. The corrections to the Glauber approach due to interaction between partons from different parton 
cascades. 

detailed discussion of this problem to a future publication. 

4.3. The GLR equation f o r  nucleus 

In this subsection we will to discuss the GLR equation as a way of taking into 
account the interaction of all partons in the parton cascade with the target, in spite of 
the criticism of the previous section. IndeX, let us go back to the discussion of the 
behaviour of the average anomalous dimension in the MF and in its first iteration (see 
Figs. 14 and 17). The general feature of  both iterations is the fact that the resulting 
value of the anomalous dimension ( (y))  turns out to be (y) ~< ½ for 0 2 /> 1 GeV 2. 

In this case, the high-order terms in this expansion are concentrated at large distances 
while the second one can be divergent at small distances if (y) -+ ½. Therefore we can 
rewrite the Mueller formula in the form 

1 ~ -~o 2 
fx / I GG t 2 2 4 dxl  db2t 211 - e -~'rN (x ,r,)S(b,)] 

XGA(X, Qz)  = - ~  7 7rr t 
o t ;  

/ d2 r t~ r .  I c~ , 2 2 
+ _~rt4 2[ 1 _ e-~C~u (x ,rt)S(bt) ] , (97) 

4 

where Q0 we choose of the order of  1 GeV21 Recalling that (3') < 1 we can expand 
the first integral in Eq. (97) and neglect all high contributions except the second term, 
which can be important in the region where (3/) --+ ½. Differentiating with respect to 
ln Q 2 and ln (1 /x )  one obtains the GLR equation, namely 

2 2 
3 2 X G A ( X ' Q 2 )  - NceeSxGA(x ,  Q2) 8RNi~2 (XGA(X, Q2))  2 . (98) 

O l n ( 1 / x ) O l n Q  2 ¢r 
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The second integral in Eq. (97) gives the initial condition for the GRL equation. 

We want to draw the reader's attention to two important outcomes from this simple 
consideration. First, the initial condition should be set only at sufficiently large value of 
Q2, e.g., at Q2 = Q02 ~> 1 GeV 2. Second, we cannot use the Mueller formula to calculate 

this initial condition for the nucleus using the nucleon-gluon structure function, since the 
corrections to the Mueller formula for Q2 ~ 1 GeV 2 are large. Therefore, the solution 

of the GLR equation is only reliable in a kinematic region where it does not depend 

on any initial distribution. The way out of this shortcoming is to only use the direct 
information on the gluon structure function in a nucleus. Therefore, in such an approach 

the main advantage of the Glauber formula is lost: the possibility to calculate the nucleus 

structure function from the nucleon one. This is the reason to develop a more general 
approach in the next subsection. 

4.4. The generalization o f  the Glauber approach 

We suggest the following way to take into account the interaction of all partons in a 
parton cascade with the target. Let us differentiate the Mueller formula over y = I n ( l / x )  

and ~: = ln (Q2/Q~) .  It gives 

3 2 X G A ( y ' ( )  - 2RZAQ2 [C + InK + El(K)} (99) 
OyO( ~-2 

Rewriting Eq. (99) in terms of K given by 

Ncasqr ,_, , ,-~2x 
K = 2 - - - ~ A X I - r A t X , ~ : ~  ) , (100) 

we obtain for fixed oLs 

a2~c(y,() OK(y,() Nc=s 
+ - -  - - - { C + l n K ( y ,  s C ) + E ] ( K ( y ,  s e ) ) } = F ( K ) .  (101) 

OyO,~ Oy ¢r 

Now, let us consider the expression of Eq. (101) as the equation for K. This equation 

sums all contributions of the order (c~syg:)n absorbing them in XGA (y, ~) ,  as well as all 
contributions of the order of K n. For Nc --~ to  Eq. (101) gives the complete solution 
to our problem. In Eq. (101) we neglect all contribution of the order of (asK) n and, 

] It is interesting to notice therefore, we can trust this equation for large values of K < as" 
that the contribution of the so-called enchanced diagrams, which describe the interaction 
of the fast partons with the slow ones, has an additional suppression in the case of 
the nuclear target in comparison with the nucleon one, namely, they are of the order 
C~sK/A 1/3. The nice properties of this equation are: (1) the iterations of this equation 

coincide with the iteration of the Mueller formula; (2) for K ~ 0 its solution matches 
with the solution of the GLAP evolution equations in the DLA limit of pQCD; (3) 
at small values of K (K < 1), Eq. (101) gives the GLR equation; (4) for c~sy~: ~ 1 

this equation gives the Glauber-Mueller formula that we have discussed in details; (5) 
this equation almost coincides with the equation that McLerran and collaborators [52] 
derived from a quite different approach and with a different technique. 
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Therefore, the great advantage of this equation in comparison with the GLR one is 

the fact that it describes the region of large x and provides the correct matching both 

with the GLR equation and with the Glauber (Mueller) formula in kinematic region 

where tesy~ ~< 1. 
Eq. (101) is the second-order differential equation in partial derivatives and we need 

two initial (boundary) conditions to specify the solution. The first one is obvious, 
namely, at fixed y and Q2 __.+ c~ 

Ncas~a xGGLAP ( x ' Q2) . 
K --+ 2Q2R2A 

The second one we can fix in the following way: at x = xo(y = Y0) which is small, 

namely, in the kinematic region where asy (  <<, 1 

NcOISqT 
K ---+ Kin = 2Q2R2AXGA(X,Q 2) , (102) 

where XGA is given by the Mueller formula (see Eq. (78)).  Practically, we can take 

x0 = 10 -2, since the first corrections to the MF are small at this value of x = x0 (see 

Subsection 4.1 ). However, we have to consider this initial condition with great caution, 
for two reasons. First, we did not study the sensitivity of Eq. (102) for the choice of 

x0. Second, Eq. (102) can suffer a non-perturbative contribution from large distances. 
The Mueller formula gives the infrared stable answer but in all our numerical estimates 
we trust the GRV parameterization in describing the large distance contribution. The 
HERA data shows that it does not actually work quite well for Q2 < 0.8 GeV 2. 

Strictly speaking, the initial condition at x = x0 should be taken from the experimental 

measurement of xGa(xo, Q2). We suppose to study these two points in our further 

publication, calculating FZA (x = xo, Q 2 )  and comparing it with the experiment. 

4.5. The solution to the generalized evolution equation 

4.5.1. The asymptotic solution 
First observation is the fact that Eq. (101) has a solution which depends only on y. 

Indeed, one can check that x = Kasymp(Y)  is the solution of the following equation: 

dKasymp 
dy - F ( K a s y m p )  • (103) 

The solution to the above equation is 

Kasymp (y) 

f dK I 
F(K'----~ = y -- Yo. (104) 

~C~ymv ( y=y0 ) 

It is easy to find the behaviour of the solution to Eq. (104) at large value of y since 
F(K) ---+ ~ s l n x  at large K (~s Uc = ~-aS). It gives 

Kasymp ----+ &syln(~sy)  at &sY >> 1. (105) 
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Fig. 21. The Glauber approach and asymptotic solution for different nuclei. 

At small value of  y, F(K) --+ ~SK and we have 

Kasymp ----+ Kasymp(Y = Yo) e ~s (y -y° )  • 

y=ln(lhx) 

(106) 

The solution is given in Fig. 21 for as = 0.25 in the whole region of y for different 
nuclei in comparison with our calculations based on the MF. We chose the value of 
Kasymp(Y = Y0) from Eq. (102).  We claim this solution is the asymptotic solution to 
Eq. (101) and will argue on this point a bit later. The calculations in Glauber approach 
for nucleon overshoot the asymptotic solution at large values of Q2 in HERA kinematic 
region (at x < 10-2).  However, at small values of Q2 the Glauber approach leads 
to stronger SC than the asymptotic solution. For nuclei the SC incorporated in the 
asymptotic solution turn out to be much stronger than the SC in the Glauber approach 
for any Q2 > 1 GeV 2 at x > 10 -2. In this kinematic region the solution of Eq. (101) 

is drastically different from the Glauber one. 
A general conclusion for Fig. 21 is very simple: the amount of shadowing which was 

taken into account in the MF is not enough, at least for the gluon structure function in 
nuclei at x < 10 -2 and we have to solve Eq. (101) to obtain the correct behaviour of 
the gluon structure function for nuclei. 

Now, we would like to show that the solution of Eq. (103) is the asymptotic solution 
of the new evolution equation. In order to check this let us try to find the solution to 
Eq. (101) in the form K = Kasymp q- AK, anticipating that AK is small. If it is so, the 
following linear equation can be written for Ax: 
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02AK(y'()Oy 0( + OAK(y,()Oy _ dE(K)d~ K=Kasymp(y) AK(y,() . (107) 

The general solution to Eq. (107) one can find taking the Mellin transform in respect 
to ( ,  namely 

AK(y, ()  = ~--tcrAK(y, v) e ~(~-~°) , (108) 

c 

where the contour C is taken to the right of all singularities in v. 
The substitution of Eq. (108) in Eq. (107) gives the equation 

(v + 1) dAK(y, v) _ F~(y)AK(y ' v) , 
dy 

Solving Eq. (109) we obtain where we denote U(y )  = dK K=~,~mp(Y/" 

(109) 

du d 1 
A K ( y , ( ) =  ~ K(v) exp v(G-G0)+v---q7- i- F'(y')dy' 

c yo 

= 2~AK(V)  exp v(G--  G0) + ln(F(Kasymp(Y)) , 

c 

(110) 

where function A K ( V )  should be find from the initial condition at ( = ~:0, namely 
AK(y, G = O) = O. 

To satisfy the initial condition we will find the function AK(V) from the equation 

Kasymp(Y,G = G0) = 2--~AK(V) exp F ' ( y ) d y  . (111) 

c 

In doing so we obtain 

AK(y,() = 2---~AK(v) exp f ' ( y ' )dy '  { e x p ( v ( ( -  G0)) - 1}, 

c 

(112) 

which satisfies all our requirements. 
We claim that the function 

[ / 1  f dv 1 K(y,G) = ~ A K ( v )  exp ~ F'(y')dy'  e x p ( v ( ( -  G0)) 

C Y0 A 

(113) 

is the approximate solution to the non-linear equation (101). 
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Let us check this point considering very large values of ~: and y. In the region of 

large y, f~'~ F~(yt)dyt  ---+ &s ln(~sy)  and AK(1,) ~ ~ which reproduces Kasymp --+ &sY 
at large y and ge = (0. Making use of the saddle point approximation one can see that 

AK(y, ( )  --~ e 2 ~  << Kasymp. (114) 

To give a solution able to describe the experimental data we have to adjust the behaviour 
of  Kasymp at small y (y < Y0) with the available parameterization of the gluon structure 
function, in particular with the GRV parameterization which we have been using through 
this paper as a standard one. We have not done this in this paper and we intend to publish 
the result of this calculation elsewhere. However, to estimate the effect of the SC which 
follows from Eq. (101) we solve this equation using the semiclassical approach. 

4.5.2. Semiclassical approach 
Here we solve Eq. (101) using the semiclassical approach, adjusted to the solution of 

the non-linear equation of Eq. ( 101 )-type in Refs. [ 1,53,54]. For simplicity, we assume 

that as is fixed. 
In the semiclassical approach we are looking for the solution of Eq. (101) in the 

form 

K = e s , (115) 

where S is a function with partial derivatives: ~ = o~ and ~ = y which are smooth 
function of y and ~:. It means that 

oZs aS aS 
- - < < - - - - =  wy .  (116) 
a(ay ay a (  

Using Eq. (116), one can easily rewrite Eq. (101) in the form 

aS OS + aS = e_SF(eS) = @( S) (117) 
ay a~: ay 

o r  

o~(y + 1 ) = ~ ( S ) .  (118) 

We are going to use the method of characteristics (see, for example, Ref. [56] ). For 
equation in the form 

F ( ( ,  y,S,  y, co) = 0 ,  (119) 

we can introduce the set of characteristic lines (st(t),  y ( t ) ,  S( t) ,  w( t ) ,  y ( t ) ) ,  functions 
of the variable t, which satisfy the following equations: 

d (  Fr,  dy dS 
dt dt F~ dt T F ~ + ~ F ~ '  

dy  dw ( F v +  w F s ) ,  
d--~-=-(F~+ y F s ) ,  dt - " (12o) 
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where F~ = ~F(~: ,  y, S, )', ~o) etc. Eq. (120) looks as follows for the case of  Eq. ( 118): 

d f  dy dS 
- - = o ,  - - = ) ' + 1  - -  = w ( 2 ) ' +  1) ,  
dt dt ' dt 
d)" dw 
d--7 = ~ ) ' '  d---t- = @~w, (121) 

where @} = oe ~ .  For practical purpose it is better to rewrite the set of Eqs. (121) in the 
form 

d~ oJ dS (2";,+ 1) dy qy Y 
- - -  = o ~  - -  - -  = ( 1 2 2 )  

dy ) ' + 1 '  dy ) ' + 1  ' dy s )" + l 

Using Eq. (118), Eq. (122) can be rewritten 

d__~(= ~ ( S )  d S _  2 ) ' + 1  q~(S" d y = ~  )" (123) 
dy (3/+ 1) 2,  dy ( - y T ] )  i " ) '  ay + 1  

The initial condition for this set of equations we derive from Eq. (102), namely 

a In Kin(Y0, ( )  ~=(0 SO = In Kin (Y0, ~:0) , )'0 -- 0~: " (124) 

Let us discuss the main properties of the solution before numerical calculations. The 
first observation is that ~/'~ < 0 and ~ ( S )  > 0 for all values of S. From the second 
equation of the set (123) we see that S decreases along all trajectories with 3 /<  - 1 / 2  
and increases for trajectories with )" > - 1 / 2 .  Thus, it is useful to study the qualitative 
behaviour of  the trajectories for two different regions of the initial condition. Namely, 

for 3/0 < - 1/2 and for 3/0 > - 1/2. 
From the third equation of the set (123), we notice that ~ > 0 for all )" < 0. It 

means that 3' grows with y starting from Y0. However, for )" > 0, ~ < 0 and 3/starts 
to fall down. In both cases, for 3/o > - 1 / 2 ,  S goes to infinity as y grows, and q~} and 

L 

the derivative go to zero. Thus, we can conclude that 3' --+ 0 as y --~ c~. 
It is useful to study closer what is happening at small % 
From Eqs. (123), we can write 

dS 2) '+ 1 ~ (  S) 
a)" )'()" + 1) ~ ( s )  (125) 

or 

d l n ~  2 ) ' +  1 
d)" ) ' ( ) '+  1) ' (126) 

which has the solution 

f )'()" + 1) 
q~(S) = q~(So) \Y0--~oH--1) ) " (127) 

For small {)'] the solution of Eq. (127) is correlated with large values of S, since 
~b(S) has maximum at S = So and decreases at S > So. On the other hand, at large S, 
~o~ --+ - ~ ( S ) .  Substituting this relation in the third equation of (123), we obtain 



346 

a(y/yo) 
dy 

whose solution is 
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o r  

~(So) y2 
Y0 + i y0 z ' 

(128)  

Therefore, we see that y approaches y = 0 at large y for Y0 > - 1 / 2 ,  either for y posit ive 

or negative. 

In order to find the solution of  whole set of  Eqs. (123) at large values of  y we use 

the fact that y << 1. Indeed, neglecting y in comparison with 1, Eqs. (123) are reduced 

t o  

dS 
S -  So = ( - ( o ,  - -  = ~ ( S ) .  (131)  

dy 

Rewri t ing the second equation in terms of  the function K = e s we have 

dK 
- -  = F ( K ) .  (132) 
dy 

The solut ion of  this equation is K = •asymp- The first equation gives the equation for 

trajectories and at y >> Y0 we have 

( - (0 = In (/~asymp ~ ----+ l n & s ( y  - Y0) + l n l n & s ( y  - Y0)- (133)  
\ K / 

These trajectories are the same as the trajectories of  Eq. (107) .  The simplest  way to 

see this is jus t  to find the saddle point  in the solution of  Eq. (110) .  

Therefore the qualitative picture o f  the trajectories looks as follows. At  small values 

of  y - Y0 we can start from initial condit ion in which e s° << 1. In this case @s0 ~ -eS°' 
e s° << 1 and y remains close to Y0 in the large interval of  y - y0. For these values 

of  y - Y0, S grows as a function of  y and this grows leads <b} to approach zero. This 

behaviour is reflected in the decrease of  y versus y - Y0. Finally, at very large values of  

Y - Y0 we approach the asymptotic solution for large region of  ~:. 

Now we will  study the qualitative behaviour of  the trajectories of  Eq. (123)  for 

y < - 1 / 2 .  As we already know, S decreases along all trajectories with y < - 1 / 2 .  As 

S goes to negative values, ~ ( S )  goes to Nco~s/~r and ~} goes to zero from negative 

values. It means that d y / d y  > 0 but tends to zero as y grows. Thus, y increases and 

tends to a constant. As S decreases, the value of  K goes to zero. This behaviour is 

enhanced for Yo closer to - 1 .  We will  show below that this solution approaches the 
] 

solution of  the GLAP equation in D L A  for Y0 < - 7 "  

Let us recall that in the GLAP equation ~ '  = 0 and ~/,(S) = Nc~,s Thus, the set of  
S "n" " 

equations (123)  can be rewritten in the form 

y 1 
m 

To ~(s°) c- (130)  
7'o+1 " y  - -  YO) + 1 

1 ~0(So) 
-y/y----~ + 1 = - - - ( Y Y 0 +  1 - Y o )  (129)  
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dG _ Ncas 
dy ~ ( y o + l )  z '  

dS Ncces 2 7 o + 1  
dy 7r (Yo + 1) 2 ' (134) 

where 7o is the initial value of the 7 which does not change along the trajectory. The 
solution of Eq. (134) is 

Nc o~s 
( - Go = zr(y ° + 1) z (Y - Yo), 

Ncas 
S - So = ~r('y0 + 1) 2 (27o + 1) (y  - Yo), (135) 

o r  

T o +  I=INc°LsY- -Y°  
~-Go' 

S -  So = - ( G -  Go)+  2 ; N c a s  ( G - ( o ) ( y -  Yo). (136) 

The above expression is the solution of DLA equation for K. From Eq. (135) we see 
that K in the DLA approximation goes to zero for To < - I "  

In the region of the double log approximation we consider 

Nco~s (G - Go)(Y - Yo) ~ 1, (137) 
7/" 

NCO~S while ~ ( ( -  G0) << 1 and Nc~s~ ( y _  Y0) << 1. Therefore 

1 
T 0 + l  ~ ~< 1. (138) 

( - Go 

We set the initial condition y = Y0 = 4.6 (XB = 10-2), where the shadowing correction 
is not big and the evolution starts from Y < 0. In this case dy/dy > 0 and the value 

of Y increases. At the same time dS/dy < 0 and S decreases if 70 < " I "  With the 
decrease of  S, the value of ~ becomes smaller and after short evolution the trajectories 
of the non-linear equation start to approach the trajectories of the GLAP equations. We 
face this situation for any trajectory with 70 close to - 1 .  I f  the value of 70 is smaller 
than  _ 1  but the value of So is sufficiently big, the decrease of S due to evolution 
cannot provide a small value for qs~(S) and Y increases until its value becomes bigger 
than _ I  at some value of y = Yc. In this case for y > Yc the trajectories behave as 
in the case with 70 > -½.  For 70 > --1, the picture changes crucially. In this case, 
dS/dy > O, dy/dy > 0 and both increase. Such trajectories go apart from the trajectories 
of the GLAP equation and non-linear effects play more and more important role with 
increasing y. These trajectories approach the asymptotic solution very quickly. 

For the numerical solution we use the fourth-order Runge,  Kutta method to solve our 
set of equations with the initial distributions of Eq. (124). The result of the solution is 
given in Figs. 22 and 23. In these figures we plot the bunch of the trajectories with 
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Fig. 22. The trajectories and contour plot for the solution of the generalized evolution equation for N. 
R = xG(x ,  Q2) (generalized equation)/xG(x, Q2) (GLAP). 
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Fig. 23. The trajectories and contour plot for the solution of the generalized evolution equation for Ca and 
2 2 Au. R = xG( x, Q ) (generalized equation) /xG( x, Q ) (GLAP). 

different initial conditions. For the nucleon (Fig. 22)  we  show also the dependence of  Y 
along these trajectories. One can notice that the trajectories behave in the way which w e  
have discussed in our qualitative analysis. It is interesting to notice that the trajectories, 
which are different from the trajectories of  the GLAP evolution equations, start at 
Y = y0 = 4.6  with the values of  Q2 between 0.5 GeV 2 and 2.5 GeV 2 for a nucleon. 
It means that, guessing which is the boundary condition at Q2 = Q2 = 2.5 GeV 2, we  

can hope that the linear evolution equations (the GLAP equations) will  describe the 
evolution of  the deep inelastic structure function in the limited but sufficiently wide 
range of  Q2. In other words, w e  can repeat the trick done in Subsection 4.3 deriving 
the GLR evolution equation for nucleus. 

In Figs. 22 and 23 w e  plot also the lines with definite value of  the ratio (horizontal 
l ines) 
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Fig. 24. The trajectories and contour plot for the solution of the GLR evolution equation for N, Ca and Au. 
R = xG(x, 02 ) (GLR)/xG(x, Q2) (GLAP). 

R= 
xG ( x, Q2 ) (generalized equation) 

xG(  x, Q2) ( G L A P )  

These lines provide  a way to estimate how big the SC are. One can see that they are 

rather big. 
We have discussed only the solution with fixed coupling constant which we put  equal 

to a s  = 0.25 in the numerical  calculation. The problem how to solve the equation 

with running coupling constant is still open. The GLR equation is the l imited case of  

the general one when we consider only the first two terms in the expansion of  F ( x )  

with respect  to K. In Fig. 24 we picture the trajectories and contour plot  for the GLR 

equation. One can see that the GLR equation gives stronger SC that the generalized 

evolution equation. However, for nucleon the difference becomes sizable only at very 

small values of  x out of  the HERA kinematic region. 

We would l ike also to stress the fact that our asymptotic solution turns out to be quite 

different from the G L R  one. The GLR solution in the region of  very small x leads to 

saturation o f  the gluon density [ 5 3 - 5 5 ] .  Saturation means that K tends to a constant in 

the region of  small x. The solutions of  Eq. (101)  approach the asymptotic solution at 
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x ---+ 0, which does not depend on Q2, but exhibits a sufficiently strong dependence of 
K on x (see Fig. 21). 

5. Conclusions 

(1) The Glauber approach to the gluon structure function in a nucleus, suggested 
by Mueller in Ref. [ 19], has been developed and studied in detail. Using the GRV 
parameterization for the gluon structure function in a nucleon, we calculated the value 
as well as the energy and Q2 dependence of the gluon structure function in a nucleus. 
It is shown that the shadowing corrections are important in the region of small x and 
crucially changed the value and anomalous dimension of the nuclear structure function, 
unlike the nucleon one. The interesting observation is the fact that the average anomalous 
dimension for Q2 bigger that 1 GeV 2 does not exceed ½ for nuclei. This fact makes the 
application of the GLAP evolution equations much more reliable in the case of nuclei 

than for a nucleon. 
(2) The corrections to the Glauber approach have been investigated in a systematic 

way and it turned out that they are essential and should be taken into account. A 
QCD technique has been developed to go beyond the Glauber approach and a new 
evolution equation for nuclear structure function has been derived in perturbative QCD 
(see Eq. (101)) .  

(3) The new evolution equation was solved in the semiclassical approximation and 
the main qualitative properties of the solution were discussed. In particular, it was shown 
that this solution does not lead to the saturation of the gluon density but manifests a 
strong dependence of the gluon density on x. We consider that this solution can provide 
a self-consistent interface between "soft" high energy phenomenology and "hard" QCD 
physics, since the resulting x-dependence of the solution to the new evolution equation 
turns out to be rather mild (coinciding with the expectation from the so-called "soft" 
pomeron contribution (~)'~°ft with esoft ,-~ 0.08). Surprisingly, the solution of the GLR 
equation gives a very accurate approximation to the solution of the new evolution 

equation in the HERA kinematic region. 
Several problems remain beyond the scope of this paper. First, we described the parton 

cascade in the GLAP evolution at low x, or in other words, in double log approximation 
of perturbative QCD (DLA). At first sight it is a controversial assumption since the 
DLA works rather badly in the accessible region of x and should be replaced by the 
BFKL dynamics at very small values of x. We found a possible way out of this difficulty 
since the SC change the value of the anomalous dimension in such a way that it does 
not reach the value of ½ where the BFKL equation should be taken into account. It 
means that the SC come first and the BFKL evolution will never develop. We consider 
this result as a plausible explanation why the BFKL evolution has not been seen yet 
in nucleon data at HERA. The experiments with nuclei will certainly shed light on this 

problem. 
The second problem that we have not discussed in this paper is the corrections to 
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the Glauber approach due to the self-interaction of the partons belonging to different 

branches of the parton cascade. We suppose to do this in further publications using the 

general approach proposed in Ref. [39].  

A certain limitation of all calculations in the paper is the fact that we used only the 

GRV parameterization of the gluon structure function in the nucleon. We would like 

only to recall that the goal of the paper is not to provide a reliable prediction for an 

experiment but rather to study the mechanism and the size of the shadowing corrections. 

Therefore, the GRV parameterization was a tool for our theoretical experiment which is 

based on the available experimental data and on the GLAP evolutions. Nevertheless, we 

intend to test other parameterizations in the nearest future. 

We also used the simplest assumption for the nucleon density in a nucleus, namely, 

the Gaussian one. The calculation with a more general parameterization of the nucleon 

density will come out soon. 

We hope that our paper will convince the reader that the SC are essential for the 

gluon density in a nucleus, and that the Glauber approach, in spite of the fact that it 

is widely used, is not enough both from the phenomenological and theoretical point of 

view. Fortunately, QCD gives us the first example of how to treat the corrections to the 

Glauber approach theoretically. 
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