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Abstract: The nucleon matrix elements of the charge commutation relations are con-
sidered for arbitrary momentum. The resulting expression is exact.The high-mo-
mentum limit reduces to the Alder-Weisberger sum rule. For zero momentum

one obtains the known low-energy result together with a closed expression for the
correction.

1. INTRODUCTION

The commutation relations of the SU3 X SU3 (or SU2 X SU2) charges [1]
have been used successfully to derive sum rules and low-energy theorems.
The well-known Adler-Weisberger sum rule is most easily obtained by di-
rectly employing the commutation relation taken between proton states at
infinite momentum [2]. Low-energy theorems, on the other hand, are con-
ventionally derived by considering off-shell amplitudes of time-ordered
products in the limit of vanishing four-momentum of the 7-meson. The off-
shell amplitude is obtained using an interpolating 7-meson field defined by

0% () = 5 M%) M
Jamq

where A%(x) (@ = 1,2, 3) is the axial current operator and numerically
Jr = LM,. The commutation relations then provide the desired generalized
Ward-identities. The low energy results obtained in this fashion must, of
course, be connected with the quantities taken at the physical value of the
pion momentum, as is described in an enlightening paper by Fubini and
Furlan [3]. A close look at the relevant formulae then reveals that by such
a procedure one simply comes back to the charge commutator, but taken
between states of finite (or zero) space momentum [4,5]. The entire physi-
cal content of the charge algebra should be directly obtainable from the
matrix elements of the commutators.

In this note we study the SU2 X SU2 charge commutator between nucleon
states of arbitrary momentum. Fubini considered this matrix element under
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the assumption of commuting current divergences. We shall show that it is
possible to avoid this assumption. It turns out that the disconnected contri-
butions are decisive for small space momentum. As expected from the above
discussion we find a close connection with Weinberg's formula [2] for the
scattering lengths for pions on protons and - of course - with the Adler-
Weisberger result for GA/Gy.

2. THE CHARGE COMMUTATOR
We discuss the commutator relation

Lim o' [a%x af+720x, 00,4520 1) = 20| V() [) (2)

where p denotes a proton state of space momentum p. The limiting proce-
dure p'—p is necessary since strictly speaking the space integrated
charges f adx A‘O"(x, t) do not exist but may be used between wave packet
states.

It is practical to separate the axial current operator into a longitudinal
and a transversal part:

ACY ___AC!,L Aa,T ,
L @) =47 + y @

a,L _1 Agqa

A“ (x) = 5 8“ 3 A>L (x), (3)
a, T _AQ 1 A

A“’ (x) -A“(x) -3 8“8 A)\(x) .

The longitudinal part carries zero angular momentum and its matrix el-
ements contain the 7-meson pole. The transyversal part carries angular mo-
mentum one and the matrix elements of A8‘ ’ T(x) vanish in the limit of zero
space momentum transfer. The singularity at four-momentum transfer zero
causes no difficulty. Only the neutron intermediate state in eq. (2) contri-
butes to it and can, of course, be treated separately. For simplicity we
take the mass of the neutron slightly larger than the one of the proton.

Defining the meson source function Jg (x) by

2\«
72 = O+mDe2 () (4)
we may write from definitions (1) and (3)

2
L Sami 1
AT = - f72), Gofn() 366N + T P p 0,7 . (8)
The free-field part of eq. (5) will appear in eq. (2) multiplieq with the
principal value term containing the 7-meson pole. Only the 7tp and 7¥p in-
termediate states contribute to these special "disconnected diagrams"
which we denote by D.
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We use the abbreviations and normalizations

k=p' -p, ko=\/m727+k2, pozw/M12)+p2’
AE=pl-py, o P=gisigy, 025 =va@Ent,
m=2My, @19 =26%(p'-p), (-1 =iDe*r-p1) . (7)

The scattering states in eq. (6) are the averages of "in" and "out" states.
Time reversal invariance can be used to bring the one-particle states to one
side of the operator J;.

Evaluating the limit in eq. (6) one sees that it exists and is independent
of the direction in which k goes to zero. To describe the result we introduce
the non spin-flip "scattering™ matrix elements averaged over spin

Re Tys = 20 L ') 520 )

1
+

1 Re [A,(s, t,u)(@y, up) + By(s,t, 1)@y, vquy)} , (8)

§=-3

where s, f,u are independent variables:

s=0"+q)%, t=0"-p?, u=(-972, ©)
with
p2=p?-m2,  g¥-m?.

The limiting procedure (6) leads to two parts. The first part (D1) is sim-
ply proportional to the difference of the forward scattering amplitudes:

£y

27 2m

D]_(Z’) = Re (T -- T7T+)p =$,q=0 - (10)

The second part (Dg) contains derivatives obtained from the variation of
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the proton and meson momenta as prescribed in eq. (6) and therefore it is
not a true scattering matrix element.

2
Gl 0
Da(p) = -% 2M, [(po +my) 55 - (b - my) 52;} Re(A_+A,)
p 9 3 1

In the differentiation the meson mass q2 = m% is, of course, kept fixed.
Interestingly, the right-hand side of eq. (11) can also be written as the deri-
vative of the "forward scattering” matrix elements Tyyu(p,q) = Tr+(p'=p,
9=0, go) with respect to the "variable" g, occurring implicitly in

2 2 2 9
s=Mp+2p0qO+ 40s ”sz'w’oqo"qo ,
and explicitly in the covariant (Zprqup):
D (1>>=-ﬁl 50 Re(Ty-(0,4) - Tre(p,4) (12)
2 2m 2 3gq, T T qo="g

Thus, the wave packet approach p' — p with fixed q2 = m72T may be replaced

by a definite infinitesimal continuation in the (kinematical) 7-meson mass.
From eqs. (10) and (12) we obtain

_f2 5 2y Re(Ty=(p,q)-Ty+(5,0)
D(p) ==L |(1 -2 =) o ]qo o

(13)

Let us now turn to the remaining terms of eq. (2). Inserting eq. (5) with-
out the free fields this contribution can be written

f2mh +o dg q.+AE
Cp) = lim -1 p | —9——0———-—2—
k-0 27 9 (qo+AE2 -k

Mﬂ'(q():q:O’ p';p) - M7r+(‘QO = AE; q='k,P',P)

% . (14)
(62 - m2) ((go+ AB)? - K2 - m?]

where
Mys(a,0,0) = [ dx €7 (o172 20 1E520)]p) - (15)

The principal value integral (14) contains two singularities which are sep-
arated as long as k # 0 and in which one may put p' = p(i.e. kK =0, AE =0)
everywhere except in the last denominator. It can also be written as the real
part of a quantity having an integrand with a double pole slightly shifted off
the real axis *. Thus
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C(p) = Nznﬂ Re 0] 1

S SR .
@ (qg—m%ne)z{ (90,0 - M_+(a,5,0)} . (16)

Using the Lorentz-invariant variables v = P+ q and qz this result takes the
form

72 4 a2
Clp) ==" mt p_Re I S
27 mTO o V2 (q2 _ m%_’_ ie)z

<o(¢ - ()) 0, o) - M) am

We are now able to write the charge commutation relation (2) in a form
valid for all space momenta of the outside proton state
T -6,9) - T_+(p,q)

2v ]q:O,q():mW

(211)2 f72, [(1 - m,z, %) Re
995

2
dq2 5(q2 - r
2 n e 2 (qz _m%H-E)z

(M_a?,v) - M_4(a%,v))

2% _
P

We extracted the neutron intermediate state from the integral; the thresh-

old is now v, =1>0(\/(Mp+m7,)2 +p7 - \/M%+p2). The weak coupling constant

ratio Gp /GV and f; are connected by the Goldberger-Treiman formula
which with our normalization reads

Ga

_4a (18)
Gy

5V-=‘7,[p—, (19)

where gz(m%)/% =14.6 and g(0) ~ 12. According to its definition in eq. (15),
Mﬂi(qz, v} can formally be expressed as a fictitious total cross section for
a m-meson with kinematical mass ¢2 and laboratory energy 1//Mp scattered

on a proton:
[2_ 2272
vE-qo My 4ot

3 7Ti (q2’ V)- (20)

2 .
Moala®v) = ——

This 'total cross section' includes however disconnected contributions - dif-
ferent from the 7-meson part - at least for finite proton momenta.

* Since M(qo) has a square root dependence at 9, = my for p =0 this statement holds
only as long as p # 0. In the subsequent formula p = 0 can, however, be reached by
the simple limiting procedure p — 0.



32 D.DILLENBURG et al.

The first term in eq. (18) vanishes for p, — < and thus the integral should
exist in this limit. Naively taking the limit under the integral we obtain the
Adler-Weisberger formula

2p2 ; B 10'%0, 1) - %0, ] +

Mmy +3ms

‘ (21)

We now consider the oppos1te extreme, i.e., p =0. In this case only in-
termediate states of total spin 3 and negative parity contribute to the inte-
gral in eq. (18). Since the integrand goes as v ~° a very rapid convergence
is to be expected. More important, the small meson mass further suppres-
ses the value of the integral, An appreciable contribution to it could only
come from the integration region in which ¢, /mn is of order one. Neglect-
ing at present this part and also the derivative part in eq. (18) we obtain
for p = 0 Weinberg's formula

A=~ Gpt SO 1 22)
2m, 87rf727 1+ m, /Mp’
where we have introduced the scattering lengths
7
a x —W T +(P=0, 4, =my). (23)

Eq. {(22) is in fair agreement with experiment., The 7-meson disconnected
contributions saturate the sum rule almost completely! For zero m-meson
mass this saturation would be exact provided no 3 baryon state were de-
generate with the nucleon in the same limit.

To obtain a rough estimate of the correction to the low energy result (22)
one may calculate the integral contribution by substituting for M(qo) its
functional form near threshold [3]

My 2 20 /5 3 o
M..(P—* quo) - M+(p_) O’QO) ~ ‘g"_; (a%'a%) qcz) = m%+0(p2)- (24)
m

The quantmves ai and aj are the scattering lengths for isospin quantum
numbers 3 and respectlvely With this form for M(q,) the integral in
eq. (18) takes the value (for p — 0)

_Eay2 (aé-az)

giving a 10% correction in the right direction. One more correction is due
to the derivative part in eq. (18). It may be estimated by simple models and
it is expected to be small.

3. CONCLUDING REMARKS

To see the connection of formula (18) with the usual low energy limit
one may consider the function
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f2
X(@3) = X% )| g g = (-aP+m e 5L (25)

1+12

x 7 1im Re [ate it |7 {67200 61 200 - 0" 20 0T (00 P,

p'—p
Using the same procedure which led to eq. (18) one obtains

X
X(g?) = X(m2) + (g% -m2) o2
(o]

me
m

2 22 (271)2f2 © dgy M _-(a',p) - M_+(q',D)

+ (g - m7) Re [
© 2p° o q(')z 2

. (26)
(qc')2 - m% +ie)2 q=0

The quantity X(q ) is thus the Fourier transform of the time ordered prod-
uct of the meson source functions j (x) twice subtracted at the point
qg =m%. The subtraction constants X(mﬂ) and (8/8(1 )X‘ 72r are proportional
to the first and second term in D [eq. (13)]. They arise from the discon-
nected 7-nucleon intermediate states

Comparing then eq. (26) with eq. (18) one has

X(0) =1, 27

which is the low-energy theorem also obtainable from eq. (25) by partial
integrations.

Eq. (27) expresses in a covariant form the content of the charge algebra.
The insertion of a complete set of intermediate states gives eq. (18) where
the choice of the frame enhances or suppresses the contribution from the
on-shell strong interaction scattering amplitude to the sum rule.

We have seen that the straightforward use of Gell-Mann's commutation
relation between states of arbitrary momenta leads to a single formula
combining the low- and high-energy results of the charge algebra. Addi-
tional commutation relations involving divergences are not needed; if pos-
tulated, they may, of course, be treated in an analogous way.
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