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Extensive Monte Carlo simulations and scaling arguments are used to study the colloidal charge
reversal. The critical colloidal surface charge density �c at which the reversal first appears is found
to depend strongly on the ionic size. We find that �c has an inflection point as a function of the
electrolyte concentration. The width of the plateau region in the vicinity of the inflection point
depends on the temperature and the ionic radius a. In agreement with the theoretical predictions it
is found that the critical colloidal charge above which the electrophoretic mobility becomes reversed
diverges as Zc�1 /a2 in the limit a→0. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2982163�

I. INTRODUCTION

A common way to stabilize colloidal suspensions against
flocculation and precipitation is by synthesizing particles
with acidic groups on their surface. When placed in water,
these groups dissociate and colloids acquire a net negative
charge. In aqueous suspension containing only monovalent
electrolyte, the long range Coulomb repulsion prevents the
colloids from approaching one another to distances for which
the short range van der Waals interaction can lead to an
irreversible sticking and precipitation. However, when beside
the 1:1 electrolyte, suspensions contain some multivalent
counterions, a number of curious and very counterintuitive
effects can take place.1 For example, it has been observed
that in such suspensions two like-charged colloidal particles
can attract one another.2–16 This attraction is not a result of
the van der Waals interaction, but rather a consequence of
strong positional correlations between the multivalent coun-
terions surrounding the colloidal particles.17–21 The mecha-
nism of this attraction has been studied extensively, yet a
fully predictive theory of this phenomenon still remains elu-
sive.

Another curious effect observed in dilute colloidal sus-
pensions containing multivalent counterions is the reversal of
the electrophoretic mobility.1,22–24 Since the bare charge of
colloidal particles is negative, when the electrostatic poten-
tial gradient is established in the suspension, one naturally
expects that the particles should move in the direction oppo-
site to the established electric field. Yet, what is often found
is quite the opposite—particles drift in the direction of the
field.25–27 The reversal of the electrophoretic mobility is a
consequence of strong electrostatic interaction between the
colloidal particles and the multivalent counterions.28–30 As a
consequence of this coupling, some counterions become as-

sociated �condensed� with the colloidal particle. The posi-
tional correlations induced by the electrostatic repulsion be-
tween the condensed counterions can lead to colloid-
counterion complexes which are overcharged �charge
reversed�—the number of condensed counterions can actu-
ally be larger than is necessary to completely neutralize the
colloidal charge.1,31–35 If this happens, the electrophoretic
mobility of colloidal particles will be reversed. While there
are some theories which qualitatively account for this curi-
ous behavior, no fully predictive approach is yet available.34

In this paper we will use extensive Monte Carlo �MC� simu-
lations to explore two aspects of this problem—the depen-
dence of the minimum colloidal charge at which the reversal
of the electrophoretic mobility takes place on: �one� the con-
centration of the multivalent z :1 electrolyte and �two� on the
ionic size.

II. THE MODEL AND SIMULATIONS

The electrophoretic mobility, in general, is a complicated
nonlinear function of the electrokinetic � potential.36,37 For
small � and large ionic strengths, however, the relationship
between the two is linear and is given by the Smoluchowski
equation.36,38 A change in the sign of the � potential will,
therefore, lead to the reversal of the electrophoretic mobility,
which we will also associate with the overcharging �or the
charge reversal� of the colloidal particles. In principle, the
overcharging �charge reversal� and the reversal of the elec-
trophoretic mobility are two distinct concepts—one is static
and the other dynamical. In practice, however, the definition
of charge reversal carries some ambiguity. The general
trends, such as the behavior of the effective charge and of the
electrophoretic mobility as a function of, say, the ionic size
or electrolyte concentration are very similar in two cases.39

We will, therefore, use the two concepts interchangibly. For a
fixed electrolyte concentration, the value of the colloidal
charge at which the �-potential vanishes will be designated
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as the critical colloidal charge. Our goal is to find the de-
pendence of this charge on the ionic size and the electrolyte
concentration.

We consider a diluted aqueous mixture of colloidal par-
ticles inside a z :1 electrolyte. The spherical colloidal par-
ticles have radius R and surface charge −Zq, where q is the
elementary charge. For each colloidal particle there are Z
monovalent counterions. All the ions are modeled as hard
spheres of radius a with the charge +zq �electrolyte counter-
ion�, −q �electrolyte coion�, or +q �colloidal counterion� at
their centers. The solvent is treated as a continuum of dielec-
tric constant �. The relative strength of the electrostatic in-
teractions, as compared to the thermal energy, is measured
by the ratio of the ionic radius to the Bjerrum length, �B

=q2 /4��kBT.
As was argued in Ref. 39, the value of the � potential

may be associated with the electrostatic potential at the ef-
fective shear plane removed from the colloidal surface by
one ionic diameter.40 Since the maximum of the electrostatic
potential also occurs at approximately the same position, the
precise location of the shear plane does not influence
strongly the value of the �-potential. In this respect, our ap-
proach is quite similar to the one adopted by Bjerrum for
simple electrolytes.41,42 The static potential at the effective
shear plane can then be calculated using the canonical MC
simulations.39 Recent simulations show the basic correctness
of this picture for normal wetting surfaces.37,39 Working with
�-potential is also advantageous as compared to defining the
effective charge in terms of condensed counterions located
within a sheath surrounding the colloidal surface. Such defi-
nition carries a large degree of arbitrariness, since the con-
densed counterions will in turn drive a coassociations of
coions. The effective charge will then be strongly sensitive to
the precise value of the sheath width. This is not the case for
�-potential, which under the same conditions develops a
maximum near the colloidal surface which diminishes its
sensitivity to the precise location of the shear plane. Further-
more, since the �-potential is calculated by integrating the
electric field over the whole space, it already takes into ac-
count the layering effect that hinders the geometrical defini-
tion of the effective charge.

A colloidal particle is fixed at the center of a cubic simu-
lation box of side length L and is surrounded by the counte-
rions and coions, the number of which satisfies the overall
charge neutrality. We define C as the molar concentration of
the z-valent counterions derived from the dissociation of z :1
�strong� electrolyte—assumed to be fully dissociated in an
aqueous environment. The electrostatic interactions are com-
puted using the Ewald summation method43 with 518
Fourier-space wave vectors and a real-space damping param-
eter �=5 /L.

Two types of MC moves were utilized—ion transfer to a
completely new random position inside the simulation box,
which is useful for low salt concentrations, and a small linear
displacement for high salt concentration, in order to give the
standard acceptance ratios for the Metropolis algorithm. The
number of microions in each simulation was varied from
approximately 50 up to 3000 particles, depending on the mo-
lar salt concentration and the box length. Typical runs in-

volved 107 MC steps for equilibration and 108 steps for pro-
duction. After equilibration, the average number of
counterions and coions in concentric spherical shells of equal
thickness around the colloid were accumulated in order to
obtain the density profiles �i�r�. The mean electrostatic po-
tential at distance r from the colloidal particle is then calcu-
lated as

��r� = �
r

	

dr�E�r�� =
q

4��
�

r

	

dr�
P�r��
r�2 , �1�

where E�r� is the electric field and P�r� is the integrated
charge �in units of q� within a distance r from the center of
the colloidal particle,

P�r� = − Z + �
R

r ��
i

zi�i�r��	4�r�2dr�, �2�

where i refers to the type of the microion. Since the typical
integrated charge rapidly decays to zero,39 the upper cutoff in
Eq. �1� is taken to be L /2. Following Ref. 39, the shear plane
was located at one ionic diameter from the colloidal surface,
so that �
��Rs�, where Rs=R+2a.

III. SCALING ANALYSIS

The model presented in the previous section is quite
complex, with a number of distinct length scales. To organize
and interpret the data of the MC simulations we shall, there-
fore, appeal to the dimensional and scaling analysis. There
are five basic length scales: R, L, a, �B, and C−1/3. Since we
are interested in very dilute suspensions, L→	. Although
this limit cannot be achieved in the simulations, our box size
was always taken to be sufficiently large so that critical col-
loidal charge −Zcq did not have any explicit dependence on
L. We are, therefore, left with four relevant length scales, so
that for a fixed z :1 electrolyte, Zc is a function of only three
dimensionless ratios,

Zc = f� a

R
,

a

�B
,�BC1/3� , �3�

where f�x ,y ,z� is a scaling function. Furthermore, we note
that when the Debye length, 
D=1 /
4��B�z2+z�C, is suffi-
ciently short, R /
D�1—which is almost always the case
near the isoelectric point—the curvature effects will be
screened, and the critical colloidal charge must be propor-
tional to the colloidal surface area. This means that

Zc =
4�R2

a2 g� a

�B
,�BC1/3� . �4�

We conclude that for sufficiently large salt concentrations,
the reversal of the electrophoretic mobility will take place
when the modulus of the colloidal surface charge density,
�
Zq /4�R2, is larger than the critical value �c, which de-
pends on the Bjerrum length, ionic radius, and the concen-
tration of electrolyte through the scaling function g�x ,y�,
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�c =
q

a2g� a

�B
,�BC1/3� . �5�

The similarity transformation, Eq. �5�, is particularly useful
when one wants to obtain the critical surface charge density
for suspensions with large concentrations of electrolyte. In
these cases, the direct MC simulations become extremely
slow due to large number of microions which must be used
to simulate a dilute colloidal suspension in the L→	 limit.
However, Eq. �5� tells us that this critical surface charge
density can also be obtained by simulating a much smaller
system at a slightly lower temperature and with a somewhat
larger microions. For example, suppose that we want to find
the critical surface charge density of colloidal particles inside
a dilute suspension at room temperature, �B=7.2 Å, contain-
ing 3:1 electrolyte at concentration C=1M, with ions of ra-
dius of 2 Å. Instead of doing the direct simulation of this
system, we can simulate a “similar”system with say half the
number of microions, C=0.5M, at a slightly lower tempera-
ture, �B=7.2�21/3=9.07 Å and with ions of radius of 2
�21/3=2.5 Å. From Eq. �5�, the critical charge of the origi-
nal system �at concentration C=1M� will be 22/3 times the
critical charge of the similar system. The latter simulations,
however, are much easier to perform since the number of
microions involved is much smaller.

In Refs. 44 and 34 it was argued that the critical surface
charge density is determined by the work that must be per-
formed to transfer a multivalent counterion from the bulk
electrolyte to the colloidal surface. In particular, it was found
that �c��
��2, where 
� is the change in the ionic solva-
tion free energy between the bulk and the colloidal surface.44

In the limit of vanishing a, 
� diverges as 1 /a. This diver-
gence is a consequence of Bjerrum pairing of oppositely
charged ions in the bulk electrolyte.1,41,45 The critical surface
charge density, therefore, diverges as �c�1 /a2. Thus, the
scaling function with x=0, g�0,y�, should be constant for all
values of y. For small, but finite values of x, we expect to see
a deviation from this behavior in two limits: When the en-
tropic effects begin to dominate the electrostatics C1/3�B

�0.5 and when the hard-core repulsion begins to dominates
everything, C1/3a�0.2.

IV. RESULTS AND DISCUSSION

In Fig. 1 we show the �-potential as a function of the
colloidal charge density for a suspension containing 3:1 elec-
trolyte at a molar concentration of C=0.1M. The radius of
the colloidal particle was fixed at R=30 Å, while its charge
Z was varied. Most of the simulations were performed with
the boxes of side length L=120 Å, which is large enough to
produce very small colloidal volume fractions, thus, mini-
mizing the influence of the periodicity on the ionic distribu-
tion. However, for low salt concentrations we increased the
box length to L=150 and 210 Å, in order to increase the
number of particles and to obtain a better statistics of ion
distribution around the colloid.

For weakly charged colloidal particles the increase �in
modulus� in the surface charge density was accompanied by
a uniform decline of the � potential �� accompanied the col-

loidal charge and became more negative�. However, when
the colloidal charge became sufficiently large, counterion
condensation became important and � increased as a function
of the bare colloidal charge, becoming positive for suffi-
ciently strongly charged colloids, see Fig. 1. To accurately
determine the critical colloidal charge density �c at which
�=0, we used a linear interpolation of the simulation data, as
shown in the inset of Fig. 1.

We next studied the dependence of the critical surface
charge density on the concentration of electrolyte. In Fig. 2,
�c is plotted as a function of C for two different electrolytes:
a=2 Å, �B=7.2 Å and a=3 Å, �B=10.8 Å. Although
clearly distinct, the two systems are similar, since the ratio
�B /a is the same in both cases. Therefore, if �ca

2 /q is plot-
ted as a function of �BC1/3 �or as a function of C�B

3� the data
for the two systems should collapse onto a single curve. This
is precisely what is found, see the inset of Fig. 2.
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FIG. 1. Zeta potential as a function of the colloidal surface charge density.
The molar concentration of 3:1 electrolyte is C=0.1M, the radius of the
microions is a=3 Å, and the Bjerrum length is 7.2 Å. The inset shows the
region where the � potential becomes reversed, �=0, with a very good linear
fit �solid line� to the simulation data �circles�, from which the precise value
of �c is determined.
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If the electrolyte systems are not connected by the simi-
larity transformation, a data collapse is not expected. Never-
theless, as was discussed in the previous section, if a /�B is
small, g�x�0,y� should be nearly constant. We expect, how-
ever, the deviation from this constancy to take place when
the product xy becomes sufficiently large—the separation be-
tween the microions becomes compatible to the ionic size, or
when the concentration becomes so small that the entropic
effects dominate over the electrostatics. In Fig. 3 we plot
�ca

2 /q as a function C�B
3 for various electrolytes of different

�B.
The figure clearly shows the inflection point of �c as a

function of the electrolyte concentration. Furthermore, in the
limit of vanishing a /�B, the inflection point turns into pla-
teau which extends up to the concentrations for which
C1/3a�0.2, consistent with the discussion presented earlier.
In the limit of vanishing ionic size, the plateau region ex-
tends indefinitely.

V. CONCLUSIONS

Using extensive MC simulations we have studied the
dependence of the minimal colloidal charge at which the
reversal of the electrophoretic mobility first takes place on
the concentration of 3:1 electrolyte and on the ionic size. The
critical surface charge density �c was found to exhibit an
inflection point as a function of the electrolyte concentration.
In the limit of small a /�B, the inflection point becomes a flat
plateau, extending from the lower concentration Cl to the
upper concentration Cu. The value of the lower bound is
delimited by the distances at which the entropic effects begin
to dominate over the electrostatics, Cl

1/3�B�0.5, while the
value of the upper bound is determined by the distances at
which the hard-core repulsion begins to dominate over ev-
erything Cu

1/3a�0.2. In the interval �Cl ,Cu� the surface
charge density is found to be �c�0.013q /a2, independent of
the electrolyte concentration. The plateau disappears, turns
into a simple inflection point with vanishing second deriva-
tive, when �B /a�2.5. The same behavior was found to oc-
cur for electrolytes of other valences. For example, in Fig. 4
we plot the critical surface charge density as a function the

electrolyte concentration for 2:1 electrolyte. Once again the
inflection point and the formation of the plateau are evident.
However, in this case, to compensate for the weaker electro-
static interactions between the coions and the counterions,
the value of �B must be significantly lower for the plateau to
appear clearly. What is surprising, however, is that the scaled
surface charge density �ca

2 /q appears not to depend on the
valence of the electrolyte—or depend only very weakly—in
the plateau region. In the case of 2:1 electrolyte we find that
�ca

2 /q�0.015 as compared to the 0.013 for the 3:1 electro-
lyte. It will be interesting to see if this curious behavior
persists for other values of z. At the moment, there is no
theory which can quantitatively account for these curious
findings. We hope that the present study will provide a simu-
lational benchmark against which the future theoretical pre-
dictions can be tested.
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