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ABSTRACT

In this thesis, we present three empirical applications on finance and macroeconomics. The
general modeling framework in all chapters is based on extensions of the Markov-switching
model. And the statistical methodology is divided into two distinct areas; Classical and
Bayesian inference.1 In the first one, we test for the presence of duration dependence in
the Brazilian business cycle. The main results indicated that as the recession ages, the
probability of a transition into an expansion increases (positive duration dependence in
recessions). On the other hand, as the expansions ages, the probability of a transition into
a recession decreases (negative duration dependence in expansions). In the second paper,
we extend the research concerned with the evaluation of alternative volatility modeling
and forecasting methods for Bitcoin log-returns. The in-sample estimates suggest evi-
dence of long memory in the data series. When performing one-day ahead Value-at-Risk
(VaR), our results outperform all standard single-regime GARCH models considered in
the study. Finally, in the third paper, we capture different regimes in Bitcoin volatility
returns and test the mean-reversion hypothesis for multi-period returns. In general, we
found evidence of mean-aversion for different holding returns. We also confirmed this
result for alternative specifications and also carrying the analysis for sub-sample periods.

Keywords: Markov-switching, Duration dependence, Business cycle, Volatility, Mean-
reversion.

1The Matlab codes developed for this thesis are available upon request.
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1 Duration-dependent Markov-switching model: an empirical study for the
Brazilian business cycle.

Abstract. This paper uses a duration-dependent Markov-switching model to identify
business cycles in the Brazilian economy and to test for the presence of duration depen-
dence in periods of expansion and contraction. The model is estimated using the growth
rate of quarterly GDP from 1980:II to 2016:II. In the empirical application we found evi-
dence of significant asymmetry in growth rates and duration dependence in the business
cycle transition probabilities. The parameter estimates indicated that as the recession
ages, the probability of a transition into an expansion increases (positive duration de-
pendence in recessions). On the other hand, as the expansions ages, the probability of a
transition into a recession decreases (negative duration dependence in expansions). The
smoothed probabilities of the model captured several periods of contraction during the
last three decades, matching the recession dates of the Business Cycle Dating Committee
(CODACE) from the Getúlio Vargas Foundation.

Keywords: Business Cycles, Markov-switching model, Duration Dependence
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1.1 Introduction

Measuring the state of the economy and understanding the transition between periods
of recession and expansion has been an important topic in research regarding business
cycles and has its foundations in the works of Fisher (1925) and Burns & Mitchell (1946).
Based on these studies, various authors have sought to develop methodologies in order to
capture regularities in economic activity that can define the phases of the business cycle
and also the transition probabilities from an expansion to a recession and vice-versa.

The knowledge of the timing and duration of the business cycle is important for eco-
nomic decision making, such as adopting anti-cyclical fiscal and monetary policies (see,
for example, Castro 2010). However, the business cycle is characterized by nonlinearities
(see, for example, Terasvirta & Anderson 1992, Beaudry & Koop 1993). More specifically,
Keynes (1936) has argued that recession, although more aggressive, tend to be more short-
lived than expansions; therefore, the research on duration dependence in business cycles
attempts to answer the following question: “Are periods of expansion or contraction in
economic activity more likely to end as they become older? More technically, do business
cycles exhibit positive duration dependence?” Sichel (1991, p. 254).

Earlies studies about duration dependence analyzes the NBER chronology using non-
parametric methods or hazard models (see, for example, Diebold & Rudebusch 1990,
Sichel 1991, Diebold et al. 1993, among others). Based on the length of each phase, these
studies found significant evidence of positive duration dependence for pre-WWII expan-
sions and post-WWII contractions in U.S. economy. Another strand of the literature
based on the Markov-Switching models, which defines the switches between expansions
and recessions through a first-order Markov chain. Different to the existing studies, Dur-
land & McCurdy (1994) extended Hamilton (1989) Markov-switching model to allow for
duration dependence in recessions and in expansions. This methodology defines business
cycle through an unobservable stochastic process, so that the business cycle chronology
is not necessary.

Durland & McCurdy (1994) showed that as a contraction ages the probability of
moving into an expansion increases, i.e., coming out of the recession is more plausible
should the crisis be prolonged. In the opposite scenario, the model did not find significant
results for duration dependence associated with the probability of a transition out of
expansions, but could nicely match NBER business cycle dates. Lam (2004) generalized
the model of Durland & McCurdy (1994) incorporating the duration dependence in the
mean growth rate. The main conclusion of the author is that the probability of the
expansion ending gradually decreases as the expansions ages, while the probability of the
contraction ending increases as the contraction ages.

The duration dependence business cycle studies have generally focused on the devel-
oped countries, especially, U.S. economy, since their chronology are well documented by
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NBER. Empirical research have remained limited for the developing countries (notable
exceptions include: Ozun & Turk 2009, Castro 2015). Brazil is one of the emerging market
economies that can constitute an important case of study. Markov-switching models and
its variants have also been applied in the study of Brazilian business cycles, as shown in
Chauvet (2002), Correa & Hillbrecht (2004), Cespedes et al. (2006), and Valls Pereira &
Vieira (2014). However, none of the previous studies investigate the duration dependent
feature of the Brazilian business fluctuations. Thus, our paper contribution try to fill the
gap that can be observed in the empirical literature devoted to the Brazilian economy.

The purpose of this paper is to identify the timing, behavior and duration of busi-
ness cycles in the Brazilian economy. In addition to identifying periods of recession and
expansion, we test for the presence of duration dependence. More specifically, we imple-
ment a procedure to identify periods of recessions and expansions starting from the 1980s
until 2016 and simultaneously test for the presence of duration dependence. We employ
a duration-dependent Markov-switching model developed by Maheu & McCurdy (2000a)
to study the U.S. bull and bear market and employed by Lam (2004) to study the U.S.
business cycle.

The remainder of this paper is organized as follows: Section 2 presents the methodol-
ogy; Section 3 describes the data and our empirical results; Section 4 concludes.

1.2 Methodology

1.2.1 Regime switching model with duration dependence

The Markov-switching model proposed by Hamilton (1989) is defined by:

yt = µ(St) +

p∑
i=1

φi{yt−i − µ(St−i)}+ εt, (1.1)

where yt is the GDP growth rate, µ(St) is presented with the state variable St where
µ(St) = µ0(1 − St) + µ1St with µ0 and µ1 being parameters. If St = 0, then µ(St) = µ0.
If St = 1, then µ(St) = µ1. The evolution of the unobserved state variable St follows a
first-order Markov chain with transition probabilities and takes value 0 when the economy
is in recession and 1 when the economy is in expansion, φ1, . . . , φp are parameters, p the
number of lags and εt is an error term at time t following an identically and independently
normal distribution.

In an attempt to investigate the duration dependence in the business cycle, Durland &
McCurdy (1994) extended the traditional Markov-switching model exploring high order
Markov chains. In the duration-dependent Markov-switching specification, the probability
of a regime change is a function of the previous state, as well as the duration of the previous
state. Following Maheu & McCurdy (2000b), the length of occurrences of the state, St,
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can be characterized by:

Dt = min(Dt−1I(St, St−1) + 1, τ) (1.2)

where I(St, St−1) = 1 if St = St−1 and 0 otherwise. To make the estimation tractable is
necessary to define a limiting parameter τ . The transition probabilities are parametrized
using a logistic function. This ensures that the probabilities are between 0 and 1. Using
i to index the state and d the duration (in quarters), where γ1(i) and γ2(i) are the
parameters, the transition probability of staying in state i, given that we have been in
state i for dt−1 periods is given by:

P (St = i|St−1 = i,Dt−1 = dt−1) =


exp(γ1(i) + γ2(i)dt−1)

1 + exp(γ1(i) + γ2(i)dt−1)
, if d ≤ τ

exp(γ1(i) + γ2(i)τ)

1 + exp(γ1(i) + γ2(i)τ)
, if d > τ

i = 0, 1.

(1.3)
The conditional probability of a state change, given that the state has achieved a duration
d is described by the hazard function. Using the transition probabilities, it is given by:

1− P (St = i|St−1 = i,Dt−1 = dt−1) =
1

1 + exp(γ1(i) + γ2(i)dt−1)
, i = 0, 1. (1.4)

A decreasing hazard function is referred to as negative duration dependence whereas an
increasing hazard function characterizes the positive duration dependence. The parameter
γ2(i) summarizes the duration effect on the hazard function. For example, γ2(i) < 0 means
that a long period in regime i implies a higher probability of state switching (positive
duration dependence); γ2(i) = 0 means that the transition probability is independent of
the regime duration; and γ2(i) > 0 implies that the longer the duration of regime i, the
higher the chance of the process to remain at i (negative duration dependence).

The parameters of the duration-dependent Markov-switching model can be estimated
using two different approaches: the maximum-likelihood method following Maheu & Mc-
Curdy (2000a), or using MCMC methods, such as in Pelagatti (2001). In this study, we
employed the first method. For the model with two states, St = i where i = 0, 1 and p
is the number of lags of yt, Maheu & McCurdy (2000a) defined a new latent variable St,
which covers all possible paths from St = i to St−p = i as well as the respective duration
in the sequence of states up to τ . Using this approach, the duration-dependent model
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collapses into a first-order Markov model, where the transition matrix for St, is given by:

P =


p11 p21 . . . pN1

p12 p22 . . . pN2

...
...

...
p1N p2N . . . pNN

 , (1.5)

where pii = P (St = i|St−1 = i), i, i = 1, . . . , N is constructed using equations (1.3) and
(1.4), and N represents the number of all states; N = 2p+1 + 2(τ − p − 1). Based on
that, the authors show that estimation and smoothing can be performed with the usual
techniques as seen in Hamilton (1989).

1.3 Data and Empirical Results

1.3.1 Data

We consider quarterly data from the Brazilian Gross Domestic Product (GDP) growth
for the empirical analysis spanning the period from 1980:II to 2016:II, a total of 145
observations. Due to the fact that the current GDP series begins in 1996:1, we used
two different bases to depict the data series for the entire period. The first data series
refers to quarterly GDP with seasonal adjustment from 1996:I to 2016:II (base year 2010).
The second data series refers to quarterly GDP with seasonal adjustment from 1980:I to
2014:III (base year 2000). In order to obtain the GDP from 1980 to 2016, the first data
series was retropolated using the growth rate of the second data series. After the data
treatment, the first difference of its logarithm was taken1.

Before going to the estimates results, Table 1.1 presents an overview of the economic
cycles in Brazil during the period considered in our data sample. The analysis is based
on the Brazilian Business Cycle Dating Committee (CODACE) from the Getúlio Vargas
Foundation.2 During the last 36 years, the Brazilian economy went through 9 recessions.
In this period, the economic growth was weak and volatile, excepted for some periods, for
example, the most prosperous growth phase started at the end of 2003 lasting until the
world crises of 2008-2009. The recessions were short and less severe in the two decades
that followed the Real Plan in 1994, but it changed in 2014, the beginning of the last
recession in our data sample. Further details summarizing the key events in recessionary
(expansionary) phases, see, Weller (2019).

1The GDP data is obtained from Ipeadata (http://www.ipeadata.gov.br).
2The CODACE is a committee created in 2008 by the Getúlio Vargas Foundation to determine a

chronology of reference for the Brazilian business cycles. Its form of organization and method of work
follows the model adopted in many countries, notably the North American Data Committee, created in
1978 by the National Bureau of Economic Research (NBER).
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Table 1.1: Quarterly chronology of business cycles in Brazil - CODACE

Recessions Expansions

Periods Number of
Quarters

Accumul.
Growth % Periods Number of

Quarters
Accumul.
Growth %

1981:1 - 1983:1 9 -8.9 1983:2 - 1987:2 17 26.2
1987:3 - 1988:4 6 -4.2 1989:1 - 1989:2 2 8.1
1989:3 - 1992:1 11 -8.0 1992:2 - 1995:1 12 17.6
1995:2 - 1995:3 2 -2.8 1995:4 - 1997:4 9 8.5
1998:1 - 1999:1 5 -1.7 1999:2 - 2001:1 8 7.3
2001:2 - 2001:4 3 -0.9 2002:1 - 2002:4 4 5.1
2003:1 - 2003:2 2 -1.5 2003:3 - 2008:3 21 26.7
2008:4 - 2009:1 2 -6.0 2009:2 -2014:1 20 20.8
2014:2 - 2016:2 9 -7.6

Note: The third (sixth) column of this table refers to the peak-trough (trough-peak) ac-
cumulated GDP growth rate in the period. Peak refers to the end of an expansion and is
followed by the start of a recession in the next quarter. Trough refers to the final quarter of
a recession, which is followed by the beginning of economic expansion in the next quarter.

1.3.2 Markov Model with Duration-Dependent Transition Probabilities

Table 1.2 reports the estimates for the duration-dependent Markov-switching model.
For the quarterly frequency ranging from 1980:II to 2016:II, this specification capture a
dichotomous pattern in the series associated with high and low economic growth phases.
The recession is characterized by a negative mean value, µ0 = −2.142%, while expansion
is denoted by a positive mean value, µ1 = 0.993%. These estimates are statistically
significant and evidenced the asymmetry in the growth rates.3 Regarding the duration
dependence coefficients, our preliminary results indicated an asymmetry on the state
temporal dependence in cyclical data. These estimates were also statistically significant
implying a positive duration dependence in the recession, γ2(0) = −1.048 and negative
duration dependence in the expansion, γ2(1)= 0.289.

Figure 1.1 shows the transition probability of equation 1.3. The dotted line represents
the probability of remaining in the recession and the continuous line denotes the proba-
bility of remaining in the expansion. Note that the chance of remaining in the recession
falls gradually over the quarters, that is, the probability of moving from recession to ex-
pansion increases as a function of time (increasing hazard function). On the contrary, the
chance of remaining in the expansion increases gradually over the quarters, that is, the
probability of moving from expansion to recession does not increase as a function of time
(decreasing hazard function). After 7 quarters, the probability of switching the regime is
duration independent and its value is represented by parameter τ , which was calibrated
using grid search from [5, 25] with the log-likelihood values as the criterion (see, Maheu
& McCurdy 2000a).

3We follow Chauvet (2002) setting p = 0 (see equation 1.1). In this case, we have N = 2 + 2(τ − 1).
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Table 1.2: Markov Model with Duration-Dependent Transition Probabilities

Parameter Estimate Standard Error

µ0 −2.142∗∗∗ 0.536
µ1 0.993∗∗∗ 0.142
σ2 1.993∗∗∗ 0.452
γ1(0) 1.968∗ 1.582
γ2(0) −1.048∗ 0.827
γ1(1) 0.937 0.825
γ2(1) 0.289∗∗ 0.163
τ 7

lnL −282.96
Note: This table reports the estimates for the Markov model with duration-dependent
transition probabilities for the quarterly Brazilian GDP growth rate from 1980:2 to 2016:2.
lnL is the value of the log-likelihood. ∗∗∗,∗∗ ,∗ denote significance at the 1%, 5% and 10%
levels, respectively.

Figure 1.1: Transition Probability: Recession (dotted line), Expansions (continuous
line)

1.3.3 General Markov Model with Duration-Dependent Transition Probabil-
ities

Despite the statistical evidence of negative duration dependence in expansions, much
of the conventional wisdom state that a very long expansion is unstable and contraction
is increasingly imminent (see, for example, Burns 1969 and Neftici 1982). To further in-
vestigate our preliminary results, we apply a general type of duration-dependent Markov-
switching model in the same spirit of Lam (2004). In this specification, the duration
variable enters both in the transition probabilities and in the mean process. The model
is defined as:

yt = µ(St) + ψ(St)Dt +

p∑
i=1

φi{yt−i − µ(St−i)− ψ(St−i)Dt−i}+ εt, (1.6)
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where ψ(St) = ψ0(1− St) + ψ1St is the new component which ψ0 and ψ1 are parameters.
This model allows duration to be a conditioning variable in the mean growth rates char-
acterizing the dynamic behavior within each regime. The persistence in particular state
implies that Dt increases and its effects are measured by the coefficient ψ(St), which cap-
tures the relationship between the mean growth rate and the age of economic condition.4

The estimates of the general Markov model with duration-dependent transition prob-
abilities are presented in Table 1.3. This specification also captured the asymmetry in
the duration dependence dynamics. For the parameter ψ1, the estimate value is negative
(−0.244) and statistically significant, which implies that GDP growth rate declines as the
expansion ages. For example, taking the value of τ , after 7 quarters, the GDP growth
rate would be µ1 = 0.52%. This result is related to the characterization of the business
cycle, which suggest that expansion tends to be rapid in its early stages than its endings
(Sichel 1994). On the other hand, Burns (1969) suggests that during recessions the rate
of decline is usually fasted in the middle states than the early stages. This statement
would be related to the estimates value of ψ0, which is also negative (−0.27). However
our result lacks statistical significance.

Table 1.3: General Markov Model with Duration-Dependent Transition Probabilities

Parameter Estimate Standard Error

µ0 −1.454 1.416
µ1 2.445∗∗∗ 0.585
σ2 1.927∗∗∗ 0.253
γ1(0) 2.549∗ 1.758
γ2(0) −1.067∗ 0.734
γ1(1) 0.458 0.910
γ2(1) 0.422∗∗ 0.181
ψ0 −0.278 0.536
ψ1 −0.244∗∗ 0.093
τ 7

lnL −279.60
Note: This table reports the estimates for the general Markov model with duration-
dependent transition probabilities for the quarterly Brazilian GDP growth rate from 1980:2
to 2016:2. lnL is the value of the log-likelihood. ∗∗∗,∗∗ ,∗ denote significance at the 1%, 5%
and 10% levels, respectively.

Overall results identified evidence of duration dependence in Brazilian business cycle.
Our estimates are consistent with the findings of Lam (2004). However, the U.S. and
Brazilian economy are very different, and there is not a unique justification for these
kinds of features. Theoretically, the negative duration could be referred to the increasing

4We adopted the linear specification following Maheu & McCurdy (2000a). Other types of specifi-
cations can also be applied, for example, Lam (2004) assumes that the relationship between the mean
growth rate and the age of current phase is quadratic.
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probability of remaining in the expansion in the absence of external disturbances, while,
the positive duration, could be related to the use of anti-cycle policies to mitigate the
effect of the recessions. Nevertheless, there are several economic reasons why duration
dependence might occur.

More recently, Rudebusch (2016) discuss several postwar changes in the U.S. economy
that contributed to more robust and longer-lived expansions. For example, the increased
share of services instead of tangible goods in the GDP would tend to diminish the im-
portance of inventory fluctuations and moderate the business cycle. The author also
highlights the postwar influence of the federal government actively focused on stabiliz-
ing the economy, which also included attempts to curtail recessions. Particularly, the
Employment Act of 1946, applied broadly to the federal government, including to the
Federal Reserve and in the conduct of monetary policy is a example of counter cyclical
policy helped prolong business expansions and alter the pattern of business cycle age
dependence (Diebold & Rudebusch 1999).

Notably, the Brazilian business cycle is characterized by volatility and stagnation.
From 1980 to 2016, the overall growth results were mediocre compared to other develop-
ing economies. These stylized facts could be related to our general duration-dependent
estimates since negative duration dependence could be associated with a growth rate that
declines over the expansion. This results support what Brazilian economists refer to the
stop-and-go process, whereas the country went through 9 recessions in the recent last
thirty years. For the positive duration dependence, one possible narrative of our results
could be referred to the fact that recessions were shorter after the Real Plan until 2014,
as previously analyzed in Table 1.1. However, the economic forces behind the duration
dependence effects could be investigated in future works.

1.3.4 Business Cycle Identification

Concerning the business cycle identification, Figure 1.2 plot the filtered probability
of being in a recession and expansion phases. It is worth mentioning that the objective
of this analysis is not to describe historical facts behind these results. Instead of this
type of investigation, we compared our estimates to Table 1.1. In general, these models
captured the main business cycle phases vis-a-vis to the CODACE. The general duration-
dependent model seems to be slightly superior to the baseline duration specification.
Using the Hamilton’s 0.5-rule (recession probabilities higher or, equal to 0.5) the general
model identified 6 out of 9 recessions from 1980 to 2016. For the expansion phases, both
specifications match to the CODACE chronology.

It is important to point out that CODACE decisions are made on the basis of an-
alyzing the most comprehensive set of variables, statistics and taking the point of view
of its members. Moreover, the chronology is carried out many months after the facts
have occurred, and therefore the duration-dependent model is not expected to be entirely
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Figure 1.2: Duration-dependent Markov-switching model (dotted line), General
duration-dependent Markov-switching model (continuous line) and Recession according
to CODACE-FGV (shaded areas)

accurate to this chronology. However, the filtered probabilities are in line with previous
studies in Brazil (see, for example, Chauvet 2002, Cespedes et al. 2006, Valls Pereira &
Vieira 2014). Besides updating the data set, which takes account the latest recession in
the Brazilian economy, the attractiveness of our empirical application stems for including
the parameter that captures the duration-dependent, as the same time, we obtain the
state probabilities. In both models, the hypothesis of duration dependence was confirmed
suggesting this is a characteristic of the data.

1.3.5 Model Comparisons

Finally, we test the overall significance of the duration dependence comparing our
models to the classic Markov-switching model, as seen in Durland & McCurdy (1994) and
Lam (2004). For our first duration model, we were not able to reject the classic model in
favor of the duration-dependent specification. The LR test statistic is 3.84, which has a
p-value > 0.05 according to the χ2 distribution with 2 degrees of freedom. On the order
hand, we rejected the classic Markov-switching model in favor of the general duration-
dependent model. The LR test statistic is 10.56, which has a p-value < 0.05 according to
the χ2 distribution with 4 degrees of freedom. Having these distinctive results (see, Table
1.4), we compare the duration-dependent models. The LR test statistic is 6.72, which also
has a p-value < 0.05, according to the χ2 distribution with 2 degrees of freedom. Overall
results reject the null hypothesis of absence of duration dependence in mean growth rates
and transition probabilities since the general model was statistically different from the
classic Markov-switching and the baseline duration model.



19

Table 1.4: Likelihood-Ratio Test

Model lnL Test d.f. LR p-value

M1 - 284.88 M2 xM1 2 3.84 0.147
M2 -282.96 M3 xM1 4 10.56 0.032
M3 -279.60 M3 xM2 2 6.72 0.034

Note: M1 refers to the Markov-switching model, M2 is the duration-dependent Markov-
switching model, andM3 covers the General duration-dependent Markov-switching model.
LR is the test statistics and d.f is the degrees of freedom.

1.4 Conclusion

In this article, we have identified business cycles in the Brazilian economy as well
as evidence of duration dependence in the respective phases of expansion and recession.
Using the duration-dependent Markov-switching model in growth rate of quarterly GDP
from 1980:II to 2016:II, the estimates indicated that as the recession ages, the probability
of a transition into an expansion increases (positive duration dependence in recessions).
On the other hand, as the expansions ages, the probability of a transition into a recession
decreases (negative duration dependence in expansions).

Regarding to the business cycles identification, the model probabilities proved to have
a reasonable capacity of discerning periods of contraction and expansion. Instead of de-
scribing the historical facts behind these identifications, we compare the recession prob-
abilities to the Business Cycle Dating Committee (CODACE) from the Getúlio Vargas
Foundation, which is a reliable ex post reference for the Brazilian business cycle turning
points. Using the Hamilton’s 0.5-rule, the probabilities of the general duration-dependent
Markov-switching model captured 6 out of the 9 recessions from 1980 to 2016.
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2 Duration-dependent Markov-switching in Bitcoin volatility with Value-at-
Risk application.

Abstract. This paper extends research concerned with the evaluation of alternative
volatility modeling and forecasting methods for Bitcoin log-returns by broadening the class
of single-regime GARCH models to include duration-dependent Markov-switching mod-
els (DDMS). In addition to the in-sample statistical evaluation, we compare the DDMS
model to single-regime GARCH-types predicting one-day-ahead Value-at-Risk (VaR). De-
spite using a two-state model, the DDMS specification used in this empirical application
acts like a large N -state model capturing a broad range of volatility levels, since duration
also affects the conditional variance. To access the economic significance of the Bitcoin
volatility forecast to investors, we investigate the advantages of regime-switching mod-
els in the Bitcoin returns for the accurateness of the Value-at-Risk models. For one-day
holding period, the best results were obtained for DDMS model at the 1% risk level.

Keywords: Bitcoin, Duration Dependence, Markov-switching, Value-at-Risk.
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2.1 Introduction

In the last few years, the analysis of cryptocurrencies has attracted the interest of
many investors, practitioners, and researchers. Since its creation in 2008, Bitcoin, the
most popular cryptocurrency, exhibited an extreme increase in its market value. Despite
its decentralized nature and reduction costs (Kim, 2017), the empirical literature suggests
that Bitcoin is mainly used as an asset rather than a currency, mostly used for speculative
purposes, occasioning high volatility and bubbles (Cheah and Fry, 2015; Hafner, 2018).
However, the risk assessment of Bitcoin is crucial for financial agents and understanding
its volatility is relevant to investment decisions.

The empirical literature on the behaviour of Bitcoin and other cryptocurrencies is
expanding rapidally. Previous studies find that Bitcoin returns exhibit at the same time
differences and similarities with other financial time series, e.g., foreign exchanges returns
(Dyhrberg, 2016). The presence of volatility clustering and leverage effect justify the
use of GARCH-type models in the empirical studies (see, for example, Baur et al., 2018;
Katsiampa, 2017, among others). However, these applications also evidenced a high degree
of persistence in the volatility dynamics. Tiwari et al. (2018) employed robust estimators
and finds that Bitcoin returns and volatility exhibit long-memory characteristics. Phillip
et al. (2018) examine the returns for 224 crypto-currencies and find that they exhibit long
memory and stochastic volatility. Catania et al. (2018) used generalised autoregressive
score (GAS) models and compares with GARCH specifications.

Another strand to study the volatility dynamics of Bitcoin returns includes the use
of regime-switching models. This approach is useful for capturing shifts and turning
points in the volatility process that is difficult to accommodate using GARCH-types
models. In the abstention of regime changes, the estimation can be biased also affecting
the precision of the volatility forecast. Earlier studies by Bariviera (2017) suggest the use
of the regime-switching models in the Bitcoin volatility. Ardia et al. (2018) use Bayesian
regime-switching models to show that the Bitcoin returns exhibit regime changes. Thies
and Molnár (2018) also use a Bayesian approach and conclude that the structural breaks in
average returns and volatility of Bitcoin occur frequently. However, most of the empirical
literature have been focused on the in-sample framework and comparisons have been made
based on information criteria.

This paper therefore seeks to extend previous research concerned with the evaluation
of alternative methods to estimate and forecasting the Bitcoin log-returns volatility in
two ways. First, we address the presence of regime switches using a duration-dependent
Markov-switching model (DDMS). Second, in extending the scope of previous research
through evaluative application, to assess the economic significance of Bitcoin volatility
predictability to investors, we also compare the DDMS model to traditional single-regime
GARCH-types models predicting one-day-ahead Value-at-Risk (VaR). In anticipation of
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the results to follow, unlike the traditional regime-switching models, the time-varying
probability model used in this paper seems to improve the estimation of the intertemporal
dependence in the volatility process. In general, our estimates evidenced a declining
hazard function and positive persistence in volatility for both states; these results suggest
evidences of long memory in the data series. Our results show that the DDMS specification
outperformed the single-regime models both in-sample and out-of-sample.

The remainder of this paper is organized as follows: Section 2 presents the models do
be estimated; Section 3 describes the data and our empirical findings; Section 4 concludes.

2.2 Methodology

In this paper, we follow the duration-dependent Markov-switching (DDMS) model
proposed by Maheu McCurdy (2000). The nonlinear specification applied to the Bitcoin
log-returns is a discrete-state Markov model, where the conditional transition probabili-
ties, as well as the state-specific levels of volatility are functions of the duration.

Begin by assuming that the time series process is governed by a discrete mixture of
distributions. The discrete mixing variable St ∈ {0, 1} is unobserved and depends only
on St−1 and its duration Dt−1. The role of the duration variable is to depict the memory
in the consecutive occurrence of a particular state given as:

Dt = min (Dt−1I (St, St−1) + 1, τ) , (2.1)

where I(St, St−1) = 1 if St = St−1 and otherwise 0. To make the estimation tractable,
the limiting parameter τ is established to set the memory of the duration. The transition
probability is parametrized using a logistic function. This ensures that the probabilities
are between 0 and 1. Using i and d to index the state and duration, where γ1(i) e γ2(i)
are the parameters, the transition probability for i = 0, 1 is given by:

P (St = i|St−1 = i,D(St−1) = d) =


exp(γ1(i) + γ2(i)d)

1 + exp(γ1(i) + γ2(i)d)
, if d ≤ τ

exp(γ1(i) + γ2(i)τ)

1 + exp(γ1(i) + γ2(i)τ)
, if d > τ

i = 0, 1.

(2.2)
The duration effect allows the transition probability to vary over time until it reaches τ ,
after that, the transition probabilities are constant. The conditional probability of a state
change given that the state has achieved a duration d, is the hazard function. Using the
transition probabilities, the hazard function is given by:

1− P (St = i|St−1 = i,D(St−1) = d) =
1

1 + exp(γ1(i) + γ2(i)d)
, i = 0, 1. (2.3)



25

A decreasing hazard function is referred to as negative duration dependence whereas an
increasing hazard function is positive duration dependence. The parameter γ2(i) sum-
marize the duration effect on the hazard function. For example, γ2(i) < 0 means that a
long period in regime i implies a higher probability of state switching (positive duration
dependence); γ2(i) = 0 means that the transition probability is independent of the regime
duration; and γ2(i) > 0 implies that the longer the duration of regime i, the higher the
chance of the process to remain at i (negative duration dependence).

Given the transition probabilities in equations (2.1)-(2.3), the model equations follow:

rt = c+
s∑
i=1

φirt−i + εt, (2.4)

εt = σ(St, Dt)zt, zt ∼ N(0, 1), St = 0, 1 (2.5)

σ(St, Dt) = (ω(St) + ζ(St)Dt)
2, (2.6)

where rt is the Bitcoin log-returns, φ1, . . . , φs are the autoregressive parameters, and εt

is the error term at time t. In this model, the latent state variable affects the level of
volatility by ω(St) = ω0(1 − St) + ω1St, while the duration of the states, Dt, affect the
dynamics of volatility through ζ(St)Dt, where, ζ(St) = ζ0(1− St) + ζ1St. zt is is assumed
to follow an identically and independently normal distribution.

The parameters of the duration-dependent Markov-switching model can be estimated
using two different approaches: the maximum-likelihood method following Maheu & Mc-
Curdy (2000), or using MCMC methods, such as in Pelagatti (2001). In this study, we
employed the first approach, and the reader is referred to Maheu & McCurdy (2000) for
further details of the estimation procedure. However, it is important to highlight that is
possible to determinate τ using a grid search with the log-likelihood values as the crite-
rion. Although, we use a different strategy setting τ as a large number in the attempt to
capture all the duration effect on the time series process.

2.3 Data and Empirical Results

2.3.1 Data

The dataset analyzed in this paper is the daily closing prices for the Bitcoin Coindesk
Index1, the same data as in Katsiampa (2017). In contrast to the previous work, we
update the sample period from 18th July 2010 to 1st May 2018, producing a total of
2845 observations. The descriptive statistics for the Bitcoin log-returns are reported in
Table 2.1. The mean is 0.4051 with a standard deviation of 5.8721. The largest price

1The data series are available online at http://www.coindesk.com/price.



26

increase is 42.4579, while the largest price decrease is -49.1528. The skewness is small and
negative, and the kurtosis is higher than the normal distribution value. The Jarque-Bera
(JB) statistics also indicated the departure from normality, while the value of the ARCH
(5) suggest the presence of ARCH eects in the log-returns.

Table 2.1: Descriptive Statistics

Obs. Mean (%) Std. Dev. (%) Min (%) Max (%) Skewness Kurtosis JB ARCH (5)

2,844 0.405 5.872 −49.153 42.458 −0.352 14.617 16,051.3∗∗∗ 73.443∗∗∗

Note: This table presents summary statistics of the log-returns on Bitcoin. The sample
period is daily from 07/18/2010 – 05/01/2018. Bitcoin log-returns trade 7 days a week and
have 2,845 observations during the sample period. ∗∗∗ indicates the rejection of the null
hypotheses at the 1% level. Log-returns are calculated by 100× (lnPt − lnPt−1).

2.3.2 Duration dependent model estimates

Full-sample estimates for the duration-dependent Markov-switching models are re-
ported in Table 2.2. To analyze the overall statistical significance of the duration depen-
dence effect, we also consider two nested specifications, MS-2 and DDMS-2, respectively.
In the MS-2 model, the transition probabilities and the volatility are both independent of
the duration, γ2(i) = 0, ζ(i) = 0. For the DDMS-2 model, the transition probability are
unrestricted, γ2(i) 6= 0, while volatility is absent of duration, ζ(i) = 0. The most general
specification is the DDMS-DD.

The last two columns of Table 2.2 present the estimates of the DDMS-DD model.
The coefficients that capture the duration dependence of the transition probabilities,
γ2(1) and γ2(2), are significantly positives. This result evidence that both states become
more persistent over time, which implies a declining hazard function. For the duration
effect associated with conditional standard deviation, the coefficients estimates are also
significantly positives suggesting the increase of volatility as duration increase. These
results were observed using two distinct values for the duration, 25 and 40, respectively.

Figure 2.1 summarizes these evidence for τ = 40. Panel (a) presents the hazard
function and Panel (b) the standard deviation function. The continuous line is the low
volatility state (St = 0), where the dotted line is the high volatility state (St = 1).
The hazard functions are similar, but the volatilities levels are distinct as the length of
duration. On average, the Bitcoin returns spend 49% of the time in the high volatility
state and 51% in the low volatility state. The unconditional probability for each state
can be computed as P (S = i) =

∑τ
d=1 P (S = i,D = d) for i = 0, 1, where P (S,D) are

the joint unconditional probabilities. Using τ = 25, we observed the same values for both
states, 50% of the time, respectively. These results suggest the long run characteristic of
the market and reflect the recurring switch in the volatility states dynamics.
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Table 2.2: Maximum Likelihood Estimates of Duration-Dependent Markov-Switching
Models

Parameter MS-2 DDMS-2
(τ = 25)

DDMS-DD
(τ = 25)

DDMS-DD
(τ = 40)

c 0.285∗∗∗

(0.052)
0.282∗∗∗

(0.050)
0.108∗∗∗

(0.038)
0.119∗∗∗

(0.038)
φ1 0.007

(0.018)
−0.011
(0.017)

−0.014
(0.017

−0.019
(0.017)

ω(0) 1.984∗∗∗

(0.061)
1.839∗∗∗

(0.065)
0.760∗∗∗

(0.027)
0.814∗∗∗

(0.030)
ζ(0) – – 0.062∗∗∗

(0.002)
0.039∗∗∗

(0.001)
ω(1) 9.556∗∗∗

(0.275)
9.610∗∗∗

(0.277)
1.760∗∗∗

(0.076)
1.919∗∗∗

(0.086)
ζ(1) – – 0.093∗∗∗

(0.007)
0.055∗∗∗

(0.004)
γ1(0) 2.508∗∗∗

(0.132)
0.740∗∗∗

(0.148)
0.193
(0.181)

0.607∗∗∗

(0.164)
γ2(0) – 0.123∗∗∗

(0.014)
0.165∗∗∗

(0.021)
0.108∗∗∗

(0.015)
γ1(1) 1.814∗∗∗

(0.154)
0.160
(0.165)

0.701∗∗∗

(0.143)
0.927∗∗∗

(0.165)
γ2(1) - 0.151∗∗∗

(0.021)
0.104∗∗∗

(0.016)
0.080∗∗∗

(0.013)

Log(L) −8,013.2 −7.951.6 −7,897.8 −7,896.3

Q(10)
33.311
[0.000]

38.350
[0.000]

31.331
[0.000]

37.195
[0.000]

Q2(10)
42.301
[0.000]

66.879
[0.000]

12.995
[0.224]

11.996
[0.285]

Note: This table reports the estimates for the Markov model with duration-dependent transition probabili-
ties for the daily log-returns of the Bitcoin price index from 18th July 2010 to 1st May 2018. Log(L) is the
value of the log-likelihood. Standard errors are in parentheses. The p-values associated with the statistical
tests are presented in brackets. ∗∗∗,∗∗ ,∗ denote significance at the 1, 5 and 10% levels, respectively.

Figure 2.1: Duration Effects

(a) Hazard function (b) Standard Deviation function
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Table 2.2 also reports, for each model, the log-likelihood value and the Ljung-Box
test statistics for autocorrelation in the squared standardized residuals. According to this
diagnostics, the general model presents the best fit in-sample and also captured serial
correlation in the squared standardized residuals. However, we test the significance of
the duration dependence by applying the likelihood ratio test. For the MS-2 model,
the LR statistic for the null hypothesis of absence of duration in transition probability
and volatility is 230.8, which has a p-value < 1% according to the asymptotically χ2(4)

distribution. For the DDMS-2 model, the LR statistic for the volatility restriction is 107.6,
which has a p-value < 1% according to the asymptotically χ2(2) distribution.2

Overall, results not only points out the duration dependence in modeling perspec-
tive, but highlight theoretical arguments of its existence. For example, the persistence
associated with declining hazard function indicated that if the low (high) volatility state
was observed in the last period, the probability to continue in the same low (high) state
increase. These results suggest evidence of long memory in the data series.On the other
hand, the duration effect associated with conditional standard deviation is related to
Bitcoin high volatility levels and speculation factors.

Since its creation, the Bitcoin prices increase with the dramatically growing interest
in cryptocurrency with led to higher speculation levels. The Bitcoin prices rise as demand
increases and the supply are limited. Furthermore, the Bitcoin is not issued by any legal
support or government. In this context, Bitcoin is a high-risk asset with high volatility.
The low US interest rate policy after the financial crisis in 2008 and 2009 lasted for
several years could be contributed to make the investors looking for another source of
value found Bitcoin, whose prices escalated accordingly. Tanking this fact, we have found
distinct volatilities levels, the increase in volatility as duration increase in both of cases
is consistent with the speculative behavior of the Bitcoin.

2.3.3 Models comparison

In the following subsection, we compare the DDMS-DD model to the traditional
volatility models using in-sample statistics and predicting one-day-ahead Value-at-Risk.
Particularly, we follow some of the Garch-types models explored by Katsiampa (2017),
since we use the same data series extended until May 2018.3 In general, we obtained the
same results as in the previews work, which indicates that the optimal model in terms of
goodness-of-fit is the AR-CGARCH, see Table 2.3.

Comparing single regime models with Markov-switching specifications is a well-known
issue in the empirical literature. Standard econometrics tests for model specification are
not valid since some parameters are unidentified under the null. Taking this fact, Table 2.4
presents some in-sample goodness-of-fit statistics. The largest log-likelihood value among

2These results were obtained setting τ = 25.
3We follow Katsiampa (2017) setting low-orders of Garch-type models.
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the Garch-type models is given by the AR-CGARCH, while for the Markov-switching
models, and overall, the best result is reached with the DDMS-DD. The Akaike Infor-
mation Criterion (AIC), Schwarz Criterion (BIC) and Hannan–Quinn Criterion (HQC)
also indicated these results. Table 2.4 also shows that according to MSE and QLIKE loss
functions the DDMS-DD outperform the Garch-type models.

Table 2.3: Maximum Likelihood Estimates of Standard AR(1)-GARCH(1,1)-type models

Parameter AR-GARCH AR-EGARCH AR-GJR-GARCH AR-APARCH AR-CGARCH AR-FIGARCH AR-HYGARCH

c 0.2340∗∗∗

(0.0614)
0.5018∗∗∗

(0.0239)
0.2516∗∗∗

(0.0639)
0.3075∗∗∗

(0.0546)
0.2101∗∗∗

(0.0665)
0.2106∗∗∗

(0.0632)
0.2156∗∗∗

(0.0655)
φ1 0.0643∗∗∗

(0.0220)
0.0613∗∗∗

(0.0212)
0.0626∗∗∗

(0.0220)
0.0588∗∗∗

(0.0218)
0.0539∗∗

(0.0223)
0.0519∗∗

(0.0278)
0.0498∗∗

(0.0257)
ω 0.8410∗∗∗

(0.0287)
−0.0569∗∗∗
(0.0076)

0.8401∗∗∗

(0.0295)
0.4952∗∗∗

(0.0360)
1,522.78∗∗

(707.58)
0.9378
(0.7368)

0.5338
(0.5873)

α 0.2317∗∗∗

(0.0098)
0.3972∗∗∗

(0.0129)
0.2477∗∗∗

(0.0157)
0.2353∗∗∗

(0.0091)
0.1706∗∗∗

(0.0090)
0.1318
(0.2609)

0.0834
(0.2824)

β 0.7784∗∗∗

(0.0061)
0.9319∗∗∗

(0.0026)
0.7793∗∗∗

(0.0065)
0.7903∗∗∗

(0.0058)
0.7942∗∗∗

(0.0087)
0.3935
(0.3143)

0.3475
(0.3306)

γ – 0.0131
(0.0083) – 1.5338∗∗∗

(0.0616) – 0.5193∗∗∗

(0.1082)
0.5077∗∗∗

(0.1148)
δ, log(δ) – – −0.0346∗∗

(0.0163)
−0.0257
(0.0188) – – 0.0950

(0.0646)
ρ – – – – 0.9999∗∗∗

(0.0001) – –

θ – – – – 0.0603∗∗∗

(0.0042) – –

Log(L) −8,251.7 −8,253.3 −8,250.7 −8,246.0 −8,213.0 −8,218.9 −8,214.1

Q(10) 45.010
[0.000]

43.370
[0.000]

44.203
[0.000]

44.478
[0.000]

46.898
[0.000]

45.968
[0.000]

47.525
[0.000]

Q2(10) 5.851
[0.828]

3.844
[0.954]

5.922
[0.822]

7.610
[0.667]

4.723
[0.909]

4.135
[0.845]

4.863
[0.772]

Note: This table reports the estimates for the AR(1)-GARCH(1,1)-type models for the daily log-returns of
the Bitcoin price index from 18th July 2010 to 1st May 2018. Log(L) is the value of the log-likelihood. We
estimated the HYGARCH using the G@RCH module in OxMetrics. The program reports log(δ) instead of
δ. Standard errors are in parentheses. The p-values associated with the statistical tests are presented in
brackets. ∗∗∗,∗∗ ,∗ denote significance at the 1, 5 and 10% levels, respectively.

Figure 2.2 plots the estimates of volatility for the DDMS-DD model.4 Comparing the
DDMS-DD with the AR-CGARCH suggests that using duration as an instrument in the
conditional variance and transition matrix is a substitute for Garch-type models. Unlike
the standard Markov-switching models, the DDMS-DD is particularly suited to capture
the persistence associated with volatility clustering because the duration variable provides
a parsimonious parameterization of potential high-order dependence in the data series.
Furthermore, persistence in volatility levels is time varying in this specification.

On the other hand, the AR-CGARCH suggests the importance of distinguish short-
run and a long-run component in conditional variance which implies the varying level
in volatility process. Furthermore, empirical studies (Maheu, 2005) demonstrated that
the component model is potentially able to reproduce long memory properties in the
autocorrelation of squared returns. Although different specifications, this can bright some

4Further information to calculate the conditional standard deviations implied by the DDMS-DD, see,
Maheu and McCurdy (2000).
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explanation for the similar pattern in volatility dynamics.

2.4: In-sample goodness-of-fit statistics

Model AIC Rank BIC Rank HQ Rank Log(L) Rank MSE Rank QLIKE Rank

AR-GARCH 5.8084 7 5.8189 6 5.8122 7 −8,251.7 8 15,142 9 3.9789 9

AR-EGARCH 5.8103 9 5.8229 9 5.8148 9 −8,253.3 9 14,032 3 3.9746 7

AR-GJR-GARCH 5.8085 8 5.8210 8 5.8130 8 −8,250.7 7 15,062 8 3.9775 8

AR-APARCH 5.8059 6 5.8205 7 5.8111 6 −8,246.0 6 14,765 5 3.9735 6

AR-CGARCH 5.7826 3 5.7973 3 5.7879 3 −8,213.0 3 14,774 6 3.9525 3

AR-FIGARCH 5.7860 4 5.7986 5 5.7905 5 −8,218.9 5 14,594 4 3.9563 5

AR-HYGARCH 5.7883 5 5.7980 4 5.7886 4 −8,214.1 4 15,023 7 3.9527 4

DDMS-DD (25) 5.5611 2 5.5820 2 5.5686 2 −7,897.8 2 12,900 1 3.4356 1

DDMS-DD (40) 5.5599 1 5.5809 1 5.5675 1 −7,896.3 1 13,064 2 3.4562 2

Note: MSE is the Mean Squared Error loss function calculated as n−1 ∑n
t=1 (σ̂t/t−1 − ĥ

1/2

t/t−1
)
2
and QLIKE is

the Quasi–Like loss function calculated as n−1 ∑n
t=1 (logĥt/t−1 + σ̂2

t/t−1ĥ
−1

t/t−1
). Since volatility is unobserved

and realized volatility measures are not available, we proxy volatility with the square of the realized log-returns,
r2t = ĥt/t−1. Further discussion about loss functions choice, see, Patton (2011).

Figure 2.2: Conditional Standard Error: AR-CGARCH X DDMS(40)

We now turn to an out-of-sample analysis reporting the one-day-ahead Value-at-Risk
(VaR) for each model. Value-at-risk (VaR) measures risk in terms of returns at a given
probability: for example, a VaR of −1% at the 5% confidence level indicates that there
is a probability of 5% of a return that is lower or equal to −1%. Intuitively, VaRi

ϑ

corresponds to the losses above a certain threshold. In this empirical application, the
recursive forecasting estimation ranges from May 1st, 2015 to May 1st, 2018, producing a
total of 1,097 out-of-sample observations. We backtest the accuracy of the VaR following
Christoffersen (1998). Table 2.5 reports the hit rate and the p-values of the independence,
unconditional coverage and conditional coverage tests for the 5%, 2.5%, and 1% risk levels.

Our results show that DDMS-DD model presents the lowest hit rate for the three
risk levels. For instance, the best result is obtained at the 1% risk level, since p-values
indicated the non-rejection of the null hypothesis in all backtests. Among the Garch-
types models, the best result is obtained with the AR-EGARCH, especially for the 2.5%
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and 5.0% risk levels. However, our results follow the empirical literature which state that
Markov-switching models tend to give accurate predictions, especially for VaR at 1% level
(Guidolin and Timmermann, 2006).

2.5: Forecasting - Backtesting Results

Hit Rate U.C Indep. C.C Hit Rate U.C Indep. C.C Hit Rate U.C Indep. C.C
ϑ = 1% ϑ = 2.5% ϑ = 5%

AR-GARCH 2.5% 0.1522 0.4911 0.2830 2.6% 0.9079 0.2256 0.4767 4.1% 0.1616 0.4141 0.2690

AR-EGARCH 1.4% 0.2455 0.5188 0.4137 2.5% 0.9382 0.2428 0.5041 3.8% 0.0457 0.2723 0.0744

AR-GJR-GARCH 1.4% 0.2455 0.5188 0.4137 2.8% 0.4950 0.8946 0.7854 4.0% 0.1217 0.3756 0.2039

AR-APARCH 1.4% 0.2455 0.5188 0.4137 3.0% 0.2936 0.0898 0.1366 4.5% 0.4134 0.0055 0.0153

AR-CGARCH 1.5% 0.1522 0.4911 0.2830 2.6% 0.9079 0.2256 0.4767 4.3% 0.2683 0.4968 0.4302

AR-FIGARCH 1.8% 0.0139 0.3885 0.0334 3.2% 0.1583 0.4348 0.2725 4.3% 0.2683 0.1928 0.2321

AR-HYGARCH 1.6% 0.0505 0.4381 0.1093 2.7% 0.6202 0.8442 0.8675 4.3% 0.2683 0.1928 0.2321

AR-GAS 1.5% 0.1522 0.4911 0.2830 2.6% 0.9079 0.2256 0.4767 4.0% 0.1217 0.3756 0.2039

AR-EGAS 1.6% 0.0898 0.4642 0.1814 2.7% 0.6202 0.8442 0.8675 4.5% 0.4134 0.0236 0.0552

AR-AEGAS 1.7% 0.0271 0.4129 0.0621 3.0% 0.2936 0.0168 0.0330 4.6% 0.4998 0.0071 0.0212

AR-DDMS-DD (25) 1.2% 0.5474 0.5464 0.7139 2.2% 0.5017 0.0139 0.0388 3.3% 0.0056 0.0056 0.0005

AR-DDMS-DD (40) 1.1% 0.7558 0.1173 0.2795 2.5% 0.9079 0.0353 0.1084 3.4% 0.0089 0.0011 0.0002

Note: This table reports the backtesting results for the DDMS-DD and Garch-types estimates at the ϑ = 1%,
ϑ = 2.5% and ϑ = 5% levels. The hit rate and the p-values of the independence (“Indep.”), unconditional
coverage (“U.C.”) and conditional coverage(“C.C.”) tests are also reported, respectively.

To illustrate the results presented in Table 2.5, we plot in Figure 2.3 the Bitcoin returns
(blue line) over the out-of-sample period. For the 1% risk level, panel (a) presents the
VaR estimates for the DDMS-DD(40) versus AR-EGARCH. For the 2.5% risk level, panel
(b) presents the VaR estimates for the DDMS-DD(25) versus AR-EGARCH. In general,
we observe that the VaR estimates obtained with the AR-EGARCH model (orange line)
tend to be more noisy than those obtained with DDMS-DD specifications (red line).

Figure 2.3: Value-at-Risk

(a) VaR 1%: DDMS-DD(40) X AR-EGARCH (b) VaR 2.5%: DDMS-DD(25) X AR-EGARCH
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Finally, the forecasting accurateness of the competing models is also evaluated with
statistical loss functions. Our analysis is conducted using the MSE and the QLIKE losses,
and the duration dependence specification is the benchmark model in the Diebold Mariano
test of equal predictive ability. Since the squared returns represent a very noisy estimate
of the true volatility (see, Andersen and Bollerslev, 1998), we calculated the realized
volatility as the sum of one and five-minutes squared returns aggregated over the relevant
forecast horizon of one day.5

2.6 One-day ahead volatility forecast: May 1st, 2015 - May 1st, 2018

Squared Returns Realized Volatility -1 Min. Realized Volatility - 5 Min

MSE QLIKE MSE QLIKE MSE QLIKE

DDMS-DD (25) 2524.3 3.6250 2.7780 3.6483 2670.4 3.6381

DDMS-DD (40) 2135.7 3.6073 2.6011 3.6566 2436.7 3.6361

AR-GARCH 1591.2* 3.4535* 2195.1* 3.5413* 2078.6* 3.5247*

AR-EGARCH 1632.3* 3.4850* 2177.7* 3.5484* 2051.7* 3.5303*

AR-GJR-GARCH 1598.7* 3.4540* 2204.8* 3.5394* 2087.0* 3.5226*

AR-APARCH 1564.4* 3.4653* 2201.2* 3.5500* 2081.0* 3.5387*

AR-CGARCH 1574.5* 3.4456* 2173.2* 3.5339* 2056.1* 3.5163*

AR-FIGARCH 1567.9* 3.4447* 2154.6* 3.5060* 2041.6* 3.4776*

AR-HYGARCH 1630.2* 3.4441* 2115.8* 3.4857* 1999.6* 3.4484*

GAS (GARCH) 1604.4* 3.4691* 2196.3* 3.5516* 2080.4* 3.5400*

EGAS 1525.9* 3.5024* 2390.8 3.6626 2285.7 3.6655

AEGAS 1520.3* 3.4878* 2380.4 3.6386 2268.6 3.6377
Note: The realized volatility was calculated as the sum of one and five-minutes squared returns aggregated
over the relevant forecast horizon of 1 and 5-days ahead. * refers to the p-value less than 1% in the Diebold
Mariano test. We perform this test using the highlighted duration dependence model with the lowest loss
function value as the benchmark.

Analyzing Table 2.6, the duration models did not outperform the Garch-type models.
However, empirical studies have highlighted that volatility forecasting and VaR forecasting
are two different objectives. The results of the earlier to not imply in the former, and
vice-versa. In general, our results goes directly with Dacco and Satchell’s (1999) which
advert that the choice of the correct loss function is crucial to evaluate the accuracy of
volatility forecasts of non-linear models. Using two different loss function, we observed
that the duration dependence specifications are relatively different when compared to the
Garch-type models. Another point that should be stressed refers to the volatility proxy.
Our measure is larger than others realized volatility measures, since it is not robust to
jumps and microstructure noise (see, Barndor-Nielsen Shephard, 2004). In this case,

5Intra-daily returns on the Bitcoin index are obtained from
https://www.kaggle.com/mczielinski/bitcoin-historical-data
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further research is needed to construct out-of-sample evaluation procedures to identify
the best models in terms of statistical forecasting.

2.4 Conclusion

We have used duration-dependent Markov-switching models (DDMS) to test for the
presence of duration dependence in the volatility dynamics of Bitcoin returns. Addition-
ally, we compare the DDMS model to traditional single-regime GARCH models predicting
one-day-ahead Value-at-Risk (VaR), since regime-switching models tend to give accurate
predictions. In general, the coefficients of the transition probabilities are significantly pos-
itive, which suggest that both states become more persistent over time. For the duration
effect associated with conditional standard deviation, the coefficients estimates are also
significantly positives indicating the increase of volatility as duration increase. Our results
suggest evidence of long memory in the data series as observed by other authors. When
performing one-day ahead VaR, the DDMS-DD model presents the lowest hit rate among
the models. The best result is obtained at the 1% risk level, since p-values indicated the
non-rejection of the null hypothesis in all backtests.
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GARCH-type models

AR(1)-GARCH(1,1)-type models

rt = c+ φrt−1 + ut, ut = σtzt, zt ∼ N(0, 1)

GARCH σ2t = ω + αu2t−1 + βσ2t−1 Bollerslev, 1986

EGARCH log(σ2t ) = ω + α
[∣∣∣ut−1

σt−1

∣∣∣−√2π]+ β log(σ2t−1) + γ ut−1

σt−1
Nelson, 1991

GJR-GARCH σ2t = ω + αu2t−1 + βσ2t−1 + γu2t−1It−1 Glosten et al., 1993

APARCH σδt = ω + α(|ut−1| − γut−1)
δ + βσδt−1

Ding et al., 1993

FIGARCH σ2t = ω + (1− βL− (1− αL)(1− L)γ)u2t + βσ2t−1 Baillie et al., 1996

HYGARCH σ2t = ω + (1− βL− (1− αL)(1 + δ((1− L)γ − 1)))u2t + βσ2t−1 Davidson, 2004

CGARCH σ2t = qt + α
(
u2t−1 − qt−1

)
+ β

(
σ2t−1 − qt−1

)
Engle & Lee, 1993

qt = ω + ρ (qt−1 − ω) + θ
(
u2t−1 − σ2t−1

)
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GAS-type models

The Generalised Autoregressive Score (GAS) models were proposed by Harvey &
Chakravarty (2008) and Creal et al. (2012) to deal with large returns in a GARCH ap-
proach. The general framework is as follows. Let p (yt|ft) denote a conditional observation
density for observations yt and ft a time varying parameter. Assume the parameter ft
follows the updating equation

ft+1 = ω + βft + ακt−1,

where κt = StOt. Ot is the score with respect to the parameter ft and St is a time
dependent scaling matrix.6 In the GAS approach, the evolution of the volatility equation
(ft = σ2

t ) depends on the past values of the score of the conditional distribution.
The specification of the GAS (Garch) is given by:

σ2
t = ω + α1ut−1σ

2
t−1 + f1σ

,
t−1

where ut = z2t − 1 and zt ∼ N (0, 1).
The Exponential GAS (EGAS) is defined as:

logσ2
t = ω + α1ut−1 + f1logσ2

t−1.

The Asymmetric Exponential GAS (AEGAS) which considered the leverage effect is
defined as:

logσ2
t = ω + α1ut−1 + γ1lt−1 + f1logσ2

t−1,

where lt = sgn (−zt) (ut + 1) for the symmetric distributions (i.e. Normal, Student-t and
GED) and lt = sgn (−z∗t ) (ut + 1) for SKST (skewed-Student-t distribution). Therefore
E(lt) = 0 for symmetric and E(lt) = 1−ζ2

1+ζ2
for SKST.

6We set St following Harvey & Chakravarty (2008).
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3 Testing for Mean-Reversion in Bitcoin returns with Gibbs-sampling-augmented
randomization

Abstract. In the present paper, we attempt to verify whether the Bitcoin log-returns are
mean-reverted in the presence of heteroskedastic disturbances driven by a mixture distri-
bution. To tackle this problem, we use the autoregression test of mean-reversion based on
the Gibbs-sampling-augmented randomization methodology. In general, our results in-
dicated that Bitcoin is mean-averting for different returns horizons, model specifications
and for sub-sample periods, which show the explosive characteristic of the Bitcoin in the
period of analysis from 2010 to 2019.

Keywords: Autoregression tests; Mean-reversion in Bitcoin market, Markov-switching
models, Gibbs-sampling-augmented randomization.
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3.1 Introduction

The analysis of mean-reversion in financial assets attracts the interest of many in-
vestors, market practitioners, and researchers. It has fundamental implications for in-
vestment decisions from portfolio selection to pricing of options. For example, a mean-
reverting stock market suggests that assets are less risky in the long run. The research
in mean-reversion for stock prices has shown evidence that stock returns are to some
extent predictable (see, for example, Nelson, 1976; Fama, 1981, among others). The pres-
ence of mean-reverting components in asset prices is directly at odds with the Efficient
Market Hypothesis, and it may imply pricing irregularities or market manipulation. In
a seminal work Fama and French (1988) analyzed autocorrelations of stock returns for
increasing holding periods. A mean-reverting component of prices can induce strong neg-
ative autocorrelation in long-horizon returns. For periods of length between 3 and 5-years,
long-term mean-reversion was empirically observed using stock returns between 1926 and
1985. More specifically, 3-year returns showed a negative correlation of 25%, while 5-year
returns showed a negative correlation of 40%.

However, the autoregression testing of mean-reversion that ignores patterns of het-
eroscedascity is biased towards rejecting the null hypothesis of mean-aversion too often
(Kim and Nelson, 1998). Kim and Nelson (1998) question the often used assumption
of homoscedastic volatility and argue that the significant divergences in mean-reversion
results are explained by the volatility’s time-variation. They used a Bayesian Markov-
swtiching model capturing shifts and turning points in the volatility process, and propose
a Gibbs-sampling-augmented randomization, which is able to obtain the distribution of
the null hypothesis of mean-aversion in the presence of shifts in the volatility. Their find-
ings indicate that mean-aversion in stock prices are more common than previously found
in the literature.

Hence, it is not surprising that mean-reversion has been tested extensively for many
traditional financial assets as well as commodities and over a variety of time periods, using
different methods. However, Bitcoin has so far been unexplored, despite representing an
important case study, since it is the most traded in the world among cryptocurrencies.
We add to the literature on cryptocurrencies by studying the mean-reversion of Bitcoin
returns.

Cryptocurrencies have recently received a great deal of attention in the literature.
In addition, many investors and market practitioners are interested in the behavior of
Bitcoin for trading purposes. Studies have observed that Bitcoin returns exhibit at the
same time differences and similarities with other financial time series (Dyhrberg, 2016).
Particularly, the presence of volatility clustering justifies the use of heteroscedastic models
in the empirical studies (see, for example, Katsiampa, 2017; Baur et al., 2018; Chaim and
Laurini, 2018, among others). In this regard, the Markov-switching models are useful
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for capturing shifts and turning points in the volatility process that is difficult to accom-
modate using GARCH-types models. Several applications (see, for example, Bariviera,
2017; Ardia et al., 2018) suggest the use of regime-switching models and show that the
Bitcoin returns exhibit regime changes. Nonetheless, no previous study has utilized this
methodology for the mean-reversion analysis.

To the best of our knowledge, testing of mean-reversion in the Bitcoin returns is not
currently explored in the literature (notable exceptions include: Corbet and Katsiampa,
2018). Thus, this paper aims to extend the Bitcoin mean-reversion analysis in two dif-
ferent ways. Firstly, Corbet and Katsiampa (2018) find evidence of asymmetric reverting
patterns for positive and negative returns. In contrast, we focus on latent regime switch-
ing properties of Bitcoin returns. This approach allows for jumps in the unconditional
volatility, and it is interesting when analyzing mean-reversion of returns in the long-run.
Using a flexible 3-state Markov-switching variance model, our paper is based on the au-
toregression test of mean-reversion following Kim and Nelson (1998). Secondly, we analyze
multi-period Bitcoin returns, since this is relevant as investors may change their trading
strategies according to the Bitcoin’s long-term behavior. In anticipation of the results
to follow, we report that the 3-state Markov-switching model is identifiable and well-
adjusted to the data. Differently, to the existing literature, the methodology is suitable
to capture long-run dynamics of volatility changes while the Bayesian approach captured
the uncertainty in volatility and parameters. In general, the Bitcoin is strongly mean-
avert for all returns horizons, using alternative models specifications and taking account
for sub-sample periods. This result indicates that the Bitcoin returns are unpredictable,
especially considering their explosive characteristic from 2010 to 2019.

In this recent literature, a closely related topic to our work focus on testing the Ef-
ficient Market Hypothesis (EMH) for cryptocurrencies (Urquhart, 2016; Nadarajah and
Chu, 2017; Vidal-Tomás and Ibañez, 2018). Urquhart (2016) was the first author to
analyze this form of efficiency in the Bitcoin market, rejecting the null hypothesis of in-
formational efficiency regardless of the test. Nadarajah and Chu (2017) test the EMH not
on the Bitcoin returns but using power transformations of daily returns, whose results
showed that the transformed Bitcoin returns are actually market efficient. Vidal-Tomás
and Ibañez (2018) examine the semi-strong efficiency of Bitcoin in the Bitstamp and
Mt.Gox markets, showing how the digital currency responds to monetary policy and Bit-
coin events. Recently, Demir et al. (2018) indicate that Economic Policy Uncertainty
(EPU) can be used to predict Bitcoin returns. And also those papers related to the
explosive behavior like Cheah and Fry (2015), Corbet et al. (2018), among others. There-
fore, our analysis contributes not only to the mean-reverting literature but also to those
papers in Bitcoin related to the Efficient Market Hypothesis and explosive behavior of
Bitcoin given the connection of the topics.

The remainder of this paper is organized as follows: Section 2 presents the methodol-
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ogy; Section 3 describes the data and our empirical results; Section 4 concludes.

3.2 Methodology

3.2.1 The autoregression test

Among the different approaches to study the mean-reversion hypotheses, Fama and
French (1988), simply estimate a regression model using multi-period returns, since the
estimated slope coefficient is a measure of the serial autocorrelation of the multi-period
returns.1 Denoting pt the log of stock price in period t, the multi-period return from
t to t + k is given by Rt,t+K = pt+k − pt. Therefore, the mean-reverting process can
be characterized by negative estimated values of the slope coefficient in the following
regression model:

Rt,t+K = αK + βKRt−K,t + εt,t+k. (3.1)

Despite multi-period stock returns seen to be characterized by negative autocorrelation
over long intervals, many authors have challenged the reliability of Fama and French’s
results. Testing whether the sample autocorrelation is significantly below zero demands
the sampling distribution and the standard error of βK under the null hypothesis of no
mean-reversion. Taking this fact, statistical issues such as the autocorrelations downward
bias in finite samples or volatility changes over the sample period have been appointed by
empirical studies. For example, Kim et al. (1991) re-examine Fama and French’s work
estimating the unknown distribution of the autoregressive statistics. Using randomization
methods, the authors relaxed the normality assumption for stock returns and suggested
that significance levels are much lower than the previously reported.

3.2.2 Bayesian approach to autoregression test

In the same spirit of Kim et al. (1991), Kim and Nelson (1998) offer an alterna-
tive approach to address the issues of heteroscedasticity. Based on previous results in
the literature (see, Kim et al., 1998) the authors apply the Gibbs-sampling-augmented-
randomization method in the autoregressive test of mean-reversion. In their application, a
three-state Markov-switching variance model2 is used to approximate the data generating
process under the null hypothesis, such as:

yt ∼ N(0, σ2
t ), (3.2)

σ2
t = σ2

1S1t + σ2
2S2t + σ2

3S3t, (3.3)
1For further details, see Cochrane (2001).
2See, Hamilton (1989).
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Skt =

1 if St = k

0, otherwise
, k = 1, 2, 3 (3.4)

σ2
1 < σ2

2 < σ2
3,, (3.5)

where yt is the one-period stock log-return subtracted by the mean (i.e., demeaned log-
return), and St is an latent state variable following an first-order Markov process with
transition probabilities given by:

Pr[St = j|St−1 = i] = pij, i, j = 1, 2, 3 (3.6)

3∑
j=1

pij = 1. (3.7)

Using Bayesian methods, the authors estimated the above model applying the Gibbs-
sampling technique, which enable us to access the posterior distributions of the parameters
σ2
1, σ

2
2, σ

2
3, pij; i = 1, 2, 3; j = 1, 2, 3, and the latent states St, t = 1, 2, ..., T. Theoreti-

cally, the estimation procedure provides the uncertainty associated with the parameters
and states through the posterior distributions. For example, the r-th run of the Gibbs
Sampling produce the simulated parameters, σ2

1(r), σ2
2(r) σ2

3(r), and the states St(r),
t = 1, 2, ...T that allow us to generate σ2

t (r), t = 1, 2, ..., T following equation (3.3). Based
on Kim and Nelson (1998), the subsequent steps describe the Gibbs-sampling-augmented
randomization method in the autoregressive tests of mean-reversion:

• Step 1 Standardize the demeaned log-return yt, t = 1, 2, ..., T, with the simulated σt(r),
t = 1, 2, ..., T at the r-th run of Gibbs-sampling.

• Step 2 Calculate the autoregression coefficients β̂∗
K(r) using the standardized returns.

• Step 3 Randomize the standardized returns from Step 1 and calculate the autoregres-
sion coefficients β̂∗∗

K (r) that are both standardized and randomized.

• Step 4 Compare β̂∗
K(r) and β̂∗∗

K (r).

The steps 1 to 4 are repeated 10,000 times. Steps 1 and 2 refers to the posterior
distribution of the autoregression coefficients for standardized returns. Step 3 refers to
the posterior distribution of the autoregression coefficients for standardized under the null
hypothesis, i.e., no mean-reversion. We count how many times β̂∗

K(r) falls below β̂∗∗
K (r)

to estimate the significance level of the tests.
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3.3 Data and Empirical Results

3.3.1 Data

The dataset analyzed in this paper is the weekly closing prices for the Bitcoin (in U.S.
dollar) from October 2010 to January 2019 (443 observations) obtained from Bloomberg.
The choice of using weekly data takes into consideration a trade-off between the number
of observations available for the analysis and the presence of noise regarding the regime
switching identification. The use of daily data ultimately confuses the detection of dis-
tinguishable regimes. However, monthly data would considerably reduce the number of
observations to run the autoregressive test for multi-periods returns. The descriptive
statistics for the Bitcoin log-returns are reported in Table 3.1. The mean is 0.0247 with
a standard deviation of 0.1574. The skewness is positive, and the kurtosis is higher than
3. The Jarque-Bera (JB) statistics also indicated the departure from normality, while the
value of the ARCH (4) suggests the presence of ARCH effects in the log-returns.

Table 3.1: Summary statistics of the Bitcoin original returns

Obs. Mean Std. Dev. Min Max Skewness Kurtosis JB ARCH (4)

443 0.0247 0.1574 −0.7223 0.8658 0.6758 8.5413 600.5 (0.000) 116.8 (0.000)

Note: This table presents summary statistics of the weekly original Bitcoin returns from 08/06/2010 to
02/01/2019. Parentheses refer to the p-values of Jarque-Bera test and ARCH test, respectively.

3.3.2 Estimation Results

We first evaluate if the three-state Markov-switching model captures most of the dy-
namics in Bitcoin returns variance. Our analyses based on the Kim et al. (1998) approach.
For example, Figure 3.1 plots the average of 10,000 realizations of the standardized re-
turns described in the Gibbs sampling-augmented randomization method.3 Analyzing the
summary statistics of the simulated standardized returns (see Table 3.2), we observe no
ARCH effect at 5% significance level, the kurtosis value is close to the normal distribution
and the Jarque-Bera test does not reject the null at 1% significance level.

3.2: Summary statistics of the simulated standardized returns: 3 Regimes Model

Obs. Mean Std. Dev. Min Max Skewness Kurtosis JB ARCH (4)

443 -0.1044 0.9438 −2.4336 2.7398 0.1673 2.3789 9.1882 (0.0161) 8.5028 (0.0748)

Note: This table presents summary statistics of the standardized returns (average of 10,000 realizations
from Gibbs-sampling). Parentheses refer to the p-values of Jarque-Bera test and ARCH test, respectively.

3We also average the variance series when all Gibbs-sampling interactions over, see, Figure I in the
Appendix.
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Figure 3.1: Standardized returns (average of 10,000 realizations from Gibbs-sampling):
3 Regimes Model

Table 3.3 lists the estimates of variance and transition probability parameters for the
Markov-switching model. In our analysis, the Gibbs-sampling iterates on sampling from
the following conditional densities: S|Σ, P ; Σ|P, S, and P |Σ, S, where, Σ = {σ2

1, σ
2
2, σ

2
3},

P = {pij; i, j = 1, 2, 3;}, and S = {St, t = 1, 2, ..., T} are the blocks of parameters.
Draws of the variance and transition probability can be sampled from the conditional
Inverse-gamma and Dirichlet posteriors distributions, respectively. The state variables
are sampled using the so-called forward and backward smoother (see, Chib, 1996). Using
non-informative priors for all model’s parameters, we identify distinct variance values,
characterizing low, medium and high volatility states in Bitcoin returns. We also com-
puted the model’s smoothed probabilities; the regimes are persistent and distincts for
which level of volatility, this result is in line with the transition probabilities values, see
Figure II in the Appendix.

Table 3.3: Bayesian inferences on parameters estimates: 3 Regimes Model

Parameter Posterior

Mean Median SD 95 % interval

σ21 0.0018 0.0017 0.0006 (0.0011, 0.0029)
σ22 0.0124 0.0122 0.0023 (0.0093, 0.0163)
σ23 0.0990 0.0955 0.0238 (0.0683, 0.1426)
p11 0.8296 0.8331 0.0503 (0.7418, 0.9059)
p12 0.1345 0.1307 0.0474 (0.0625, 0.2172)
p21 0.0747 0.0709 0.0299 (0.0332, 0.1299)
p22 0.8843 0.8880 0.0332 (0.8237, 0.9321)
p31 0.0500 0.0442 0.0313 (0.0103, 0.1104)
p32 0.0985 0.0926 0.0464 (0.0333, 0.1828)

Note: Non-informative priors were given for all parameters of the model. SD refers to standard deviation.

The autoregressive test based on the Gibbs-sampling-augmented randomization method
is reported in Table 3.4. In our analysis, we considered several multi-period lag returns
ranging from 4 weeks (one month) to 52 weeks, approximately one year. In general, our
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results indicated very strong evidence of mean-aversion, since the slope coefficients for
the standardized returns are positive. The lowest p-value for the test of mean-aversion
is 0.026 at lag 24. For long periods, 44, 48 and 52 weeks, the slope coefficients for the
standardized returns are negative, but not statistically significant for mean-reversion.

Table 3.4: Autoregression tests based on standardized returns: 3 Regimes Model

Lag K (weeks)

4 8 12 16 20 24 28 32 36 40 44 48 52

Posterior distribution of for standardized Bitcoin returns (Mean, Median, SD)
0.1388 0.1493 0.1413 0.1762 0.2695 0.3100 0.2839 0.1893 0.0986 0.0084 -0.0620 -0.1045 -0.1252
0.1388 0.1501 0.1420 0.1776 0.2708 0.3114 0.2847 0.1902 0.1006 0.0110 -0.0585 -0.1017 -0.1218
0.0316 0.0461 0.0592 0.0661 0.0582 0.0546 0.0580 0.0685 0.0764 0.0816 0.0855 0.0900 0.0926

Sampling distribution. of based on standardized and randomized returns (Mean, Median, SD)
-0.0115 -0.0245 -0.0374 -0.0520 -0.0662 -0.0771 -0.0901 -0.1065 -0.1222 -0.1366 -0.1585 -0.1684 -0.1841
-0.0104 -0.0255 -0.0387 -0.0523 -0.0674 -0.0803 -0.0942 -0.1144 -0.1270 -0.1448 -0.1717 -0.1820 -0.1964
0.0782 0.1104 0.1309 0.1552 0.1726 0.1880 0.2021 0.2140 0.2243 0.2387 0.2473 0.2568 0.2674

p-values
0.9621 0.9242 0.8934 0.9105 0.9653 0.9740 0.9592 0.9050 0.8170 0.7185 0.6525 0.6049 0.5912

We also investigated our preliminary results using two different approaches. First, we
re-estimate the Markov-switching model and the autoregressive test using the sub-sample
period from 2010 to 2016. Second, we applied the autoregressive test using a two-state
Markov-switching model and tested if the model specification would considerably affect
its results. Recently, empirical studies have suggested that Bitcoin entered in a consistent
bubble-phase since 2017. Before 2017, Bitcoin prices remained bounded around U$ 1,000,
but after this period, prices sharply increased breaking the value of U$ 17,000 in December
of 2017, and so far has remained well above the values registered in 2010-2016.

Table 3.5: Autoregression tests based on standardized returns, 2010–2016: 3 Regimes
Model

Lag K (weeks)

4 8 12 16 20 24 28 32 36 40 44 48 52

Posterior distribution of for standardized Bitcoin returns (Mean, Median, SD)
0.1619 0.0787 0.0391 0.0941 0.2331 0.3311 0.3544 0.3356 0.2846 0.2179 0.1498 0.1069 0.0788
0.1625 0.0799 0.0388 0.0945 0.2353 0.3342 0.3578 0.3384 0.2876 0.2203 0.1513 0.1079 0.0802
0.0413 0.0528 0.0688 0.0833 0.0745 0.0683 0.0715 0.0783 0.0840 0.0891 0.0921 0.0973 0.1023

Sampling distribution. of based on standardized and randomized returns (Mean, Median, SD)
-0.0156 -0.0328 -0.0485 -0.0692 -0.0886 -0.1091 -0.1295 -0.1500 -0.1684 -0.1852 -0.2075 -0.2381 -0.2571
-0.0156 -0.0334 -0.0494 -0.0707 -0.0893 -0.1155 -0.1354 -0.1577 -0.1808 -0.1979 -0.2198 -0.2525 -0.2779
0.0911 0.1268 0.1535 0.1781 0.1968 0.2150 0.2294 0.2438 0.2575 0.2662 0.2812 0.2907 0.3043

p-values
0.9635 0.7950 0.6983 0.7973 0.9326 0.9712 0.9754 0.9674 0.9484 0.9181 0.8814 0.8700 0.8493
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For the sub-sample period 2010-2016, (see, Table 3.5) we also obtained similar results
indicating mean-aversion for the Bitcoin returns. In this case, the slope coefficients for
the standardized returns are positive for all lags returns. The lowest p-value for the test
of mean-aversion is 0.024 at lag 28 and 0.205 for the highest at lag 8. However, most
of lags presented p-value inferior of 10%. For the two-state Markov-switching model, we
also obtained similar results to the previous autoregressive test, both for full sample and
sub-sample periods (see Tables I and II in the Appendix section)

Despite the extensive research devoted to the Bitcoin market, the number of papers
examining the mean-reversion hypotheses is relatively small. For the best of our knowl-
edge, Corbet and Katsiampa (2018) found evidence of asymmetric reverting patterns in
the Bitcoin price returns using ANAR models. Differently to our approach, the authors
concluded that negative price returns present stronger reverting behaviors compared to
positive returns. However, this reverting pattern becomes more symmetrical for lower
data frequencies. Further extension of the present paper could incorporate alternative
models of mean-reversion, since our results contrast to the existing in the empirical lit-
erature. Taking this fact, one readily extension of this work is the implementation of
the variance-ratio test using the Markov-switching model as seen in Kim et al. (1998).
Another further interesting extension is to analyze mean-reversion of different cryptocur-
rencies, given the increasing literature of the efficient market hypothesis using different
cryptocurrencies (Wei, 2018; Vidal-Tomás et al., 2019; Bouri et al., 2019).

3.4 Conclusion

In this paper, we captured different states in Bitcoin volatility returns using a 3-state
Bayesian Markov-switching model, and use the Gibbs-sampling-augmented randomization
method in the autoregressive test of mean-reversion for multi-period returns. For the
sample period from 2010 to 2019, we found strong evidence of mean-aversion using weekly
data. We also confirmed our preliminary results for different models specifications and
also carrying the analysis for sub-sample periods.

In general, our results indicate that Bitcoin returns do not display evidence of mean-
reverting components either in the medium or long-run. This implies that the they are
unpredictable, and their movement could be explained by random innovations, supporting
the hypothesis of market efficiency. In this context winning Bitcoin portfolios are expected
to outperform losing portfolios in the long-run.
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Appendix

Table.I: Autoregression tests based on standardized returns: 2 Regimes Model

Lag K (weeks)

4 8 12 16 20 24 28 32 36 40 44 48 52

Posterior distribution of for standardized Bitcoin returns (Mean, Median, SD)
0.1761 0.1421 0.1043 0.1392 0.2558 0.3072 0.2873 0.1967 0.1096 0.0213 -0.0481 -0.0879 -0.1066
0.1763 0.1436 0.1055 0.1418 0.2591 0.3090 0.2890 0.1985 0.1112 0.0225 -0.0470 -0.0868 -0.1055
0.0334 0.0373 0.0443 0.0491 0.0418 0.0369 0.0393 0.0419 0.0431 0.0439 0.0450 0.0461 0.0469

Sampling distribution. of based on standardized and randomized returns (Mean, Median, SD)
-0.0122 -0.0249 -0.0348 -0.0486 -0.0624 -0.0759 -0.0899 -0.1086 -0.1232 -0.1352 -0.1573 -0.1677 -0.1888
-0.0114 -0.0242 -0.0353 -0.0492 -0.0641 -0.0786 -0.0931 -0.1113 -0.1292 -0.1414 -0.1639 -0.1807 -0.1994
0.0780 0.1102 0.1348 0.1542 0.1725 0.1871 0.2012 0.2157 0.2258 0.2392 0.2491 0.2596 0.2651

p-values
0.9866 0.9233 0.8377 0.8760 0.9606 0.9772 0.9645 0.9115 0.8360 0.7377 0.6698 0.6273 0.6314

Table.II: Autoregression tests based on standardized returns, 2010–2016: 2 Regimes
Model

Lag K (weeks)

4 8 12 16 20 24 28 32 36 40 44 48 52

Posterior distribution of for standardized Bitcoin returns (Mean, Median, SD)
0.2178 0.1044 0.0146 0.0663 0.2308 0.3409 0.3588 0.3199 0.2583 0.1864 0.1137 0.0646 0.0323
0.2194 0.1067 0.0162 0.0705 0.2361 0.3448 0.3623 0.3227 0.2605 0.1876 0.1140 0.0643 0.0312
0.0375 0.0444 0.0523 0.0618 0.0547 0.0481 0.0493 0.0472 0.0451 0.0443 0.0444 0.0488 0.0554

Sampling distribution. of based on standardized and randomized returns (Mean, Median, SD)
-0.0147 -0.0320 -0.0484 -0.0676 -0.0874 -0.1076 -0.1264 -0.1469 -0.1695 -0.1882 -0.2145 -0.2367 -0.2569
-0.0149 -0.0316 -0.0512 -0.0685 -0.0901 -0.1120 -0.1304 -0.1548 -0.1791 -0.2050 -0.2278 -0.2551 -0.2770
0.0904 0.1276 0.1551 0.1776 0.1955 0.2115 0.2312 0.2435 0.2555 0.2699 0.2779 0.2923 0.3032

p-values
0.9896 0.8426 0.6471 0.7603 0.9389 0.9777 0.9786 0.9647 0.9443 0.9052 0.8689 0.8411 0.8307
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Figure.II: Probabilities for the three-regime model

(a) Probability low-variance state

(b) Probability medium-variance state

(c) Probability high-variance state
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Figure.I: Estimated variance of Bitcoin returns: 3 Regimes Model
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