# UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE CIÊNCIAS BÁSICAS DA SAÚDE PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS BIOLÓGICAS: BIOQUÍMICA

Bruna Bellaver

# INVESTIGAÇÃO DOS MECANISMOS ENVOLVIDOS NA ATIVAÇÃO ASTROCITÁRIA NA SEPSE AGUDA

Porto Alegre 2019

Bruna Bellaver

# INVESTIGAÇÃO DOS MECANISMOS ENVOLVIDOS NA ATIVAÇÃO ASTROCITÁRIA NA SEPSE AGUDA

Tese apresentada ao Programa de Pós-Graduação em Ciências Biológicas: Bioquímica do Instituto de Ciências Básicas da Saúde da Universidade Federal do Rio Grande do Sul como requisito parcial para a obtenção do título de doutora em Bioquímica.

Orientador: Prof. Dr. Eduardo Rigon Zimmer

Porto Alegre 2019

CIP - Catalogação na Publicação

Bellaver, Bruna INVESTIGAÇÃO DOS MECANISMOS ENVOLVIDOS NA ATIVAÇÃO ASTROCITÁRIA NA SEPSE AGUDA / Bruna Bellaver. -- 2019. 237 f. Orientador: Eduardo Rigon Zimmer.
Tese (Doutorado) -- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Porto Alegre, BR-RS, 2019.
1. astrócitos. 2. sepse. 3. metabolismo energético cerebral. 4. biomarcadores. 5. neuroinflamação. I. Rigon Zimmer, Eduardo, orient. II. Título.

Elaborada pelo Sistema de Geração Automática de Ficha Catalográfica da UFRGS com os dados fornecidos pelo(a) autor(a).

"O poder nasce do querer. Sempre que um homem aplicar a veemência e perseverante energia da sua alma a um fim, vencerá os obstáculos, e, se não atingir o alvo fará, pelo menos, coisas admiráveis."

(Dale Carnegie)

#### AGRADECIMENTOS

Ao meu orientador, Eduardo Rigon Zimmer, por me guiar pelos momentos mais difíceis que um doutorado pode trazer. Mas também por me propiciar a vivência dos mais agradáveis. Obrigada por me fazer redescobrir a minha paixão pela ciência.

À minha querida amiga, colega e orientadora extraoficial Débora Guerini Souza, por compartilhar todos os momento da minha jornada acadêmica, sempre com palavras doces nos momentos certos.

Às queridas Andréia Rocha e Pâmela Lukasewicz, por todo suporte e amizade, seja dividindo o trabalho de bancada ou uma conversa agradável.

À minha amiga Gisele Hansel, por ser um porto seguro em um lugar distante.

À minha amiga e colega Priscila Machado, umas das pessoas mais doces que já conheci, por compartilhar momentos importantes de aprendizado.

Ao Professor Luis Valmor Cruz Portela, que me iniciou na caminhada científica e mesmo de longe deu o apoio necessário para que eu continuasse.

A todo pessoal do Zimmer Lab, por me receberem tão bem, pela convivência diária e por compartilharem todo o seu conhecimento.

Ao Professor Joseph Baur, por ter me recebido no seu laboratório e confiado no meu trabalho. Obrigada por me proporcionar a convivência com pessoas maravilhosas que me fizeram sentir acolhida e valorizada.

A todos os amigos e colegas que estão ou já passaram pelo laboratório 28, pela convivência e pelo aprendizado.

V

Ao meu namorado Douglas Leffa, um grande amigo e pesquisador que inspirou, compartilhou, compreendeu e incentivou todas as etapas dessa caminhada. Obrigada por ser meu ponto de equilíbrio em todos os momentos.

Aos meu pais, Vanderlei e Izete, e à minha irmã Gabriela, por serem a minha maior torcida e não medirem esforços para que eu chegasse até aqui. Sem dúvida o percurso foi menos difícil com vocês do meu lado.

Ao pessoal do biotério, da portaria e da secretaria do departamento, pelo apoio e eficiência.

Ao Conselho Nacional de Desenvolvimento Tecnológico (CNPq) e à Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), pelo apoio financeiro.

# APRESENTAÇÃO

Essa tese está organizada em três Partes, cada uma sendo constituída dos seguintes itens:

Parte I: Resumo, Resumo em inglês (abstract), Lista de abreviaturas, Introdução e Objetivos;

**Parte II:** Resultados, que estão divididos em capítulos os quais contêm os artigos científicos que foram elaborados de maneira a contemplar os objetivos propostos;

**Parte III:** Discussão, Conclusão, Anexos e Referências bibliográficas citadas na Introdução da Parte I e Discussão da Parte III.

Na seção "anexos" estão os artigos científicos que foram elaborados durante o período de doutoramento que têm conteúdo associado ao tema da tese (Anexo I) e que não são diretamente associados com o tema da tese (Anexo II). Os trabalhos foram desenvolvidos no Departamento de Bioquímica da Universidade Federal do Rio Grande do Sul (UFRGS).

# SUMÁRIO

| PARTE I                                                                                                 | 1                     |
|---------------------------------------------------------------------------------------------------------|-----------------------|
| RESUMO                                                                                                  | 2                     |
| ABSTRACT                                                                                                |                       |
| LISTA DE ABREVIATURAS                                                                                   | 4                     |
| INTRODUÇÃO                                                                                              | 6                     |
| 1. A sepse                                                                                              | 6                     |
| 1.1. Conceito e Epidemiologia                                                                           | 6                     |
| 1.2. Fisiopatologia                                                                                     | 6                     |
| 1.3. Encefalopatia associada à sepse (EAS)                                                              | 7                     |
| 1.4. Biomarcadores                                                                                      | 8                     |
| 1.5. Modelos animais de indução de sepse                                                                | 9                     |
| 1.6. Comunicação entre periferia e sistema nervoso central (SNC)                                        | 10                    |
| 1.6.1. Periferia                                                                                        | 10                    |
| 1.6.2. SNC                                                                                              | 11                    |
| 1.6.2.1. Envolvimento hipocampal                                                                        | 12                    |
| 2. Os astrócitos                                                                                        | 13                    |
| 2.1. Funções astrocitária                                                                               | 14                    |
| 2.1.1. Ativação astrocitária                                                                            | 14                    |
| 2.1.2. Modulação do metabolismo energético                                                              | 15                    |
| 2.1.3. Reciclagem de neurotransmissores                                                                 | 16                    |
| 2.1.4. Resposta inflamatória                                                                            | 17                    |
| 2.2. Culturas de astrócitos                                                                             | 19                    |
| OBJETIVOS                                                                                               | 21                    |
| Objetivo Geral                                                                                          | 21                    |
| Objetivos Específicos                                                                                   | 21                    |
| PARTE II                                                                                                |                       |
| Capítulo 1                                                                                              |                       |
| Cecal ligation and perforation model recapitulates acute amino acid abnorm observed in septic patients. | <i>nalities</i><br>23 |
| Capítulo 2                                                                                              |                       |
| Systemic Inflammation as a Driver of Brain Injury: the Astrocyte as an Emer<br>Player                   | rging<br>42           |
| Capítulo 3                                                                                              |                       |
| Activated peripheral blood mononuclear cells trigger astrocyte reactivity                               | 73                    |
| PARTE III                                                                                               | 176                   |
| DISCUSSÃO                                                                                               | 177                   |

| CONCLUSÃO                                                                                                                                                                                                             |                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| REFERÊNCIAS BIBLIOGRÁFICAS                                                                                                                                                                                            |                                                              |
| ANEXOS                                                                                                                                                                                                                |                                                              |
| ANEXO I: Artigos publicados durante o período de doutoramento cu<br>relacionam a esta tese, mas não foram incluídos no corpo principal de                                                                             | ujos temas se<br>a tese198                                   |
| ANEXO I-A: Resveratrol Protects Hippocampal Astrocytes Again Neurotoxicity Through HO-1, p38 and ERK Pathways.                                                                                                        | st LPS-Induced199                                            |
| ANEXO I-B: Guanosine inhibits LPS-induced pro-inflammatory r<br>oxidative stress in hippocampal astrocytes through the heme oxyge                                                                                     | esponse and<br>enase-1 pathway.<br>                          |
| ANEXO II: Artigos publicados durante o período de doutoramento c se relacionam diretamente a esta tese.                                                                                                               | cujos temas não<br>204                                       |
| ANEXO II-B: Characterization of Amino Acid Profile and Enzym<br>Adult Rat Astrocyte Cultures.                                                                                                                         | atic Activity in 207                                         |
| ANEXO II-C: Signaling mechanisms underlying the glioprotective resveratrol against mitochondrial dysfunction.                                                                                                         | e effects of                                                 |
| ANEXO II-D: Higher Vulnerability of Menadione-Exposed Cortic<br>Glutaryl-CoA Dehydrogenase Deficient Mice to Oxidative Stress,<br>Dysfunction, and Cell Death: Implications for the Neurodegenerat<br>Aciduria Type I | cal Astrocytes of<br>Mitochondrial<br>ion in Glutaric<br>211 |
| ANEXO II-E: Anti-aging effects of guanosine in glial cells                                                                                                                                                            |                                                              |
| ANEXO II-F: Resveratrol modulates GSH system in C6 astroglial heme oxygenase 1 pathway.                                                                                                                               | cells through215                                             |
| ANEXO II-G: Homocysteine Induces Glial Reactivity in Adult Ra<br>Cultures.                                                                                                                                            | tt Astrocyte<br>217                                          |
| ANEXO II-H: Cortical Bilateral Adaptations in Rats Submitted to<br>Ischemia: Emphasis on Glial Metabolism                                                                                                             | Focal Cerebral                                               |
| ANEXO II-I: N-acetylcysteine Prevents Alcohol Related Neuroinf Rats.                                                                                                                                                  | flammation in<br>221                                         |
| ANEXO II-J: In Vitro Adult Astrocytes are Derived From Mature<br>Reproduce in Vivo Redox Profile                                                                                                                      | Cells and 223                                                |
| ANEXO II-K: Increased Oxidative Parameters and Decreased Cyte<br>an Animal Model of Attention-Deficit/Hyperactivity Disorder                                                                                          | okine Levels in 225                                          |
| ANEXO II-L: Transcranial direct current stimulation improves lon<br>deficits in an animal model of attention-deficit/hyperactivity disord<br>modulates oxidative and inflammatory parameters.                         | ng-term memory<br>der and<br>227                             |
| ANEXO II-M: Combined use of alcohol and tobacco smoke chang<br>inflammatory, and neurotrophic parameters in different brain areas                                                                                     | ge oxidative,<br>s of rats229                                |

PARTE I

#### RESUMO

A sepse é caracterizada por um severo processo inflamatório, globalmente disseminado, que compromete diversas funções vitais ao organismo. O acometimento do sistema nervoso central (SNC) nessa patologia está relacionado a um aumento na sua taxa de mortalidade. Os biomarcadores utilizados atualmente na clínica não são suficientemente sensíveis para detectar essas complicações da sepse de maneira precoce, falhando em antecipar o início do tratamento e diminuir a morbimortalidade. O entendimento dos danos causados pela sepse no SNC vai muito além do simples estudo da função neuronal, sendo evidente o envolvimento das células gliais nos seus mecanismos patológicos. Nesse sentido, os astrócitos desempenham um papel crucial na resposta neuroimune e no controle da homeostasia energética cerebral, porém sua participação durante a sepse permanece negligenciada. Essa tese buscou elucidar alterações na funcionalidade dos astrócitos e identificar os eventos sistêmicos responsáveis pela reatividade astrocitária durante a fase aguda de sepse. Nossos resultados sugerem que o modelo de ligação cecal e perfuração (LCP) reproduz o perfil sorológico de aminoácidos observado em pacientes com encefalopatia associada à sepse (EAS). Adicionalmente, correlações entre o perfil de aminoácidos entre o soro e o líquido cefalorraquidiano foram observadas. Demonstramos também que a cultura de astrócitos reflete características observadas in vivo durante a sepse, representando um modelo adequado de estudo para essa patologia. Além disso, a análise de transcriptoma humano evidenciou um acometimento de vias associadas ao metabolismo energético em pacientes com sepse. Consistentemente, nosso modelo de LCP demonstrou uma substancial diminuição no metabolismo de glicose cerebral, acompanhado de um decréscimo no metabolismo glutamatérgico. Finalmente, observamos que mediadores liberados pelas células sanguíneas mononucleares (PBMCs) são capazes de promover uma ativação astrocitária acompanhada por déficit no metabolismo energético durante a sepse, fenômeno com envolvimento direto da via da fosfatidilinositol 3-quinase (PI3K). Com os resultados obtidos nessa tese nós avançamos na compreensão dos mecanismos pelo qual a inflamação sistêmica impacta na funcionalidade cerebral, indicando potenciais alvos para futuras intervenções terapêuticas.

#### ABSTRACT

Sepsis is a heterogeneous life-threatening dysfunction presenting high mortality rates caused by a dysregulated host response. When the central nervous system (CNS) is affected, sepsis promotes permanent cognitive impairment, therefore increasing mortality rates. The biomarkers currently available are not sufficient sensible in the clinical settings to be used as sepsis-associated encephalopathy (SAE) predictors. Thus, the implementation of better biomarkers of SAE is of high interest, as it would improve differential diagnose and early therapeutic intervention. Beyond sepsis-induced neuronal dysfunction, glial cells response has been gaining considerable attention with microglial activation as a key player. By contrast, astrocytes role during acute sepsis is still underexplored. Astrocytes are specialized immune-competent cells involved in the brain surveillance and energetic metabolism homeostasis. Based on that, this thesis aimed to evaluate the alterations in astrocyte functionality and the systemic triggers of astrocyte reactivity during the acute stage of sepsis. Our findings demonstrated that CLP model recapitulates serum data available from clinical studies regarding amino acid profile in the acute stage of SAE. Importantly, we also identified amino acid correlations between serum and cerebrospinal fluid (CSF). Additionally, we demonstrated that astrocyte culture reflects the characteristics observed in vivo during sepsis, being a reliable tool to study this pathology. Transcriptome analysis suggested multiple changes in energy signaling pathways in the blood of septic patients. In the CLP model, we identified widespread brain glucose hypometabolism along with reduced capacity of taking up glutamate. Also, by exposing astrocytes to mediators released by PBMCs from CLP animals, we reproduced the energetic failure observed in vivo. This phenomenon seems to be partially mediated by the phosphatidylinositol 3kinase (PI3K) pathway. In summary, this thesis improves the understanding of the mechanisms by which systemic inflammation impacts on brain functionality, indicating potential targets for therapeutic intervention.

#### LISTA DE ABREVIATURAS

- [<sup>18</sup>F] FDG: fluorodeoxiglicose
- AAA: aminoácidos aromáticos
- AMPK: proteína cinase ativada por AMP (*AMP-activated protein kinase*)
- ATP: trifosfato de adenosina
- BCAA: aminoácido de cadeia lateral ramificada (branched-chain amino acid)
- BSC: barreira sangue-cérebro
- CM: meio condicionado
- DEG: gene diferencialmente expresso (differentially expressed gene)
- EAS: encefalopatia associada à sepse
- GABA: ácido gama-aminobutírico (gamma-amino butyric acid)
- G-CSF: fator estimulante de colônia de granulócito (granulocyte-colony stimulating factor)
- GFAP: proteína glial fibrilar ácida (glial fibrillary acidic protein)
- GLAST: transportador glutamato-aspartato (glutamate-aspartate transporter)
- GLT-1: transportador de glutamato 1 (glutamate transporter 1)
- GLUT1: transportador de glicose 1 (glucose transporter 1)
- GSH: glutationa
- IFN-y: interferon gama
- IL: interleucina
- iNOS: óxido nítrico sintase induzível (inducible nitric oxide synthase)
- LCP: ligação cecal e perfuração
- LCR: líquido cefalorraquidiano
- LPS: lipopolissacarídeo
- OMS: Organização Mundial da Saúde
- PBMC: células sanguíneas mononucleares (peripheral blood mononuclear cells)
- PET: tomografia por emissão de pósitrons (positron-emission tomography)
- PI3K: fosfatidilinositol 3-quinase (phosphoinositide 3-kinase)

PMAD: padrões moleculares associados a danos

PMAP: padrões moleculares associados a patógenos

RNAm: ácido ribonucleico mensageiro

SNC: sistema nervoso central

- TCA: ciclo do ácido cítrico (tricarboxylic acid cycle)
- TGF- $\beta$ : fator de crescimento transformante beta (*transforming growth factor*  $\beta$ )
- TLR: receptores do tipo Toll (Toll-like receptors)
- TNF-α: fator de necrose tumoral alfa (*tumor necrosis factor alpha*)
- VEGF: fator de crescimento endotelial vascular (vascular endothelial growth factor)

## **INTRODUÇÃO**

### 1. A sepse

#### 1.1. Conceito e Epidemiologia

O termo sepse deriva do grego *sêpsis*, que significa putrefação. O conceito de sepse vêm sendo atualizado ao longo da história. Hipócrates, no ano 700 a.C., descreveu esse quadro como um perigoso e odorífero comprometimento biológico que poderia ocorrer no organismo. Mais recentemente, o quadro de sepse foi redefinido como uma disfunção que lesa os órgãos vitais, difusamente, devido a uma resposta à infecção desregulada (Singer, Deutschman et al. 2016). Atualmente a Organização Mundial de Saúde (OMS) estima que a cada ano 30 milhões de pessoas sejam acometidas por essa síndrome clínica, chegando a causar 6 milhões de mortes anualmente. No Brasil, a situação é ainda mais alarmante. Com um total de 670 mil casos anuais, estima-se que a taxa de mortalidade chegue a 50%. A taxa de mortalidade elevada em decorrência do estabelecimento da sepse reflete a carência de um diagnóstico e de tratamento precoce. Esse panorama, somado ao preocupante aumento do número de bactérias resistentes aos antimicrobianos disponíveis na clínica, principalmente em países em desenvolvimento, impulsionou a OMS a incluir a sepse na lista de prioridades de saúde mundial (Reinhart, Daniels et al. 2017).

### 1.2. Fisiopatologia

O conjunto de eventos celulares e moleculares que causam os efeitos deletérios da sepse e, em última instância, a falência de órgãos, são bastante heterogêneos e dinâmicos, variando conforme o estágio da patologia observado. Fatores importantes que determinam o desenvolvimento da sepse incluem, suscetibilidade genética, ativação exacerbada do sistema imune, produção de espécies reativas de oxigênio em excesso e também alterações metabólicas (Gotts and Matthay 2016). Assim, sugere-se que devido ao dano ao DNA causado pelo estresse oxidativo, há uma disfunção mitocondrial em pacientes acometidos por sepse, resultando em última instância em uma redução na produção de adenosina trifosfato (ATP) (Singer 2014). Consequentemente, observa-se uma generalizada redução do gasto energético a nível celular durante a sepse, o que provavelmente potencializa a disfunção orgânica, causando a perda de funções celulares especializadas de cada tecido (Rivers, Nguyen et al. 2001, Gotts and Matthay 2016). Nesse sentido, por não ser uma patologia com sintomas homogêneos, faz-se necessário o entendimento individual do mecanismo pelo qual cada órgão é afetado.

#### 1.3. Encefalopatia associada à sepse (EAS)

O desenvolvimento de um quadro de encefalopatia associada à sepse (EAS) é definido como uma disfunção cerebral focal ou generalizada induzida por uma resposta a uma infecção sistêmica sem que haja qualquer foco de infecção direta no SNC (Wilson and Young 2003). EAS é uma apresentação clínica comum, com prevalência de até 71%, apresentando-se prematuramente em pacientes acometidos por essa síndrome (Cotena and Piazza 2012). Alguns estudos sugerem, inclusive, que uma disfunção cerebral associada à sepse ocorra antes que possa ser observado dano a qualquer outro órgão (Young 2010, Ziaja 2013) e que seu dano perdure após resolução do quadro crítico de inflamação, conduzindo a um declínio cognitivo e demência em longo prazo (Chou, Lee et al. 2017). Atualmente não existe uma terapia específica para EAS e o seu desfecho depende do tratamento rápido e adequado da sepse como um todo. Nesse

sentido, o entendimento dos mecanismos patológicos e a intervenção clínica na fase aguda de sepse são de grande valia para aumentar a sobrevivência de pacientes acometidos por EAS e prevenir, a longo prazo, as sequelas associadas.

#### 1.4. Biomarcadores

O uso de biomarcadores na prática clínica é de fundamental importância para o diagnóstico precoce de diversas patologias, auxiliando na tomada de decisões e facilitando prognósticos. Sendo a sepse uma síndrome multifatorial, com características distintas e não completamente estabelecidas ao longo do seu curso de desenvolvimento, o uso de biomarcadores na clínica ainda é um desafio (Faix 2013, Biron, Ayala et al. 2015). Um dos marcadores mais utilizados para diagnóstico de sepse é a cultura bacteriológica de sangue. Esse método diagnóstico possui uma limitação bastante importante que é o tempo prolongado para obtenção dos resultados (cerca de 2-3 dias). Além disso, uma quantidade significativa de casos de sepse não apresentam culturas sanguíneas positivas para bactérias (Calandra and Cohen 2005, Biron, Ayala et al. 2015). Outro marcador amplamente utilizado como auxiliar do diagnóstico de sepse é o lactato sanguíneo (Lee and An 2016). Contudo, muitas vezes, níveis de lactato elevados são observados apenas após o início de falência de órgãos em pacientes. Além disso, atualmente não existem biomarcadores disponíveis na clínica capazes de predizer o desenvolvimento de EAS e facilitar o início de um tratamento precoce visando a melhoria do prognóstico e evitando danos a longo prazo. O desafio em identificar biomarcadores para EAS se deve, em parte, à dificuldade em correlacionar níveis periféricos de determinada molécula com seus níveis no SNC. Essa correlação em humanos é ainda mais desafiadora, visto a necessidade da utilização de técnicas

invasivas para coleta de líquido cefalorraquidiano (LCR). Assim, modelos animais que reproduzam parâmetros clínicos observados em pacientes são uma ferramenta bastante útil na busca por biomarcadores na EAS.

### 1.5. Modelos animais de indução de sepse

Visando elucidar o impacto da inflamação sistêmica sobre o SNC, diversos modelos experimentais vêm sendo utilizados na literatura, incluindo sepse cutânea, sepse abdominal e sepse induzida pela administração de lipopolissacarídeo (LPS), variando na literatura em relação à dose, tempo e via de administração. Contudo, o modelo de ligação cecal e perfuração (LCP) é considerado atualmente o padrão-ouro para os estudos relacionados à sepse. Nesse modelo, a sepse é cirurgicamente induzida através da ligação do ceco, imediatamente abaixo da válvula ileo-cecal, e da perfuração do ceco permitindo o extravasamento do material fecal do colo para a cavidade peritoneal, promovendo uma intensa reação inflamatória (Wichterman, Baue et al. 1980). Além disso, esse modelo induz uma isquemia mesentérica, que associada à peritonite, simula as grandes síndromes clínicas de sepse abdominal observadas na clínica. Assim, esse modelo promove uma infecção gradativa mista por bactérias Grampositivas e Gram-negativas, e se correlaciona de forma mais fidedigna à sepse observada em humanos do que os outros modelos utilizados atualmente (Lee and Huttemann 2014, Neves, Marques et al. 2016, Comim, Freiberger et al. 2017). Além disso, devido ao rápido acometimento do SNC, esse modelo é amplamente utilizado para o estudo de EAS (Yokoo, Chiba et al. 2012, Steckert, Dominguini et al. 2017, Gasparotto, Girardi et al. 2018).

#### 1.6. Comunicação entre periferia e sistema nervoso central (SNC)

O processo neuroinflamatório não é um evento dependente apenas de sinais provenientes do SNC. Pelo contrário, as respostas imunes inatas e adaptativas cerebrais são complexas e controladas de maneira a responder também a sinais periféricos (Failli, Kopp et al. 2012, Katafuchi, Ifuku et al. 2012, Ransohoff, Schafer et al. 2015). Dessa forma, no contexto da EAS, há um crescente interesse no entendimento dos mecanismos celulares e moleculares envolvidos na iniciação e propagação da inflamação cerebral, a fim de melhor compreender e, futuramente, prevenir os processos patológicos associados a essa síndrome clínica.

#### 1.6.1. Periferia

A resposta imune durante a fase inicial da sepse é coordenada por receptores de padrões moleculares associados a patógenos (PMAPs) ou a danos (PMADs) que são originados dos organismos causadores da infecção, geralmente bactérias ou fungos (Cinel and Opal 2009). Assim, esses padrões moleculares se ligam aos seus receptores expressos nas células imunes sanguíneas, desencadeando a liberação de uma série de mediadores que vão aumentar a atividade fagocítica, a ativação do sistema de coagulação e a quimiotaxia de leucócitos para o sítio da infecção (Casey 2000, Cinel and Opal 2009). Nesse sentido, acredita-se que a ativação de células sanguíneas mononucleares (PBMCs, do inglês *peripheral blood mononuclear cells*) tenha um papel central na regulação dessa resposta aguda periférica. As PBMCs são células sanguíneas com núcleo arredondado, e sua população é constituída por linfócitos, monócitos e macrófagos. Quando ativadas, essas células liberam uma gama de mediadores inflamatórios, incluindo interferon gama (IFN- $\gamma$ ), fator de necrose tumoral alfa (TNF- $\alpha$ ), interleucina (IL)-2, IL-4, IL-5 e IL-10 (Friberg, Bryant et al. 1994, Katial,

Sachanandani et al. 1998). Então, esses mediadores são enviados do plasma sanguíneo para outros sítios afetados pela inflamação, incluindo o cérebro (Tang, McLean et al. 2009, Godini and Fallahi 2018). Além disso, já foi demonstrado que alterações na atividade mitocondrial das PBMCs estão diretamente relacionadas com a desregulação da resposta imune e falência de órgãos durante a sepse (Adrie, Bachelet et al. 2001, Sjovall, Morota et al. 2013).

Os pacientes sobreviventes à essa fase inicial da sepse, considerada hiperinflamatória, passam posteriormente por uma fase anti-inflamatória compensatória, chamada de imunoparalisia. Os mecanismos relacionados a essa segunda fase ainda não estão claros, mas eles incluem uma disfunção na resposta imune adaptativa, que consequentemente deixa o organismo mais vulnerável a infecções secundárias, apresentando uma taxa de letalidade elevada (Hotchkiss, Monneret et al. 2013, Boomer, Green et al. 2014). Contudo, Tang e colaboradores demonstraram que essa visão imunológica dual durante a sepse parece ser um pouco mais complexa (Tang, Huang et al. 2010). Analisando diferentes estudos publicados na literatura, esses autores não observaram padrões de expressão gênica que distinguissem as fases pró e antiinflamatória, ou mesmo uma fase de transição, entre os acometidos por sepse (Tang, Huang et al. 2010). Dessa forma, hipotetiza-se que em uma grande quantidade de casos ambas as fases possam ocorrer simultaneamente.

#### 1.6.2. SNC

Os sistemas imunes inato e adaptativo participam ativamente na vigilância do SNC, promovendo a manutenção da homeostasia cerebral e facilitando o combate a infecções, degeneração e dano tecidual (Waisman, Liblau et al. 2015). Durante a fase aguda de sepse, a resposta imune inata é a primeira linha de defesa cerebral, sendo formada primariamente pela barreira sangue-cérebro (BSC), células gliais (microglia e astrócitos) e alguns mediadores químicos (Russo and McGavern 2015, Waisman, Liblau et al. 2015). Essa resposta, assim como na periferia, é coordenada por receptores de PMAPs e/ou PMADs, provocando modificações no microambiente tecidual, como alteração na expressão gênica, diferenciação celular e recrutamento de células imunes periféricas através da BSC (Hamby, Coppola et al. 2012).

#### **1.6.2.1.** Envolvimento hipocampal

Manifestações precoces de dano cerebral durante a sepse incluem ansiedade, perda de memória de curta duração e espacial, sendo esses sintomas normalmente consequências de dano hipocampal (Ebersoldt, Sharshar et al. 2007). De fato, o hipocampo é uma das regiões cerebrais mais vulneráveis a danos inflamatórios e isquêmicos (Lim, Alexander et al. 2004, Zhang, Wang et al. 2017). Nesse sentido, Nolan e colaboradores demonstraram que após um dano inflamatório há um recrutamento de macrófagos e células gliais para a região afetada, causando um dano hipocampal mediado majoritariamente por monócitos CD14<sup>+</sup> (Nolan, Vereker et al. 2003). Além disso, estudos demonstram que tratamentos que buscam diminuir o dano inflamatório agudo hipocampal, como anti-inflamatórios não esteroides (Monje, Toda et al. 2003), inibidores de morte celular mediados por caspases (Heo, Cho et al. 2006) e imunomodulação de células apoptóticas (Nolan, Campbell et al. 2005), são capazes de prevenir e/ou diminuir o dano cognitivo a longo prazo. Baseado nisso, o hipocampo emerge com uma potencial região-alvo para o tratamento de sepse (Annane 2009), e o melhor entendimento dos processos que medeiam o dano causado nessa região durante a fase aguda da sepse são fundamentais para o estabelecimento de um tratamento adequado e a diminuição de sequelas a longo prazo. O prejuízo da funcionalidade

hipocampal durante a sepse envolve o comprometimento de diversos tipos celulares do SNC, dentre os quais os mais investigados são os neurônios e a microglia. Porém, os astrócitos, células fundamentais na homeostase cerebral e com importante papel imune, vêm ganhando crescente destaque nesse contexto.

#### 2. Os astrócitos

Os astrócitos são as células gliais responsáveis pela manutenção da homeostase cerebral, apresentando-se como o tipo celular cerebral com maior diversidade funcional, além de possuir uma capacidade dinâmica de alterar seu fenótipo no decorrer da vida (Shao and McCarthy 1994). Os astrócitos são classicamente divididos em dois grandes subtipos de acordo com as suas diferenças morfológicas e localização anatômica. Os protoplasmáticos representam o subtipo mais abundante, estão localizados na substância cinzenta e exibem muitas ramificações com uma morfologia globóide. Já os astrócitos fibrosos são encontrados ao longo de toda substância branca, apresentam menos ramificações e extensões cilíndricas, longas e finas (Miller and Raff 1984). Em geral, para o estudo da funcionalidade astrocitária utilizando culturas celulares, os astrócitos provenientes da substância cinzenta são os mais utilizados (Lange, Bak et al. 2012).

Dentre as principais funções desempenhadas pelos astrócitos estão: (a) modulação da plasticidade sináptica, participando da sinapse tripartite (Clarke and Barres 2013), (b) regulação extracelular de neurotransmissores, em especial na sinalização exercida por glutamato e ácido gama aminobutírico (GABA, do inglês *Gamma*-Amino *Butyric Acid*) (Danbolt 2001, Schousboe, Bak et al. 2013), (c) formação e manutenção da BSC e consequentemente da resposta inflamatória uma vez que eles regulam a passagem de células do sistema imune entre a circulação sistêmica e o parênquima do SNC (Abbott, Ronnback et al. 2006), (d) controle da disponibilidade de

13

substratos energéticos, por estarem em contato direto com os vasos sanguíneos e pelo seu papel no ciclo glutamato-glutamina (McKenna 2007, Stobart and Anderson 2013), (e) defesa contra estresse oxidativo, através da produção do principal antioxidante não enzimático cerebral, a glutationa (GSH) (Dringen 2000), (f) manutenção do pH e homeostase iônica do SNC, evitando a excessiva despolarização neuronal e consequente hiperexcitabilidade (Wang and Bordey 2008). Alguns desses tópicos serão explorados com maior detalhe nas seções seguintes.

Alterações nas funções astrocitárias citadas anteriormente possuem impacto direto em diversas doenças que acometem o SNC, incluindo na doença de Alzheimer (Carter, Herholz et al. 2019), Parkinson (Booth, Hirst et al. 2017), Huntington (Khakh, Beaumont et al. 2017), isquemia (Rossi, Brady et al. 2007), esclerose amiotrófica lateral (Pehar, Harlan et al. 2017) e EAS (Michels, Steckert et al. 2015, Bellaver, Dos Santos et al. 2017). Assim, há um crescente número de estudos propondo modulações da atividade astrocitária para o desenvolvimento de terapias farmacológicas para essas patologias (Gorshkov, Aguisanda et al. 2018).

#### 2.1. Funções astrocitária

#### 2.1.1. Ativação astrocitária

A resposta astrocitária a diferentes tipos de injúrias é um processo comumente denominado reatividade astrocitária. Esse processo é, em geral, transitório e possui como característica hipertrofia e hiperplasia celular, acúmulo de proteínas intermediárias de citoesqueleto, especialmente da proteína glial fibrilar ácida (GFAP, do inglês *glial fibrillary acidic protein*) e liberação de diversas moléculas que impactam de diferentes maneiras todos os tipos celulares no seu microambiente (Kang and Hebert 2011, Sofroniew 2014). A GFAP é uma proteína da classe de filamentos intermediário do tipo III e é a principal proteína que constitui o citoesqueleto de astrócitos, conferindo a essas células a manutenção de sua força mecânica e de suporte estrutural aos neurônios e à BSC (Eng, Ghirnikar et al. 2000, Bramanti, Tomassoni et al. 2010). Adicionalmente à GFAP, os astrócitos também aumentam a expressão de outra importante proteína de citoesqueleto quando se tornam reativos: a vimentina. Nesse contexto, estudos com animais *knockout* para GFAP e vimentina já demonstraram uma diminuição no processo de reatividade e de formação da cicatriz glial (Wilhelmsson, Li et al. 2004, Liu, Li et al. 2014). Apesar da reatividade astrocitária ser considerada um mecanismo de proteção astrocitário evolutivamente conservado, seu papel benéfico ainda é bastante controverso na literatura e parece variar de acordo com o contexto patológico, evidenciando assim a importância de seu estudo específico em diferentes injúrias que acometem o SNC (Pekny, Wilhelmsson et al. 2014).

#### 2.1.2. Modulação do metabolismo energético

O cérebro é um órgão que possui alta demanda energética, chegando a consumir cerca de 25% do total de glicose disponível em todo o corpo. Contudo, esse órgão possui uma baixa reserva de energia, estocada na forma de glicogênio astrocitário. sendo assim, altamente dependente da captação de substratos energéticos da circulação sanguínea (Garcia-Caceres, Quarta et al. 2016). Nesse sentido, os astrócitos são reguladores multifuncionais do acoplamento neurometabólico, desempenhando um importante papel central na regulação do metabolismo energético cerebral. Por ocuparem uma posição privilegiada, com seus pés astrocíticos em contato com cerca de 99% dos capilares sanguíneos cerebrais e também com os neurônios, eles são capazes de sentir a necessidade energética cerebral e captar substratos da circulação sanguínea fornecendo, com isso, a energia necessária para a manutenção da atividade neuronal (Belanger, Allaman et al. 2011, Stobart and Anderson 2013). A glicose é captada pelos astrócitos através de seus transportadores de glicose específicos, sendo o principal deles o GLUT1. Após ser captada pelos astrócitos, a glicose pode seguir dois destinos: (a) ser estocada na forma de glicogênio para mobilização rápida de glicose (Belanger, Allaman et al. 2011) ou, predominantemente (b) entrar na via glicolítica para liberar intermediários que servirão de substrato energético neuronal ou para serem oxidados no ciclo do ácido cítrico (TCA) para suprir as próprias demandas energéticas (Lovatt, Sonnewald et al. 2007).

#### 2.1.3. Reciclagem de neurotransmissores

Uma das funções astrocitárias melhor caracterizada é a sua participação ativa na refinada regulação dos níveis de glutamato presentes na fenda sináptica. O glutamato é o principal neurotransmissor excitatório do SNC, assim, a adequada captação astrocitária do excesso de glutamato presente na fenda sináptica é de fundamental importância para evitar a chamada excitoxicidade glutamatérgica, que é altamente prejudicial à atividade neuronal. Dessa forma, através dos seus transportadores específicos GLT-1 (transportador de glutamato-1) e GLAST (transportador glutamato-aspartato), os astrócitos são capazes de captar até 90% do glutamato liberado na fenda sináptica (Anderson and Swanson 2000, Nortley and Attwell 2017). Após captado, o glutamato pode ser metabolizado no TCA ou ser reciclado através do ciclo glutamato-glutamina. Esse ciclo é dependente da funcionalidade astrocitária, uma vez que essas células expressam, de maneira exclusiva no SNC, a enzima glutamina sintetase, que vai

converter o glutamato captado à glutamina. Dessa forma, permitindo que a glutamina seja liberada para a fenda sináptica onde pode ser recaptada pelo neurônio pré-sináptico e convertida novamente à glutamato, a fim de manter o pool de glutamato neuronal. Interessantemente, a neurotransmissão glutamatérgica é responsável por 80% da demanda energética cerebral evidenciando um importante link entre metabolismo glutamatérgico e utilização de glicose (Attwell and Laughlin 2001). Nesse sentido, recentemente foi demonstrada a existência de um acoplamento *in vivo* entre captação de glutamato via GLT-1, e metabolismo de glicose cerebral, mediado por astrócitos (Zimmer, Parent et al. 2017).

#### 2.1.4. Resposta inflamatória

Em condições normais, o SNC possui um perfil anti-inflamatório, estando principalmente sob a influência de IL-10 e do fator de crescimento transformante beta (TGF- $\beta$ , do inglês *transforming growth factor*  $\beta$ ), enquanto as citocinas próinflamatórias são produzidas apenas em níveis basais, requeridos para o correto funcionamento cerebral (McAfoose, Koerner et al. 2009, Santello, Bezzi et al. 2011, Jensen, Massie et al. 2013). Nesse contexto, os astrócitos atuam controlando a passagem de moléculas, como anticorpos e fatores do sistema complemento, para o SNC. Já no contexto inflamatório, os astrócitos atuam liberando uma gama de citocinas e quimiocinas pró-inflamatórias com o objetivo de atrair células e fatores solúveis sanguíneos para o local da inflamação. Dentre as principais citocinas liberadas pelos astrócitos estão: TNF- $\alpha$ , IL-1 $\beta$ , IL-6 e IL-18 (Jensen, Massie et al. 2013). Após serem secretados pelos astrócitos, esses mediadores estimulam a liberação de enzimas proteolíticas e prostaglandinas, induzindo a produção de espécies reativas de oxigênio e consequentemente a síntese e liberação de citocinas secundárias que vão recrutar novas células gliais de modo a exacerbar a resposta inflamatória (Cannon 2000).

Essa resposta astrocitária ocorre pois essas células, em cooperação com a microglia, são capazes de reconhecer e responder a diversos patógenos, sejam eles bactérias, fungos ou vírus (Ransohoff and Brown 2012). O reconhecimento desses agentes patológicos é possível devido ao fato de os astrócitos expressarem receptores de reconhecimento padrão específicos, incluindo vários membros da família dos receptores do tipo Toll (TLR) (Hayward and Lee 2014, Kopitar-Jerala 2015). Estudos sugerem uma expressão robusta de TLR3 em astrócitos em condições não patológicas, enquanto que TLR2 e TLR4 têm sua expressão gênica aumentada apenas após as células astrocitárias serem estimuladas por PMAPs (Farina, Aloisi et al. 2007, Gorina, Santalucia et al. 2009, Rossi 2015). Além de os astrócitos serem refinadamente sensíveis a infecções associadas a PMAPs, a presença de citocinas inflamatórias também é capaz de alterar o perfil transcricional astrocitário, fazendo com que essas células adquiram um fenótipo pró-inflamatório e citotóxico.

Tanto a presença de ligandos de TLRs quanto de receptor de TNF ou de IL-1 são capazes de ativar a via de sinalização do fator nuclear kappa B (NF $\kappa$ B, do inglês *nuclear factor kappa B*), que ocorre através da sua translocação do citoplasma para o núcleo. Sabe-se que a sinalização por NF $\kappa$ B é capaz de ativar mais de 500 genes (Chen and Greene 2004, Gupta, Sundaram et al. 2010), sendo uma importante via de sobrevivência celular. Muitos desses genes estão relacionados à atividade cerebral físiológica, incluindo plasticidade sináptica, aprendizado e memória e proteção contra a excitotoxicidade (Mincheva-Tasheva and Soler 2013). Porém, sua ativação por certas moléculas induz a produção de citocinas e enzimas pró-inflamatórias, como a óxido nítrico sintase induzível (iNOS, do inglês *inducible nitric oxide synthase*), acarretando

na produção aumentada de uma poderosa espécie reativa de nitrogênio, o óxido nítrico (Saha and Pahan 2006).

#### 2.2. Culturas de astrócitos

O cultivo celular primário demonstra-se uma ferramenta bastante útil quando se deseja estudar o papel de um tipo celular individualmente, permitindo assim elucidar suas características e funções específicas. Nesse sentido, a cultura primária de astrócitos vem sendo amplamente utilizada para melhor entendimento do papel dessas células tanto em funções fisiológicas quanto patológicas (Skytt, Madsen et al. 2010, Lange, Bak et al. 2012). Muito do conhecimento sobre a funcionalidade astrocitária é proveniente do estudo utilizando cultura de células de animais neonatos, porém, grande parte das disfunções anteriormente citadas afeta majoritariamente o cérebro maduro. Diferentemente do cérebro em maturação, o tecido adulto apresenta alta interatividade entre as células (especialmente conexões sinápticas), e relações, papéis e funções celulares bem estabelecidas. Assim, células provenientes do tecido maduro tendem a ter um maior grau de diferenciação do que as provenientes do tecido cerebral de neonatos (Souza, Bellaver et al. 2013, Herculano-Houzel 2014, Bellaver, Souza et al. 2016)

Além disso, a utilização do cérebro maduro para a elaboração da cultura astrocitária primária nos permite a realização de diferentes intervenções *in vivo* previamente à obtenção das células para cultivo. Tendo isso em vista, nosso grupo de pesquisa padronizou um protocolo de rotina de cultivo primário de astrócitos provenientes do cérebro de animais maduros que nos permite estudar de maneira mais fidedigna o papel específico dos astrócitos em diferentes patologias que acometem o cérebro adulto ou envelhecido (Bellaver, Souza et al. 2014, Bellaver, Souza et al. 2016,

19

Souza, Bellaver et al. 2016, Bellaver, Dos Santos et al. 2017, Souza, Bellaver et al. 2017).

#### **OBJETIVOS**

#### **Objetivo Geral**

Elucidar alterações na funcionalidade dos astrócitos e identificar os eventos sistêmicos responsáveis pela reatividade astrocitária durante a fase aguda de sepse.

## **Objetivos Específicos**

- Verificar se o perfil sorológico de aminoácidos em modelo experimental de LCP recapitula àquele observado em humanos durante a sepse aguda;
- Correlacionar o perfil de aminoácidos no soro e no LCR em animais submetidos à LCP;
- Elucidar a resposta astrocitária hipocampal após episódio de inflamação sistêmica severa e aguda;
- Investigar diferenças entre análises realizadas no tecido hipocampal total e na cultura celular de astrócitos após indução de LCP *in vivo*;
- Analisar o transcriptoma de pacientes acometidos por sepse para evidenciar os fatores que possam estar relacionados com a ativação astrocitária observada em modelo experimental;
- Avaliar o metabolismo energético cerebral após indução de inflamação sistêmica aguda através do modelo experimental de LCP;
- Avaliar o impacto da comunicação entre PBMCs e astrócitos no metabolismo energético cerebral durante a fase aguda da sepse.

PARTE II

## Capítulo 1

Cecal ligation and perforation model recapitulates acute amino acid abnormalities observed in septic patients.

No capítulo 1 apresentamos o artigo a ser submetido ao periódico Journal of Neurochemistry

Nesse estudo temos como objetivo investigar a translacionalidade do modelo animal de LCP para o seu uso como ferramenta na busca de biomarcadores para a EAS. De maneira geral, observamos uma alteração no perfil sorológico de aminoácidos em animais submetidos ao modelo de LCP semelhante a que é observada em humanos que desenvolvem EAS. Observamos também em nosso modelo uma correlação entre os níveis sanguíneos e no LCR de aminoácidos de cadeia lateral ramificada (BCAA), aminoácidos aromáticos (AAA), alanina, lisina e ornitina. Finalmente, uma abordagem utilizando uma análise de redes de aminoácidos identificou um fenômeno de hiperassociação entre os aminoácidos analisados, fenômeno evidenciado pela formação de *clusters*.

## Capítulo 2

Systemic Inflammation as a Driver of Brain Injury: the Astrocyte as an Emerging Player.

No Capítulo 2 apresentamos o artigo publicado no periódico Molecular Neurobiology.

No Capítulo anterior demonstramos que o modelo de LCP recapitula anormalidades encontradas em pacientes acometidos por EAS, reiterando a sua utilização como modelo animal para essa patologia. Já neste estudo visamos entender como essas alterações sistêmicas promovidas pelas sepse afetam o SNC, em especial a funcionalidade astrocitária. Além disso, esse Capítulo teve como objetivo elucidar se astrócitos cultivados a partir do cérebro de animais sépticos mantinham o seu fenótipo mesmo após um longo período de cultivo. Com isso, nós observamos que os astrócitos cultivados de animais LCP apresentam um fenótipo pró-inflamatório e que difere, em alguns aspectos, da análise realizada em tecido total.

# Systemic inflammation as a driver of brain injury: The astrocyte as an emerging player

Bruna Bellaver<sup>1\*</sup>, João Paulo dos Santos<sup>1</sup>, Douglas Teixeira Leffa<sup>2</sup>, Larissa Daniele Bobermin<sup>1</sup>, Paola Haack Amaral Roppa<sup>1</sup>, Iraci Lucena da Silva Torres<sup>2</sup>, Carlos-Alberto Gonçalves<sup>1</sup>, Diogo Onofre Souza<sup>1</sup>, André Quincozes-Santos<sup>1\*</sup>

<sup>1</sup>Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil

<sup>2</sup>Programa de Pós-Graduação em Medicina: Ciências Médicas, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Unidade de Experimentação Animal, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.

\*Bruna Bellaver, Ph.D. student; \*André Quincozes-Santos, Ph.D. Departamento de Bioquímica Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Instituto de Ciências Básicas da Saúde Universidade Federal do Rio Grande do Sul Rua Ramiro Barcelos, 2600 – Anexo Bairro Santa Cecília 90035–003 Porto Alegre, RS, Brazil Fax: +55 51 3308 5535; Phone: +55 51 3308 5559 Email: brunabellaver90@gmail.com; andrequincozes@ufrgs.br

#### Abstract

Severe systemic inflammation has strong effects on brain functions, promoting permanent neurocognitive dysfunction and high mortality rates. Additionally, hippocampal damage seems to be directly involved in this process and astrocytes play an important role neuroinflammation and the neuroimmune response. However, the contribution of the astrocytes to the pathology of acute brain dysfunction is not well understood. Recently, our group established a protocol for obtaining astrocyte cultures from mature brain to allow the characterization of these cells and their functions under pathologic conditions. The present study was designed to characterize astrocyte function after acute systemic inflammation induced by cecal ligation and perforation (CLP). Hippocampal astrocyte cultures from CLP animals presented increased levels of tumor necrosis factor- $\alpha$  (TNF- $\alpha$ ), interleukin (IL)-1 $\beta$ , IL-6, IL-18 and cyclooxygenase-2 and decreased levels of IL-10. This proinflammatory profile was accompanied by an increase in Toll-like receptor (TLR) 2 mRNA expression levels, and no change in either TLR4 or in vascular endothelial growth factor (VEGF) gene expression. These alterations were associated with increased expressions of p21, nuclear factor kappa B  $(NF\kappa B)$  and inducible nitric oxide synthase (iNOS) in astrocytes from CLP animals. The same parameters were also evaluated in whole hippocampal tissue, but differences in this profile were found compared to hippocampal astrocyte cultures from CLP, reflecting an interaction between other central nervous system cell types, which may mask specific astrocytic changes. These results improve our understanding of the mechanisms by which astrocytes react against systemic inflammation, and suggest these cells to be potential targets for therapeutic modulation.

Keywords: astrocytes; systemic inflammation; Toll-like receptors; NFkB.

#### Introduction

Systemic inflammation, as a result of infection by pathogenic microorganisms or aseptic surgical trauma, can activate the innate immune system, launching a cascade of physiological events and rapidly affecting the central nervous system (CNS) [1,2]. The peripheral immune system has a strong effect on brain functions, as exemplified by the development of sepsis-associated encephalopathy (SAE), a common feature in acute sepsis that increases its morbidity and mortality rate [3]. The increased incidence of sepsis/SAE over the years is thought to be a consequence of advancing age (which accounts for 60 to 85% of all episodes of sepsis), immunosuppression and multidrug-resistant infections [4,5]. The interaction between sepsis and brain homeostasis is an opportunity to elucidate the impact of systemic inflammation on neuroimmune functions.

The pathophysiology of acute brain dysfunction provoked by systemic inflammation remains poorly understood. It has been proposed to be a result of multifactorial events, strongly associated with hippocampal injury, disruption of the blood-brain barrier (BBB), changes in neurotransmitter systems and in redox homeostasis, and increased synthesis and release of proinflammatory mediators, such as tumor necrosis factor alpha (TNF- $\alpha$ ) and members of the interleukin (IL) -1 family [6-8]. In addition, Toll-like receptors (TLRs) are closely related to the progression of systemic inflammation, as TLR2 and TLR4 are considered to be the major signal sensors that recognize products implicated in the pathogenesis of polymicrobial sepsis [9].

Astrocytes are important players of neuroinflammation and the neuroimmune response, as these cells express TLRs, which in turn can modulate the activation of nuclear factor kappa B (NF $\kappa$ B). This master regulator of the inflammatory response is able to trigger the release of inflammatory mediators and also promotes the expression of inducible nitric oxide synthase (iNOS) enzyme, increasing nitric oxide (NO) production [10]. Astrocytes also express the cyclin-dependent kinase inhibitor p21, a known cell cycle regulator that emerges as a central regulator of innate and adaptive immunity since it is important for NF $\kappa$ B activation [11,12]. The p21 protein, in turn, appears to participate in the peripheral inflammatory response, but its function in brain cells remains poorly understood [13,14]. Furthermore, astrocytes are suggested to control CNS infiltration, via production of vascular endothelial growth factor (VEGF)
[15] and also regulate the activity of microglia, oligodendrocytes and cells of the adaptive immune system [16].

Although astrocytes actively participate in the inflammatory response, their role in the pathology of acute brain injury has been underexplored. Therefore, characterization of the mechanisms regulating astrocyte activation during this condition identify potential molecular target for therapeutic approaches. To further elucidate changes in astrocyte functionality under different pathologic conditions, our group recently developed a routine protocol for the preparation of astrocyte cultures obtained from mature brain [17-19]. This methodology allows an *in vivo* intervention prior to obtaining the astrocyte primary cultures, representing a more reliable manner for elucidating the specific role of astrocytes in diseases that affect the adult brain.

Considering the detrimental impact of severe systemic inflammation on the CNS, which might lead to SAE, and the pivotal and underexplored functions of astrocytes in the management of associated events, the aim of the present study was to characterize the mechanisms involved in astrocyte cell function after acute systemic inflammation. We hypothesized that inflammatory mediators are over expressed in astrocyte cultures obtained from animals submitted to severe systemic inflammation, and that alterations in molecular expression levels of TLRs, NF $\kappa$ B, iNOS and p21 may be involved in the astrocytic response to acute sepsis.

### **Material and Methods**

### Chemicals

DNase was obtained from Sigma-Aldrich (St. Louis, MO, USA). ELISA kits for MCP-1, IL-1 $\beta$ , IL-6, IL-18 and IL-10, TRIzol Reagent, SYBR green PCR master mix, Dulbecco's Modified Eagle's Medium/F12 (DMEM/F12) and other materials for cell cultures were purchased from Gibco/Invitrogen/Thermo (Carlsbad, CA, USA). The ELISA kit for TNF- $\alpha$  was purchased from PeproTech (Rocky Hill, NJ, USA). All other chemicals were purchased from common commercial suppliers.

### Animals

Male Wistar rats (90 days old, sham n=16 and CLP n=27) were obtained from our breeding colony (Department of Biochemistry, UFRGS, Porto Alegre, Brazil), and maintained under a controlled environment (12-h light/12-h dark cycle;  $22 \pm 1$  °C; *ad libitum* access to food and water). All animal experiments were performed in accordance with the National Institute of Health (NIH) Guide for the Care and Use of Laboratory Animals and the Brazilian Society for Neuroscience and Behavior's recommendations for animal care. The experimental protocols were approved by the Federal University of Rio Grande do Sul Animal Care and Use Committee (process number 29180).

### Cecal ligation and perforation (CLP) in Wistar rats

For induction of systemic inflammation, male Wistar rats (90-days old) were subjected to CLP as previously described [20]. Rats were anesthetized with a mixture of ketamine and xylazine, given intraperitoneally. Under aseptic conditions, a 3-cm midline laparotomy was performed to allow exposure of the cecum with the adjoining intestine. The cecum was tightly ligated with a 3.0 nylon suture at its base, below the ileocecal valve, maintaining bowel flow continuity, and was perforated once with a 14-gauge needle. The cecum was then gently squeezed to extrude a small amount of fecal material from the perforation site and then returned to the peritoneal cavity; the laparotomy was closed with 4.0 nylon sutures and the animal was returned to its cage. Animals were resuscitated with normal saline (50 ml/kg subcutaneously) immediately and 12 h after CLP. In the sham-operated group, the rats were submitted to all surgical procedures but the cecum was neither ligated nor perforated. The astrocyte primary cultures or the whole hippocampal tissue analyses were performed after 24 h of CLP. Note that 60% of the CLP rats and 100% of the sham rats survived this procedure in our laboratory.

### Hippocampal primary astrocyte cultures from sham/CLP Wistar rats

Cerebral hippocampi were aseptically dissected from animals of both groups (sham and CLP) and meninges were removed. The astrocyte cultures were performed as previously described [17]. During the dissection, cerebral tissue was maintained in HBSS (Hank's Balanced Salt Solution) containing 0.05% trypsin and 0.003% DNase

and was kept at 37 °C for 8 min. The tissue was then mechanically dissociated for 7 min using a Pasteur pipette and centrifuged at 100 g for 5 min. The pellet was resuspended in a solution of HBSS containing only 0.003% DNase and gently mechanically dissociated again for 5 min with a Pasteur pipette and left for decantation for 20 min. The supernatant was collected and centrifuged for 7 min (400 g). The cells from supernatant were resuspended in DMEM/F12 [10% fetal bovine serum (FBS), 15 mM HEPES, 14.3 mM NaHCO<sub>3</sub> and 0.04% gentamicin], plated in 6- or 24-well plates precoated with poly-L-lysine and cultured at 37 °C in an incubator with 5% CO<sub>2</sub>. The cells were seeded at  $3-5 \times 10^5$  cells/cm<sup>2</sup>. The first medium exchange occurred 24 h after obtaining the culture. During the 1st week, the medium change occurred once every two days and from the 2<sup>nd</sup> week on, the medium change occurred once every four days. From the 3<sup>rd</sup> week on, hippocampal astrocytes received the culture medium supplemented with 20% FBS. The cells reached confluence at around the 4<sup>th</sup> week and were used for experiments. The purity of the primary astrocyte cultures was assessed by immunocytochemistry for glial fibrillary acidic protein (GFAP). OX-42 (CD11b/c) and NeuN were used as microglial and neuronal markers, respectively. Under these conditions, cell cultures were confirmed as more than 98% positive for GFAP, indicating an astrocytic phenotype. Furthermore, approximately 2% of the astrocyte cell cultures stained positive for OX-42.

### **RNA extraction and quantitative RT-PCR**

Total RNA was isolated from whole hippocampal tissue and primary astrocyte cultures using TRIzol Reagent (Invitrogen, Carlsbad, CA). The concentration and purity of the RNA were determined spectrophotometrically at a ratio of 260/280. One  $\mu$ g of total RNA was then reverse transcribed using the Applied Biosystems<sup>TM</sup> High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA) in a 20  $\mu$ L reaction, according to the manufacturer's instructions. The mRNAs encoding TLR2 and TLR4 were quantified using the TaqMan real-time RT-PCR system using inventory primers and probes purchased from Applied Biosystems (Foster City). mRNA quantification for the genes encoding TNF- $\alpha$ , IL-1 $\beta$ , cyclooxygenase-2 (COX-2), p65 NF $\kappa$ B, iNOS, p21, VEGF and  $\beta$ -actin (Table 1) was performed using pairs and Power SYBR Green PCR Master Mix (Invitrogen). Quantitative RT-PCR was performed in duplicate using the Applied Biosystems 7500 Fast system. No-template and no-reverse

transcriptase controls were included in each assay, and these produced no detectable signals during the 40 cycles of amplification. Target mRNA levels were normalized using  $\beta$ -actin as a housekeeper gene. The results are expressed relative to the levels in astrocyte cultures or whole hippocampus from sham animals using the 2<sup>- $\Delta\Delta$ Ct</sup> method [21].

### Inflammatory response measurement

TNF- $\alpha$  levels were measured in extracellular medium (for cell culture analysis) or in hippocampal homogenates (for whole tissue analysis) using a rat TNF- $\alpha$  ELISA kit from PeproTech (catalog number 900-K54). The levels of interleukins were measured using ELISA kits for IL-1 $\beta$  (catalog number ER1L1B), IL-6 (catalog number KRC0062), IL-10 (catalog number ERIL10) and IL-18 (catalog number KRC2341) from ThermoFischer and monocyte chemoattractant protein-1 (MCP-1) levels were determined using an ELISA kit from Invitrogen (catalog number KHC1011). Results are expressed in pg/ml for extracellular medium or pg/mg protein for brain tissue.

### **Protein assay**

Protein content was measured using bicinchoninic acid method with bovine serum albumin as a standard [22].

### Statistical analyses

Data are expressed as mean  $\pm$  standard error of the mean (S.E.M). Comparisons between sham and CLP groups were carried out using Student's *t* test. All data were normally distributed. *P* values of less than 0.05 were reported as statistically significant. SPSS 19.0 for Windows was used for statistical analysis.

### Results

Proinflammatory mediators are increased in astrocyte cultures after severe systemic inflammation

We first analyzed the acute impact of CLP induction on astrocytic expression and the release of major proinflammatory cytokines that trigger the immune response. Fig. 1 shows that severe systemic inflammation promoted an increase in TNF- $\alpha$  and IL-1 $\beta$  mRNA expression levels (80%, P =0.0009,  $t_{(10)}$ =3.190 and 115%, P =0.012,  $t_{(10)}$ =3.020, respectively, Fig. 1A,B) and secretion (from 75 to 171 pg/ml, P =0.0006,  $t_{(14)}$ =4.398 and from 73 to 140 pg/ml, p=0.001,  $t_{(14)}$ =3.973, respectively, Fig. 1C,D) in astrocyte cultures. In order to better elucidate the inflammatory response, we also evaluated the release of other inflammatory mediators from astrocytes after acute sepsis induction. We observed an augmentation in the secretion of IL-6 (from 51 to 100 pg/ml, P = 0.0012,  $t_{(14)} = 4.058$ , Fig. 2A), IL-18 (from 34 to 74 pg/ml, P = 0.0002,  $t_{(14)} = 5.000$ , Fig. 2B) and MCP-1 (from 36 to 73 pg/ml, P = 0.0005,  $t_{(14)} = 4.466$ , Fig. 2C). We also noticed an increase in the mRNA expression levels of COX-2 (61%, P =0.01,  $t_{(10)}$ =3.171, Fig. 2D) in astrocyte cultures from CLP animals compared to cultures from the sham group. Additionally, the inflammatory mediators were also assessed in whole hippocampal tissue and showed a similar proinflammatory profile to astrocyte primary cultures from the same groups (Supplementary Fig. 1).

### IL-10 levels are altered only in hippocampal astrocyte cultures from CLP animals

Complementing the inflammatory profile analyses, we also determined the production of the major anti-inflammatory cytokine IL-10. We observed decreased levels of IL-10 in hippocampal astrocyte cultures from CLP animals, compared to the sham group (from 24 to 13 pg/ml, P =0.0013,  $t_{(14)}$ =4.001, Fig. 2E). However, we did not observe this decrease in IL-10 in whole hippocampal tissue (Fig. 2F).

## BBB permeability marker expression does not change in astrocyte cultures after CLP

In order to assess the impact of severe systemic inflammation on BBB permeability, we measured VEGF mRNA expression levels. Fig. 3A demonstrates that, compared to the sham group, astrocyte cultures from CLP animals did not present alterations in VEGF expression. In contrast, whole hippocampal tissue samples from CLP animals presented a significant increase in VEGF expression levels (112%, P = 0.005,  $t_{(10)}=3.542$ , Fig. 3B).

### Possible role for TLRs in the astrocytic response to severe systemic inflammation

As TLRs seem to be involved in the brain progression of sepsis, we evaluated mRNA expression levels of these receptors. After CLP induction, we observed an increase in TLR2 levels in hippocampal primary astrocytes (65%, P = 0.008,  $t_{(10)}=3.296$ , Fig. 4A), but not in the whole hippocampal tissue homogenate (Fig. 4B). In contrast, TLR4 gene expression demonstrated an opposing pattern; increased TLR4 mRNA expression was observed in the hippocampal tissue (83%, P = 0.0019,  $t_{(10)}=4.181$ , Fig. 4D), but not in hippocampal astrocyte cultures from CLP animals (Fig. 4C).

## Astrocytic changes in p21, NFKB and iNOS expression are involved in the progression of inflammation in the brain

Gene expression of p21, a protein that has been increasingly associated with autoimmunity, was evaluated. We observed an augmented p21 mRNA expression in astrocyte cultures after severe systemic inflammation induction (61%, P = 0.023,  $t_{(10)}=2.670$ , Fig. 5A) that was not observed in whole hippocampal tissue analyses (Fig. 5B). As p21 is reported to take part in the activation of the NF $\kappa$ B pathway, we assessed NF $\kappa$ B expression after surgical induction of sepsis; accordingly, NF $\kappa$ B mRNA expression was increased in hippocampal astrocyte cultures (46%, P = 0.006,  $t_{(10)}=3.429$ , Fig. 5C). Finally, we evaluated iNOS expression, as this enzyme activity is modulated by the NF $\kappa$ B transcriptional factor. As expected, we found an increase in the mRNA expression levels of iNOS in primary hippocampal astrocytes from CLP animals (33%, P = 0.008,  $t_{(10)}=3.334$ , Fig. 5D), compared to the sham group. Consistent with this finding, the expression levels of NF $\kappa$ B and iNOS were also increased in the whole hippocampal tissue after severe systemic inflammation (Supplementary Fig. 2).

### Discussion

In the present study, we focused on characterizing the impact of an acute severe systemic inflammatory event on astrocytic functions. Astrocytes from CLP animals were found to present increased mRNA expressions and the release of an array of proinflammatory mediators, along with decreased IL-10 levels. Importantly, this

proinflammatory phenotype was not accompanied by an augmentation in astrocytic VEGF expression. Moreover, TLR2 mRNA expression was increased in hippocampal astrocyte cultures, while astrocytic TLR4 expression levels were unchanged after acute systemic inflammation. p21 also participates in the acute astrocytic inflammatory response, and its increased expression after CLP might trigger the translocation of NF $\kappa$ B, consequently promoting iNOS over expression (Fig. 6). The same parameters were also evaluated in whole hippocampal tissue homogenates and, interestingly, some of these proteins presented distinct profiles of expression, when compared to astrocyte cultures from CLP animals, possibly due the interactions of the astrocytes with other CNS cell types, which may in turn mask specific astrocytic changes.

Acute severe systemic inflammation can trigger SAE in up to 70% of cases, often promoting permanent neurocognitive dysfunction and mortality, via process that directly involve hippocampal damage [23,7]. The leading cause of SAE is bacterial infection, triggered by both Gram-positive and Gram-negative bacteria, and the most commonly used experimental model for researching polymicrobial inflammatory pathology is the CLP model [24-26]. Despite increasing knowledge regarding how systemic inflammation affects brain functions, particularly neuron and microglia function, the role of astrocytes in these mechanisms has been largely ignored. In line with this, the use of appropriate models to understand the participation of astrocytes in brain dysfunction has become increasingly important.

Studies using whole brain tissue are the main source of reports regarding the astrocytic molecular changes that occur after systemic inflammation. When comparing gene expression profiles in health and disease, this approach may confuse experimental data for different reasons. Firstly, expression profiles derived from whole tissue mRNA represent the expression of all cells and does not allow the elucidation of a specific cell type that modulates changes in the pathologic condition. Secondly, changes in gene expression that occur in a specific cell type might be imperceptible in the whole tissue mRNA, as a difference may be concealed by a prominent signal from other cell types [27]. Another approach widely used to mimic the impact of Gram-negative inflammation in astrocytes is LPS treatment in primary astrocyte cultures from newborn brain. This model does not accurately reproduce *in vivo* conditions as the inflammatory stimulus directly affects astrocytes instead of the whole body. As such, in order to investigate more reliably the role of astrocytes under physiological and pathological conditions, our group recently established a routine protocol for obtaining astrocyte

cultures from the mature brain of Wistar rats. These primary cultures have been shown to differ from the cultures obtained from neonatal rats in their functional characteristics and molecular expression pattern [17,28,29].

Systemic-derived inflammatory mediators such as TNF- $\alpha$ , interleukins and chemokines are able to drive changes in BBB permeability allowing the influx of inflammatory cells and toxic mediators into the brain, consequently impairing CNS homeostasis and functionality. Accordingly, CLP animals are reported to present a disruption of the BBB, together with an increase in metalloproteinase immunocontent after 24 h of sepsis induction [30,31]. VEGF is considered the major regulator of vascular permeability and reportedly induces leakage of the BBB by decreasing the expression of tight junction claudin-5 [15,32]. We assessed VEGF expression levels in astrocyte cultures from CLP animals and observed no alterations compared to sham animals; however, when we analyzed the whole hippocampal tissue, an increase in VEGF levels was detected. Several cell types can express VEGF, including neurons, astrocytes, microglia and choroid plexus epithelial cells [33,34]. Thus, the high levels of VEGF detected in the hippocampal tissue might reflect an increased expression of this factor in another cell population. Moreover, during the establishment of astrocyte cultures, the cerebral tissue is dissociated and reorganized in vitro, interrupting its interaction with pericytes and endothelial cells, which might result in the loss of some of the astrocyte BBB characteristics.

The activation of pattern recognition receptors, such as TLRs, seems to have an important role in the pathogenesis of sepsis. TLR ligands are known stimulators of intracellular signaling pathways that promote enhanced transcription of proinflammatory cytokines [35]. Moreover, TLR2 and TLR4 are the only TLRs known to bind to microbial ligands [36]. However, the role of TLR2 in sepsis is much more indefinite than that of TLR4, as TLR2 appears to have ambivalent roles that seem to vary for different pathogens [37]. Here, we observed an increased expression of TLR2 in astrocyte cultures from CLP animals accompanied by enhanced productions of TNF- $\alpha$ , IL-1 $\beta$  and other proinflammatory mediators, while TLR4 levels remained unchanged. TLR2 classically plays a key role in the pathogenesis of Gram-positive sepsis, although a range of studies has also demonstrated an increase in its expression upon exposure to Gram-negative ligands [38,39]. On the other hand, in the whole tissue analyses, we observed only an augmentation in TLR4 mRNA expression levels. This discrepancy might be explained by the presence of microglia in the whole hippocampal tissue. As

microglial cells are known to respond to TLR ligands faster than astrocytes, producing more proinflammatory cytokines, and may express greater quantities of TLR4 than astrocytes [40,41], it is possible that microglial cell activation may overwhelms the astrocytic response. Furthermore, microglia seem to have a TLR2-independent response to Gram-positive ligands [40], corroborating the unchanged TLR2 levels found in the hippocampal tissue from CLP animals.

Activation of the NFkB signaling pathway by TLR2 and TLR4 ligands in astrocytes contributes to much of the production of proinflammatory cytokines, such as TNF- $\alpha$  and also to the generation of reactive oxygen/nitrogen species (ROS/RNS) [42,43]. Inactive NF $\kappa$ B is located in the cytoplasm, in association with its negative regulator IkB. When agents with the ability to activate NFkB are present, IkB is phosphorylated leading to the release and nuclear translocation of NF $\kappa$ B [44]. Nuclear transcription of NFkB may induce the expression of iNOS, suggesting increased synthesis of NO. In the oxidative environment, NO can react with superoxide anions, to form the powerful oxidant specie, peroxynitrite, which leads to cellular toxicity and neuronal death [45]. Therefore, under physiological conditions, these ROS/RNS are important mediators that provoke or sustain inflammatory processes to protect hosts from harmful stimuli, but when high levels of them are produced, they have cytotoxic effects [46]. Accordingly, we found that astrocyte cultures from CLP animals to present increased mRNA expression levels of NFkB and iNOS. Moreover, an important and differential feature of activated astrocytes is the production of chemokines, including MCP-1 [3]. Previous studies have demonstrated that MCP-1 is a target of NFKB signaling in diverse cell types [47,48]. Consistent with this hypothesis, we demonstrated an increase in NFkB mRNA expression accompanied by high levels of MCP-1 in astrocytes.

Another emerging player in the innate immune system is the p21 protein, whose expression may be stimulated by proinflammatory cytokines [49]. p21 expression is tightly related to cellular senescence and replicative stress might prematurely trigger senescence, compromising the cellular immune response [50]. An immunological role for p21 has been described in macrophages, as p21<sup>-/-</sup> mice induced to endotoxic shock by LPS demonstrate an increased release of IL-1 $\beta$  and a decreased rate of survival compared to wild type animals [49]. Rackov and colleagues also demonstrated that p21-deficient mice presented decreased LPS tolerance and survival, accompanied by an increase in serum levels of TNF- $\alpha$  and interferon- $\beta$  [14]. Therefore, p21 seems to have a

role in the brain response to systemic inflammatory events. The p21 immunocontent in the hippocampus from mice induced to chronic intestinal inflammation was increased, together with an augmentation in GFAP and no change in Iba-1 levels, indicating astroglial, but not microglial, activation [51]. Additionally, cultures from newborn p21deficient mice treated with LPS, presented decreased levels of NF $\kappa$ B compared to cultures from wild type animals [52]. In line with these previous reports, our astrocyte cultures from CLP animals showed an increase in NF $\kappa$ B mRNA and proinflammatory cytokine and chemokine levels, as well as an increase in p21 mRNA expression. Interestingly, analyses of p21 in whole hippocampal tissue homogenates showed no differences between the CLP and sham group.

Taken together, the results presented in this study provide new evidence to suggest the participation of astrocytes in the brain injury derived from acute severe systemic inflammation. The mechanism of astrocyte response involves changes in the expressions of the TLR, p21 and NF $\kappa$ B pathways. Moreover, the differences observed between astrocyte culture and whole hippocampal tissue analyses reinforce the idea that our astrocyte culture model might represent an important new tool for understanding the role of these glial cells under pathological conditions. In summary, this report improves our understanding of the mechanisms by which astrocytes react to systemic inflammation and indicate these cells as a potential target for therapeutic modulation.

### Acknowledgements

This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS), Federal University of Rio Grande do Sul (UFRGS) and Instituto Nacional de Ciência e Tecnologia para Excitotoxicidade e Neuroproteção (INCTEN/CNPq).

### **Conflict of interest**

The authors declare there are no conflicts of interest.

### References

1. Fu HQ, Yang T, Xiao W, Fan L, Wu Y, Terrando N, Wang TL (2014) Prolonged neuroinflammation after lipopolysaccharide exposure in aged rats. PLoS One 9 (8):e106331. doi:10.1371/journal.pone.0106331

2. Terrando N, Monaco C, Ma D, Foxwell BM, Feldmann M, Maze M (2010) Tumor necrosis factor-alpha triggers a cytokine cascade yielding postoperative cognitive decline. Proc Natl Acad Sci U S A 107 (47):20518-20522. doi:10.1073/pnas.1014557107

3. Michels M, Steckert AV, Quevedo J, Barichello T, Dal-Pizzol F (2015) Mechanisms of long-term cognitive dysfunction of sepsis: from blood-borne leukocytes to glial cells. Intensive care medicine experimental 3 (1):30. doi:10.1186/s40635-015-0066-x

4. Esper AM, Martin GS (2009) Extending international sepsis epidemiology: the impact of organ dysfunction. Critical care (London, England) 13 (1):120. doi:10.1186/cc7704

5. Kaukonen KM, Bailey M, Suzuki S, Pilcher D, Bellomo R (2014) Mortality related to severe sepsis and septic shock among critically ill patients in Australia and New Zealand, 2000-2012. Jama 311 (13):1308-1316. doi:10.1001/jama.2014.2637

6. Cotena S, Piazza O (2012) Sepsis-associated encephalopathy. Translational medicine
@ UniSa 2:20-27

7. Mazeraud A, Pascal Q, Verdonk F, Heming N, Chretien F, Sharshar T (2016) Neuroanatomy and Physiology of Brain Dysfunction in Sepsis. Clinics in chest medicine 37 (2):333-345. doi:10.1016/j.ccm.2016.01.013

8. Danielski LG, Giustina AD, Badawy M, Barichello T, Quevedo J, Dal-Pizzol F, Petronilho F (2017) Brain Barrier Breakdown as a Cause and Consequence of Neuroinflammation in Sepsis. Mol Neurobiol. doi:10.1007/s12035-016-0356-7

9. Tsujimoto H, Ono S, Efron PA, Scumpia PO, Moldawer LL, Mochizuki H (2008)
Role of Toll-like receptors in the development of sepsis. Shock (Augusta, Ga) 29
(3):315-321. doi:10.1097/SHK.0b013e318157ee55

10. Gorina R, Font-Nieves M, Marquez-Kisinousky L, Santalucia T, Planas AM (2011) Astrocyte TLR4 activation induces a proinflammatory environment through the interplay between MyD88-dependent NFkappaB signaling, MAPK, and Jak1/Stat1 pathways. Glia 59 (2):242-255. doi:10.1002/glia.21094

11. Lloberas J, Celada A (2009) p21(waf1/CIP1), a CDK inhibitor and a negative feedback system that controls macrophage activation. European journal of immunology 39 (3):691-694. doi:10.1002/eji.200939262

12. Yang QH, Liu DW, Wang XT, Yang RL, Shi Y, Long Y, Liu HZ, He HW, Zhou X, Tang B (2011) G1 cell cycle arrest signaling in hepatic injury after intraperitoneal sepsis in rats. Inflammation research : official journal of the European Histamine Research Society [et al] 60 (8):783-789. doi:10.1007/s00011-011-0334-5

13. Balomenos D, Martin-Caballero J, Garcia MI, Prieto I, Flores JM, Serrano M, Martinez AC (2000) The cell cycle inhibitor p21 controls T-cell proliferation and sexlinked lupus development. Nat Med 6 (2):171-176. doi:10.1038/72272

14. Rackov G, Hernandez-Jimenez E, Shokri R, Carmona-Rodriguez L, Manes S, Alvarez-Mon M, Lopez-Collazo E, Martinez AC, Balomenos D (2016) p21 mediates macrophage reprogramming through regulation of p50-p50 NF-kappaB and IFN-beta. The Journal of clinical investigation 126 (8):3089-3103. doi:10.1172/jci83404

15. Chapouly C, Tadesse Argaw A, Horng S, Castro K, Zhang J, Asp L, Loo H, Laitman BM, Mariani JN, Straus Farber R, Zaslavsky E, Nudelman G, Raine CS, John GR (2015) Astrocytic TYMP and VEGFA drive blood-brain barrier opening in inflammatory central nervous system lesions. Brain : a journal of neurology 138 (Pt 6):1548-1567. doi:10.1093/brain/awv077

16. Mayo L, Quintana FJ, Weiner HL (2012) The innate immune system in demyelinating disease. Immunological reviews 248 (1):170-187. doi:10.1111/j.1600-065X.2012.01135.x

17. Bellaver B, Souza DG, Souza DO, Quincozes-Santos A (2016) Hippocampal Astrocyte Cultures from Adult and Aged Rats Reproduce Changes in Glial Functionality Observed in the Aging Brain. Mol Neurobiol. doi:10.1007/s12035-016-9880-8

18. Souza DG, Bellaver B, Souza DO, Quincozes-Santos A (2013) Characterization of adult rat astrocyte cutures. PLoS One 8:E60282. doi: 10.1371/journal.pone.0060282

19. Zimmer ER, Parent MJ, Souza DG, Leuzy A, Lecrux C, Kim HI, Gauthier S, Pellerin L, Hamel E (2017) [18F]FDG PET signal is driven by astroglial glutamate transport. Nat Neurosc. doi:10.1038/nn.4492

20. Petronilho F, Perico SR, Vuolo F, Mina F, Constantino L, Comim CM, Quevedo J, Souza DO, Dal-Pizzol F (2012) Protective effects of guanosine against sepsis-induced

damage in rat brain and cognitive impairment. Brain Behav Immun 26 (6):904-910. doi:10.1016/j.bbi.2012.03.007

21. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San Diego, Calif) 25 (4):402-408. doi:10.1006/meth.2001.1262

22. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Analytical biochemistry 150 (1):76-85. doi:10.1016/0003-2697(85)90442-7

23. Widmann CN, Heneka MT (2014) Long-term cerebral consequences of sepsis. Lancet Neurol 13 (6):630-636. doi:10.1016/s1474-4422(14)70017-1

24. Dejager L, Pinheiro I, Dejonckheere E, Libert C (2011) Cecal ligation and puncture: the gold standard model for polymicrobial sepsis? Trends in microbiology 19 (4):198-208. doi:10.1016/j.tim.2011.01.001

25. Neves FS, Marques PT, Barros-Aragao F, Nunes JB, Venancio AM, Cozachenco D, Frozza RL, Passos GF, Costa R, de Oliveira J, Engel DF, De Bem AF, Benjamim CF, De Felice FG, Ferreira ST, Clarke JR, Figueiredo CP (2016) Brain-Defective Insulin Signaling Is Associated to Late Cognitive Impairment in Post-Septic Mice. Mol Neurobiol. doi:10.1007/s12035-016-0307-3

26. Comim CM, Freiberger V, Ventura L, Mina F, Ferreira GK, Michels M, Generoso JS, Streck EL, Quevedo J, Barichello T, Dal-Pizzol F (2017) Inhibition of indoleamine 2,3-dioxygenase 1/2 prevented cognitive impairment and energetic metabolism changes in the hippocampus of adult rats subjected to polymicrobial sepsis. J Neuroimmunol 305:167-171. doi:10.1016/j.jneuroim.2017.02.001

27. Srinivasan K, Friedman BA, Larson JL, Lauffer BE, Goldstein LD, Appling LL, Borneo J, Poon C, Ho T, Cai F, Steiner P, van der Brug MP, Modrusan Z, Kaminker JS, Hansen DV (2016) Untangling the brain's neuroinflammatory and neurodegenerative transcriptional responses. Nature communications 7:11295. doi:10.1038/ncomms11295 28. Souza DG, Bellaver B, Bobermin LD, Souza DO, Quincozes-Santos A (2016) Antiaging effects of guanosine in glial cells. Purinergic Signal. doi:10.1007/s11302-016-9533-4

29. Bellaver B, Souza DG, Souza DO, Quincozes-Santos A (2014) Resveratrol increases antioxidant defenses and deceases proinflammatory cytokines in hippocampal

astocyte cultures from newborn, adult and aged Wistar rats. Toxicology in vitro 28:479-484. doi:10.1016/j.tiv.2014.01.006

30. Dal-Pizzol F, Rojas HA, dos Santos EM, Vuolo F, Constantino L, Feier G, Pasquali M, Comim CM, Petronilho F, Gelain DP, Quevedo J, Moreira JC, Ritter C (2013) Matrix metalloproteinase-2 and metalloproteinase-9 activities are associated with blood-brain barrier dysfunction in an animal model of severe sepsis. Mol Neurobiol 48 (1):62-70. doi:10.1007/s12035-013-8433-7

31. Comim CM, Vilela MC, Constantino LS, Petronilho F, Vuolo F, Lacerda-Queiroz N, Rodrigues DH, da Rocha JL, Teixeira AL, Quevedo J, Dal-Pizzol F (2011) Traffic of leukocytes and cytokine up-regulation in the central nervous system in sepsis. Intensive care medicine 37 (4):711-718. doi:10.1007/s00134-011-2151-2

32. Argaw AT, Asp L, Zhang J, Navrazhina K, Pham T, Mariani JN, Mahase S, Dutta DJ, Seto J, Kramer EG, Ferrara N, Sofroniew MV, John GR (2012) Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease. The Journal of clinical investigation 122 (7):2454-2468. doi:10.1172/jci60842

33. Wang X, Kang K, Wang S, Yao J, Zhang X (2016) Focal cerebral ischemic tolerance and change in blood-brain barrier permeability after repetitive pure oxygen exposure preconditioning in a rodent model. J Neurosurg 125 (4):943-952. doi:10.3171/2015.7.jns142220

34. Ma Y, Zechariah A, Qu Y, Hermann DM (2012) Effects of vascular endothelial growth factor in ischemic stroke. J Neurosci Res 90 (10):1873-1882. doi:10.1002/jnr.23088

35. Hanke ML, Kielian T (2011) Toll-like receptors in health and disease in the brain: mechanisms and therapeutic potential. Clinical science (London, England : 1979) 121 (9):367-387. doi:10.1042/cs20110164

36. Brightbill HD, Modlin RL (2000) Toll-like receptors: molecular mechanisms of the mammalian immune response. Immunology 101 (1):1-10. doi:10.1046/j.1365-2567.2000.00093.x

37. Hanzelmann D, Joo HS, Franz-Wachtel M, Hertlein T, Stevanovic S, Macek B, Wolz C, Gotz F, Otto M, Kretschmer D, Peschel A (2016) Toll-like receptor 2 activation depends on lipopeptide shedding by bacterial surfactants. Nature communications 7:12304. doi:10.1038/ncomms12304

38. Laflamme N, Soucy G, Rivest S (2001) Circulating cell wall components derived from gram-negative, not gram-positive, bacteria cause a profound induction of the gene-

encoding Toll-like receptor 2 in the CNS. J Neurochem 79 (3):648-657. doi:10.1046/j.1471-4159.2001.00603.x

39. Wiersinga WJ, Wieland CW, Dessing MC, Chantratita N, Cheng AC, Limmathurotsakul D, Chierakul W, Leendertse M, Florquin S, de Vos AF, White N, Dondorp AM, Day NP, Peacock SJ, van der Poll T (2007) Toll-like receptor 2 impairs host defense in gram-negative sepsis caused by Burkholderia pseudomallei (Melioidosis). PLoS medicine 4 (7):e248. doi:10.1371/journal.pmed.0040248

40. Kielian T (2006) Toll-like receptors in central nervous system glial inflammation and homeostasis. J Neurosci Res 83 (5):711-730. doi:10.1002/jnr.20767

41. Carpentier PA, Begolka WS, Olson JK, Elhofy A, Karpus WJ, Miller SD (2005) Differential activation of astrocytes by innate and adaptive immune stimuli. Glia 49 (3):360-374. doi:10.1002/glia.20117

42. Troutman TD, Bazan JF, Pasare C (2012) Toll-like receptors, signaling adapters and regulation of the pro-inflammatory response by PI3K. Cell cycle (Georgetown, Tex) 11 (19):3559-3567. doi:10.4161/cc.21572

43. Marinelli C, Di Liddo R, Facci L, Bertalot T, Conconi MT, Zusso M, Skaper SD, Giusti P (2015) Ligand engagement of Toll-like receptors regulates their expression in cortical microglia and astrocytes. Journal of neuroinflammation 12:244. doi:10.1186/s12974-015-0458-6

44. Wakabayashi N, Slocum SL, Skoko JJ, Shin S, Kensler TW (2010) When NRF2 Talks, Who's Listening? Antioxid Redox Signal. doi:10.1089/ars.2010.3216

45. Brown GC, Neher JJ (2010) Inflammatory neurodegeneration and mechanisms of microglial killing of neurons. Mol Neurobiol 41 (2-3):242-247. doi:10.1007/s12035-010-8105-9

46. Aruoma OI, Grootveld M, Bahorun T (2006) Free radicals in biology and medicine: from inflammation to biotechnology. BioFactors (Oxford, England) 27 (1-4):1-3. doi:10.1002/biof.5520270101

47. Ueda A, Okuda K, Ohno S, Shirai A, Igarashi T, Matsunaga K, Fukushima J, Kawamoto S, Ishigatsubo Y, Okubo T (1994) NF-kappa B and Sp1 regulate transcription of the human monocyte chemoattractant protein-1 gene. J Immunol 153 (5):2052-2063

48. Dranse HJ, Muruganandan S, Fawcett JP, Sinal CJ (2016) Adipocyte-secreted chemerin is processed to a variety of isoforms and influences MMP3 and chemokine

secretion through an NFkB-dependent mechanism. Molecular and cellular endocrinology 436:114-129. doi:10.1016/j.mce.2016.07.017

49. Scatizzi JC, Mavers M, Hutcheson J, Young B, Shi B, Pope RM, Ruderman EM, Samways DS, Corbett JA, Egan TM, Perlman H (2009) The CDK domain of p21 is a suppressor of IL-1beta-mediated inflammation in activated macrophages. European journal of immunology 39 (3):820-825. doi:10.1002/eji.200838683

50. Montes M, Lund AH (2016) Emerging roles of lncRNAs in senescence. The FEBS journal 283 (13):2414-2426. doi:10.1111/febs.13679

51. Zonis S, Pechnick RN, Ljubimov VA, Mahgerefteh M, Wawrowsky K, Michelsen KS, Chesnokova V (2015) Chronic intestinal inflammation alters hippocampal neurogenesis. Journal of neuroinflammation 12:65. doi:10.1186/s12974-015-0281-0

52. Tusell JM, Saura J, Serratosa J (2005) Absence of the cell cycle inhibitor p21Cip1 reduces LPS-induced NO release and activation of the transcription factor NF-kappaB in mixed glial cultures. Glia 49 (1):52-58. doi:10.1002/glia.20095

### **Figure legends**

Fig. 1. Hippocampal astrocyte cultures from CLP animals presented changes in (A) TNF- $\alpha$  and (B) IL-1 $\beta$  mRNA expression levels and in (C) TNF- $\alpha$  and (D) IL-1 $\beta$  release. Data represent the means + S.E.M. of groups (n= 6-8). \**P* <0.05, \*\**P* <0.01 and \*\*\**P* <0.001 (*t* test), compared to the sham group.

Fig. 2. Astrocytes showed a proinflammatory profile after acute systemic inflammation. The levels of (A) IL-6, (B) IL-18, (C) MCP-1 and (E,F) IL-10 and (D) COX-2 mRNA expression were measured. Data represent the means + S.E.M. of groups (n= 6-8). \*P <0.05, \*\*P <0.01 and \*\*\*P <0.001 (*t* test), compared to the sham group.

Fig. 3. The mRNA expression levels of a BBB permeability marker in hippocampus and astrocyte cultures after CLP. VEGF mRNA expression levels were measured in (A) hippocampal astrocyte cultures and (B) hippocampus. Data represent the means + S.E.M. of groups (n= 6). \*\*P < 0.01 (*t* test), compared to the sham group.

Fig. 4. Changes in the expression levels of TLRs were observed in hippocampal astrocyte cultures and hippocampal tissue from CLP. TLR2 mRNA expression in (A) astrocyte cultures and (B) hippocampus and TLR4 mRNA expression in (C) astrocyte cultures and (D) hippocampus. Data represent the means + S.E.M. of groups (n= 6). \*\*P <0.01 (*t* test), compared to the sham group.

Fig. 5. p21, NF $\kappa$ B and iNOS expression levels were altered in hippocampal astrocyte cultures from CLP animals. mRNA expression levels of p21 were measured in (A) astrocyte cultures and (B) hippocampus. (C) NF $\kappa$ B and (D) iNOS mRNA expression levels were measured in astrocyte cultures. Data represent the means + S.E.M. of groups (n= 6). \**P* <0.05 and \*\**P* <0.01 (*t* test), compared to the sham group.

Fig. 6. Schematic illustration of the impact of severe systemic inflammation on hippocampal astrocyte cultures. Systemic mediators released by CLP animals induced an increase in TLR2 and no changes in TLR4 mRNA expression levels. CLP also promoted an augmentation in astrocytic p21 levels accompanied by increased NF $\kappa$ B expression. NF $\kappa$ B induced the expression of proinflammatory target genes, such as

iNOS, TNF- $\alpha$ , IL-1 $\beta$ , IL-6, IL-18 and COX-2 and inhibited the release of IL-10. Green cells represent astrocytes; yellow cells represent neurons; blue cells represent microglia and purple oligodendrocytes.

Supplementary Fig. 1. Inflammatory profile in the whole hippocampus. (A) TNF- $\alpha$ , (B) IL-1 $\beta$  and (G) COX-2 mRNA expression levels. (C) TNF- $\alpha$ , (D) IL-1 $\beta$ , (E) IL-6, (F) IL-18 and MCP-1 levels. Data represent the means + S.E.M. of groups (n= 6-8). \**P* <0.05, \*\**P* <0.01 and \*\*\**P* <0.001 (*t* test), compared to the sham group.

Supplementary Fig. 2. CLP promoted increases in mRNA expression levels of (A) NF $\kappa$ B and (B) iNOS in hippocampal tissue. Data represent the means + S.E.M. of groups (n= 6). \*\**P* <0.01 (*t* test), compared to the sham group.

| mRNA target | Sense/anti-sense or Assay number   |
|-------------|------------------------------------|
| TNF-α       | 5'- GCGACGTGGAACTGGCAGAAG-3'       |
|             | 5'-GGTACAACCCATCGGCTGGCA-3'        |
| IL-1β       | 5'-TGTTTCCATCCTGGAAGGTC-3'         |
|             | 5'-TCACAGCAGCACATCAACAA-3'         |
| COX-2       | 5'-GATTGACAGCCCACCAACTT-3'         |
|             | 5'-CGGGATGAACTCTCTCCTCA-3'         |
| VEGF        | 5'-TAACGATGAAGCCCTGGAGTG-3'        |
|             | 5'-AGGTTTGATCCGCATGATCTG-3'        |
| p21         | 5'-GAGGCCTCTTCCCCATCTTCT-3'        |
|             | 5'-AATTAAGACACACTGAATGAAGGCTAAG-3' |
| p65 NFĸB    | 5'-CCTAGCTTTCTCTGAACTGCAAA-3'      |
|             | 5'-GGGTCAGAGGCCAATAGAGA-3'         |
| iNOS        | 5'-GGCAGCCTGTGAGACCTTTG-3'         |
|             | 5'-GAAGCGTTTCGGGATCTGAA-3'         |
| β-actin     | 5'-CAACGAGCGGTTCCGAT-3'            |
|             | 5'- GCCACAGGATTCCATACCCA-3'        |
| TLR4        | Rn00569848_m1                      |
| TLR2        | Rn02133647_s1                      |

Table 1. Oligonucleotide Primers or Assay number for Real-Time RT-PCR













20 0-Sham CLP CLP Sham



Figure 3



Figure 4













Astrocyte cultures



### Figure 6



### Supplementary Figure 1

















71

### Supplementary Figure 2





### Capítulo 3

### Activated peripheral blood mononuclear cell mediators trigger astrocyte reactivity.

No Capítulo 3 apresentamos o artigo aceito para publicação no periódico *Brain*, *Behavior and Immunity*.

No Capítulo anterior demonstramos a resposta astrocitária durante a fase aguda da sepse. Neste Capítulo temos como objetivos entender os mecanismos pelos quais essa inflamação sistêmica severa impacta tão fortemente a habilidade dos astrócitos manterem a homeostasia celular. Assim, realizamos uma análise de transcriptoma de pacientes acometidos por sepse, com o intuito de entender quais as funções mais fortemente acometidas nesse processo. Posteriormente, avaliamos se as PBMCs seriam capazes de promover essas alterações em astrócitos. Desse modo, observados que as vias envolvidas no metabolismo energético são as predominantemente afetadas durante a sepse em humanos. Corroborando, a indução de LCP em modelo animal promoveu um hipometabolismo cerebral de glicose, que é acompanhado de uma diminuição na captação de glutamato astrocitária. Astrócitos expostos a fatores liberados pelas PBMCs reproduziram a diminuição da captação de glicose e glutamato observadas *in vivo*.

### Activated peripheral blood mononuclear cell mediators trigger astrocyte reactivity

Bruna Bellaver<sup>1</sup>, Andréia S. da Rocha<sup>1</sup>, Débora G. Souza<sup>1</sup>, Douglas T. Leffa<sup>2</sup>, Marco Antônio De Bastiani<sup>1</sup>, Guilherme Schu<sup>1</sup>, Pâmela C. Lukasewicz Ferreira<sup>3</sup>, Gianina T. Venturin<sup>4</sup>, Samuel Greggio<sup>4</sup>, Camila T. Ribeiro<sup>1</sup>, Jaderson C. da Costa<sup>4</sup>, José Cláudio Fonseca Moreira<sup>1,5</sup>, Daniel P. Gelain<sup>1,5</sup>, Iraci Lucena da S. Torres<sup>2,6,8</sup>, Fábio Klamt<sup>1,7</sup>, Eduardo R. Zimmer<sup>1,4,6,8\*</sup>

<sup>1</sup>Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil;

<sup>2</sup> Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil;

<sup>3</sup> Graduate Program in Pharmaceutical Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil;

<sup>4</sup> Preclinical Imaging Center, Brain Institute (BraIns) of Rio Grande do Sul, Porto Alegre, Brazil;

<sup>5</sup> Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil;

<sup>6</sup> Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil;

<sup>7</sup> Laboratory of Cellular Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil;

<sup>8</sup>Departament of Pharmacology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil

### \*Corresponding author:

Eduardo R. Zimmer, PhD (E.R. Zimmer)

Department of Pharmacology, Universidade Federal do Rio Grande do Sul (UFRGS)

2500 Ramiro Barcelos street, 90035-003, Porto Alegre, RS, Brazil Email address: eduardo.zimmer@ufrgs.br Telephone: +55 51 33085558 Fax: +55 51 33085544 Website: www.zimmer-lab.org

#### Abstract

Sepsis is characterized by a severe and disseminated inflammation. In the central nervous system, sepsis promotes synaptic dysfunction and permanent cognitive impairment. Besides sepsis-induced neuronal dysfunction, glial cell response has been gaining considerable attention with microglial activation as a key player. By contrast, astrocytes' role during acute sepsis is still underexplored. Astrocytes are specialized immunocompetent cells involved in brain surveillance. In this context, the potential communication between the peripheral immune system and astrocytes during acute sepsis still remains unclear. We hypothesized that peripheral blood mononuclear cell (PBMC) mediators are able to affect the brain during an episode of acute sepsis. With this in mind, we first performed a data-driven transcriptome analysis of blood from septic patients to identify common features among independent clinical studies. Our findings evidenced pronounced impairment in energy-related signaling pathways in the blood of septic patients. Since astrocytes are key for brain energy homeostasis, we decided to investigate the communication between PBMC mediators and astrocytes in a rat model of acute sepsis, induced by cecal ligation and perforation (CLP). In the CLP animals, we identified widespread in vivo brain glucose hypometabolism. Ex vivo analyses demonstrated astrocyte reactivity along with reduced glutamate uptake capacity during sepsis. Also, by exposing cultured astrocytes to mediators released by PBMCs from CLP animals, we 75

reproduced the energetic failure observed *in vivo*. Finally, by pharmacologically inhibiting phosphoinositide 3-kinase (PI3K), a central metabolic pathway downregulated in the blood of septic patients and reduced in the CLP rat brain, we mimicked the PBMC mediators effect on glutamate uptake but not on glucose metabolism. These results suggest that PBMC mediators are capable of directly mediating astrocyte reactivity and contribute to the brain energetic failure observed in acute sepsis. Moreover, the evidence of PI3K participation in this process indicates a potential target for therapeutic modulation.

Keywords: astrocyte; glucose; glutamate; energy metabolism; PBMC; sepsis.

### 1. Introduction

Sepsis is characterized by a severe and disseminated systemic inflammation as a result of a microorganism invasion in the bloodstream. In this inflammatory scenario, the activation of the peripheral immune system also affects brain function. Reports have demonstrated that sepsis impairs the brain even earlier than other organs, which increases morbidity and mortality rates in this condition (Michels et al., 2015; Young, 2010; Ziaja, 2013). Moreover, long-term brain dysfunction is commonly observed in sepsis-survivors (Iwashyna et al., 2010). However, key systemic features triggering brain impairment during acute sepsis are still elusive. In this context, it has been suggested that glial cells have a significant role in mediating the crosstalk between systemic immune signals and the central nervous system (CNS) (Bellaver et al., 2017; Michels et al., 2015).

In the acute phase of sepsis, inflammation is coordinated by the innate immune system. In this scenario, the activation of peripheral blood mononuclear cells (PBMCs), is thought to play an important role in orchestrating this immune response as PBMCs actively change their transcriptomic and secretory profile (Godini and Fallahi, 2018; Ransohoff et al., 2015; Tang et al., 2009), being able to release mediators to the affected sites, which include the brain (Ransohoff et al., 2015). Additionally, an elevated rate of PBMC infiltration into the CNS under inflammatory conditions was previously demonstrated (Kyrkanides et al., 2008). Based on this, it is very likely that infiltrated PBMCs, or their mediators, are capable of activating brain immune cells, such as microglia and astrocytes. In this way, recent evidence suggests a potential microglial-independent direct activation of astrocytes by PBMCs (Horng et al., 2017; Richards et al., 2015). When activated, astrocytes overexpress the astrocytic glial fibrillary acidic protein (GFAP) and undergo morphological changes, becoming reactive (Sofroniew, 2009).

Astrocytes are important regulators of brain homeostasis. They directly modulate glutamatergic neurotransmission by taking up glutamate from the synaptic cleft trough highly efficient glutamate transporters (Souza et al., 2019). Astroglial glutamate transport is suggested as a main signaling trigger for glucose uptake in astrocytes (Pellerin and Magistretti, 2012). In fact, glutamate transport activation via glutamate transporter-1 (GLT-1) increases glucose metabolism *in vivo* as indexed by [<sup>18</sup>F]fluorodeoxyglucose ([<sup>18</sup>F]FDG) positron emission micro-tomography (microPET) (Zimmer et al., 2017). Therefore, it suggests that [<sup>18</sup>F]FDG signal also reflects astrocyte metabolism, reinforcing a central participation of these glial cells in brain energy metabolism (Nortley and Attwell, 2017; Zimmer et al., 2017).

77

Based on this, this study is intended to evaluate the crosstalk between peripheral mediators and astrocytes during the acute phase of sepsis. We hypothesized that peripheral immune signals sent by PBMCs are capable of triggering astrocyte reactivity and, consequently, impacting brain energetic metabolism.

### 2. Material and Methods

# 2.1. Microarray data acquisition, differential gene expression (DEG) and enrichment analysis

Human blood expression datasets from 250 healthy subjects and 277 sepsis patients were obtained from the Gene Expression Omnibus repository (GEO) (http://www.ncbi.nlm.nih.gov/geo/). **Table 1** summarizes the data from the 10 selected GEO datasets used in this study. All transcriptomic analyses were implemented in an R statistical environment. Differential expression analysis was computed for each dataset independently, using the LIMMA package (Ritchie et al., 2015), and considering FDR-adjusted p-value < 0.05 as DEG criteria. Only genes significantly expressed in more than 7 datasets were included in further analyses. Hierarchical clustering of DEGs median logFC was constructed using Euclidean distance and Ward's hierarchical agglomerative clustering criterion (Murtagh and Legendre, 2014). Finally, functional enrichment analyses of gene ontology (GO) biological processes and KEGG pathways were computed using the cluster Profiler and GOplot packages (Yu et al., 2012).

#### 2.2. Chemicals

DNase and LY 294002 were obtained from Sigma-Aldrich (St. Louis, MO, USA). TRIzol Reagent, Dulbecco's modified Eagle's medium/F12 (DMEM/F12), and other materials for cell culture were purchased from Gibco/Invitrogen/Thermo (Carlsbad, CA, USA). Polyclonal anti-GFAP was purchased from Dako (Carpinteria, CA, USA). Monoclonal  $\beta$ -actin and 4,6-diamino-2-phenylindole (DAPI) were purchased from Millipore (Billerica, MA, USA). Alexa Fluor® 488 (Amax = 493; Emax = 519) conjugated AffiniPure antibodies were purchase from Jackson ImmunoResearch (West Grove, PA, USA). L-[<sup>3</sup>H]-glutamate, 2-Deoxy-D-[1,2-<sup>3</sup>H]glucose ([<sup>3</sup>H]2DG), nitrocellulose membrane and ECL kit were from Amersham. All other chemicals were purchased from commercial suppliers.

### 2.3. Animals

Adult male Wistar rats (90 days old) were divided into two groups: sham (n = 13; bodyweight = 375 ± 36 g) and CLP (n = 14; bodyweight = 390 ± 34 g). Newborn rats (1-2 days old) were used for experimental primary astrocyte cultures (n = 40). All animals were obtained from our breeding colony (Department of Biochemistry, UFRGS, Porto Alegre, Brazil), maintained in a controlled environment (12 h light/12 h dark cycle; 22 ± 1 °C; ad libitum access to food and water). All animal experiments were performed in accordance with the National Institute of Health (NIH) Guide for the Care and Use of Laboratory Animals and the Brazilian Society for Neuroscience and Behavior recommendations for animal care. The experimental protocols were approved by the Federal University of Rio Grande do Sul Animal Care and Use Committee.

### 2.4. Cecal ligation and perforation (CLP) in Wistar rats

For induction of systemic inflammation, male Wistar rats were subjected to CLP as previously described (Petronilho et al., 2012). Rats were anesthetized with a mixture of ketamine and xylazine, given intraperitoneally. A 3 cm midline laparotomy was

performed to allow exposure of the cecum with the adjoining intestine. The cecum was tightly ligated with a 3.0 nylon suture at its base, below the ileocecal valve, maintaining bowel flow continuity, and was perforated once with a 14-gauge needle. The cecum was then gently squeezed to extrude a small amount of fecal material from the perforation site and then returned to the peritoneal cavity. The laparotomy was closed with 4.0 nylon sutures and the rats were returned to their cages. Animals were resuscitated with normal saline (50 ml/kg subcutaneously) immediately and 12 h after CLP. In the sham-operated group, rats were submitted to all surgical procedures but the cecum was neither ligated nor perforated. In absence of antibiotic therapy, the mortality rate in this model was 100% after 72 h. All *in vivo* and *in vitro* analyses were performed after 24 h. of CLP when there was no mortality but the animals were lethargic, presenting piloerection, diarrhea, huddling along with an increase in BBB permeability (**Supplementary Figure 1**). After surgery, no differences in food intake between groups were identified.

### 2.5. Micro-PET Brain Scan

Twenty-four hours after surgical induction of sepsis, the animals from each group (sham n = 13 and CLP n = 14) were individually anesthetized using a mixture of isoflurane and medical oxygen (3–4% induction dose), and injected with 0.4 mL [<sup>18</sup>F]FDG (sham = 38.05 ± 1.06 MBq and CLP = 37.56 ± 1.08 MBq) in the tail vein, after overnight fasting. Then, each rat was returned to its home cage for a 40 min period of conscious (awake) *in vivo* metabolism of [<sup>18</sup>F]FDG. After the uptake period, each rat was placed in a head-first prone position and scanned with the Triumph<sup>TM</sup> micro-PET [LabPET-4, TriFoil Imaging, Northridge, CA, USA, (for LabPET-4 technical information see Bergeron et al., 2014)] under inhalational anesthesia (2–3% maintenance dose). Throughout these procedures, the animals were kept on a pad heated at 37 °C. For

radiotracer readings, 10 min list mode static acquisitions were acquired with the field of view (FOV; 3.75 cm) centered on each rat's head (Zanirati et al., 2018). All data were reconstructed using the maximum likelihood estimation method (MLEM-3D) algorithm with 20 iterations. Each micro-PET image was reconstructed with a voxel size of 0.2 x 0.2 x 0.2 mm and spatially normalized into an [<sup>18</sup>F]FDG template using brain normalization in PMOD v3.8 and the Fuse It Tool (PFUSEIT) (PMOD Technologies, Zurich, Switzerland). An MRI rat brain volume of interest (VOI) template was used to overlay the normalized images previously coregistered to the micro-PET image database. Activity values were normalized for the injected dose and the animal bodyweight, and were therefore expressed in standard uptake values (SUVs). Mean SUVs of 14 brain regions were extracted using a predefined VOI template. For analysis at the voxel level, MINC tools (www.bic.mni.mcgill.ca/ServicesSoftware) were used for image processing and analysis.

### 2.6. Metabolic networks

Metabolic brain networks of groups were constructed by computing Pearson correlation coefficients based on 10,000 bootstrap samples. Graph theoretical measures such as density, global efficiency, small-world, assortativity coefficient, average degree and average clustering coefficient were calculated for each of the bootstrap samples. Networks were corrected for multiple comparisons using false discovery rate P < 0.005 (Rubinov and Sporns, 2010).

### 2.7. Hippocampal primary astrocyte cultures and maintenance

Twenty-four hours after CLP induction, animals from both groups had their cerebral hippocampi aseptically dissected and their meninges removed. The astrocyte
cultures were performed as previously described (Bellaver et al., 2017; Bellaver et al., 2016b). During the dissection, cerebral tissue was kept in HBSS (Hank's Balanced Salt Solution) containing 0.05% trypsin and 0.003% DNase at 37 °C for 8 min. The tissue was then mechanically dissociated for 7 min using a Pasteur pipette and centrifuged at 100 xg for 5 min. The pellet was resuspended in a solution of HBSS containing only 0.003% DNase and again gently mechanically dissociated for 5 min with a Pasteur pipette and left for decantation for 20 min. The supernatant was collected and centrifuged for 7 min. (100 xg). The cells from the supernatant were resuspended in DMEM/F12 [10% fetal bovine serum (FBS), 15 mM HEPES, 14.3 mM NaHCO<sub>3</sub>, 0.04% gentamicin and 1% Fungizone<sup>®</sup>], plated in 6- or 24-well plates pre-coated with poly-L-lysine and cultured at 37 °C in an incubator with 5% CO<sub>2</sub>. The cells were seeded at  $3-5x10^5$  cells/cm<sup>2</sup>. The same protocol was applied to cultivate astrocytes from newborn (naive) animals. The first medium exchange occurred 24 h. after obtaining cultures. During the 1<sup>st</sup> week, the change occurred once every two days and from the  $2^{nd}$  week on, the change occurred once every four days. From the 3<sup>rd</sup> week on, hippocampal astrocytes received the culture medium supplemented with 20% FBS. Around the 4<sup>th</sup> week, the cells reached confluence, and biochemical and molecular analyses were performed by researchers blinded for group allocation.

# 2.8. 2-Deoxy-D-[1,2-<sup>3</sup>H] glucose ([<sup>3</sup>H]2DG) uptake

After cells reached confluence, glucose was assessed as previously described (Souza et al., 2013). Briefly, cells were rinsed once with HBSS and incubated with DMEM/F12 containing only 1 mCi/ml [<sup>3</sup>H]2DG (basal) or 1 mCi/ml [<sup>3</sup>H]2DG + 100  $\mu$ M glutamate (stimulated) for 20 min at 37 °C. After incubation, astrocytes were rinsed with HBSS and lysed overnight with NaOH 0.3 M. Incorporated radioactivity was measured

in a scintillation counter. Cytochalasin B (10 mM) was used as a specific glucose transporter inhibitor. Glucose uptake was determined by subtracting uptake with cytochalasin B from total uptake.

#### 2.9. Glutamate uptake

After the cells reached confluence, glutamate uptake was determined as previously described (Bellaver et al., 2016a). Briefly, astrocyte cultures were incubated at 37 °C in HBSS containing the following components (in mM): 137 NaCl, 5.36 KCl, 1.26 CaCl<sub>2</sub>, 0.41 MgSO<sub>4</sub>, 0.49 MgCl<sub>2</sub>, 0.63 Na<sub>2</sub>HPO<sub>4</sub>, 0.44 KH<sub>2</sub>PO<sub>4</sub>, 4.17 NaHCO<sub>3</sub>, and 5.6 glucose, adjusted to pH 7.4. The assay was started by the addition of 100  $\mu$ M L-glutamate and 0.33  $\mu$ Ci/ml L-[2,3-<sup>3</sup>H] glutamate. The incubation was stopped after 7 min by removing the medium and rinsing the wells twice with ice-cold HBSS. The cells were then lysed in a solution containing 0.5 M NaOH. Incorporated radioactivity was measured in a scintillation counter. Sodium-independent uptake was determined using methyl-D-glucamine instead of sodium chloride. Sodium-dependent glutamate uptake was obtained by subtracting the sodium-independent uptake from the total uptake.

#### 2.10. High-performance liquid chromatography (HPLC) procedure

The assay was performed to measure glutamate levels in the cerebrospinal fluid (CSF) of animals 24 h. after CLP or sham surgery. Briefly, the CSF was filtered (0.22  $\mu$ m pore), samples were derivatized with o-phthalaldehyde and separation was carried out with a reverse phase column (Supelcosil LC-18, 250 mm 9 4.6 mm, Supelco) in a Shimadzu Class-VP chromatography system. The mobile phase flowed at a rate of 1.4 mL/min. and column temperature was 24 °C. Buffer composition was A: 0.04 mol/L sodium dihydrogen phosphate monohydrate buffer, pH 5.5, containing 20% of methanol;

B: 0.01 mol/L sodium dihydrogen phosphate monohydrate buffer, pH 5.5, containing 80% of methanol. The gradient profile was modified according to the content of buffer B in the mobile phase: 0% for 0.00 min, 100% for 55 min, 0% for 55–60.00 min. Absorbance was read at 360 nm and 455 nm, excitation and emission respectively, with a Shimadzu fluorescence detector.

#### 2.11. RNA extraction and quantitative RT-PCR

Total RNA was isolated from primary astrocyte cultures obtained from sham/CLP animals using TRIzol Reagent (Invitrogen, Carlsbad, CA). The concentration and purity of the RNA were determined spectrophotometrically at a ratio of 260/280. Then, 1 µg of total RNA was reverse transcribed using Applied Biosystems<sup>TM</sup> High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA) in a 20 µL reaction, according to manufacturer's instructions. The mRNAs of GLT-1 and glutamate-aspartate transporter (GLAST) were quantified using a TaqMan real-time RT-PCR system with inventory primers and probes purchased from Applied Biosystems (Foster City, CA). Quantitative RT-PCR was performed in duplicate using the Applied Biosystems 7500 Fast system. No-template and no-reverse transcriptase controls were included in each assay, and these produced no detectable signal during the 40 cycles of amplification. Target mRNA levels were normalized using β-actin as a housekeeper gene. The results were expressed as fold of change of sham group using the 2<sup>-ΔΔCt</sup> method (Livak and Schmittgen, 2001).

#### 2.12. Western blot analysis

Hippocampal astrocytes from sham/CLP animals or PBMC CM treated animals were solubilized in lysis solution containing 4% SDS, 2-mM EDTA and 50-mM Tris-

HCl (pH 6.8). Samples were separated by SDS/PAGE (15 mg protein per sample), and transferred to nitrocellulose membranes, which were then incubated overnight (4 °C) with one of the following antibodies: anti-GFAP (1:1000), anti-GLT-1 (1:1000), anti phosphophosphoinositide 3-kinase (PI3K) p85 (Tyr458)/p55 (Tyr199) (1:1000) or anti- $\beta$ -actin (1:5000).  $\beta$ -actin was used as a loading control. Then, the membranes were incubated with a peroxidase-conjugated anti-rabbit or anti-mouse immunoglobulin (IgG) (1:7000) for 1 h. Chemiluminescence signals were detected in an Image Quant LAS4010 system (GE Healthcare) using an ECL kit (Souza et al., 2016b).

### 2.13. Immunofluorescence analysis

Immunofluorescence was performed as described previously by our group (Souza et al., 2016a). Cell cultures were fixed with 4% paraformaldehyde for 20 min and permeabilized with 0.1% Triton X-100 in PBS for 5 min at room temperature. After blocking overnight with 4% albumin, the cells were incubated overnight with anti-GFAP (1:400) at 4 °C. Then, an incubation with a secondary antibody conjugated with Alexa Fluor® 488 for 1 h at room temperature was performed. For all the immunostaining-negative control reactions, the primary antibody was omitted. No reactivity was observed when the primary antibody was excluded. For actin-labeling analyses, the cells were incubated with 10 mg/ml rhodamine-labeled phalloidin in PBS for 45 min. Cell nuclei were stained with 0.2 mg/ml of 4',6'-diamino-2-phenylindole (DAPI) for 10 min. Astrocyte immunofluorescence was analyzed and photographed with a Nikon microscope and a TE-FM Epi-Fluorescence accessory.

#### **2.14. Multiplex assays**

Cell-free supernatants of cultivated PBMCs and serum of sham and CLP rats were assayed for the presence of the following inflammatory mediators: interleukin (IL)-1 $\alpha$ , IL-1 $\beta$ , granulocyte-macrophage colony-stimulating factor (GM-CSF), granulocyte colony-stimulating factor (G-CSF), interferon gamma (INF- $\gamma$ ), IL-2, IL-4, IL-5, IL-6, IL-10, IL-12p70, IL-13, IL17A and tumor necrosis factor alpha (TNF- $\alpha$ ). Data were collected using the ProcartaPlex Rat Th Complete Panel 14plexdetection kit (catalog number EPX140-30120-901) following the manufacturer's instructions.

#### 2.15. Newborn astrocyte treatments

After cells reached the confluence, 0.25 mM dibutyryl-cAMP was added for 3 days to induce GLT-1 expression. Then, astrocytes were treated with serum from CLP/sham rats (10% v/v), PBMC CM from CLP/sham rats (10% v/v) and/or 10  $\mu$ M LY294002 (a PI3K inhibitor) for different periods (6 h, 24 h and 72 h).

#### 2.16. Peripheral blood mononuclear cells isolation and culture

Fresh heparinized blood from CLP and sham animals was collected 24 h after surgery. Then, blood was gently added over an equal volume of Ficoll-Histopaque. Tubes were centrifuged for 30 min. at 400 xg at room temperature. Next, the opaque interface containing mononuclear cells was transferred into a conical centrifuge tube. PBMCs were washed (centrifuged at 100 xg for 10 min.) twice with sterile HBSS. PBMCs were plated at a density of 1x10<sup>6</sup> cells/mL in a 24-well plate using RPMI-1640 medium supplemented with 10% FBS and kept for 24 h at 37 °C in an incubator with 5% CO<sub>2</sub> (Shalova et al., 2015). After incubation, the supernatant was collected to perform astrocyte treatments and multiplex analyses.

#### 2.17. Protein determination

Protein content was measured using bicinchoninic acid method with bovine serum albumin as a standard (Smith et al., 1985).

#### 2.18. Statistical analyses

Data were expressed as mean  $\pm$  standard deviation (s.d). Normality was evaluated using histograms and quantile plot. All data were normally distributed and comparisons between sham and CLP groups were carried out using Student's t test. P-values less than 0.05 were reported as statistically significant. Networks were corrected for multiple comparisons using false discovery rate (FDR) P < 0.005. GraphPad Prism 6 was used for statistical analysis.

#### 3. Results

#### 3.1. Transcriptome analysis in blood of acute sepsis patients

Transcriptome analysis of peripheral blood cells from 250 healthy subjects and 277 sepsis patients identified a total of 746 differentially expressed genes (DEGs) between groups. Among them, 295 were upregulated and 451 downregulated (**Fig. 1a**; **Supplementary Table 1**; for log Fold change and p-values of each independent dataset, see **Supplementary Table 2** and **3**, respectively). Additionally, to verify the biological processes associated with these DEGs we performed an enrichment analysis of gene ontology (GO) biological processes (**Supplementary Table 4**). **Fig. 1b** revealed enrichment of DEGs in GO terms related to inflammatory response, energy metabolism, immune cell differentiation and RNA regulation. Top 10 enriched biological processes are predominant among the upregulated genes, while genes related to RNA processing are

dominant in the downregulated DEGs. Finally, to recognize the most affected pathways related to changes in transcriptome profile, we also performed an enrichment analysis using canonical pathways described in the KEGG pathway database. This revealed a significant enrichment of DEGs in four pathways in septic patients compared to healthy subjects: measles, carbon metabolism, glycolysis/gluconeogenesis and tricarboxylic acid (TCA) cycle (**Fig. 1d-h**) (for a complete list of up- and downregulated genes in each process, see **Supplementary Figure 2**). Interestingly, carbon metabolism, glycolysis/gluconeogenesis and TCA cycle are pathways associated with energy metabolism.

# **3.2.** Acute severe systemic inflammation promotes a shift in astrocyte-mediated cerebral metabolism

Representative micro-PET studies using [<sup>18</sup>F]FDG images showed widespread global [<sup>18</sup>F]FDG hypometabolism in the CLP group (sham standardized uptake value (SUV) =  $2.57 \pm 0.38$ ; CLP SUV =  $2.07 \pm 0.35$ ; **Fig. 2a,b**). Acute sepsis induced ~20% hippocampal [<sup>18</sup>F]FDG hypometabolism (**Fig. 2c**). **Fig. 2d** depicts hippocampal tstatistical map with peak effect in the posterior area (peak t<sub>25</sub> = 4.53; P = 0.0007). Whole brain and hippocampal metabolism were chosen as volume of interest (VOIs, **Fig. 2e,f**). In this way, we identified whole brain (t<sub>25</sub> = 3.562, P = 0.0015; **Fig. 2g**) and hippocampal [<sup>18</sup>F]FDG hypometabolism (t<sub>25</sub> = 3.636, P = 0.0013; **Fig. 2h**) in animals submitted to CLP. VOIs from all other analyzed brain areas are available in **Supplementary Figure 3**. Metabolic networks analyses across previously delineated VOIs were performed to identify brain reorganization patterns during acute sepsis. Sepsis changed multiple

connections within the metabolic network, promoting a metabolic hyposynchronicity, especially in hippocampal and cortical areas (P < 0.005, FDR corrected, Fig. 2i-l). Graph measures demonstrated a consistent reorganization in the brain metabolic network indexed by lower density (P < 0.0001, Fig. 2m), reduced global efficiency (P = 0.00011, Fig. 2n), assortativity (P < 0.0001, Fig. 2o), small-world (P < 0.0001, Fig. 2p), degree (P < 0.0001, Fig. 2q) and clustering coefficient (P < 0.0001, Fig. 2r) in CLP rats. Aiming to verify a potential coupling between astrocyte glucose and glutamate metabolism during sepsis, astrocyte cultures from CLP and sham rats were performed. Under basal condition, we did not observe any differences in glucose uptake in ex vivo astrocytes cultivated from septic rats ( $t_8 = 1.148$ , P = 0.284; Fig. 2s). However, when CLP astrocytes were stimulated with glutamate, we observed a tendency to decrease glucose uptake levels compared to the control ( $t_8 = 1.947$ , P = 0.087; Fig. 2s). Hippocampal astrocytes cultivated from CLP rats presented a significant decrease in glutamate uptake (from 1.22 to 0.78 nmol<sup>3</sup>[H]/mg prot/min,  $t_{20} = 3.715$ , P = 0.0014; Fig. 2t). A similar decrease in glutamate uptake was observed in the hippocampal brain slices from rats submitted to surgical sepsis (Supplementary Fig. 4). Complementarily, no changes in glutamate levels in the CSF were verified between groups (Fig. 2u). Astrocytes from CLP animals presented a substantial increase in the mRNA expression levels of GLT-1 (3.4-fold;  $t_6 = 4.359$ , P = 0.005; Fig. 2v). On the other hand, a 2.5-fold decrease in the expression of GLAST was observed in CLP astrocytes when compared to the control group ( $t_7 = 2.40$ , P = 0.047; Fig. 2v). However, no changes in protein levels of GLT-1 were found ( $t_6 = 0.801$ , P = 0.454; Fig. 2w).

#### 3.3. PBMC-released mediators trigger astrocyte reactivity

First, we investigated how the induction of severe systemic inflammation affect astrocytic phenotype in cultivated astrocytes at 24 h post-CLP. We did not observe any major changes in the morphology of astrocytes cultivated from CLP, compared to sham animals (Fig. 3a,b), but CLP astrocytes showed an intense immunostaining for GFAP (Fig. 3c,d). Additionally, astrocytes cultivated from septic rats presented a pronounced diffuse organization of stress fibers, when compared to the parallel and well-organized actin filaments observed in sham astrocytes (Fig. 3e,f). An increase in GFAP protein content was confirmed by western blotting analysis (47%; P = 0.027;  $t_4 = 3.408$ ; Fig. 3g). Subsequently, astrocytes cultivated from healthy animals were exposed to the serum collected from CLP animals (serum pro-inflammatory cytokine activation panel is depicted in Fig. 3h; see the absolute values for cytokines in Supplementary Table 5). Interestingly, we observed a dual phase change in astrocytic glutamate uptake after CLP serum exposure. As observed in Fig. 3i, 6 h of septic serum treatment promoted a prominent increase in glutamate uptake (25%,  $t_4 = 4.666$ , P = 0.0096). At the 24 h timepoint no changes between astrocytes treated with septic or sham serum were verified (t4 = 0.2972, P = 0.781), while a significant decrease in glutamate uptake levels was observed after 72 h of exposure to serum from septic animals compared to sham  $(31\%, t_4 = 3.080, t_4 = 3.080)$ P = 0.036). Consistently, glucose uptake decreased in astrocytes exposed to 72 h of serum from septic animals (18%,  $t_5 = 2.926$ , P = 0.032; Fig. 3j), mimicking our *in vivo* data. We further analyzed the involvement of PBMC mediators in the activation and shift of astrocyte functions. Conditioned medium collected from PBMCs (PBMC CM), previously isolated from septic or sham animals, was used to treat astrocytes. Cytokine analysis of PBMC CM pool from septic rats revealed an increase in TNF- $\alpha$  (42%) and IL-10 (15%) and a decrease in G-CSF levels (from 10.02 pg/µl to undetectable) compared

to sham (Fig. 3k). In this way, 72 h of sepsis-activated PBMC CM exposure induced astrocyte reactivity, evidenced by a 2.3-fold increase in the GFAP protein levels (Fig. 31). Also, a significant decrease in glutamate uptake levels was observed in astrocytes treated with PBMC CM from septic animals ( $t_7 = 4.178$ , P = 0.0041; Fig. 3m), despite no changes in GLT-1 protein expression ( $t_6 = 0.827$ , P = 0.004; Fig. 3n). Additionally, astrocytes exposed to sepsis PBMC CM also showed a prominent decrease in glucose uptake ( $t_6 =$ 4.540, P = 0.0039; Fig. 30). Corroborating the observations after serum exposure, 24 h of sepsis PBMC CM treatment did not significantly change either glutamate or glucose uptake levels compared to the control conditions (Supplementary Figure 5). Of note, no significant changes were verified in cell viability after serum or PBMC CM treatments at the time point evaluated in this study (Supplementary Figure 6). In an attempt to understand the mechanism involved in the astrocytic energetic failure promoted by PBMC mediators, we looked for a potential target among the DEGs found in our transcriptomic analysis. In this sense, we observed a downregulation in two PI3K subunit genes (PIK3C2B and PIK3CD; Supplementary Table 1) along with an upregulation of PTEN (Supplementary Table 1), an important PI3K negative regulator, in septic patients. Based on the evident impairment in the PI3K pathway observed in our transcriptomic analysis and the putative role that this route plays in the management of energetic metabolism, including in glycolysis/gluconeogenesis, we decided to investigate this pathway in our animal model. In this regard, we verified a significant decrease in PI3K phosphorylation in astrocyte cultures exposed to PBMC CM from CLP animals (46%,  $t_8 = 4.216$ , P = 0.003; Fig. 3p). The specific inhibition of PI3K pathway by LY294002 (10 µM) presented a detrimental effect in astrocytes treated with PBMC CM from sham animals, while it exacerbated the decrease observed in glutamate uptake

in astrocytes treated with CLP PBMC CM (about 30%, **Fig. 3q**). Interestingly, LY294002 treatment did not significantly affect glucose uptake levels (**Fig. 3r**).

#### 4. Discussion

In the present report we described a potential link between peripheral factors and central metabolic failure during the acute phase of a systemic and severe inflammatory episode. We first showed, through a data-driven gene transcription analysis, that pathways related to energy metabolism are the main altered features in the blood of patients during the acute phase of sepsis. Then, in a rat model of sepsis we observed widespread brain energetic abnormalities, including glucose hypometabolism, lower glutamate uptake and astrocyte reactivity. Also, we provided, to the best of our knowledge, the first evidence of mediators released by PBMCs directly promoting astrocyte reactivity during sepsis, in a microglia-independent manner. Finally, by inhibiting PI3K signaling we exacerbated astrocyte dysfunctional glutamate uptake in both sham and CLP groups.

Data-driven transcriptome analysis of blood cells indicated multiple changes in energy metabolism pathways as main features among septic patients. More specifically, we found DEGs overrepresented in carbon metabolism, glycolysis/gluconeogeonesis and TCA pathways, indicating a clear impairment in glucose metabolism-related genes. Interestingly, GO terms associated with inflammatory processes were enriched in septic patients but this was not observed in inflammatory KEGG pathways. Our findings associating sepsis-activated PBMCs with peripheral energy metabolism dysfunction motivated us to investigate brain energetics. Since astrocytes are the main glucose handlers in the brain, we decided to assess their functionality during acute sepsis.

Interestingly, we found that the energetic crisis observed in the blood of septic patients was also present in the brains of our CLP rat model. More specifically, we identified widespread brain glucose hypometabolism, as indexed by [<sup>18</sup>F]FDG PET, in CLP rats. In clinical settings, [<sup>18</sup>F]FDG PET is considered a biomarker of synaptic dysfunction and its values are associated with cognitive impairment (Gardener et al., 2016; Pagani et al., 2015; Weise et al., 2018). Not surprisingly, sepsis has been associated with increased risk for developing dementia (Chou et al., 2017; Cunningham and Hennessy, 2015). Our [<sup>18</sup>F]FDG PET regional analysis demonstrated hypometabolism in several brain regions, including the hippocampus. Semmler et al. previously demonstrated [<sup>18</sup>F]FDG hypometabolism in a lipopolysaccharide (LPS) model of acute sepsis. However, no changes in hippocampal [<sup>18</sup>F]FDG PET metabolism were observed in their study (Semmler et al., 2008). Human hippocampi are extremely vulnerable to sepsis, as indexed by hippocampal atrophy in sepsis patients (Semmler et al., 2013). Based on this, one could argue that the CLP model resembles human sepsis with more accuracy than the LPS injection model (Lee and Huttemann, 2014). In addition, by using refined network analysis, we demonstrated that region-to-region communication in the CLP rat model is largely disrupted. Metabolic network is hyposynchronic in the CLP group and graph measures revealed that brain regions, including the hippocampus, are exchanging information less efficiently.

A recent report demonstrated that glutamate and glucose uptake by astrocytes are coupled, as indexed by [<sup>18</sup>F]FDG signal, which suggests that the [<sup>18</sup>F]FDG signal also reflects astrocyte metabolism (Zimmer et al., 2017). However, cellular interpretation of 93 [<sup>18</sup>F]FDG is still under discussion and we cannot exclude neuronal participation in <sup>18</sup>F]FDG hypometabolism induced by sepsis. For testing this hypothesis, we then evaluated glucose and glutamate uptake ex vivo in astrocytes obtained from CLP rats. Interestingly, we did not observe changes in basal glucose uptake between groups. In fact, it seems that the long incubation period required for cultivating mature astrocytes (3-4 weeks) allows them to adapt to environmental conditions, such as high availability of glucose and other nutrients present in the medium. However, we noticed a tendency of lower glucose uptake in CLP astrocytes stimulated with glutamate, which suggests that these cells still preserved a septic phenotype. Next, we identified that astrocyte glutamate uptake is reduced during acute sepsis but no changes in GLT-1 density, the main glutamate astrocyte transporter (Anderson and Swanson, 2000), were observed. Interestingly, we found increased GLT-1 mRNA expression in CLP astrocytes. Here, we hypothesize that GLT-1 could be either internalized or have its activity reduced, which could explain the lack of changes in transporter density despite reduced glutamate uptake. Also, the 3-fold increase in GLT-1 mRNA suggests that CLP astrocytes are unsuccessfully attempting to replace defective transporters, likely due to the decreased ribosomal protein translation, a process already related to the detrimental effects of sepsis (Hato et al., 2019).

It has been well established that astrocytes are activated during inflammation. Reactive astrocytes overexpress GFAP and release a range of inflammatory cytokines and chemokines (Brahmachari et al., 2006; Gorina et al., 2009). Here we demonstrated PBMC-released factors driving astrocyte reactivity. Serum from CLP animals presented increased levels of pro-inflammatory cytokines, as IL-1 $\beta$ , IL-12p70, IFN- $\gamma$  and TNF- $\alpha$ , compared to sham rats. Interestingly, PBMC CM activation was much more subtle

94

(increased TNF- $\alpha$  and IL-10 and decreased G-CSF levels). Indeed, it has been previously demonstrated that even a slight increase in brain TNF- $\alpha$  levels is able to promote a decrease in glutamate transporter activity (Clark and Vissel, 2016), corroborating the deficient glutamate transport observed in our model. In addition, mice lacking TNF- $\alpha$  type 1 receptors had memory preservation after CLP induction (Calsavara et al., 2015). From that, one could argue that astrocyte energy crisis during sepsis seems to be independent of other canonical inflammatory mediators, such as IL-1 $\beta$  and IFN- $\gamma$ . However, more studies are required to determine if IL-10 and G-CSF actively play a role in astrocyte activation during sepsis. Of note, we measured only a limited variety of cytokines/chemokines present in the PBMC CM. It is possible that factors not evaluated here are also important for promoting astrocyte reactivity.

The mechanisms involved in the regulation of cerebral energy metabolism during sepsis are poorly understood. The downregulation of PI3K identified in our transcriptome analysis was also observed in astrocytes treated with PBMC CM from CLP rats. Trying to mimic sepsis-induced abnormalities in glutamate and glucose metabolism we conducted a pharmacological inhibition of PI3K in cultured astrocytes. The pharmacological inhibition of PI3K reduced astrocytic glutamate uptake in PBMC CM treated sham and CLP astrocytes. In fact, Zhang et al., also observed that the activation of PI3K signaling increases glutamate uptake by upregulating GLT-1 (Zhang et al., 2013). Additionally, it has been demonstrated that the inhibition of PI3K signaling decreases survival between animals submitted to CLP as well as promotes an early and more severe onset of sepsis (Wrann et al., 2007). The inhibition of PI3K pathway has also been shown to enhance LPS-induced inflammation in different cell types (Guha and Mackman, 2002). Controversially, the inhibition of PI3K did not affect glucose uptake in sham or CLP rats

treated with PBMC CM. Based on that, one could argue that PI3K is involved in sepsisinduced glutamate abnormalities but not in mediating glucose hypometabolism, thus inhibiting the signaling at the level of PI3K uncoupled glutamate and glucose metabolism in astrocytes. In this sense, other molecular energy sensors, such as the AMP-activated protein kinase (AMPK), might be acting in parallel with PI3K signaling to regulate glucose uptake (Domise and Vingtdeux, 2016). However, further investigations are needed to completely decode this complex regulation.

Taken together, our results pointed to PBMCs as important triggers of astrocyte reactivity, metabolic and energetic dysfunction during the early stage of sepsis. In addition, we demonstrated that impaired PI3K signaling drives glutamate abnormalities but not glucose hypometabolism during acute sepsis. In summary, this report improves the understanding of the mechanisms by which systemic inflammation impacts brain functionality, indicating potential targets for therapeutic modulation.

# 5. Data Availability

Datasets used in this study can be accessed via NCBI GEO portal (<u>https://www.ncbi.nlm.nih.gov/geo/</u>). Further intermediate data and codes generated to implement the MRCMap adaptation are available from the corresponding author upon request.

#### **6.** Conflict of interest

The authors declare there are no conflicts of interest.

#### 7. Funding sources

```
ERZ receives financial support from CAPES [88881.141186/2017-01], CNPq
```

[460172/2014-0], PRONEX, FAPERGS/CNPg [16/2551-0000475-7], Brazilian National

Institute of Science and Technology in Excitotoxicity and Neuroprotection

[465671/2014-4],FAPERGS/MS/CNPq/SESRS-PPSUS [30786.434.24734.23112017].

# 8. References

Anderson, C.M., Swanson, R.A., 2000. Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia 32, 1-14.

Bellaver, B., Bobermin, L.D., Souza, D.G., Rodrigues, M.D., de Assis, A.M., Wajner, M., Goncalves, C.A., Souza, D.O., Quincozes-Santos, A., 2016a. Signaling mechanisms underlying the glioprotective effects of resveratrol against mitochondrial dysfunction. Biochim Biophys Acta 1862, 1827-1838.

Bellaver, B., Dos Santos, J.P., Leffa, D.T., Bobermin, L.D., Roppa, P.H.A., da Silva Torres, I.L., Goncalves, C.A., Souza, D.O., Quincozes-Santos, A., 2017. Systemic Inflammation as a Driver of Brain Injury: the Astrocyte as an Emerging Player. Mol Neurobiol.

Bellaver, B., Souza, D.G., Souza, D.O., Quincozes-Santos, A., 2016b. Hippocampal Astrocyte Cultures from Adult and Aged Rats Reproduce Changes in Glial Functionality Observed in the Aging Brain. Mol Neurobiol.

Bergeron, M., Cadorette, J., Tetrault, M.A., Beaudoin, J.F., Leroux, J.D., Fontaine, R., Lecomte, R., 2014. Imaging performance of LabPET APD-based digital PET scanners for pre-clinical research. Physics in medicine and biology 59, 661-678.

Brahmachari, S., Fung, Y.K., Pahan, K., 2006. Induction of glial fibrillary acidic protein expression in astrocytes by nitric oxide. J Neurosci 26, 4930-4939.

Calsavara, A.C., Soriani, F.M., Vieira, L.Q., Costa, P.A., Rachid, M.A., Teixeira, A.L., 2015. TNFR1 absence protects against memory deficit induced by sepsis possibly

through over-expression of hippocampal BDNF. Metabolic brain disease 30, 669-678. Chou, C.H., Lee, J.T., Lin, C.C., Sung, Y.F., Lin, C.C., Muo, C.H., Yang, F.C., Wen, C.P., Wang, I.K., Kao, C.H., Hsu, C.Y., Tseng, C.H., 2017. Septicemia is associated with increased risk for dementia: a population-based longitudinal study. Oncotarget 8, 84300-84308.

Clark, I.A., Vissel, B., 2016. Excess cerebral TNF causing glutamate excitotoxicity rationalizes treatment of neurodegenerative diseases and neurogenic pain by anti-TNF agents. Journal of neuroinflammation 13, 236.

Cunningham, C., Hennessy, E., 2015. Co-morbidity and systemic inflammation as drivers of cognitive decline: new experimental models adopting a broader paradigm in dementia research. Alzheimer's research & therapy 7, 33.

Domise, M., Vingtdeux, V., 2016. AMPK in Neurodegenerative Diseases. Experientia supplementum (2012) 107, 153-177.

Gardener, S.L., Sohrabi, H.R., Shen, K.K., Rainey-Smith, S.R., Weinborn, M., Bates, K.A., Shah, T., Foster, J.K., Lenzo, N., Salvado, O., Laske, C., Laws, S.M., Taddei, K., Verdile, G., Martins, R.N., 2016. Cerebral Glucose Metabolism is Associated with Verbal but not Visual Memory Performance in Community-Dwelling Older Adults. J Alzheimers Dis 52, 661-672.

Godini, R., Fallahi, H., 2018. Network analysis of inflammatory responses to sepsis by neutrophils and peripheral blood mononuclear cells 13, e0201674.

Gorina, R., Santalucia, T., Petegnief, V., Ejarque-Ortiz, A., Saura, J., Planas, A.M., 2009. Astrocytes are very sensitive to develop innate immune responses to lipid-carried short interfering RNA. Glia 57, 93-107.

Guha, M., Mackman, N., 2002. The phosphatidylinositol 3-kinase-Akt pathway limits lipopolysaccharide activation of signaling pathways and expression of inflammatory mediators in human monocytic cells. The Journal of biological chemistry 277, 32124-32132.

Hato, T., Maier, B., Syed, F., Myslinski, J., Zollman, A., Plotkin, Z., Eadon, M.T., Dagher, P.C., 2019. Bacterial sepsis triggers an antiviral response that causes translation shutdown. The Journal of clinical investigation 129, 296-309.

Horng, S., Therattil, A., Moyon, S., Gordon, A., Kim, K., Argaw, A.T., Hara, Y., Mariani, J.N., Sawai, S., Flodby, P., Crandall, E.D., Borok, Z., Sofroniew, M.V., Chapouly, C., John, G.R., 2017. Astrocytic tight junctions control inflammatory CNS lesion pathogenesis. J Clin Invest 127, 3136-3151.

Iwashyna, T.J., Ely, E.W., Smith, D.M., Langa, K.M., 2010. Long-term cognitive impairment and functional disability among survivors of severe sepsis. Jama 304, 1787-1794.

Kyrkanides, S., Miller, A.W., Miller, J.N., Tallents, R.H., Brouxhon, S.M., Olschowka, M.E., O'Banion, M.K., Olschowka, J.A., 2008. Peripheral blood mononuclear cell infiltration and neuroinflammation in the HexB-/- mouse model of neurodegeneration. J Neuroimmunol 203, 50-57.

Lee, I., Huttemann, M., 2014. Energy crisis: the role of oxidative phosphorylation in acute inflammation and sepsis. Biochim Biophys Acta 1842, 1579-1586.

Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San Diego, Calif.) 25, 402-408.

Michels, M., Steckert, A.V., Quevedo, J., Barichello, T., Dal-Pizzol, F., 2015. Mechanisms of long-term cognitive dysfunction of sepsis: from blood-borne leukocytes to glial cells. Intensive care medicine experimental 3, 30.

Murtagh, F., Legendre, P., 2014. Ward's Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward's Criterion? Journal of Classification 31, 274-295.

Nortley, R., Attwell, D., 2017. Control of brain energy supply by astrocytes. Curr Opin Neurobiol 47, 80-85.

Pagani, M., De Carli, F., Morbelli, S., Oberg, J., Chincarini, A., Frisoni, G.B., Galluzzi, S., Perneczky, R., Drzezga, A., van Berckel, B.N., Ossenkoppele, R., Didic, M., Guedj, E., Brugnolo, A., Picco, A., Arnaldi, D., Ferrara, M., Buschiazzo, A., Sambuceti, G.,

Nobili, F., 2015. Volume of interest-based [18F]fluorodeoxyglucose PET discriminates MCI converting to Alzheimer's disease from healthy controls. A European Alzheimer's Disease Consortium (EADC) study. NeuroImage. Clinical 7, 34-42.

Pellerin, L., Magistretti, P.J., 2012. Sweet sixteen for ANLS. J Cereb Blood Flow Metab 32, 1152-1166.

Petronilho, F., Perico, S.R., Vuolo, F., Mina, F., Constantino, L., Comim, C.M., Quevedo, J., Souza, D.O., Dal-Pizzol, F., 2012. Protective effects of guanosine against sepsis-induced damage in rat brain and cognitive impairment. Brain Behav Immun 26, 904-910.

Ransohoff, R.M., Schafer, D., Vincent, A., Blachere, N.E., Bar-Or, A., 2015. Neuroinflammation: Ways in Which the Immune System Affects the Brain. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics 12, 896-909.

Richards, M.H., Narasipura, S.D., Kim, S., Seaton, M.S., Lutgen, V., Al-Harthi, L., 2015. Dynamic interaction between astrocytes and infiltrating PBMCs in context of neuroAIDS. Glia 63, 441-451.

Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., Smyth, G.K., 2015. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic acids research 43, e47.

Rubinov, M., Sporns, O., 2010. Complex network measures of brain connectivity: uses and interpretations. NeuroImage 52, 1059-1069.

Semmler, A., Hermann, S., Mormann, F., Weberpals, M., Paxian, S.A., Okulla, T., Schafers, M., Kummer, M.P., Klockgether, T., Heneka, M.T., 2008. Sepsis causes neuroinflammation and concomitant decrease of cerebral metabolism. Journal of neuroinflammation 5, 38.

Semmler, A., Widmann, C.N., Okulla, T., Urbach, H., Kaiser, M., Widman, G., Mormann, F., Weide, J., Fliessbach, K., Hoeft, A., Jessen, F., Putensen, C., Heneka, M.T., 2013. Persistent cognitive impairment, hippocampal atrophy and EEG changes in sepsis survivors. Journal of neurology, neurosurgery, and psychiatry 84, 62-69. Shalova, I.N., Lim, J.Y., Chittezhath, M., Zinkernagel, A.S., Beasley, F., Hernandez-Jimenez, E., Toledano, V., Cubillos-Zapata, C., Rapisarda, A., Chen, J., Duan, K., Yang, H., Poidinger, M., Melillo, G., Nizet, V., Arnalich, F., Lopez-Collazo, E., Biswas, S.K., 2015. Human monocytes undergo functional re-programming during

sepsis mediated by hypoxia-inducible factor-1alpha. Immunity 42, 484-498.

Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.K., Gartner, F.H., Provenzano, M.D., Fujimoto, E.K., Goeke, N.M., Olson, B.J., Klenk, D.C., 1985. Measurement of protein using bicinchoninic acid. Analytical biochemistry 150, 76-85.

Sofroniew, M.V., 2009. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32, 638-647.

Souza, D.G., Almeida, R.F., Souza, D.O., Zimmer, E.R., 2019. The astrocyte biochemistry. Seminars in cell & developmental biology.

Souza, D.G., Bellaver, B., Bobermin, L.D., Souza, D.O., Quincozes-Santos, A., 2016a. Anti-aging effects of guanosine in glial cells. Purinergic Signal.

Souza, D.G., Bellaver, B., Hansel, G., Arus, B.A., Bellaver, G., Longoni, A., Kolling, J., Wyse, A.T., Souza, D.O., Quincozes-Santos, A., 2016b. Characterization of Amino Acid Profile and Enzymatic Activity in Adult Rat Astrocyte Cultures. Neurochem Res 41, 1578-1586.

Souza, D.G., Bellaver, B., Souza, D.O., Quincozes-Santos, A., 2013. Characterization of adult rat astrocyte cutures. PLoS One 8, E60282.

Tang, B.M., McLean, A.S., Dawes, I.W., Huang, S.J., Lin, R.C., 2009. Gene-expression profiling of peripheral blood mononuclear cells in sepsis. Critical care medicine 37, 882-888.

Weise, C.M., Chen, K., Chen, Y., Kuang, X., Savage, C.R., Reiman, E.M., 2018. Left lateralized cerebral glucose metabolism declines in amyloid-beta positive persons with mild cognitive impairment. NeuroImage. Clinical 20, 286-296.

Wrann, C.D., Tabriz, N.A., Barkhausen, T., Klos, A., van Griensven, M., Pape, H.C., Kendoff, D.O., Guo, R., Ward, P.A., Krettek, C., Riedemann, N.C., 2007. The phosphatidylinositol 3-kinase signaling pathway exerts protective effects during sepsis by controlling C5a-mediated activation of innate immune functions. J Immunol 178, 5940-5948.

Young, G.B., 2010. Sparing brain damage in severe sepsis: a beginning. Critical care (London, England) 14, 159.

Yu, G., Wang, L.G., Han, Y., He, Q.Y., 2012. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics : a journal of integrative biology 16, 284-287.

Zanirati, G., Azevedo, P.N., Venturin, G.T., Greggio, S., Alcara, A.M., Zimmer, E.R., Feltes, P.K., DaCosta, J.C., 2018. Depression comorbidity in epileptic rats is related to brain glucose hypometabolism and hypersynchronicity in the metabolic network architecture. Epilepsia 59, 923-934.

Zhang, X., Shi, M., Bjoras, M., Wang, W., Zhang, G., Han, J., Liu, Z., Zhang, Y., Wang, B., Chen, J., Zhu, Y., Xiong, L., Zhao, G., 2013. Ginsenoside Rd promotes glutamate clearance by up-regulating glial glutamate transporter GLT-1 via PI3K/AKT and ERK1/2 pathways. Frontiers in pharmacology 4, 152.

Ziaja, M., 2013. Septic encephalopathy. Current neurology and neuroscience reports 13, 383.

Zimmer, E.R., Parent, M.J., Souza, D.G., Leuzy, A., Lecrux, C., Kim, H.I., Gauthier, S., Pellerin, L., Hamel, E., 2017. [18F]FDG PET signal is driven by astroglial glutamate transport.

#### **Figure legends**

**Figure 1.** Transcriptome analyses of blood cells from sepsis patients. The analysis of 10 datasets available on online repositories show differentially expressed genes (DEGs) (a), gene ontology (GO) network (b), the top 10 GO terms up- and downregulated (c) and the enriched KEGG pathways (d-g) and their respective p-value and q-value (h). Only DEGs found in more than 7 datasets were included. In the network, node colors represent the summarized up/downregulation state of the term, while edge widths represent the number of common genes between two terms, summarized in the Jaccard coefficient.

**Figure 2.** Astrocytic glucose and glutamate metabolism. Whole-brain [<sup>18</sup>F]FDG uptake of sham (a) and CLP (b) animals. Percentage of change between sham and CLP (c). Tstatistical map overlaid on histological template (d). Brain mask showing VOIs overlaid on histological template (e,f). Whole brain (g) and hippocampal (h) [<sup>18</sup>F]FDG uptake. Cross-correlation matrices: intersubject cross-correlation maps displaying region-toregion associations in sham (i) and CLP (j) rats. Metabolic networks: 3D brain surfaces displaying large-scale metabolic cross-correlation maps in sham (k) and in CLP (l) animals. Metabolic network graph measures of global efficiency (m), assortativity (n), average degree (o), average clustering (p), density (q) and small world (r). Glucose uptake in astrocytes cultivated from sham and CLP rats (s) Glutamate uptake in astrocytes cultivated from sham and CLP rats (t). Glutamate levels in the CSF (u). GLT-1 and GLAST mRNA levels (v) and immunocontent in astrocytes cultivated from sham and CLP rats (w). Cumulative frequencies are depicted in the upper left of graph measures (m-r). *n* = 5-14 rats per group. \*P < 0.05, \*\*P < 0.01, \*\*\*P < 0.001 (t test). Data are presented as mean values  $\pm$  s.d. and individual scatter plots or as correlation values with FDR-corrected (P < 0.005) thresholds for brain networks.

**Figure 3.** PBMC released mediators trigger astrocyte activation. Phase contrast (a,b), GFAP immunostaining (c,d) and actin cytoskeleton (e,f) and western blotting for GFAP (g) of astrocytes cultivated from sham and CLP rats. Cytokine profile of serum from sham/CLP rats (h). Glutamate uptake of astrocytes treated with 10% serum from sham/CLP animals for 6 h, 24 h and 72 h (i). Glucose uptake of astrocytes treated with 10% serum from sham/CLP animals for 72 h (j). Cytokine profile of PBMC CM from sham/CLP rats (k). Western blotting for GFAP (1), glutamate (m) and glucose uptake (n) of astrocytes treated with 10% PBMC CM from sham/CLP animals for 72 h Western blotting for p-PI3K of astrocytes treated with 10% PBMC CM from sham/CLP animals for 72 h (o). Glutamate (q) and glucose uptake (r) by astrocytes pre-treated with 10% PBMC CM from sham/CLP rats and/or 10  $\mu$ M LY 294002. *n* = 4-6 per group. \*P < 0.05, \*\*P < 0.01 (t test). Data are presented as mean values ± s.d. and individual scatter plots.

Table 1

| GEO ID   | Description                                                                                                                                                   | Sample (n)                                                                                                                          | Reference                                       |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| GSE95233 | Gene expression data of whole<br>blood collected from patients at<br>day 1 of sepsis and from healthy<br>subjects                                             | Whole blood from septic<br>patients (n=51)<br>Whole blood from healthy<br>subjects (n=22)                                           | (Venet et al.,<br>2017)                         |
| GSE49757 | Gene expression data of<br>polymorphonuclear neutrophils<br>collected from septic patients in<br>the first admission at hospital and<br>from healthy subjects | Polymorphonuclear<br>neutrophils from septic<br>patients (n=35)<br>Polymorphonuclear<br>neutrophils from healthy<br>subjects (n=19) | Not published                                   |
| GSE67652 | Gene expression data of<br>polymorphonuclear neutrophils<br>collected from septic patients and<br>from healthy subjects with paired<br>age                    | Polymorphonuclear<br>neutrophils from septic<br>patients (n=6)<br>Polymorphonuclear<br>neutrophils from healthy<br>subjects (n=6)   | (Vieira da Silva<br>Pellegrina et al.,<br>2015) |
| GSE57065 | Gene expression data of whole<br>blood collected from patients 24 h<br>after septic shock and from<br>healthy subjects                                        | Whole blood from septic<br>patients (n=28)<br>Whole blood from healthy<br>subjects (n=25)                                           | (Cazalis et al.,<br>2014)                       |
| GSE54514 | Gene expression data of whole<br>blood collected from patients at<br>day 1 of sepsis and from healthy<br>subjects                                             | Whole blood from septic<br>patients (n=26)<br>Whole blood from healthy<br>subjects (n=18)                                           | (Parnell et al.,<br>2013)                       |

| GSE32707 | Gene expression data of whole<br>blood collected from septic<br>patients in the first admission at<br>hospital and from healthy subjects                      | Whole blood from septic<br>patients (n=34)<br>Whole blood from healthy<br>subjects (n=38)                                           | (Dolinay et al.,<br>2012)    |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| GSE28750 | Gene expression data of<br>polymorphonuclear neutrophils<br>collected from septic patients in<br>the first admission at hospital and<br>from healthy subjects | Polymorphonuclear<br>neutrophils from septic<br>patients (n=27)<br>Polymorphonuclear<br>neutrophils from healthy<br>subjects (n=20) | (Sutherland et al.,<br>2011) |
| GSE13015 | Gene expression data of whole<br>blood collected from septic<br>patients and healthy subjects                                                                 | Whole blood from septic<br>patients (n=31)<br>Whole blood from healthy<br>subjects (n=29)                                           | (Pankla et al.,<br>2009)     |
| GSE69063 | Gene expression data of whole<br>blood collected from septic<br>patients and healthy subjects                                                                 | Whole blood from septic<br>patients (n=33)<br>Whole blood from healthy<br>subjects (n=57)                                           | Not published                |
| GSE46955 | Gene expression data of<br>monocytes collected from septic<br>patients in the first admission at<br>hospital and from healthy subjects                        | Monocytes from septic<br>patients (n=6)<br>Monocytes from healthy<br>subjects (n=16)                                                | (Shalova et al.,<br>2015)    |

a)







logFC

downrogulated
opregulated

z-score

| ID         | Description                                       |
|------------|---------------------------------------------------|
| GO:0042119 | neutrophil activation                             |
| GO:0043312 | neutrophil degranulation                          |
| GO:0002283 | neutrophil activation involved in immune response |
| GO:0002446 | neutrophil mediated immunity                      |
| GO:0022613 | ribonucleoprotein complex biogenesis              |
| GO:0034470 | ncRNA processing                                  |
| GO:0042254 | ribosome biogenesis                               |
| GO:0016072 | rRNA metabolic process                            |
| GO:0006354 | rRNA processing                                   |
| GO:0006401 | RNA catabolic process                             |
| GO:0006091 | generation of precursor metabolites and energy    |
| GO:0090150 | establishment of protein localization to membrane |
| GO:0042274 | ribosomal small subunit biogenesis                |
| GO:0030490 | maturation of SSU-rRNA                            |
| GO:0006605 | protein targeting                                 |



b)









k)



p)

PBMC CM profile

Sham CLP



I)

PBMC CM treated Sham CLP









# Supplemental information



**Supplementary Figure 1:** 24h-CLP promoted a decrease in albumin levels in cerebrospinal fluid. Data are represented as mean values ± s.d. and individual scatter plots. \*\*\*\*P<0.0001. (t test), compared to the sham group.



**Supplementary Figure 2.** Transcriptome analysis revealed enrichment of differentially expressed genes in energy-related KEGG pathways. Representation of upregulated and downregulated genes in (a) glycolysis/gluconeogenesis and (b) citrate cycle (TCA cycle). Color code refers to median logFC expression direction over all sepsis *versus* controls datasets utilized.



Supplementary Figure 3. Sepsis promoted a global decrease in standard uptake values (SUVs). SUV for (a) prefrontal cortex, (b) temporoparietal cortex, (c) striatum, (d) hypothalamus, (e) thalamus and (f) cerebellum are represented as mean values  $\pm$  s.d. and individual scatter plots. \*\*P<0.01 and \*\*\*P<0.001. (t test), compared to the sham group.



**Supplementary Figure 4.**CLP induction promoted a decrease in glutamate uptake in hippocampal slices. Data are represented as mean values  $\pm$  s.d. and individual scatter plots. \*\*P<0.01. (t test), compared to the sham group.



**Supplementary Figure 5.** 24 h of treatment with peripheral blood mononuclear cells conditioned medium (PBMC CM) from sham/CLP animals does not affects (a) glutamate and (b) glucose uptake in astrocytes. (t test), compared to the sham group.



**Supplementary Figure 6.** Cell viability in astrocytes treated with (a) serum and (b) peripheral blood mononuclear cells conditioned medium (PBMC CM) from sham and CLP animals. Values are represented as percentage of 6 h sham. n = 4.

| Downregulated genes | Upregulated genes |
|---------------------|-------------------|
| AARSD1              | ABCC2             |
| ABCB7               | ABHD5             |
| ABHD12              | ACAA1             |
| ACD                 | ACSL1             |
| ACSS1               | ADAM17            |
| ACTR1B              | ADORA2A           |
| ACTR5               | AIM2              |
| ADCK1               | ALOX5AP           |
| ADK                 | ANXA3             |
| AFG3L2              | AP3S1             |
| AKNA                | APH1B             |
| AKR1B1              | AQP9              |
| AKR7A2              | ARF5              |
| ALDH16A1            | ARL6IP5           |
| ALDOC               | ARPC1B            |
| ALG1                | ARPC3             |
| ALKBH2              | ARPC5             |
| ANGEL2              | B3GNT8            |
| ANKRD54             | BASP1             |
| APEH                | BATF              |
| APEX1               | BCORL1            |
| ARHGEF18            | BLOC1S1           |
| ARHGEF3             | BRI3              |
| ARL2BP              | BUD31             |
| ASB13               | C16orf72          |
| ASF1B               | Clorf162          |
| ATIC                | C3AR1             |
| B3GALT6             | CARD6             |
| BBS2                | CARS2             |
| BBX                 | CASP5             |
| BCAT2               | CCDC17            |
| BCS1L               | CCND3             |
| BIN1                | CCNDBP1           |
| BMP6                | CD300LF           |
| BZW2                | CD44              |
| Clorf174            | CD55              |
| C7orf26             | CD63              |

Supplementary table 1: differentially expressed genes in blood of sepsis and control subjects

| CAD      | CD82     |
|----------|----------|
| CAMK1    | CDA      |
| CARD11   | CDC20    |
| CBY1     | CDCA5    |
| CCDC107  | CEACAM3  |
| CCDC115  | CEBPA    |
| CCDC6    | CEBPD    |
| CCR7     | CHIC2    |
| CCT4     | CKAP2L   |
| CCT8     | CKAP4    |
| CD160    | CLEC4E   |
| CD19     | CLIC1    |
| CD2      | CLTC     |
| CD27     | CMTM6    |
| CD300LB  | CNIH4    |
| CD3E     | COX8A    |
| CD3G     | CST7     |
| CD52     | CSTA     |
| CD6      | CTSA     |
| CD7      | CTSD     |
| CDC42SE2 | CXCL16   |
| CDK4     | CYB5R4   |
| CFDP1    | CYBB     |
| CHD4     | DCTN6    |
| CHD9     | DCUN1D3  |
| CHST11   | DDAH2    |
| CIRBP    | DENND3   |
| CLC      | DIRC2    |
| CNNM3    | DNASE1L1 |
| CNOT10   | DNTTIP1  |
| COPS6    | DOK3     |
| COPS7B   | DRAM1    |
| COPZ1    | DUSP3    |
| COQ10A   | DYNLT1   |
| COX10    | DYSF     |
| COX4I1   | EDEM2    |
| CREB1    | EMILIN2  |
| CS       | ENO1     |
| CSE1L    | ENTPD1   |
| CTCF     | ERLIN1   |

| CTDSPL2 | EVI2A    |
|---------|----------|
| CWF19L2 | FAM49B   |
| CYB5D1  | FAM53C   |
| DDX1    | FAM89A   |
| DDX17   | FAM96A   |
| DDX18   | FBXO34   |
| DDX21   | FBXO6    |
| DDX27   | FBXW2    |
| DDX46   | FCER1G   |
| DDX55   | FEM1C    |
| DDX56   | FERMT3   |
| DEXI    | FES      |
| DGCR8   | FGFR1OP2 |
| DHPS    | FGR      |
| DIABLO  | FLOT1    |
| DISP1   | FLOT2    |
| DKC1    | FOXN2    |
| DNAJA3  | FPR1     |
| DNMT1   | FURIN    |
| DOCK8   | GADD45B  |
| DOLK    | GADD45G  |
| DPEP2   | GAPDH    |
| DRG1    | GBGT1    |
| DUS1L   | GCA      |
| DUSP2   | GLA      |
| E2F5    | GLT1D1   |
| E4F1    | GMFG     |
| EARS2   | GNA15    |
| ECHS1   | GNG5     |
| EDF1    | GNS      |
| EEF2K   | GOLGA1   |
| EEF2K   | GOLPH3   |
| EIF2B1  | GPR160   |
| EIF3A   | GPR84    |
| EIF5B   | GRAMD1A  |
| ELP4    | GSR      |
| ENDOG   | HBD      |
| ENO2    | НСК      |
| ENOPH1  | HEBP2    |
| EOMES   | HIF1A    |

| EP400   | HIST1H2AC |
|---------|-----------|
| EPHX2   | HIST1H2BE |
| EPRS    | HIST1H3D  |
| ERCC1   | HIST2H2BE |
| EXOSC5  | НК3       |
| EXOSC7  | HP        |
| EXOSC8  | HSPA1B    |
| FARS2   | IER3      |
| FARSA   | IFITM1    |
| FASN    | IFITM2    |
| FBL     | IFNAR1    |
| FBXO21  | IFNGR1    |
| FGD3    | IFNGR2    |
| FGFBP2  | IGSF6     |
| FMNL1   | IL10RB    |
| FUNDC1  | IL17RA    |
| FXYD5   | IL18R1    |
| G6PC3   | IL18RAP   |
| GALNT11 | IMPA1     |
| GGA2    | INSIG2    |
| GIMAP1  | ITGAM     |
| GIMAP7  | JUNB      |
| GLOD4   | KCNJ2     |
| GOLGA3  | KIF20A    |
| GORASP2 | KLHL2     |
| GOT2    | LDHA      |
| GPD1L   | LEPROT    |
| GRWD1   | LGALS1    |
| GSS     | LHFPL2    |
| GSTP1   | LILRB2    |
| GTF2H4  | LILRB3    |
| GTF3C1  | LILRB3    |
| GZMA    | LILRB3    |
| GZMH    | LILRB3    |
| GZMK    | LMNB1     |
| GZMM    | LMO2      |
| HACL1   | LRP10     |
| HADH    | LRPAP1    |
| HCP5    | LTB4R     |
| HDDC3   | LY96      |

| HNRNPA0 | MAN2A2  |
|---------|---------|
| HSH2D   | MAP3K5  |
| HSPA8   | MFN2    |
| HSPA9   | MICAL1  |
| ICAM2   | MMP9    |
| ICOS    | MOSPD2  |
| ID3     | MSRA    |
| IDH2    | MTF1    |
| IDH3B   | MXD1    |
| IDS     | MYD88   |
| IKBKE   | MYL6    |
| IKZF1   | NARF    |
| IL10RA  | NCF4    |
| IL2RB   | NDUFAF1 |
| IL7R    | NDUFS5  |
| IMP3    | NFE2    |
| IMP4    | NFIL3   |
| IMPDH2  | NFKB1   |
| INPP5D  | NFKBIA  |
| INPP5E  | NLK     |
| INTS9   | NMI     |
| IRF9    | NPTN    |
| ISOC1   | NTSR1   |
| ITGAL   | ORM1    |
| ITGB7   | OSBPL9  |
| ITK     | OSM     |
| ITPR1   | PAG1    |
| IVD     | PFKFB3  |
| JARID2  | PGLYRP1 |
| KDELR1  | PGM1    |
| KIF3B   | PGS1    |
| KLHL22  | PHF21A  |
| KLRB1   | PHKA2   |
| LAGE3   | PIK3AP1 |
| LANCL2  | PLEKHO2 |
| LARP1   | POR     |
| LARS    | PPM1M   |
| LAS1L   | PPP2R5A |
| LBH     | PQLC1   |
| LCP2    | PRDX5   |
| LEO1      | PRDX6    |
|-----------|----------|
| LEPROTL1  | PRKAR2A  |
| LFNG      | PROK2    |
| LIG1      | PRTN3    |
| LIPA      | PSMC6    |
| LONP1     | PSTPIP2  |
| LRMP      | PTEN     |
| LSM4      | PTGES    |
| LTB       | PTPN12   |
| LYSMD2    | PYGL     |
| MAN2B1    | QPCT     |
| MAP4K1    | RAB10    |
| MARCKSL1  | RAB11A   |
| MAZ       | RAB24    |
| MBP       | RAB27A   |
| MCM3      | RAB32    |
| MCM5      | RAB33B   |
| MDH2      | RAB8B    |
| METAP1    | RABAC1   |
| MFNG      | RANBP9   |
| MGMT      | RETN     |
| MORC2     | RGL4     |
| MPHOSPH10 | RGS18    |
| MRPL4     | RGS19    |
| MRPL54    | RHBDF2   |
| MRPS17    | RNASE2   |
| MRPS23    | RNF175   |
| MRPS27    | RPL26L1  |
| MRPS9     | S100A12  |
| MYBBP1A   | S100A6   |
| MYCBP2    | S100A8   |
| MYO1F     | S100A9   |
| MYO1G     | SAP30L   |
| NADK      | SDCBP    |
| NAP1L1    | SDF2     |
| NAT10     | SDHC     |
| NAT9      | SELL     |
| NCAPD3    | SEMA4A   |
| NCL       | SEPHS2   |
| NCOA5     | SERPINB1 |

| NCOR2   | SFXN5    |
|---------|----------|
| NDE1    | SH2B2    |
| NELL2   | SH3GLB1  |
| NIP7    | SIL1     |
| NOL11   | SIPA1    |
| NOL8    | SKAP2    |
| NOSIP   | SLA      |
| NOV     | SLC11A1  |
| NPM3    | SLC12A9  |
| NSUN2   | SLC22A4  |
| NSUN4   | SLC35A5  |
| NUBP1   | SNRPG    |
| NUDC    | SNX10    |
| NUDCD3  | SORT1    |
| NUP107  | SPATA5L1 |
| NUP210  | SPPL2A   |
| NUP85   | SRGN     |
| NUP93   | ST3GAL2  |
| ODF2    | STAM2    |
| OGFOD1  | STOM     |
| P2RY8   | SUCLG1   |
| PAAF1   | SUMF1    |
| PAK1    | TBC1D14  |
| PALB2   | TK1      |
| PAQR8   | TLR2     |
| PARP1   | TLR5     |
| PAXIP1  | TMBIM4   |
| PBXIP1  | TMEM120A |
| PCSK7   | TMEM165  |
| PDHB    | TNFAIP3  |
| PEX11B  | TNNI2    |
| PFAS    | TOLLIP   |
| PFKP    | TOR1AIP1 |
| PHB     | TPD52L2  |
| PHF1    | TPM3     |
| PI4KAP2 | TPST2    |
| PIH1D1  | TRIM25   |
| PIK3C2B | TRIP6    |
| PIK3CD  | TROAP    |
| PIK3IP1 | TRPM2    |

| PILRA    | TSPAN14 |
|----------|---------|
| PIP5K1C  | TYROBP  |
| PLCB2    | UBA3    |
| PLEKHG4  | UBAP1   |
| PLEKHO1  | UBE2A   |
| PNPO     | UBE2C   |
| POGK     | UBE2W   |
| POLE3    | UBTD1   |
| POLR1C   | UGCG    |
| POLR2I   | UQCRQ   |
| POLR3A   | USP3    |
| POP7     | VAMP7   |
| PPAN     | VNN2    |
| PPHLN1   | XPO6    |
| PPM1G    | ZC3H12A |
| PPP1R13B | ZDHHC12 |
| PPP1R2   | ZDHHC3  |
| PPP2R1A  | ZNF281  |
| PPRC1    |         |
| PRKD2    |         |
| PRKRA    |         |
| PRMT7    |         |
| PRPF19   |         |
| PRPF31   |         |
| PRPF4    |         |
| PRPS1    |         |
| PRPSAP2  |         |
| PRR7     |         |
| PTBP1    |         |
| PTDSS1   |         |
| PTMA     |         |
| PTPRCAP  |         |
| PUS7     |         |
| PWP1     |         |
| RASGRP1  |         |
| RAVER1   |         |
| RBBP7    |         |
| RBM14    |         |
| RBM15B   |         |
| RBM28    |         |

| RBM4B   |  |
|---------|--|
| RBMX    |  |
| RCC2    |  |
| RCSD1   |  |
| RDH11   |  |
| REV1    |  |
| RFTN1   |  |
| RFX5    |  |
| RHOF    |  |
| RHOT2   |  |
| RING1   |  |
| RNASE6  |  |
| RNASEH1 |  |
| RNF4    |  |
| RNH1    |  |
| RNMT    |  |
| RPA1    |  |
| RPL18   |  |
| RPL29   |  |
| RPL32   |  |
| RPL36   |  |
| RPL36A  |  |
| RPL37A  |  |
| RPL4    |  |
| RPS13   |  |
| RPS15   |  |
| RPS16   |  |
| RPS19   |  |
| RPS9    |  |
| RPUSD4  |  |
| RRN3    |  |
| RRS1    |  |
| RSAD1   |  |
| RUSC1   |  |
| SCRN1   |  |
| SDHAF1  |  |
| SENP5   |  |
| SET     |  |
| SF3A3   |  |
| SH2D1A  |  |

| SIN3B      |  |
|------------|--|
| SKAP1      |  |
| SLC25A5    |  |
| SLC35B2    |  |
| SLC39A10   |  |
| SLC41A1    |  |
| SLC5A6     |  |
| SLC9A3R1   |  |
| SMAD4      |  |
| SMAD7      |  |
| SMARCC1    |  |
| SMCHD1     |  |
| SMYD3      |  |
| SND1       |  |
| SNRPA      |  |
| SPNS3      |  |
| SPOCK2     |  |
| SRFBP1     |  |
| SRM        |  |
| SRP68      |  |
| SRP72      |  |
| SRPRB      |  |
| SRRM1      |  |
| SSRP1      |  |
| ST3GAL1    |  |
| ST6GAL1    |  |
| ST6GALNAC6 |  |
| STARD7     |  |
| STAT4      |  |
| STK10      |  |
| STK40      |  |
| SUPT16H    |  |
| SUPV3L1    |  |
| SURF6      |  |
| TAF15      |  |
| TAF4       |  |
| TARBP2     |  |
| TATDN2     |  |
| TBC1D10A   |  |
| TBC1D10C   |  |

| TBC1D9   |  |
|----------|--|
| TBCD     |  |
| TBL3     |  |
| TGIF2    |  |
| THOC1    |  |
| TIGD2    |  |
| TIMM44   |  |
| TIMM9    |  |
| TMC8     |  |
| TMCC1    |  |
| TMEM106B |  |
| TMEM109  |  |
| TMEM14A  |  |
| TMEM50B  |  |
| TNFAIP2  |  |
| TNFRSF1B |  |
| TNFRSF25 |  |
| TRAF3IP3 |  |
| TRAM2    |  |
| TRAP1    |  |
| TRIM28   |  |
| TRIT1    |  |
| TSFM     |  |
| TSPYL1   |  |
| TXNIP    |  |
| UBA52    |  |
| UBE2E2   |  |
| UBE2Q2   |  |
| UFSP2    |  |
| UPF1     |  |
| UPRT     |  |
| UROS     |  |
| UTP14A   |  |
| UTP6     |  |
| UXT      |  |
| VAMP2    |  |
| VDAC1    |  |
| VIPR1    |  |
| WBP11    |  |
| WDR46    |  |

| WDR54   |  |
|---------|--|
| WDR74   |  |
| WDR77   |  |
| WDR82   |  |
| XPO5    |  |
| XRCC6   |  |
| YWHAQ   |  |
| YY1     |  |
| ZBTB2   |  |
| ZBTB4   |  |
| ZBTB9   |  |
| ZMYND19 |  |
| ZNF329  |  |
| ZNF559  |  |

| Gene    | nsigstudies | GSE13015 | GSE28750 | GSE32707 | GSE46955 | GSE49757 | GSE54514 | GSE57065 | GSE67652 | GSE69063 | GSE95233 |
|---------|-------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| AARSD1  | 7           | -1227    | -0.2017  | -0.5956  | -1146    | NA       | 0.0851   | -0.2540  | 0.1027   | NA       | -0.3638  |
| ABCB7   | 8           | -0.7543  | -0.4645  | -0.6068  | 0.1681   | -0.3589  | 0.0870   | -0.3728  | 0.1117   | -0.3868  | -0.2898  |
| ABCC2   | 7           | 1141     | 0.4231   | -0.5809  | 0.0123   | NA       | 0.0386   | 0.7193   | -0.4519  | 0.3881   | 0.5325   |
| ABHD12  | 7           | -1029    | -0.4026  | -0.2674  | -1264    | NA       | -0.0120  | -0.2194  | NA       | -0.2815  | -0.2746  |
| ABHD5   | 7           | 0.8143   | 0.5065   | 0.2341   | 0.5099   | 0.6905   | -0.1333  | NA       | 0.1283   | 0.3324   | 0.7139   |
| ACAA1   | 7           | 0.9421   | 0.3725   | 0.8797   | -0.2274  | 0.0102   | 0.2353   | 0.4364   | -0.0700  | 0.5701   | 0.7801   |
| ACD     | 7           | -1311    | -0.9342  | -0.4427  | 0.1693   | -0.1101  | 0.0631   | -0.5259  | 0.1332   | -0.4946  | -0.6278  |
| ACN9    | 7           | 0.8251   | 1425     | NA       | -0.7590  | 0.7576   | -0.1104  | 1508     | -0.3835  | NA       | 2201     |
| ACSL1   | 9           | 2260     | 1492     | 1041     | 1364     | 0.7062   | -0.4547  | 1422     | 0.0817   | 1198     | 1260     |
| ACSS1   | 7           | -0.8334  | -0.5520  | 0.5229   | -0.4259  | -0.1748  | 0.1902   | -0.8814  | 0.2782   | -0.7719  | -0.0558  |
| ACTR1B  | 8           | -1316    | -0.4920  | -0.3211  | -0.6072  | -0.5491  | 0.1095   | -0.4800  | 0.1434   | -0.8610  | -0.6146  |
| ACTR5   | 7           | -1218    | -0.7304  | -0.3014  | -0.4938  | NA       | 0.0532   | -0.6511  | NA       | -0.7067  | -0.5901  |
| ADAM17  | 7           | 0.8727   | 0.4595   | 0.0567   | 0.0186   | 0.2496   | -0.0201  | 0.7539   | -0.2640  | 0.3872   | 0.3453   |
| ADCK1   | 7           | -1297    | -0.3616  | -0.2212  | -0.4672  | NA       | 0.1504   | -0.4907  | NA       | -0.6916  | -0.3971  |
| ADK     | 7           | -1634    | -0.8404  | -0.1638  | -0.6418  | -0.1726  | -0.0043  | NA       | 0.4700   | -0.7212  | -0.4755  |
| ADORA2A | 7           | 0.8466   | 0.2427   | 1110     | 3451     | -0.5623  | 0.4303   | 0.6492   | NA       | 0.2093   | 1083     |
| AFG3L2  | 7           | -1251    | -0.4005  | -0.8075  | -0.8424  | -0.1575  | 0.0665   | -0.3794  | NA       | -0.7695  | -0.5871  |
| AIM2    | 7           | 2452     | 1926     | 0.0513   | 2137     | -0.1059  | -0.0856  | 1708     | NA       | 1914     | 1990     |
| AKNA    | 7           | -0.2966  | -0.8789  | 1218     | 0.2218   | -0.2806  | 0.3432   | -0.8738  | NA       | -0.2687  | -0.9722  |
| AKR1B1  | 8           | -1713    | -1564    | -0.4796  | 2490     | 0.1962   | 0.0527   | -0.9084  | 0.0147   | -0.5788  | -1180    |
| AKR7A2  | 8           | -0.8125  | -0.8162  | -0.4350  | -0.6383  | -0.3441  | -0.0689  | -0.4078  | 0.0955   | -0.6460  | -0.5221  |
| ALDH16A | 7           | -1001    | -0.5389  | -0.0938  | -0.6696  | -0.1482  | 0.0843   | -0.5317  | 0.1056   | -0.3767  | -0.2555  |
| ALDOC   | 8           | -0.7667  | -0.5925  | -0.6299  | 0.9952   | -0.6957  | -0.0131  | -0.4834  | -0.0235  | -0.3671  | -0.3806  |
| ALG1    | 7           | -1461    | -0.2862  | -0.3014  | -0.2819  | NA       | 0.0583   | -0.2663  | -0.1077  | -0.5052  | -0.1970  |
| ALKBH2  | 8           | -1921    | -0.4378  | -0.4444  | -0.7521  | NA       | 0.0682   | -0.3438  | -0.2602  | -0.4342  | -0.3247  |
| ALOX5AP | 7           | 1453     | 1100     | 2441     | 1667     | -0.0034  | -0.0155  | 1149     | 0.2333   | 0.6095   | 1233     |
| ANGEL2  | 7           | -0.5764  | 0.1974   | -0.2536  | 0.4114   | -0.2549  | -0.0017  | -0.4967  | 0.1108   | -0.2409  | -0.6084  |
| ANKRD54 | 7           | -0.8191  | -0.2126  | -0.2937  | -0.0879  | -0.3106  | 0.0232   | -0.2840  | NA       | -0.2216  | -0.4810  |
| ANXA3   | 9           | 4321     | 4007     | 0.8394   | 0.5569   | 1005     | -0.2083  | 4170     | NA       | 2778     | 4134     |

Supplementary table 2: log fold change for differentially expressed genes in each GSE

| AP3S1   | 7 | 0.5301  | 0.6829  | 0.1188  | -1070   | -0.0292 | -0.1722 | 0.5481  | NA      | 1015    | 1174    |
|---------|---|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| APEH    | 7 | -0.3079 | -0.6071 | -0.4051 | -0.7908 | -0.1039 | 0.1876  | -0.3673 | -0.0551 | -0.3026 | -0.3374 |
| APEX1   | 7 | -1654   | -1382   | NA      | -0.8379 | -0.2384 | 0.1153  | -0.8495 | 0.0798  | -0.9030 | -0.8605 |
| APH1B   | 8 | 1286    | 0.6329  | 0.8359  | 0.5586  | 0.4120  | 0.0660  | 0.5410  | -0.0167 | 0.6255  | 0.6327  |
| AQP9    | 8 | 1658    | 0.8116  | 2141    | 2170    | 0.0965  | -0.0385 | 0.6109  | 0.3600  | 0.4450  | 0.9920  |
| ARF5    | 7 | 0.4384  | -0.0407 | 0.4820  | -0.0934 | -0.1373 | 0.1775  | -0.0136 | 0.3039  | 0.3225  | 0.4459  |
| ARHGEF1 | 7 | -0.7572 | -1257   | 0.3322  | 0.0930  | -0.2712 | 0.0899  | -1091   | 0.1555  | -1140   | -1139   |
| ARHGEF3 | 8 | -0.7088 | -0.7250 | 0.3457  | 1812    | -0.2945 | -0.2522 | -1038   | 0.1530  | -0.4002 | -0.7825 |
| ARL2BP  | 7 | -0.9495 | -0.4677 | -0.2630 | -0.0556 | -0.1019 | -0.2210 | -0.4355 | 0.2127  | -0.2177 | -0.3282 |
| ARL6IP5 | 7 | 0.5287  | 0.3978  | 0.5369  | 0.9530  | -0.4486 | -0.4761 | 0.4353  | 0.0017  | 0.1513  | 0.3280  |
| ARPC1B  | 7 | 0.8422  | 0.4870  | 1316    | NA      | -0.1493 | -0.1573 | 0.3852  | 0.0752  | 0.4499  | 0.6148  |
| ARPC3   | 7 | 0.2707  | 0.6993  | 0.6512  | -0.9036 | -0.0609 | -0.0728 | 0.9435  | 0.2610  | 0.6632  | 0.7549  |
| ARPC5   | 7 | 0.9078  | 0.4832  | 0.5828  | 0.1282  | -0.0829 | -0.6519 | 0.3108  | NA      | 0.4591  | 0.6870  |
| ASB13   | 7 | -1316   | -0.5785 | -0.3937 | -0.6646 | NA      | 0.1013  | -0.0990 | 0.0133  | -0.3910 | -0.4280 |
| ASF1B   | 7 | -0.8559 | -0.4880 | -0.7913 | 0.6606  | -0.4630 | -0.1022 | -0.2572 | 0.2048  | -0.7054 | -0.0131 |
| ATIC    | 7 | -1715   | -1538   | -0.5278 | -0.7957 | -0.0477 | 0.1613  | -1161   | 0.0317  | -0.9557 | -1427   |
| B3GALT6 | 7 | -1659   | -0.7541 | -0.2370 | -0.4911 | -0.1579 | 0.1718  | NA      | -0.0980 | -0.2489 | -0.7281 |
| B3GNT8  | 7 | 1496    | 0.6059  | 0.6223  | -0.2730 | -0.0603 | 0.2151  | 0.6770  | 0.1365  | 0.9194  | 0.7573  |
| BASP1   | 7 | 1487    | 0.8802  | 0.1907  | 1799    | 0.1709  | 0.2880  | 0.6212  | 0.0118  | 0.9735  | 0.6022  |
| BATF    | 8 | 1468    | 0.7454  | 0.8934  | 0.4085  | 0.9903  | 0.0741  | 0.7009  | -0.4062 | 1103    | 1454    |
| BBS2    | 7 | -1312   | -0.8345 | -0.2828 | 0.8493  | NA      | -0.0333 | -0.9764 | 0.0964  | -0.8829 | -0.8092 |
| BBX     | 7 | -0.0039 | -0.7819 | 0.4009  | 0.6360  | -0.2806 | 0.2191  | -0.5676 | NA      | -0.2509 | -0.4620 |
| BCAT2   | 7 | -1745   | -0.5767 | -0.7678 | -1256   | NA      | 0.0403  | -0.4154 | -0.0078 | -0.2885 | -0.4181 |
| BCORL1  | 7 | 0.7437  | 0.2757  | 0.1688  | 0.1127  | -0.3684 | 0.1307  | 0.0103  | -0.1925 | 0.2434  | 0.3554  |
| BCS1L   | 7 | -1563   | -0.4491 | -0.5758 | -0.6593 | NA      | 0.0721  | -0.1254 | -0.0125 | -0.4010 | -0.2342 |
| BIN1    | 7 | -2172   | -0.7464 | NA      | 0.4923  | 0.2428  | NA      | -1227   | 0.1034  | -0.9347 | -0.9145 |
| BLOC1S1 | 7 | 0.9031  | 1360    | 0.6192  | 0.2942  | 0.1420  | 0.3696  | 1253    | -0.0962 | 1013    | 1839    |
| BMP6    | 7 | 0.0431  | 0.1559  | -0.9397 | -1047   | 0.5845  | -0.1387 | 0.1893  | -0.0487 | -0.4506 | 0.0596  |
| BRI3    | 8 | 1331    | 0.4226  | 0.8789  | -0.6677 | 0.0920  | 0.3073  | 0.8267  | NA      | 1019    | 0.8587  |
| BUD31   | 7 | 0.0640  | 0.0634  | -0.0469 | -0.4790 | -0.1615 | 0.1679  | 0.4951  | 0.1168  | 0.2633  | 0.9605  |
| BZW2    | 8 | -1429   | -0.9276 | -1229   | -1141   | -0.2611 | 0.0342  | -0.5302 | 0.0400  | -0.5424 | -0.7402 |

| C14orf169 | 7 | -1487   | -0.5785 | -0.5034 | -0.5570 | 0.2742  | -0.0490 | -0.6579 | 0.1602  | NA      | -0.9060 |
|-----------|---|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| C16orf72  | 7 | 0.9497  | 1093    | 0.6937  | -0.0142 | 0.3620  | -0.1205 | 0.7558  | -0.0943 | 0.8342  | 0.7721  |
| C16orf80  | 7 | -1062   | -1102   | -0.3053 | -0.1401 | -0.4468 | -0.0637 | -0.9022 | 0.2225  | NA      | -0.5767 |
| C17orf62  | 7 | 1212    | 0.5186  | 1156    | 0.5848  | 0.2927  | 0.4915  | 0.5185  | -0.0607 | NA      | 0.8590  |
| Clorf162  | 7 | 1308    | 0.9217  | 2012    | -0.2000 | 0.3886  | -0.1227 | 0.8759  | NA      | 0.6588  | 0.9303  |
| Clorf174  | 7 | NA      | -0.6435 | -0.3023 | -0.3388 | -0.2026 | NA      | NA      | 0.2063  | -0.3195 | -0.3756 |
| C21orf33  | 7 | -1021   | -0.7707 | -0.2341 | -0.8282 | 0.2833  | 0.0527  | -0.5620 | -0.0958 | NA      | -0.8879 |
| C3AR1     | 9 | 21949   | 1743    | 0.6757  | 1911    | 0.4191  | 0.3485  | 1882    | -0.1250 | 1774    | 2017    |
| C7orf26   | 8 | -0.3952 | -0.4196 | 0.2976  | 0.1647  | -0.3398 | 0.2301  | -0.3090 | 0.0328  | -0.3206 | -0.1710 |
| C9orf91   | 8 | -1268   | -0.9198 | -0.2944 | 0.2987  | -1191   | 0.0954  | -1205   | 0.4797  | NA      | -1278   |
| CAD       | 7 | -1262   | -0.4787 | -0.7088 | -0.7464 | NA      | 0.0354  | -0.5198 | -0.0555 | -0.6747 | -0.3715 |
| CAMK1     | 7 | -3088   | -0.7247 | 0.3407  | -1395   | -0.2969 | 0.1328  | -0.6080 | NA      | -0.3630 | -0.6311 |
| CARD11    | 7 | -1762   | -0.6550 | 0.3296  | 1586    | -0.0222 | -0.1638 | -0.8005 | NA      | -1304   | -0.7984 |
| CARD6     | 7 | 1373    | 1708    | 0.1661  | 0.6815  | NA      | -0.0807 | 1639    | -0.2102 | 1543    | 1674    |
| CARS2     | 8 | 0.9963  | 0.5595  | 0.1170  | -0.5822 | -0.2987 | -0.1572 | 0.2637  | 0.2362  | 0.4420  | 0.6034  |
| CASP5     | 7 | 2378    | 0.4584  | 0.5005  | 0.7661  | 0.7358  | 0.1362  | 1085348 | 0.1300  | 2412    | 1262    |
| CBY1      | 7 | -1246   | -0.2871 | -0.1472 | -0.3883 | NA      | 0.0237  | -0.5234 | NA      | -0.4677 | -0.4149 |
| CCDC107   | 7 | -1408   | -0.4775 | 0.0068  | -0.6194 | NA      | 0.0149  | -0.4464 | 0.2739  | -0.3440 | -0.6900 |
| CCDC115   | 8 | -1001   | -0.8624 | 0.3170  | 0.7787  | -0.1694 | -0.0726 | -0.8880 | 0.2622  | -0.5262 | -0.4377 |
| CCDC17    | 7 | 1030    | 0.4144  | 0.0349  | -0.1852 | 0.3474  | 0.1007  | 0.6393  | NA      | 0.4510  | 0.9135  |
| CCDC6     | 7 | -1020   | -0.5627 | -0.5679 | -0.5478 | 0.2617  | 0.0841  | NA      | -0.3113 | -0.6559 | -0.8449 |
| CCND3     | 7 | 0.7817  | -0.0127 | 0.9737  | 0.7635  | 1578    | -0.0889 | 0.3096  | -0.0185 | 0.6093  | 0.5561  |
| CCNDBP1   | 7 | 0.6370  | 0.5949  | -0.0154 | 0.8028  | 0.0313  | 0.0296  | 0.5930  | 0.1792  | 0.7726  | 0.7552  |
| CCR7      | 7 | -2083   | -2525   | 0.8355  | 4811    | -0.0462 | 0.1972  | -2099   | 0.4635  | -1431   | -1855   |
| CCT4      | 7 | -0.9577 | -0.9453 | -0.4647 | -0.4236 | NA      | -0.0046 | 0.1684  | 0.0400  | -0.4964 | -0.3369 |
| CCT8      | 7 | -0.6786 | -0.6009 | -0.6446 | -0.4614 | -0.0566 | 0.1384  | -0.3972 | -0.0002 | -0.3791 | -0.2228 |
| CD160     | 7 | -3145   | -1812   | 0.1553  | 0.2660  | 0.0444  | -0.1633 | -1736   | NA      | -1259   | -1362   |
| CD19      | 7 | -1610   | -0.8503 | -0.1510 | 2779    | -0.1697 | 0.2526  | -0.6137 | NA      | -0.5579 | -0.5288 |
| CD2       | 7 | -2844   | -2490   | 1069    | 2561    | -0.1428 | -0.1269 | -1918   | NA      | -1576   | -1976   |
| CD27      | 7 | -2552   | -1898   | 0.9597  | 0.7852  | NA      | 0.0170  | -1544   | NA      | -1611   | -1507   |
| CD300LB   | 7 | -2558   | -0.6093 | 0.4202  | -1123   | -0.5144 | 0.0865  | -0.7564 | NA      | -1059   | NA      |

| CD300LF  | 8 | 0.8609  | 0.4855  | 0.8842  | 0.7576  | -0.3963 | -0.2905 | 0.2408  | NA      | 0.3801  | 0.8725  |
|----------|---|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| CD3E     | 8 | -2664   | -2620   | 0.8924  | 0.8114  | NA      | 0.3602  | -1901   | NA      | -1918   | -2007   |
| CD3G     | 8 | -2732   | -2276   | 0.4648  | 1121    | NA      | -0.2443 | -1560   | 0.4284  | -1885   | -2513   |
| CD44     | 7 | 0.9157  | 0.7270  | 0.3255  | 0.8735  | 0.2809  | 0.0083  | 0.3754  | -0.3729 | 0.6660  | 0.1726  |
| CD52     | 7 | -2768   | -0.9011 | 1763    | -0.9633 | -0.1267 | 0.1933  | NA      | 0.7870  | -0.5815 | -0.4986 |
| CD55     | 8 | 1853    | 1772    | -0.4158 | 2729    | 0.6485  | -0.3524 | 1572    | -0.1595 | 0.4799  | 1182    |
| CD6      | 7 | -2998   | -1689   | 0.9430  | 2187    | 0.1424  | -0.0162 | -1435   | 0.2988  | -2007   | -0.9223 |
| CD63     | 7 | 1515    | 1506    | 0.5229  | -0.8215 | 0.1744  | 0.1240  | 1468    | -0.0194 | 0.8165  | 0.8987  |
| CD7      | 7 | -2009   | NA      | 0.8804  | 1640    | 0.7445  | -0.0868 | -1589   | -0.0571 | -0.7967 | -0.3565 |
| CD82     | 7 | 1874    | 0.5982  | NA      | 2469    | -0.2730 | 0.0288  | 0.8286  | 0.0103  | 0.6326  | 0.7944  |
| CDA      | 8 | 1430    | 0.6984  | 0.6038  | 0.7125  | -0.3716 | 0.1783  | 0.8384  | 0.1442  | 0.7555  | 0.9011  |
| CDC20    | 8 | 1543    | 0.8706  | -1147   | -0.4074 | NA      | 0.2198  | 1012    | -0.1065 | 0.5887  | 0.7206  |
| CDC42SE2 | 8 | -0.0913 | -0.6847 | -0.0180 | 1182    | -0.3167 | -0.1567 | -0.8753 | 0.3425  | -0.3792 | -0.6239 |
| CDCA5    | 8 | 1569    | 0.4605  | -0.8200 | 0.6349  | NA      | 0.2085  | 0.5842  | -0.1400 | 0.2354  | 1046    |
| CDK4     | 7 | -1744   | -1140   | -0.7658 | -0.8838 | -0.1377 | 0.0302  | -0.6482 | -0.0650 | -0.6911 | -0.8039 |
| CEACAM3  | 7 | 1364    | 0.3325  | 1162    | 1098    | -0.4033 | 0.1165  | 0.3879  | NA      | 0.3045  | NA      |
| CEBPA    | 8 | 0.8209  | 0.6482  | 0.9219  | -2728   | 0.1604  | 0.2354  | 0.4132  | -0.3520 | 0.4809  | 1137    |
| CEBPD    | 7 | 1262    | 0.8402  | 1000    | -0.2224 | 1098    | 0.0198  | 0.9863  | 0.0075  | 1594    | 1244    |
| CECR5    | 7 | -1041   | -0.7714 | -0.3162 | -1330   | -0.4677 | 0.0306  | -0.3229 | -0.0800 | NA      | -0.3193 |
| CFDP1    | 7 | -0.1924 | 0.1472  | -0.6512 | -0.9145 | -0.3328 | -0.0836 | 0.1934  | 0.0400  | -0.4053 | 0.6930  |
| CHD4     | 8 | -0.4497 | -0.4368 | 0.0830  | -0.3921 | -0.2100 | 0.4245  | -0.4806 | -0.0228 | -0.5202 | -0.1648 |
| CHD9     | 8 | -0.7778 | 0.2756  | 0.7182  | -0.0585 | -0.3639 | 0.3301  | -0.2485 | 0.0550  | -0.6070 | -0.2851 |
| CHIC2    | 7 | 0.7227  | 0.3919  | 0.8179  | 0.7789  | 0.1522  | -0.0063 | 0.5303  | 0.0852  | 0.8217  | 0.6746  |
| CHST11   | 7 | 2016    | -1074   | 0.0305  | -0.0705 | -0.4638 | NA      | -0.8356 | 0.2033  | -0.5244 | -0.8752 |
| CIRBP    | 7 | -1097   | -0.7364 | -0.1420 | -0.2335 | 0.2035  | 0.0410  | -0.6861 | 0.4080  | -0.7091 | -0.9076 |
| CKAP2L   | 7 | 1560    | 0.1215  | -0.4282 | 0.1202  | -0.4090 | 0.0565  | 0.2730  | NA      | 0.7789  | 0.4315  |
| CKAP4    | 7 | 2586    | 2085    | 1229    | 0.0120  | -0.2240 | 0.3646  | NA      | -0.3986 | 2016    | 1966    |
| CLC      | 7 | -2223   | -0.6598 | 1295    | 1708    | -0.4015 | 0.2814  | -0.7978 | 1131    | -0.6826 | -0.4892 |
| CLEC4E   | 7 | 2056    | 1416    | 0.4001  | 2313    | 1065    | -0.1326 | NA      | NA      | 0.8898  | 2127    |
| CLIC1    | 8 | 0.7888  | 0.7625  | 0.6474  | -0.6520 | -0.0239 | 0.1791  | 0.8599  | 0.1272  | 0.8744  | 1172    |
| CLTC     | 7 | 0.6329  | 0.7681  | -0.3615 | 0.0566  | 0.1189  | -0.1516 | 0.3652  | NA      | 0.1531  | 0.6858  |

| CMTM6   | 7 | 0.9023  | 0.5037  | 0.9990  | 0.2366  | -0.1032 | -0.2363 | 0.3307  | 0.2457  | 0.8313  | 0.5048  |
|---------|---|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| CNIH4   | 7 | 1639    | 2266    | -0.1536 | 0.9555  | 0.4707  | -0.2123 | 0.8362  | -0.3073 | 1807    | 2535    |
| CNNM3   | 7 | -1156   | -1355   | -0.2186 | 0.4482  | -0.1077 | -0.0972 | -1051   | 0.1364  | -0.8491 | -0.9826 |
| CNOT10  | 7 | -0.5972 | -0.5546 | -0.2604 | 0.1518  | -0.3561 | 0.1002  | -0.2964 | 0.0849  | -0.4207 | -0.1208 |
| COPS6   | 7 | -1198   | -0.4672 | -0.6251 | -0.3865 | -0.3520 | 0.0621  | -0.2058 | 0.1327  | -0.2670 | -0.1500 |
| COPS7B  | 8 | -0.8834 | -0.4699 | -0.3110 | -0.5024 | -0.1955 | 0.1042  | -0.4753 | NA      | -0.5923 | -0.8135 |
| COPZ1   | 7 | -1136   | -0.6803 | -0.3787 | -0.6977 | -0.0055 | 0.1086  | -0.5062 | 0.0820  | 0.2375  | 0.5803  |
| COQ10A  | 7 | -1973   | -0.8062 | 0.6820  | 0.7169  | -0.1459 | 0.0256  | -0.7894 | 0.2152  | -0.6431 | -1068   |
| COX10   | 7 | -1313   | -0.2915 | -0.5667 | -0.6559 | NA      | 0.0490  | -0.4493 | NA      | -0.4957 | -0.6345 |
| COX4I1  | 7 | -0.5033 | -0.3904 | -0.1342 | -0.4378 | -0.2218 | -0.0384 | -0.0980 | 0.2545  | 0.2736  | 0.3918  |
| COX8A   | 7 | 0.1320  | 0.2832  | -0.1298 | -0.8684 | -0.0347 | 0.3328  | 0.3267  | 0.1142  | 0.4523  | 0.5529  |
| CREB1   | 7 | 0.3028  | -0.3074 | 0.4507  | 0.4440  | 0.0241  | -0.1074 | -0.6226 | 0.2443  | -0.4560 | -0.5201 |
| CS      | 7 | -0.5652 | -0.6517 | -0.0294 | -0.3597 | -0.2480 | 0.0227  | -0.6723 | -0.0472 | -0.5540 | -0.5838 |
| CSE1L   | 8 | -1176   | -0.6019 | -0.5318 | 0.0164  | -0.5472 | 0.0192  | -0.4170 | 0.1605  | -0.3693 | -0.3827 |
| CST7    | 9 | 1758    | 2234    | 2344    | 1494    | 0.6191  | 0.0441  | 1999    | -0.7422 | 1245    | 1781    |
| CSTA    | 7 | 0.5738  | 1154    | 0.5156  | 0.8646  | -0.4204 | -0.0550 | 1334    | NA      | 1091    | 2516    |
| CTCF    | 7 | -0.5472 | -0.5708 | -0.0329 | 0.2995  | -0.2991 | 0.0399  | -0.5727 | 0.0958  | -1000   | -0.6530 |
| CTDSPL2 | 7 | -0.9955 | -0.2259 | -0.0502 | 0.1679  | -0.3607 | -0.0486 | NA      | 0.4163  | -0.5675 | -0.6879 |
| CTSA    | 9 | 1209    | 0.8550  | 0.6298  | -0.7518 | 0.5800  | 0.3654  | 0.7598  | NA      | 0.1718  | 0.6398  |
| CTSD    | 8 | 1719    | 1073    | 1043    | -0.4667 | -0.1917 | 0.4224  | 0.9609  | -0.2796 | 0.2310  | 1013    |
| CWF19L2 | 7 | -0.8486 | -0.0857 | -0.2976 | 0.6066  | -0.3563 | -0.0192 | NA      | 0.4608  | -0.6505 | -0.4450 |
| CXCL16  | 7 | 1512    | 0.4407  | -0.0139 | 1373    | 0.3646  | -0.0261 | 0.4247  | NA      | 1199    | 0.5178  |
| CYB5D1  | 7 | 0.009   | -0.1735 | -0.8159 | -0.3707 | -0.4567 | 0.1101  | -0.0933 | -0.3871 | 0.4535  | -0.1256 |
| CYB5R4  | 8 | 1226    | NA      | 0.6932  | 0.4245  | 0.0467  | -0.3864 | 0.6502  | 0.2000  | 0.7594  | 1014    |
| CYBB    | 7 | 1332    | 0.0642  | 1248    | 0.8082  | -1016   | 0.3231  | NA      | 0.3175  | 0.1796  | 0.6430  |
| DCTN6   | 8 | -0.0264 | 0.4749  | -0.1940 | -0.0467 | 0.4266  | -0.0748 | 0.5308  | 0.1237  | 0.8023  | 1253    |
| DCUN1D3 | 7 | 1697    | 0.2941  | 0.1990  | 1008    | 0.2563  | -0.0402 | 0.2697  | -0.0778 | 1788    | 0.5886  |
| DDAH2   | 8 | 2695    | 1735    | 0.7923  | -0.8178 | 0.2990  | 0.0317  | 1626    | -0.4513 | 1596    | 1868    |
| DDX1    | 8 | -0.6467 | -0.4868 | -0.6747 | -0.5323 | -0.0258 | 0.1838  | -0.2385 | 0.0692  | -0.3825 | -0.2298 |
| DDX17   | 7 | 1207    | -0.4199 | NA      | 0.3562  | -0.1932 | 0.0546  | -0.3455 | 0.1807  | -0.2975 | -0.3094 |
| DDX18   | 8 | -1466   | -0.7542 | -0.2668 | -0.4081 | -0.2189 | 0.1018  | -0.7750 | 0.2418  | -0.7282 | -0.8378 |

| DDX21    | 7 | -0.8345 | -0.6009 | -0.6095 | -0.8250 | 0.0083  | 0.0668  | NA      | 0.2388  | -0.4836 | -0.5987 |
|----------|---|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| DDX27    | 7 | -0.1807 | -0.3474 | -0.1700 | -0.0987 | 0.4632  | -0.1576 | -0.5712 | 0.1495  | -0.6463 | -0.3120 |
| DDX46    | 7 | -0.7259 | -0.1139 | -0.4983 | -0.4248 | -0.3328 | -0.0676 | -0.2650 | 0.1362  | -0.6047 | -0.1117 |
| DDX55    | 7 | -1225   | -0.3953 | -0.3319 | -0.6011 | -0.0767 | 0.0246  | -0.3746 | 0.0628  | -0.7804 | -0.3419 |
| DDX56    | 8 | -1044   | -0.6977 | -0.4645 | -0.4593 | -0.1868 | 0.1500  | -0.7120 | 0.0057  | -0.4734 | -0.5881 |
| DENND3   | 7 | 1108    | 0.2711  | 0.6619  | 1087    | -0.1775 | 0.2743  | 0.3673  | NA      | 0.4371  | 0.5436  |
| DEXI     | 7 | -1214   | -0.6227 | -0.3662 | -0.3930 | -0.0880 | -0.0742 | -0.4870 | 0.0562  | -0.4356 | -0.8193 |
| DGCR8    | 7 | -1143   | -0.6119 | 0.0044  | -0.8784 | 0.1152  | 0.1074  | -0.2787 | -0.0812 | -0.6140 | -0.6352 |
| DHPS     | 7 | -0.7015 | -0.4737 | NA      | -0.4572 | -0.0137 | 0.1946  | -0.2894 | 0.1378  | 0.0795  | -0.4004 |
| DIABLO   | 7 | -0.3721 | -0.4046 | -0.0670 | -0.4258 | -0.1330 | 0.0021  | -0.1594 | 0.1310  | 0.2173  | 0.0641  |
| DIRC2    | 7 | 1387    | 0.9809  | -0.2019 | 1521    | 0.3792  | -0.1178 | 1083    | -0.2317 | 0.6756  | NA      |
| DISP1    | 7 | -2432   | -0.3761 | -0.2425 | -0.4389 | NA      | 0.0194  | -0.3370 | -0.0985 | -0.4349 | -0.5900 |
| DKC1     | 7 | -1040   | -0.9440 | -1093   | -0.8446 | 0.1539  | 0.1203  | -0.8287 | 0.0012  | -0.7272 | -0.6753 |
| DNAJA3   | 7 | -1401   | -0.6556 | -0.9377 | -0.7645 | -0.1036 | 0.0694  | -0.6406 | 0.0562  | -0.5460 | -0.7768 |
| DNASE1L1 | 7 | 1112    | 0.7086  | 0.0169  | -0.0754 | 0.4585  | 0.0166  | 0.8297  | -0.1698 | 0.5600  | 0.9672  |
| DNMT1    | 7 | -1422   | -1478   | -0.8330 | -0.5980 | -0.0561 | -0.0385 | -1273   | 0.2188  | -1110   | -1148   |
| DNTTIP1  | 7 | 0.5674  | 0.3540  | 0.0934  | 0.5547  | -0.1684 | -0.0734 | 0.4534  | 0.1185  | 0.4940  | 0.8208  |
| DOCK8    | 7 | 0.1530  | 0.4737  | 0.9559  | 0.9673  | -0.2367 | 0.0015  | -0.4067 | 0.1817  | -0.3894 | -0.8977 |
| DOK3     | 8 | 2104    | 0.7579  | 0.5895  | 0.6077  | 0.2590  | 0.0478  | 0.5755  | 0.1333  | 0.7979  | 0.6043  |
| DOLK     | 7 | -1564   | -0.2865 | -0.5556 | -0.4222 | NA      | 0.0678  | -0.4467 | 0.0047  | -0.3374 | -0.2632 |
| DPEP2    | 7 | -1259   | -1588   | 1371    | -1337   | 0.0465  | 0.0555  | -1116   | 0.1900  | -1145   | -1175   |
| DRAM1    | 7 | NA      | 1519    | 0.3231  | NA      | -0.3253 | NA      | 1392    | -0.2677 | 1915    | 1989    |
| DRG1     | 7 | -0.5142 | -0.0489 | -0.3567 | -0.3237 | -0.2444 | 0.1577  | 0.0966  | 0.1372  | -0.1838 | 0.2829  |
| DUS1L    | 7 | -1567   | -0.6014 | -0.4330 | -0.7461 | NA      | 0.0385  | -0.4552 | 0.0342  | -0.3647 | -0.3626 |
| DUSP2    | 8 | -2078   | -0.7534 | 0.3034  | -0.2215 | -0.7628 | -0.0464 | -1014   | 0.1663  | -0.4464 | -0.4647 |
| DUSP3    | 8 | 1511    | 0.4894  | 0.6919  | -0.5978 | 0.0532  | 0.4148  | 0.3677  | -0.4272 | 1231    | 0.3912  |
| DYNLT1   | 7 | 1149    | 0.8642  | 0.6627  | 0.4494  | 0.3064  | 0.1778  | 0.7791  | 0.1052  | 1112    | 1853    |
| DYSF     | 8 | 2613    | 1436    | 1612    | 0.3116  | 0.5836  | 0.4325  | 1304    | 0.1533  | 1299    | 1327    |
| E2F5     | 7 | -1685   | -0.7586 | -0.2969 | 0.6978  | 0.0980  | 0.0580  | -0.6709 | NA      | -0.7300 | -0.4540 |
| E4F1     | 8 | -0.5639 | -0.2110 | -0.4115 | -0.0369 | -0.3161 | -0.2798 | -0.2253 | 0.1232  | -0.2714 | -0.1835 |
| EARS2    | 7 | -0.9943 | -0.3043 | -0.3420 | -1197   | NA      | 0.0215  | -0.3362 | NA      | -0.3249 | -0.5580 |

| ECHS1   | 7 | -0.9488 | -0.8315 | -1056   | -1245   | -0.3414 | 0.0545  | -0.5527 | 0.0472  | -0.4410 | -0.8301 |
|---------|---|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| EDEM2   | 7 | 0.8957  | 0.4805  | 0.4386  | 0.2967  | -0.1466 | 0.0514  | 0.4918  | -0.1610 | 0.8173  | 0.6721  |
| EDF1    | 7 | -0.7132 | -0.6251 | NA      | -0.1362 | -0.2203 | 0.3442  | -0.2087 | 0.1650  | -0.2951 | -0.4966 |
| EEF2K   | 7 | -2022   | -0.7485 | -0.5297 | -0.8056 | -0.0142 | 0.0579  | NA      | 0.3993  | -1290   | -1330   |
| EIF2B1  | 7 | -1056   | -0.4301 | -0.3003 | -0.6334 | -0.3458 | 0.0281  | -0.4586 | 0.1038  | -0.4687 | -0.3240 |
| EIF3A   | 7 | -0.7389 | -0.5627 | -0.7386 | NA      | 0.1072  | -0.3003 | -0.6094 | -0.0637 | -0.8739 | -1077   |
| EIF5B   | 7 | -0.6183 | -0.7405 | -0.5318 | -0.6973 | -0.1466 | 0.1085  | -0.9364 | 0.2028  | -1024   | -0.9124 |
| ELP4    | 7 | -0.9624 | -0.3868 | -0.4016 | -0.4817 | NA      | 0.0304  | -0.2033 | 0.0835  | -0.3497 | -0.4907 |
| EMILIN2 | 7 | 1768    | 1652    | 1078    | -0.3716 | 0.5008  | 0.1954  | NA      | -0.5707 | 1066    | 1010    |
| ENDOG   | 7 | -1844   | -0.7832 | -0.6722 | -0.4888 | NA      | 0.0799  | -0.3472 | -0.0422 | -0.1226 | -0.5237 |
| ENO1    | 8 | 0.1250  | 0.4470  | -0.6531 | -1011   | -0.2896 | 0.1813  | 0.4729  | -0.3642 | 0.2770  | 0.6159  |
| ENO2    | 7 | -1062   | -0.7236 | -0.4329 | -0.0868 | -0.7171 | 0.0838  | -0.8350 | -0.0913 | -1007   | -1172   |
| ENOPH1  | 7 | -1558   | -0.5994 | -0.5600 | -0.6070 | 0.1764  | -0.1050 | -0.4925 | 0.1267  | -0.5504 | -0.4640 |
| ENTPD1  | 8 | 1309    | 0.9817  | 0.7814  | 1887    | 0.4936  | 0.1462  | 0.9115  | -0.1807 | 0.5328  | 1000    |
| EOMES   | 7 | -3107   | -2002   | 0.8953  | 1997    | -0.0434 | -0.2186 | -1949   | NA      | -1180   | -2007   |
| EP400   | 8 | -1473   | -0.3474 | -0.3850 | -0.4363 | -0.4963 | 0.0735  | -0.4955 | -0.0410 | -1165   | -0.8294 |
| EPHX2   | 8 | -1095   | -1052   | -0.2293 | 0.3516  | NA      | -0.1232 | -1065   | 0.2812  | -1215   | -1377   |
| EPRS    | 8 | -0.9206 | -0.8136 | -0.5185 | -0.8458 | -0.2540 | 0.0723  | -0.4312 | 0.0283  | -0.6995 | -0.7173 |
| ERCC1   | 8 | -1327   | -0.5279 | -0.2053 | -0.2033 | 0.2868  | 0.0446  | -0.1932 | 0.1717  | -0.3511 | -1253   |
| ERLIN1  | 7 | 2245    | 1425    | -0.1389 | -0.4588 | 1084    | 0.0407  | 1391    | -0.3585 | 1969    | 1332    |
| EVI2A   | 7 | 0.1043  | 0.9671  | 0.0296  | 0.6018  | 0.1540  | -0.0247 | 0.4866  | 0.2667  | 0.7111  | 1134    |
| EXOSC5  | 8 | -2026   | -0.5476 | -0.6187 | -1400   | NA      | 0.1051  | -0.2824 | -0.1010 | -0.8394 | -0.1956 |
| EXOSC7  | 7 | -1488   | -0.5152 | -0.7133 | -0.8268 | NA      | 0.0526  | -0.1848 | 0.0080  | -0.8216 | -0.4909 |
| EXOSC8  | 7 | -1380   | -0.6750 | -0.3371 | 0.1280  | -0.1231 | -0.1098 | -0.3442 | 0.2215  | -0.5677 | -0.4925 |
| FAIM3   | 7 | -2802   | -2592   | 0.7896  | 1464    | 0.3793  | 0.0493  | -2369   | NA      | NA      | -2539   |
| FAM49B  | 7 | NA      | 0.6611  | NA      | 0.8529  | -0.0905 | -0.6081 | 0.4973  | 0.2993  | 0.7352  | 0.9441  |
| FAM53C  | 7 | 1072    | 0.4962  | 0.5658  | 0.2902  | 0.2359  | -0.2924 | 0.4727  | 0.0540  | 0.3998  | 0.6793  |
| FAM89A  | 8 | 2530    | 1735    | 0.1389  | -0.8230 | 0.3995  | -0.0037 | 1456    | -0.6192 | 1251    | 2190    |
| FAM96A  | 7 | -0.3374 | 0.5555  | NA      | -0.6467 | -0.1557 | -0.1706 | 0.4074  | 0.1818  | 0.6283  | 0.8796  |
| FARS2   | 7 | -1637   | -0.3036 | -0.4326 | -0.1635 | NA      | 0.0965  | -0.2941 | NA      | -0.6270 | -0.1183 |
| FARSA   | 8 | -1104   | -0.4063 | -0.6369 | -0.9553 | NA      | 0.1333  | -0.2446 | 0.0378  | -0.3161 | -0.4774 |

| FASN     | 7 | -1312   | -0.3731 | -1522   | -1179   | NA      | 0.0549  | -0.2623 | -0.1657 | -0.1888 | 0.0252  |
|----------|---|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| FBL      | 7 | -1925   | -1573   | -0.9512 | -0.9980 | -0.1364 | -0.0267 | -1084   | 0.1723  | -0.4825 | -1208   |
| FBXO21   | 7 | -1360   | 0.0495  | -0.3099 | 0.4393  | 0.0170  | -0.0102 | -1521   | 0.1927  | -0.9128 | -0.9091 |
| FBXO34   | 7 | 0.9311  | 0.4302  | -0.2525 | 0.3525  | 0.0403  | -0.2171 | 0.1369  | -0.1517 | 0.5360  | 0.4381  |
| FBXO6    | 7 | 2024    | 0.8312  | 0.6784  | 1252    | -0.0251 | 0.0340  | 0.7924  | NA      | 1717    | 1349    |
| FBXW2    | 7 | 1067    | 0.8389  | -0.0251 | -0.1747 | -0.1647 | 0.0686  | 0.7888  | -0.2656 | 0.4631  | 1062    |
| FCER1G   | 8 | 2115    | 1466    | 2612    | 1333    | 0.2935  | 0.3825  | 1829    | -0.0247 | 1023    | 1344    |
| FEM1C    | 8 | 0.9336  | 1467    | 0.3753  | -0.1828 | -0.2168 | -0.0581 | 1014    | -0.1487 | 1232    | 1119    |
| FERMT3   | 7 | 0.8737  | 0.6712  | NA      | NA      | -0.2232 | 0.3062  | 0.4896  | -0.0467 | 0.3756  | 0.6842  |
| FES      | 8 | 1503    | 0.8157  | 1464    | -0.8867 | 0.6648  | 0.0290  | 0.7374  | 0.0300  | 0.9936  | 1237    |
| FGD3     | 7 | 0.5335  | -0.5844 | 1401    | 0.9794  | 0.0740  | -0.0483 | -0.1872 | 0.1967  | -0.2310 | -0.1791 |
| FGFBP2   | 7 | -4076   | -2241   | 0.8845  | 1498    | -0.1244 | -0.2304 | -2105   | NA      | -1100   | -2705   |
| FGFR1OP2 | 7 | 1134    | 0.8588  | 0.1792  | 0.3409  | -0.1291 | -0.3615 | 0.2890  | NA      | 0.6012  | 0.9724  |
| FGR      | 7 | 1382    | 0.9128  | -0.0352 | -1985   | -0.0317 | -0.0029 | 0.6671  | 0.3033  | 0.7064  | 0.7626  |
| FLOT1    | 8 | 1878    | 0.3615  | 0.5754  | 0.9840  | -0.0042 | 0.1552  | 1160    | -0.2012 | 1422    | 1362    |
| FLOT2    | 7 | 1453    | 0.7236  | 0.7198  | 1683    | 0.2902  | 0.0791  | 0.8034  | -0.0317 | 0.9331  | 1075    |
| FMNL1    | 7 | 0.6641  | -0.2560 | 0.3311  | 0.2018  | 0.0510  | 0.2364  | -0.4492 | 0.1633  | -0.1730 | -0.3816 |
| FOXN2    | 8 | 0.8034  | NA      | 0.4794  | 1085    | 0.1890  | -0.4400 | 0.8257  | NA      | 0.6780  | 1042    |
| FPR1     | 9 | 1509    | 0.6366  | 2097    | 1913    | 0.3555  | 0.0869  | 0.5799  | 0.3917  | 0.6391  | 0.5527  |
| FUNDC1   | 8 | -1531   | -1293   | -0.2707 | 0.4158  | -0.3689 | -0.0667 | -0.4352 | 0.3802  | -0.2593 | -0.0301 |
| FURIN    | 7 | 1011    | 0.6111  | 0.4242  | 0.0709  | 0.4546  | 0.3073  | 0.3199  | NA      | 0.5595  | 0.5803  |
| FXYD5    | 7 | -0.5931 | -1065   | 0.0379  | -0.7581 | 0.1488  | 0.0503  | -0.8272 | -0.0662 | -0.4398 | -0.8388 |
| G6PC3    | 7 | -0.7663 | -0.3692 | -0.6925 | -0.6570 | NA      | 0.1226  | -0.0685 | -0.1703 | -0.5517 | -0.1982 |
| GADD45B  | 7 | 1748    | 0.4138  | 0.5458  | -0.1503 | 0.3804  | 0.0400  | 0.3777  | -0.0807 | 1334    | 1193    |
| GADD45G  | 7 | 1416    | 0.2977  | 0.2081  | 0.0084  | -0.5530 | 0.0637  | 0.5777  | -0.2027 | 0.5281  | 0.8584  |
| GALNT11  | 7 | -0.6286 | -0.4181 | -0.0693 | -0.6936 | 0.1132  | 0.1123  | -0.3642 | 0.0116  | -0.3261 | -0.2550 |
| GAPDH    | 7 | 0.9961  | 0.8692  | 0.0842  | -0.0426 | -0.1481 | 0.2834  | 0.7683  | -0.2605 | 0.3280  | 0.8380  |
| GBGT1    | 9 | 1007    | 0.3561  | 0.5537  | 0.6034  | 0.4175  | -0.0858 | 0.3412  | -0.1367 | 0.7692  | 0.7579  |
| GCA      | 9 | 1201    | 1530    | 1826    | 0.7223  | 0.2908  | -0.4411 | 1184    | 0.3617  | 1003    | 0.7558  |
| GGA2     | 7 | -1661   | -0.4904 | -0.2938 | -1026   | -0.3159 | 0.1324  | -0.4831 | 0.3915  | -0.8668 | -1271   |
| GIMAP1   | 7 | -0.9637 | -1241   | 0.3842  | 1538    | NA      | -0.2507 | -1232   | NA      | -0.9413 | -0.9141 |

| GIMAP7  | 7 | -2101   | -1250   | NA      | 2574    | -0.0647 | -0.2172 | -0.7845 | NA      | -1178   | -0.6580  |
|---------|---|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|
| GLA     | 7 | 0.8173  | 0.6004  | -0.1170 | 0.1678  | 0.4073  | 0.2159  | 0.6648  | -0.1101 | 0.8714  | 0.9182   |
| GLOD4   | 7 | -1838   | -1122   | -0.5915 | NA      | -0.0064 | -0.0615 | -0.9016 | 0.4085  | -0.9883 | -0.6926  |
| GLT1D1  | 7 | 1531    | 0.6545  | 0.6312  | -0.2452 | -0.0009 | -0.0511 | 0.8105  | 0.2867  | 0.5003  | 0.9629   |
| GMFG    | 8 | 0.7792  | 1042    | 1905    | -0.1428 | 0.2561  | 0.0030  | 1211    | 0.3483  | 0.6193  | 1153     |
| GNA15   | 8 | 1182    | 0.7776  | 0.7396  | 1304    | -0.3791 | 0.1468  | 0.7706  | NA      | 0.8817  | 0.9390   |
| GNG5    | 7 | 1086    | 0.6589  | 0.2763  | -1180   | 0.1873  | 0.1548  | 0.7995  | -0.1617 | 1175    | 1158     |
| GNS     | 7 | 1313    | 0.9823  | 0.3238  | 0.3718  | 0.3168  | 0.1634  | 0.7235  | -0.2474 | 0.6176  | 0.9365   |
| GOLGA1  | 8 | 0.8233  | 0.7435  | -0.1498 | -0.3175 | -0.3686 | 0.1052  | 0.5789  | -0.2423 | 0.2851  | 0.6241   |
| GOLGA3  | 7 | -0.6451 | -0.0789 | -0.0733 | -1101   | -0.2359 | 0.2706  | -0.1267 | -0.0983 | -0.5375 | -0.9762  |
| GOLPH3  | 7 | 0.5881  | 0.5883  | -0.3784 | 0.3948  | -0.1821 | -0.2686 | 0.0743  | -0.0678 | 0.2892  | 0.2832   |
| GORASP2 | 7 | -0.8436 | -0.5872 | -0.4229 | -0.4562 | -0.2071 | 0.0165  | -0.5977 | -0.0183 | -0.5222 | -0.6954  |
| GOT2    | 8 | -1290   | -0.9568 | -0.9819 | -0.5818 | 0.1273  | 0.2029  | -0.7670 | 0.0218  | -0.5202 | -0.9683  |
| GPD1L   | 7 | -1210   | -0.3927 | -0.4063 | -1070   | 0.1799  | -0.0742 | -0.7410 | 0.0878  | -0.6081 | -0.6556  |
| GPR160  | 7 | 1788    | 1988    | 0.0459  | 0.4234  | -0.0990 | -0.3567 | 1870    | 0.0047  | 1676    | 2551     |
| GPR84   | 7 | 6290    | 3981    | 0.9222  | 2545    | -0.3706 | 0.1786  | 3888    | NA      | 4011    | 4430     |
| GRAMD1A | 7 | 1950    | 0.7910  | 0.5653  | 3474    | 0.0599  | -0.0063 | 0.8583  | NA      | 1468    | 0.9287   |
| GRWD1   | 7 | -0.8153 | -0.3888 | -0.7829 | -0.8297 | NA      | 0.0573  | -0.4739 | 0.0147  | -0.5413 | -0.1828  |
| GSR     | 7 | 1070    | 1272    | NA      | -0.9531 | 0.4353  | -0.0166 | 0.9206  | NA      | 0.5079  | 0.9907   |
| GSS     | 8 | -1016   | -0.4254 | -0.5160 | -0.4551 | NA      | 0.1013  | -0.4227 | -0.0420 | -0.4649 | -0.4573  |
| GSTP1   | 7 | -1344   | -0.7432 | 1060    | -0.3427 | -0.0151 | 0.0304  | -0.5552 | 0.2133  | -0.5021 | -1167    |
| GTF2H4  | 7 | -1400   | -0.4581 | -0.4027 | -0.8189 | -0.0916 | 0.1020  | -0.5835 | -0.0077 | -0.1334 | -0.0680  |
| GTF3C1  | 8 | -0.8040 | -0.6425 | -0.2678 | 0.1177  | -0.3861 | 0.1067  | -0.4964 | NA      | -0.4051 | -0.1987  |
| GZMA    | 7 | -2770   | -1811   | 1341    | 2149    | -0.0200 | -0.2472 | -1469   | NA      | -0.8026 | -1524289 |
| GZMH    | 8 | -2971   | -1799   | 1275    | 1838    | -0.0003 | -0.2543 | -1207   | 0.7585  | -0.6293 | -2303    |
| GZMK    | 7 | -3524   | -2006   | 1169    | 2211    | -0.0978 | -0.3601 | -1851   | NA      | -1406   | -2039    |
| GZMM    | 7 | -3727   | -1382   | 0.5302  | 0.8176  | -0.0738 | 0.0362  | -0.8379 | 0.1037  | -1047   | -0.8507  |
| HACL1   | 7 | -0.9152 | -0.7507 | -0.4840 | 0.1212  | -0.0436 | -0.0271 | -0.4417 | 0.1483  | -0.5314 | -0.2914  |
| HADH    | 8 | -1167   | -0.2756 | -0.9439 | -0.9216 | NA      | -0.1381 | -0.1705 | -0.0448 | -0.7739 | -0.4304  |
| HBD     | 7 | 1678    | 1461    | 2056    | 0.0376  | NA      | -0.1789 | 0.9898  | 0.6622  | 1270    | 0.6149   |
| HCK     | 9 | 1338    | 0.5489  | 1718    | 1954    | -0.3544 | 0.1636  | 0.5951  | 0.2333  | 0.5447  | 0.5945   |

| HCP5     | 7 | 0.2238  | -0.8921 | 0.9211  | 1951    | -0.1882 | -0.2694 | -0.7225 | NA      | -0.3145 | -0.8383 |
|----------|---|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| HDDC3    | 7 | -0.5474 | -0.2475 | -0.4500 | -0.9715 | 0.7688  | 0.1336  | 0.0315  | -0.1625 | 0.1401  | 0.4148  |
| HEBP2    | 7 | 0.6283  | 0.8541  | 0.4462  | 0.1908  | 0.2317  | -0.3932 | 1051    | -0.0210 | 1066    | 1421    |
| HIF1A    | 7 | 1367    | 0.9131  | -0.0892 | 2921    | -0.1513 | -0.1424 | 0.3639  | NA      | 0.4892  | 1213    |
| HIST1H2A | 7 | 1180    | 0.5536  | 0.7384  | 1497    | 0.0409  | -0.2739 | 0.3882  | NA      | 0.1169  | 1035    |
| HIST1H2B | 7 | 0.9415  | 0.8863  | 0.1625  | 0.7321  | 0.1183  | -0.1613 | 1036    | NA      | 0.9467  | 0.7317  |
| HIST1H3D | 7 | 1623    | 1189    | 0.2464  | 0.5420  | -0.0471 | -0.0532 | 1618    | 0.1318  | 1135    | 1752    |
| HIST2H2B | 7 | 2057    | 1415    | 0.6802  | 1400    | 0.2935  | 0.0751  | 0.8425  | NA      | 1042    | 1720    |
| HK3      | 8 | 2700    | 2439    | 1856    | -1023   | 0.3686  | 0.5737  | 2226    | NA      | 1799    | 2351    |
| HNRNPA0  | 7 | -1181   | NA      | -0.6142 | NA      | 0.0020  | -0.2092 | -0.9998 | 0.3148  | -0.2468 | -0.9150 |
| HP       | 7 | 5742    | 4664    | 1652    | 0.0275  | 0.3797  | 0.1940  | 4239    | -0.6962 | 4662    | 3999    |
| HSH2D    | 7 | -1060   | -1394   | 0.9007  | 1811    | -0.3811 | 0.0422  | -1249   | NA      | -0.9662 | -1121   |
| HSPA1B   | 8 | 1694    | 0.8684  | -0.3209 | -1157   | 0.8131  | 0.0714  | 0.4525  | -0.3240 | 1352    | 0.3523  |
| HSPA8    | 7 | -1141   | -0.9427 | NA      | -0.9680 | 0.0611  | NA      | -0.9097 | 0.2217  | -0.4717 | -0.7348 |
| HSPA9    | 7 | -0.9366 | -0.6825 | -0.9292 | -0.7911 | -0.0513 | 0.0915  | -0.7195 | -0.0117 | -1032   | -0.7653 |
| ICAM2    | 8 | -1204   | -1406   | 1217    | 1058    | -0.4354 | 0.2206  | NA      | 0.3698  | -0.8542 | -1273   |
| ICOS     | 7 | -2290   | -0.9021 | 0.3398  | 1369    | NA      | -0.0352 | -0.7261 | NA      | -1275   | -1257   |
| ID3      | 8 | -2913   | -1539   | -1330   | 1874    | -0.5094 | -0.0297 | -1287   | 0.0487  | -0.9354 | -0.3062 |
| IDH2     | 7 | -1004   | -0.6146 | 0.1479  | -0.5237 | -0.5671 | 0.2953  | -0.2473 | 0.2078  | -0.4336 | -0.4018 |
| IDH3B    | 8 | -0.5779 | -0.4813 | 0.0825  | -0.5440 | -0.1268 | 0.1650  | -0.4828 | 0.1282  | -0.3319 | -0.5496 |
| IDS      | 7 | -0.1613 | -0.6728 | NA      | 0.7351  | -0.1236 | -0.3800 | -0.6059 | 0.3163  | -0.4087 | -0.5716 |
| IER3     | 7 | 2310    | 1079    | -0.1973 | 2735    | -0.1614 | 0.0771  | 0.9458  | NA      | 1124    | 1313    |
| IFITM1   | 8 | 1377    | 0.4106  | 1146    | 3543    | 0.6454  | 0.0673  | 0.5770  | NA      | 0.6910  | 1104    |
| IFITM2   | 7 | 0.7760  | 0.2414  | 0.3486  | 1424    | 0.1331  | 0.0662  | 0.3402  | 0.2450  | 0.1748  | 0.2468  |
| IFNAR1   | 7 | 1403    | 0.8435  | 0.8083  | 0.4342  | 0.0885  | 0.0446  | 0.4928  | -0.0127 | 0.7815  | 0.6744  |
| IFNGR1   | 7 | 1202    | 1251    | 1150    | 0.5798  | 0.2237  | -0.2071 | 1152    | 0.1233  | 1071    | 1541    |
| IFNGR2   | 8 | 1244    | 0.5246  | 0.8478  | 0.6635  | -0.3148 | -0.0308 | 0.3924  | -0.0217 | 0.6004  | 0.7535  |
| IGSF6    | 7 | 1388    | 0.5072  | 1366    | -0.7574 | -0.1634 | -0.0370 | 0.9916  | NA      | 0.4575  | 0.5262  |
| IKBKE    | 7 | -0.3591 | -0.0981 | 0.3372  | 0.6177  | -0.7126 | 0.1711  | -0.2165 | NA      | -0.4760 | -0.2490 |
| IKZF1    | 7 | 0.0309  | -0.3767 | 0.6599  | 0.8317  | -0.1715 | -0.4081 | -0.5732 | 0.0327  | -0.4030 | -0.9573 |
| IL10RA   | 7 | -0.9992 | -1206   | 1128    | 1527    | 0.0527  | -0.0042 | -1308   | 0.1367  | -0.5577 | -1224   |

| IL10RB   | 7  | 1166    | 0.7335  | NA      | 0.7263  | -0.0822 | -0.3039 | 0.9379  | 0.0850  | 0.8961  | 1260    |
|----------|----|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| IL17RA   | 10 | 1496    | 1124    | 1309    | -0.7187 | 0.4076  | 0.3779  | 0.7957  | 0.1150  | 0.3398  | 0.4722  |
| IL18R1   | 7  | 3871    | 29358   | 0.6808  | 0.9182  | 2480    | -0.0804 | 2896    | NA      | 2975    | 3565    |
| IL18RAP  | 8  | 2668    | 1988    | 1660    | 1464    | 1694    | 0.0221  | 2101    | 0.0700  | 1998    | 2719    |
| IL2RB    | 8  | -2936   | -2386   | 0.5420  | 2793    | -0.3841 | -0.3704 | -2412   | NA      | -1472   | -2352   |
| IL7R     | 7  | -2248   | -2293   | NA      | 2661    | 0.4387  | NA      | -1890   | NA      | -1925   | -2031   |
| IMP3     | 8  | -1483   | -1198   | -0.6958 | 0.1110  | -0.3901 | 0.0074  | -1174   | 0.1958  | -0.5297 | -1030   |
| IMP4     | 7  | -1001   | -0.8497 | -0.6007 | -1047   | -0.0575 | 0.1431  | -0.4019 | 0.0690  | -0.8289 | -0.5593 |
| IMPA1    | 7  | 0.1243  | 0.5968  | -0.0029 | 1225    | -0.2719 | -0.2537 | 0.4074  | 0.2298  | 0.5374  | 1074    |
| IMPDH2   | 7  | -1399   | -1453   | -1061   | -0.5545 | -0.1747 | 0.1382  | -0.9748 | -0.0488 | -1117   | -0.7681 |
| INPP5D   | 7  | 0.2424  | -0.4615 | 0.9992  | 0.1977  | -0.1656 | 0.2857  | -0.4846 | 0.1383  | -0.6166 | -0.5063 |
| INPP5E   | 7  | -2648   | -0.6245 | -0.2842 | -0.5225 | -0.0906 | 0.0515  | -0.8051 | -0.0138 | -0.3606 | -0.6854 |
| INSIG2   | 7  | 0.7939  | 1137    | -0.0049 | 1312    | -0.2819 | -0.1283 | 0.5025  | -0.0671 | 0.4447  | 1012    |
| INTS9    | 7  | -0.7452 | -0.8028 | -0.2475 | NA      | -0.7136 | -0.1432 | -1003   | 0.1384  | -0.7091 | -0.4155 |
| IRF9     | 8  | 0.5914  | -0.5328 | 1072    | NA      | -0.0068 | 0.2889  | -0.4887 | 0.1883  | 0.2643  | -0.2698 |
| ISOC1    | 8  | -1092   | -0.9956 | -0.7727 | -0.3010 | -0.1502 | -0.2092 | -0.9077 | 0.0586  | -0.5305 | -0.2651 |
| ITGAL    | 8  | -0.4623 | -0.4631 | 1068    | 0.5442  | -0.5336 | 0.2797  | -0.6393 | NA      | -0.5360 | -0.9401 |
| ITGAM    | 8  | 2030    | 1672    | 1243    | -1388   | 0.3576  | 0.2720  | 1326    | NA      | 0.8285  | 0.8632  |
| ITGB7    | 7  | -1994   | -0.7631 | 1126    | -0.6613 | -0.0034 | 0.3150  | -1081   | 0.2945  | -1425   | -1911   |
| ITK      | 8  | -2121   | -2415   | 0.6933  | 2981    | 0.3366  | -0.1010 | -2249   | NA      | -1746   | -2021   |
| ITPR1    | 7  | -0.4690 | -0.1928 | -0.3738 | -0.7872 | 0.5283  | 0.0877  | -0.5047 | 0.0769  | -1031   | -0.7568 |
| IVD      | 7  | -1023   | -0.5258 | -0.1571 | -0.5650 | NA      | 0.0561  | -0.6112 | 0.0397  | -0.5206 | -0.3643 |
| JARID2   | 7  | -0.6844 | -0.7608 | 0.1471  | -1601   | 0.1407  | -0.0885 | -1036   | 0.1978  | -1184   | -0.8126 |
| JUNB     | 7  | 1841    | 0.5270  | 0.4962  | -0.0597 | -0.1572 | 0.1353  | 0.6421  | 0.1678  | 0.9672  | 0.6292  |
| KCNJ2    | 9  | 1770    | 0.7155  | 1052    | 1482    | 0.2039  | -0.0152 | 0.6368  | 0.2533  | 1190    | 0.6725  |
| KDELR1   | 7  | -0.0455 | -0.2771 | -0.6201 | -0.2947 | 0.0480  | 0.1745  | -0.2261 | -0.1232 | 0.1562  | -0.2067 |
| KIAA0141 | 7  | -0.7321 | -0.4037 | 0.0183  | -0.2614 | -0.0557 | 0.1173  | -0.4008 | 0.1151  | NA      | -0.3210 |
| KIF20A   | 7  | 2347    | 0.7195  | -0.7582 | 0.1449  | NA      | 0.0729  | 0.7842  | -0.1562 | 0.3944  | 0.7081  |
| KIF3B    | 7  | -0.2425 | -0.2661 | -0.3288 | 0.3252  | -0.5383 | 0.0135  | -0.5181 | 0.1543  | -0.1903 | -0.1639 |
| KLHL2    | 8  | 2184    | 2262    | 0.1977  | 0.7395  | 0.5295  | -0.4912 | 1825    | NA      | 1696    | 2344    |
| KLHL22   | 8  | -1614   | -0.8925 | 0.4035  | -0.3696 | -0.2306 | -0.1030 | -0.7297 | 0.2796  | -0.7708 | -1045   |

| KLRB1    | 7 | -3253   | -2034   | 0.9176  | 0.8613  | 0.0812  | -0.5073 | -1902   | NA      | -0.8555 | -1473   |
|----------|---|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| LAGE3    | 7 | -1185   | -0.8758 | -0.6752 | -1243   | -0.1537 | 0.2003  | -0.4461 | -0.0078 | 0.2001  | -0.2547 |
| LANCL2   | 7 | -1299   | -0.3467 | -0.1837 | -0.2083 | NA      | -0.0250 | -0.1378 | NA      | -0.2561 | -0.3125 |
| LARP1    | 7 | 0.6592  | 0.0284  | 0.0159  | -0.4410 | -0.1655 | 0.1396  | -0.2574 | -0.2780 | -0.4186 | -0.8317 |
| LARS     | 7 | -1359   | -0.6006 | -0.5860 | -0.8732 | -0.1397 | 0.0545  | -0.8347 | 0.0310  | -1031   | -0.7936 |
| LAS1L    | 7 | -2092   | -0.6372 | -1004   | -0.5259 | NA      | -0.0162 | -0.5913 | 0.0395  | -1032   | -0.8531 |
| LBH      | 7 | -2249   | -2113   | -0.0455 | 0.4676  | -0.1445 | -0.0575 | -2090   | NA      | -1105   | -2119   |
| LCP2     | 7 | 0.7878  | -0.3450 | 0.5218  | 0.9417  | 0.1663  | -0.0864 | -0.4898 | 0.1218  | -0.1791 | -0.3534 |
| LDHA     | 7 | 1504    | 1779    | -0.0991 | 0.7495  | -0.1806 | 0.3752  | 1462    | -0.2825 | 1441    | 1972    |
| LEO1     | 8 | -1258   | -0.4807 | -0.2364 | -0.4773 | -0.5659 | 0.0292  | -0.3156 | 0.0250  | -0.8176 | -0.4493 |
| LEPROT   | 8 | 0.6196  | 0.7142  | 1180    | 0.5180  | 0.2410  | 0.0584  | 0.7818  | -0.0253 | 0.1770  | 0.3930  |
| LEPROTL1 | 8 | -0.7679 | -0.8667 | -0.0179 | 0.4267  | 0.0121  | -0.4890 | -1219   | 0.2593  | -0.5412 | -0.4612 |
| LFNG     | 7 | -1753   | -1124   | 0.1294  | -0.5138 | -0.7681 | -0.0209 | -1224   | NA      | -0.7330 | -0.9350 |
| LGALS1   | 7 | -0.0185 | 1345    | 0.5063  | -0.8281 | -0.4692 | 0.3609  | 1148    | -0.1005 | 0.7139  | 0.9337  |
| LHFPL2   | 7 | 1651    | 0.7539  | 0.2326  | -0.3288 | 0.4572  | 0.2452  | 0.6430  | -0.0997 | 1176    | 0.7295  |
| LIG1     | 7 | -1182   | -0.4977 | -0.2661 | -0.3138 | 0.0374  | 0.1025  | -0.5382 | 0.1235  | -0.4518 | -0.6131 |
| LILRB2   | 8 | 1006    | 0.5643  | 0.1608  | 0.0498  | -0.1761 | -0.0646 | 0.4832  | 0.2517  | 0.1919  | 0.2921  |
| LILRB3   | 7 | 0.5188  | 0.8429  | 0.4942  | 0.1126  | 0.0034  | -0.0651 | 0.6894  | 0.2017  | 1012    | 0.7026  |
| LIPA     | 7 | -0.9745 | -0.4922 | -0.1680 | -2984   | -0.1192 | 0.0542  | -0.5001 | 0.3193  | -0.4664 | -0.6314 |
| LMNB1    | 7 | 2388    | 1324    | 0.2985  | 0.7016  | 0.9949  | -0.1092 | 0.3965  | -0.4825 | 1409    | 12066   |
| LMO2     | 7 | 0.8053  | 0.2099  | 1044    | 0.7596  | 0.3317  | -0.2347 | 0.2712  | NA      | 0.4896  | 0.2956  |
| LONP1    | 9 | -1384   | -0.7614 | -0.6931 | -0.8559 | -0.6165 | 0.1395  | -0.4680 | -0.0205 | -0.4035 | -0.3788 |
| LRMP     | 7 | -0.6089 | -0.5222 | 0.9627  | 1112    | -0.2484 | -0.1222 | -0.3465 | 0.3100  | -0.6962 | -0.0498 |
| LRP10    | 7 | 1073    | 0.2372  | 0.7730  | 1413    | 0.2181  | -0.0699 | 0.3136  | 0.0913  | 0.6598  | 0.2801  |
| LRPAP1   | 8 | 1058    | 0.7567  | -0.0129 | -0.5569 | 0.3122  | 0.2016  | 0.8082  | -0.0782 | 0.5853  | 0.8938  |
| LSM4     | 9 | -1290   | -0.7437 | -0.7177 | -0.7240 | -0.4304 | 0.0287  | -0.3793 | 0.1487  | -0.2250 | -0.7515 |
| LTB      | 8 | -0.9482 | -1506   | NA      | 1739    | -0.6492 | NA      | 0.3548  | 0.2783  | -0.8841 | -0.7173 |
| LTB4R    | 7 | 2093    | 0.9529  | 0.6197  | 0.1248  | 0.3211  | 0.3245  | 1302    | -0.0085 | 0.9525  | 0.4480  |
| LY96     | 7 | 1188    | 2327    | 1467    | 0.2644  | 0.3044  | -0.1739 | 1451    | 0.0850  | 2148    | 2489    |
| LYSMD2   | 7 | -0.2650 | -1454   | 0.2739  | 1734    | -0.7336 | -0.3593 | -1120   | 0.3720  | 0.1277  | -0.5904 |
| MAN2A2   | 7 | 0.7392  | 0.4553  | 0.2730  | -0.5577 | 0.3491  | 0.1301  | 0.4545  | -0.0910 | 0.3547  | 0.5068  |

| MAN2B1  | 7 | 0.0216  | -0.4626 | 0.5508  | -0.3906 | -0.4596 | 0.2594  | -0.3988 | 0.0172  | -0.4245 | -0.3893 |
|---------|---|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| MAP3K5  | 7 | 1076    | 0.5295  | 0.9624  | 0.9691  | 0.0748  | 0.1125  | 0.2809  | 0.1217  | 0.2130  | 0.3799  |
| MAP4K1  | 7 | -2200   | -1278   | NA      | 1268    | 0.0378  | 0.0805  | -1136   | NA      | -1362   | -1867   |
| MARCKSL | 7 | -1891   | -1901   | -0.0347 | 1543    | -0.9304 | -0.0059 | -1750   | 0.1076  | -0.6014 | -1371   |
| MAZ     | 7 | NA      | -0.4818 | 0.0104  | -0.2288 | 0.4111  | -0.0661 | -0.5125 | -0.1242 | -0.3184 | -0.5477 |
| MBP     | 7 | -0.1099 | -0.5044 | NA      | -1461   | 0.2563  | -0.2460 | -0.6136 | NA      | -0.3128 | -0.7714 |
| MCM3    | 7 | -1169   | -0.7134 | NA      | -0.0698 | -0.3210 | 0.0840  | -0.9010 | 0.0900  | -1052   | -0.9917 |
| MCM5    | 7 | -1193   | -0.5679 | -0.3398 | 0.4907  | 0.0763  | 0.1948  | -0.2497 | 0.2712  | -0.9369 | NA      |
| MDH2    | 7 | -0.3834 | -0.6634 | -0.5983 | -0.7214 | -0.0535 | 0.1912  | -0.3530 | -0.0070 | -0.3069 | -0.4401 |
| METAP1  | 7 | -1391   | -0.8110 | -0.3437 | -0.5981 | 0.0271  | -0.0269 | -0.6728 | 0.0485  | -0.8047 | -0.5637 |
| MFN2    | 7 | 1089    | 0.4409  | 0.0565  | -0.8895 | 0.0386  | 0.3776  | NA      | -0.3051 | 0.2507  | 0.2237  |
| MFNG    | 7 | -1297   | -1169   | 0.9442  | -0.7613 | -0.1094 | -0.2248 | -0.8807 | NA      | -0.8000 | -1014   |
| MGMT    | 7 | -1683   | -0.7527 | -0.7593 | -0.5382 | NA      | -0.0905 | -0.4452 | 0.2132  | -0.6853 | -0.5851 |
| MICAL1  | 8 | 0.8672  | 0.7716  | 1047    | -0.9895 | 0.1033  | 0.2386  | 0.5307  | -0.0735 | 0.5455  | 0.6857  |
| MMP9    | 9 | 4031    | 2717    | 2071    | 0.5903  | -1652   | 0.6575  | 2900    | 0.1550  | 2036    | 3228    |
| MORC2   | 7 | -1947   | -1265   | -0.3137 | -0.6212 | NA      | 0.0793  | -1140   | -0.1126 | -0.9120 | -0.5261 |
| MOSPD2  | 7 | 1037    | 0.6396  | NA      | -0.5128 | 0.0665  | 0.2181  | 0.2909  | NA      | 0.6950  | 0.8274  |
| MPHOSPH | 7 | -1570   | -0.7954 | 0.0681  | -0.7766 | -0.1563 | -0.0479 | -0.4954 | 0.0635  | -0.7079 | -0.4324 |
| MRPL4   | 7 | NA      | -0.5793 | -0.0919 | -0.5340 | NA      | 0.0622  | -0.1941 | 0.0013  | -0.3113 | -0.2374 |
| MRPL54  | 7 | -1034   | -0.4767 | -0.1562 | -0.4645 | -0.3970 | 0.2780  | 0.1193  | 0.2678  | 0.1040  | 0.2237  |
| MRPS17  | 8 | -1418   | -0.5075 | -0.9318 | -0.7927 | -0.3882 | -0.0036 | 0.3170  | -0.0200 | -0.3979 | 0.6008  |
| MRPS23  | 8 | -0.6526 | -0.2268 | -0.5257 | -0.5247 | NA      | -0.0137 | -0.1865 | 0.2278  | -0.3263 | 0.4437  |
| MRPS27  | 7 | -1410   | -1165   | -0.6354 | -0.6591 | NA      | 0.0692  | -0.8804 | 0.0012  | -0.8533 | -0.9287 |
| MRPS9   | 7 | -1597   | -0.9692 | -0.5987 | -0.9367 | NA      | 0.1021  | -0.4877 | 0.1078  | -0.8827 | -0.4240 |
| MSRA    | 7 | 1290    | 1066    | 0.3962  | -0.7520 | 0.1675  | -0.1079 | 0.8216  | -0.0107 | 0.7274  | 0.5014  |
| MTF1    | 9 | 2469    | 0.8297  | 1076    | 1195    | -0.0196 | 0.5316  | 0.9711  | -0.4257 | 0.7312  | 0.9368  |
| MXD1    | 7 | 0.9792  | 0.5036  | 1467    | 1528    | -0.0471 | 0.0299  | 0.3433  | 0.1850  | 0.2119  | 0.0437  |
| MYBBP1A | 8 | -1533   | -0.2946 | -0.3273 | -0.4819 | NA      | NA      | -0.3069 | -0.1598 | -0.8541 | -0.3715 |
| MYCBP2  | 7 | -0.6415 | -0.9804 | 0.0017  | 0.4416  | -0.3137 | 0.2629  | -1013   | NA      | -0.8354 | -0.8472 |
| MYD88   | 8 | 1271    | 0.3004  | 1246    | -0.2281 | 0.2751  | 0.2167  | 0.3926  | -0.0383 | 0.4597  | 0.6071  |
| MYL6    | 7 | 0.6216  | 0.3039  | 0.4082  | -0.4824 | 0.0297  | 0.0914  | 1207    | 0.3495  | 1058    | 1043    |

| MYO1F   | 7 | 0.7330  | -0.2467 | 1440    | 0.1714  | -0.2046 | 0.3847  | -0.0740 | 0.3110  | -0.2559 | -0.1692 |
|---------|---|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| MYO1G   | 8 | -0.4832 | -0.5298 | 0.5838  | 2235    | 0.0589  | 0.2983  | -0.2951 | 0.2162  | -0.4380 | -0.2728 |
| NADK    | 7 | 0.7233  | -0.4137 | 0.7689  | 0.6161  | -0.3800 | 0.3485  | -0.1546 | 0.1533  | 0.0092  | 0.1441  |
| NAP1L1  | 9 | -0.8495 | -1123   | -0.1612 | -0.4202 | -0.1832 | -0.0581 | -0.9944 | 0.2193  | -0.5188 | -0.6539 |
| NARF    | 7 | 0.7325  | 0.6684  | 0.4831  | 0.6369  | -0.1036 | 0.1808  | 1007    | -0.0055 | 0.7105  | 0.8361  |
| NAT10   | 8 | -1696   | -0.7884 | -0.9075 | -0.8072 | -0.1778 | 0.0325  | -0.9088 | -0.1358 | -1133   | -1524   |
| NAT9    | 7 | -0.9780 | -0.2608 | -0.1633 | -0.5600 | -0.5772 | 0.0506  | -0.3631 | -0.0837 | -0.4705 | -0.1726 |
| NCAPD3  | 7 | -1149   | -0.4767 | -0.4465 | -0.3533 | NA      | 0.0327  | -0.4787 | -0.0502 | -1040   | -0.4032 |
| NCF4    | 8 | 1233    | 0.7536  | NA      | 0.5342  | -0.1182 | 0.3279  | 0.6579  | 0.2467  | 0.7343  | 0.7794  |
| NCL     | 9 | -1264   | -1298   | -0.3326 | -0.6701 | -0.2978 | 0.0116  | -0.9755 | 0.1585  | -1483   | -1272   |
| NCOA5   | 7 | -0.9507 | -0.6868 | -0.2911 | -0.0356 | -0.0836 | 0.1525  | -0.9447 | NA      | -0.4716 | -1007   |
| NCOR2   | 7 | -1138   | -0.0562 | -0.0308 | -0.9904 | -0.4711 | 0.2078  | -0.8695 | 0.0882  | -0.6575 | -0.2129 |
| NDE1    | 7 | -0.3869 | -0.9412 | 0.8972  | 0.6907  | -0.2122 | -0.0528 | -0.5346 | 0.2377  | -0.9096 | -0.8008 |
| NDUFAF1 | 7 | 1019    | 0.9750  | 0.0340  | -0.2427 | -0.2860 | 0.0576  | 1200    | -0.1729 | 0.6515  | 1715    |
| NDUFS5  | 7 | -0.2159 | 0.3485  | -0.7339 | -0.9385 | -0.2120 | 0.2020  | 0.9120  | 0.1483  | 0.2548  | 1812    |
| NELL2   | 7 | -4061   | -2507   | 0.3089  | 1584    | -0.4929 | -0.0368 | -2597   | NA      | -2631   | -2236   |
| NFE2    | 7 | 1209    | 0.8378  | 1434    | 0.8144  | 0.2549  | 0.0580  | 0.7498  | 0.0817  | 1066    | 0.8863  |
| NFIL3   | 8 | 1730    | 0.8275  | 0.3099  | 1894    | 0.4714  | -0.4561 | 1024    | 0.0627  | 1613    | 1213    |
| NFKB1   | 7 | 0.8027  | -0.0391 | 0.5190  | 1171    | -0.5710 | 0.2409  | -0.0628 | -0.1902 | 0.2300  | 0.0997  |
| NFKBIA  | 7 | 2012    | 0.1954  | 0.9931  | 1201    | 0.2303  | 0.0524  | 0.8602  | NA      | 1043    | 0.9497  |
| NIP7    | 7 | -1084   | NA      | -0.6127 | -0.6351 | -0.3365 | -0.0723 | NA      | -0.1448 | -0.1489 | -0.2257 |
| NLK     | 7 | 0.8119  | 0.7927  | -0.2073 | 0.2551  | NA      | -0.1328 | 0.9380  | -0.0703 | 0.4638  | 0.4222  |
| NMI     | 7 | 0.6220  | 0.6691  | 0.2006  | 0.8180  | -0.0581 | -0.2193 | 0.6326  | 0.1800  | 0.6910  | 1063    |
| NOL11   | 7 | -1501   | -0.9070 | -0.6988 | -0.1915 | -0.1002 | -0.0894 | -0.7513 | 0.1553  | -0.8509 | -0.3145 |
| NOL8    | 8 | -0.8709 | -0.6456 | -0.4704 | -0.5615 | 0.2089  | 0.0299  | -0.5665 | -0.0058 | -0.2848 | -0.3184 |
| NOSIP   | 8 | -0.7370 | -1202   | 0.2499  | 0.5391  | -0.0834 | 0.2998  | -0.7392 | 0.1363  | -0.2098 | -0.4763 |
| NOV     | 8 | -3255   | -0.3866 | 0.0134  | -0.8229 | -0.2535 | -0.1830 | -0.9823 | 1047    | -1863   | -0.5535 |
| NPM3    | 7 | -1071   | -0.3090 | -0.9737 | -0.0431 | 0.1491  | 0.1159  | -0.2939 | -0.2305 | 0.1463  | 0.1773  |
| NPTN    | 7 | 0.8534  | 0.8018  | 0.0328  | -0.0742 | -0.1678 | -0.3420 | 0.4023  | NA      | 0.4209  | 0.4746  |
| NSUN2   | 7 | -0.5875 | -0.4703 | -1041   | -0.2569 | -0.1321 | -0.0577 | -0.7129 | -0.0018 | -0.6936 | -0.4848 |
| NSUN4   | 7 | -1275   | -0.0452 | -0.2947 | -0.3193 | 0.4618  | 0.0145  | NA      | -0.1432 | -0.5128 | -0.1821 |

| NTSR1   | 7 | 3680    | 0.4507  | 0.2563  | 0.1359  | 0.6195  | 0.0420  | 0.4467  | NA      | 0.8972  | 0.6894  |
|---------|---|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| NUBP1   | 8 | -1705   | -0.5919 | -0.3636 | -0.4313 | NA      | 0.0952  | -0.2611 | 0.2461  | -0.3194 | -0.3491 |
| NUDC    | 7 | -0.7190 | -0.5658 | -0.8025 | -0.5559 | -0.2081 | -0.1229 | -0.3485 | 0.0062  | 0.0220  | -0.5335 |
| NUDCD3  | 8 | -0.9414 | -0.5521 | -0.2861 | -0.2946 | -0.2866 | 0.1615  | -0.4018 | 0.0670  | -0.8652 | -0.8337 |
| NUP107  | 7 | -0.7402 | -0.4751 | -0.6435 | -0.0484 | -0.1524 | -0.0351 | -0.3757 | 0.1697  | -0.6135 | -0.3674 |
| NUP210  | 7 | -1445   | -1080   | -0.3453 | 0.0808  | NA      | 0.1302  | -1163   | 0.0717  | -1107   | -0.5042 |
| NUP85   | 8 | -0.9610 | -0.6917 | -0.4800 | -0.4247 | -0.3736 | 0.1141  | -0.4759 | 0.0472  | -0.3010 | -0.2957 |
| NUP93   | 7 | -1338   | -0.8085 | -0.8066 | -0.3947 | -0.2873 | 0.1020  | -1044   | 0.3957  | -0.7913 | -1404   |
| ODF2    | 7 | -0.7541 | -0.3834 | -0.1649 | -0.1759 | -0.2504 | 0.1421  | NA      | 0.2333  | -0.5945 | -0.8258 |
| OGFOD1  | 7 | -1236   | -0.8167 | -0.0969 | 0.1979  | NA      | 0.0976  | -0.7963 | -0.0037 | -0.6422 | -0.1458 |
| ORM1    | 7 | 2951    | 1689    | 1402    | 0.5756  | -0.7296 | 0.2921  | 2108    | -0.2456 | 1462    | 2116    |
| OSBPL9  | 8 | 0.5174  | 0.5217  | 0.0508  | 0.4851  | 0.5777  | 0.0157  | 0.6549  | -0.1394 | 0.3674  | 0.8168  |
| OSM     | 8 | 2478    | 0.3512  | 0.4658  | 3093    | -0.6845 | -0.1168 | NA      | 0.2967  | 2510    | 0.1720  |
| P2RY8   | 7 | -1595   | -1411   | 1081    | 1534    | 0.2359  | 0.1398  | -1309   | 0.0117  | -1072   | -1472   |
| PAAF1   | 7 | -1524   | -0.7075 | -0.5866 | NA      | NA      | 0.0658  | -0.1584 | 0.1865  | -0.5207 | -0.7173 |
| PAG1    | 8 | 1587    | 0.9974  | NA      | 14113   | 0.6128  | 0.0662  | 0.7158  | -0.3583 | 0.8300  | 1124    |
| PAK1    | 8 | 0.0826  | -0.3119 | 0.7526  | -0.7264 | -0.5921 | 0.1985  | -0.5043 | 0.2370  | -0.3909 | -0.5135 |
| PALB2   | 7 | -1444   | -0.5400 | -0.3006 | -0.4103 | NA      | -0.0186 | -0.7117 | NA      | -0.3901 | -0.2441 |
| PAQR8   | 7 | -1767   | -0.7370 | 0.4811  | -0.6513 | NA      | 0.0420  | -0.8745 | NA      | -1272   | -1007   |
| PARP1   | 7 | -1161   | -0.9945 | -0.9456 | 0.4680  | 0.1067  | 0.1480  | -1059   | 0.0320  | -0.9847 | -0.7038 |
| PAXIP1  | 7 | -0.6159 | -0.6169 | -0.4017 | -0.3059 | -0.0269 | 0.0204  | -0.6425 | 0.0773  | -0.4141 | -0.3724 |
| PBXIP1  | 7 | -1327   | -1340   | 0.0362  | 0.4102  | -0.1517 | 0.1068  | -1203   | 0.2838  | -1142   | -1891   |
| PCNX    | 8 | 1580    | 0.5765  | 0.7610  | 1837    | 0.4217  | 0.1481  | 0.6578  | -0.1268 | NA      | 0.5686  |
| PCSK7   | 7 | -0.9050 | -0.8500 | 0.4143  | -0.3303 | -0.0504 | 0.1222  | -0.7038 | NA      | -0.9890 | -1733   |
| PDHB    | 7 | -0.8863 | -0.4557 | -0.5233 | -0.2731 | -0.1002 | -0.1079 | -0.1810 | 0.1227  | -0.4634 | 0.0803  |
| PEX11B  | 7 | -0.4984 | -0.3823 | 0.0786  | -0.1662 | 0.2002  | 0.1191  | -0.3742 | 0.1573  | 0.2260  | -0.0999 |
| PFAS    | 7 | -1221   | -0.9643 | -1301   | -1077   | NA      | 0.0705  | -1029   | -0.0031 | -0.7877 | -1184   |
| PFKFB3  | 7 | 3244    | 3098    | NA      | 2169    | 0.1578  | NA      | 2301    | -0.3428 | 1996    | 1900    |
| PFKP    | 7 | -0.9140 | -0.5487 | -0.7133 | -1450   | -0.3695 | 0.1286  | -0.5317 | -0.0755 | -0.0421 | -1109   |
| PGLYRP1 | 8 | 2857    | 2021    | 2418    | 0.2971  | -0.1818 | 0.6585  | 2351    | 0.2550  | 1904    | 1990    |
| PGM1    | 7 | 0.4804  | 0.4430  | -0.1964 | 0.0721  | -0.4368 | 0.1478  | 0.6687  | -0.1365 | 0.6120  | 0.7023  |

| PGS1     | 7 | 2692    | 1879       | 0.9733  | NA      | 0.3488  | 0.1492  | 1699    | 0.0235  | 1065    | 1828    |
|----------|---|---------|------------|---------|---------|---------|---------|---------|---------|---------|---------|
| PHB      | 7 | -1492   | -0.4595    | -0.7619 | -1344   | -0.0148 | -0.0079 | -0.4502 | 0.0657  | -0.3070 | -0.6408 |
| PHF1     | 8 | -0.5209 | -0.9343    | 0.2182  | 0.4010  | -0.2733 | 0.0263  | -0.8160 | 0.1827  | -0.1582 | -0.6010 |
| PHF21A   | 7 | 1434    | 0.2392     | 0.4214  | 1478    | -0.1193 | 0.0351  | 0.8341  | -0.2067 | 0.5919  | 0.4238  |
| PHKA2    | 8 | 1122    | 0.3473     | 0.6080  | -0.4306 | -0.2093 | 0.2277  | 0.4202  | -0.2262 | 0.4987  | 0.7903  |
| PI4KAP2  | 7 | -0.9652 | -1091      | 0.3258  | NA      | -0.1037 | 0.1373  | -0.5925 | 0.1557  | NA      | -0.5845 |
| PIH1D1   | 7 | -0.9806 | -0.3925    | -0.0931 | -0.2997 | 0.0033  | 0.1232  | -0.2816 | 0.0662  | -0.3515 | -0.2433 |
| PIK3AP1  | 7 | 1947    | 1408835063 | 0.7425  | 2220    | -0.2907 | -0.3173 | 0.9006  | NA      | 0.8721  | NA      |
| PIK3C2B  | 7 | -1856   | -1061      | -0.3779 | -0.0611 | 0.6303  | 0.0305  | -1108   | 0.0765  | -1317   | -1487   |
| PIK3CD   | 9 | 0.7855  | -0.3745    | 0.9875  | 0.6832  | 0.2653  | 0.2345  | -0.3814 | 0.1833  | -0.0933 | -0.4331 |
| PIK3IP1  | 7 | -1700   | -0.8120    | 0.6150  | NA      | 0.4800  | -0.0036 | -13164  | NA      | -1136   | -0.3953 |
| PILRA    | 7 | 0.7311  | -1031      | NA      | 1860    | -0.1447 | 0.1740  | -0.4862 | 0.2252  | -0.4352 | -0.7547 |
| PIP5K1C  | 7 | -0.7147 | -0.3472    | -0.1266 | -0.6051 | -0.1301 | 0.2011  | -0.4330 | -0.0265 | -0.5414 | -0.2649 |
| PLCB2    | 7 | -0.3126 | 0.1347     | 0.9938  | -1033   | -0.6640 | 0.2890  | -0.2117 | 0.2367  | -0.7982 | 0.1086  |
| PLEKHG4  | 7 | -1411   | -0.6620    | -0.3207 | -0.4068 | NA      | 0.0200  | -0.4561 | -0.1688 | -0.1121 | -0.4480 |
| PLEKHO1  | 7 | -0.9442 | -1126      | 0.3178  | 1019    | -0.6584 | -0.0700 | -1170   | NA      | -0.8281 | -1026   |
| PLEKHO2  | 8 | 1095    | 0.2248     | 1033    | NA      | -0.2376 | 0.2639  | 0.2830  | 0.1350  | 0.5171  | 0.3670  |
| PNPO     | 8 | -1049   | -0.5961    | -0.7988 | -0.9322 | -0.1389 | -0.1341 | -0.6062 | -0.1235 | -0.3190 | -0.9400 |
| POGK     | 7 | -0.7379 | -0.7087    | -0.3446 | -0.4678 | -0.0147 | -0.0201 | -0.7508 | 0.0238  | -0.2844 | -0.6250 |
| POLE3    | 7 | -0.9271 | -0.7587    | -0.6797 | -0.3855 | -0.0850 | -0.0612 | -0.4352 | 0.0935  | -0.2288 | -0.2813 |
| POLR1C   | 7 | -1822   | -0.7390    | NA      | -0.6688 | -0.1002 | 0.0859  | -0.5866 | -0.0593 | -0.7445 | -0.5778 |
| POLR2I   | 7 | -1046   | -0.4053    | -0.5478 | -0.4435 | -0.3577 | 0.2501  | -0.0804 | 0.1193  | -0.1584 | 0.1027  |
| POLR3A   | 7 | -0.5978 | -0.4070    | -0.0500 | -0.2510 | -0.1703 | 0.1073  | -0.2671 | -0.0800 | -0.3554 | -0.1435 |
| POP7     | 7 | -0.6228 | -0.0173    | -0.3280 | -0.5935 | NA      | 0.0151  | 0.2325  | 0.1245  | 0.1999  | 0.2076  |
| POR      | 7 | 1667    | 1075       | 0.2932  | -0.6620 | 0.5424  | 0.1490  | 1102    | -0.0057 | 1479    | 0.8437  |
| PPAN     | 7 | -2112   | -0.4115    | -0.5055 | -0.7759 | NA      | 0.0565  | -0.4161 | -0.0676 | NA      | -0.2413 |
| PPHLN1   | 8 | -0.5298 | -0.2073    | -0.1281 | 0.1123  | -0.1999 | -0.0631 | -0.4193 | 0.2012  | -0.3043 | -0.4131 |
| PPM1G    | 7 | -0.5869 | -0.5247    | -0.0238 | -0.4509 | -0.0975 | 0.1960  | -0.4231 | 0.0542  | -0.3659 | -0.4756 |
| PPM1M    | 7 | 1261    | 0.8731     | 1092    | -0.4991 | 0.0708  | -0.0276 | 0.6748  | NA      | 0.6650  | 1172    |
| PPP1R13B | 7 | -2677   | -0.5528    | -0.2721 | 0.5860  | NA      | -0.0180 | -0.5407 | -0.0175 | -0.6486 | -1067   |
| PPP1R2   | 8 | -0.7342 | -1056      | -0.3760 | 0.5510  | -0.1061 | -0.3036 | -0.7337 | NA      | 0.4006  | -0.5853 |

| PPP2R1A | 8 | -0.4270 | -0.5231 | -0.2957 | -0.6300 | -0.2913 | 0.2001  | -0.5258 | -0.1251 | -0.3468 | -0.1189 |
|---------|---|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| PPP2R5A | 7 | 0.6064  | 0.5094  | 0.6731  | -0.9720 | 0.0462  | -0.0257 | 0.2399  | -0.0007 | 0.5327  | 0.2613  |
| PPRC1   | 7 | -1689   | -0.6804 | -0.8518 | -0.6244 | -0.2177 | 0.0452  | -0.7886 | -0.0868 | -0.6939 | -0.9635 |
| PQLC1   | 8 | 0.7059  | 0.6167  | 0.7788  | -0.4513 | 0.2903  | -0.0206 | 0.8092  | NA      | 0.5289  | 0.7390  |
| PRDX5   | 7 | 0.5499  | 0.4420  | NA      | 0.0841  | -0.5171 | 0.2128  | 0.6487  | 0.0887  | 0.5461  | 0.6045  |
| PRDX6   | 7 | 0.5849  | 0.4193  | -0.5429 | 0.1566  | 0.1758  | -0.3923 | 0.4018  | -0.2735 | 0.0304  | 0.4497  |
| PRKAR2A | 7 | 1578    | 0.4885  | 0.2221  | -0.6769 | 0.0930  | 0.0376  | 0.3787  | NA      | 0.5753  | -0.2691 |
| PRKD2   | 7 | NA      | -0.9958 | 0.3128  | 1573    | -0.0133 | 0.1327  | -0.6288 | 0.1342  | -0.2805 | -0.7482 |
| PRKRA   | 7 | -1228   | NA      | -0.3380 | -0.2652 | -0.2597 | -0.1465 | -0.8325 | 0.0983  | -0.6819 | -0.4123 |
| PRMT7   | 7 | -0.9456 | -0.7277 | -0.3993 | -0.6511 | NA      | 0.0321  | -0.4434 | 0.0360  | -1096   | -0.4420 |
| PROK2   | 8 | 1189    | 1316    | 1733    | 1932    | 1138    | -0.3545 | 0.8743  | NA      | 1301    | 0.7231  |
| PRPF19  | 7 | -1730   | -0.5869 | -0.9871 | -0.8878 | NA      | 0.0968  | -0.6212 | 0.0693  | -0.7745 | -0.8846 |
| PRPF31  | 8 | -0.9074 | -0.8900 | -0.3498 | -0.3210 | -0.2855 | 0.2503  | -0.5452 | 0.0797  | -0.4190 | -0.2869 |
| PRPF4   | 7 | -0.5692 | -0.5569 | -0.7260 | -0.3194 | -0.1130 | 0.0667  | -0.5537 | 0.0157  | -0.4130 | -0.3163 |
| PRPS1   | 8 | -1518   | -1181   | -0.7217 | 0.2731  | 0.4682  | 0.0244  | -0.8434 | 0.1343  | -0.5123 | -0.6570 |
| PRPSAP2 | 7 | -0.7025 | -0.5615 | NA      | 0.0092  | -0.3921 | -0.0475 | -0.3612 | 0.1813  | -0.2206 | -0.2099 |
| PRR7    | 7 | -0.9023 | -0.2687 | -0.1529 | -0.0491 | -0.5974 | 0.0859  | -0.1227 | -0.0438 | 0.2489  | 0.3244  |
| PRTN3   | 7 | 1986    | 1667    | 0.9343  | -0.0750 | NA      | 0.6682  | 1945    | NA      | 1039    | 0.6678  |
| PSMC6   | 7 | 0.1209  | 1082    | NA      | -0.4944 | -0.2633 | -0.1062 | 0.9679  | 0.0693  | 0.7144  | 1683    |
| PSTPIP2 | 7 | 2298    | 1935    | 0.9461  | 2707    | -0.1619 | 0.0105  | 1862    | NA      | 2016    | 2125    |
| PTBP1   | 8 | -0.6650 | -0.5412 | -0.5835 | -0.5023 | -0.0460 | 0.3431  | -0.6207 | 0.0175  | -0.7433 | -0.7977 |
| PTDSS1  | 7 | -0.7317 | -0.5829 | -0.0737 | -0.8973 | 0.1007  | 0.2120  | -0.6889 | 0.0773  | -0.4821 | -0.4029 |
| PTEN    | 7 | 0.9732  | 0.7244  | -0.1364 | 0.1853  | 0.3621  | -0.2644 | 0.6842  | 0.2043  | 1005    | 0.6759  |
| PTGES   | 7 | 2631    | 0.3327  | -0.9870 | 4897    | -1477   | 0.0538  | NA      | NA      | 1091    | 0.3396  |
| PTMA    | 7 | -1032   | -0.8895 | -0.9052 | 0.6013  | -0.2854 | -0.5838 | -0.7487 | 0.2867  | NA      | -0.6819 |
| PTPN12  | 7 | 0.8512  | 0.1338  | NA      | 0.9347  | -0.0308 | -0.4275 | 0.4291  | 0.1967  | 0.6083  | 0.6291  |
| PTPRCAP | 7 | -2387   | -1540   | 1162    | 2524    | -0.0437 | 0.1803  | -1025   | 0.3542  | -0.9934 | -1452   |
| PUS7    | 7 | -1881   | -0.4530 | -0.7281 | -1181   | -0.4247 | 0.0307  | -0.9162 | 0.0867  | -0.3316 | -0.7181 |
| PWP1    | 7 | -1265   | -0.9129 | -0.4777 | -0.5311 | 0.0016  | 0.0892  | -0.5970 | 0.1582  | -0.6546 | -0.2524 |
| PYGL    | 8 | 2020    | 1470    | 0.6570  | -0.8065 | 0.3523  | -0.1486 | 1401    | -0.1980 | 0.7832  | 1248    |
| QPCT    | 7 | 1173    | 0.9110  | 0.1164  | 2238    | -0.3976 | 0.0297  | 1327    | NA      | 0.9783  | 0.9485  |

| RAB10   | 7 | 0.6368  | 1228    | -0.0583 | -0.3952 | -0.1596 | -0.2700 | 1037    | -0.1282 | 0.4884  | 0.9415  |
|---------|---|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| RAB11A  | 7 | 0.7049  | 0.4015  | -0.0829 | -0.0615 | -0.0682 | -0.4830 | 0.4371  | 0.1813  | 0.4415  | 0.7587  |
| RAB24   | 7 | 1414    | 0.6998  | NA      | 0.3417  | -0.2439 | 0.0161  | 0.6551  | 0.1040  | 1357    | 1239    |
| RAB27A  | 8 | 1200    | 1172    | 0.0935  | 0.3077  | 0.5159  | 0.0082  | 0.7280  | -0.1988 | 0.9739  | 1201    |
| RAB32   | 7 | 1567    | 1305    | 0.5431  | -0.0547 | -0.1154 | 0.1793  | 1448    | -0.1802 | 1290    | 1991    |
| RAB33B  | 7 | 1056    | 1286    | 0.0272  | 0.7302  | 0.2703  | -0.4242 | 0.4488  | NA      | 1284    | 1237    |
| RAB8B   | 7 | 0.7715  | 1381    | 0.7827  | -0.2436 | -0.1534 | -0.1861 | 0.4556  | 0.1278  | 0.3773  | 0.9487  |
| RABAC1  | 8 | 0.4577  | 0.4156  | 0.8586  | 0.2870  | 0.1750  | 0.4309  | 0.6587  | -0.0462 | 0.6850  | 0.6996  |
| RANBP9  | 7 | 1787    | NA      | -0.1450 | 0.1657  | 0.0218  | -0.0875 | 0.4769  | -0.3132 | 0.4235  | 0.7112  |
| RASGRP1 | 8 | -2084   | -2096   | 0.2404  | 2066    | -0.3786 | -0.2744 | -1972   | NA      | -1617   | -1872   |
| RAVER1  | 7 | -0.6196 | -0.4835 | -0.3363 | 0.3409  | -0.1965 | 0.1630  | -0.3664 | -0.0935 | -0.0611 | -0.1696 |
| RBBP7   | 7 | -1270   | -1009   | -0.9658 | 0.3625  | -0.0283 | -0.1703 | -0.6637 | 0.1253  | -0.8448 | -0.6835 |
| RBM14   | 7 | -0.8289 | -0.4562 | -0.5996 | -0.6809 | -0.0600 | 0.0113  | -0.6110 | -0.0300 | -0.6660 | -0.6534 |
| RBM15B  | 7 | -1534   | -0.2739 | -0.2107 | -0.4556 | NA      | 0.0113  | -0.6321 | NA      | -0.2527 | -0.3949 |
| RBM28   | 7 | -0.8892 | -0.3552 | -0.1791 | -0.5198 | 0.2007  | 0.0530  | -0.1883 | -0.0047 | -0.8773 | -0.2889 |
| RBM4B   | 8 | -1102   | -0.8196 | -0.2980 | 0.1410  | -0.6026 | 0.0628  | -0.7872 | 0.1463  | -0.5348 | -1219   |
| RBMX    | 7 | -0.5735 | -0.6226 | -0.4271 | 0.6569  | 0.0281  | -0.0033 | -0.5775 | -0.0893 | -0.5439 | -0.5867 |
| RCC2    | 7 | -1111   | -0.7161 | -0.7577 | -0.7591 | -0.2356 | -0.0014 | -0.7157 | 0.0685  | -0.6308 | -1230   |
| RCSD1   | 9 | -0.1417 | -0.5015 | 0.6854  | 1393    | -0.6471 | 0.1004  | -0.9063 | 0.2707  | -0.3683 | -0.3681 |
| RDH11   | 7 | -0.2497 | -0.1523 | -0.4686 | 1110    | -0.0922 | -0.2241 | -0.5364 | 0.1980  | -0.4452 | -0.2161 |
| RETN    | 7 | 4390    | 4846    | 1623    | 1364    | 0.1961  | 0.4411  | 3900    | -0.3797 | 2095    | 2687    |
| REV1    | 8 | -1009   | -0.2655 | -0.2966 | 0.1089  | -0.2323 | -0.1120 | -0.3496 | 0.0097  | -0.6235 | -0.4706 |
| RFTN1   | 7 | -1790   | -1647   | 0.4357  | 2243    | 0.1668  | -0.1230 | -1513   | 0.4888  | -1198   | -1773   |
| RFWD2   | 7 | 0.7551  | 0.4881  | 0.0942  | -0.0220 | -0.2039 | -0.2420 | 0.2086  | 0.1945  | NA      | 0.2961  |
| RFX5    | 7 | -0.8003 | -0.6267 | NA      | 1235    | -0.7030 | 0.0708  | -0.6901 | 0.1012  | -0.6479 | -1184   |
| RGL4    | 8 | 3145    | 2577    | 1664    | NA      | -0.3039 | -0.0296 | 2758    | 0.2567  | 1289    | 3255    |
| RGS18   | 9 | 0.1224  | 1022    | 1059    | 1182    | 0.5466  | -0.7070 | 0.6180  | 0.3633  | 0.7234  | 1563    |
| RGS19   | 7 | 0.8798  | 0.3960  | 1010    | 0.0900  | -0.2155 | 0.1693  | 0.2631  | 0.0987  | 0.9272  | 0.8332  |
| RHBDF2  | 7 | 1615    | 0.4290  | 0.0439  | 0.6625  | -0.1252 | 0.1116  | 0.4592  | -0.2148 | 0.9333  | 0.9104  |
| RHOF    | 7 | -1417   | -1243   | -0.3620 | 0.1571  | -0.7976 | 0.0239  | -0.9819 | NA      | -0.9361 | -1163   |
| RHOT2   | 8 | -0.5611 | -0.2210 | 0.0511  | -0.5425 | -0.2048 | 0.1489  | -0.1803 | 0.1233  | -0.3127 | -0.3616 |

| RING1   | 7 | -0.7586 | -0.5995 | -0.3978 | -0.0910 | -0.1952 | 0.1780  | -0.4381 | -0.0167 | -0.2734 | -0.7535 |
|---------|---|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| RNASE2  | 7 | -0.1051 | 2817    | 2234    | 1306    | -0.0208 | 0.8438  | 3135    | NA      | 1615    | 2732    |
| RNASE6  | 7 | -1851   | -0.8361 | 0.9937  | -0.1426 | 0.5708  | -0.0207 | -0.5289 | NA      | -0.6699 | -0.5276 |
| RNASEH1 | 7 | -1274   | -0.2651 | 0.1380  | -0.9747 | -0.2077 | 0.0464  | -0.2212 | 0.0887  | -0.6000 | -0.7185 |
| RNF175  | 7 | -0.3696 | 0.3297  | -0.0422 | 0.2540  | 0.3410  | -0.1014 | 0.3587  | NA      | 0.5690  | 1555    |
| RNF4    | 8 | -0.5816 | -0.7819 | 0.2413  | -0.0953 | -0.1991 | -0.1083 | -0.6267 | 0.1298  | -0.1837 | -0.5669 |
| RNH1    | 7 | -0.8132 | -0.4199 | 0.0337  | -1389   | NA      | 0.1455  | -0.3514 | 0.0195  | -0.2261 | -0.5405 |
| RNMT    | 7 | -1395   | -0.7831 | -0.2229 | -0.5843 | -0.3785 | 0.1017  | -0.8137 | 0.0563  | -0.6368 | -1092   |
| RPA1    | 7 | -1265   | -1136   | -0.2458 | -0.3057 | -0.1748 | -0.0930 | -1073   | 0.3303  | -0.8802 | -0.9048 |
| RPL18   | 7 | -1294   | -1427   | -0.3118 | NA      | -0.1141 | 0.0153  | -0.9036 | 0.3453  | -0.5948 | -1257   |
| RPL26L1 | 7 | -0.5574 | 0.6661  | -0.3915 | -0.6615 | 0.2521  | 0.0329  | 0.8520  | -0.0603 | -0.1833 | 1202    |
| RPL29   | 8 | NA      | -0.9939 | -1031   | -0.9164 | NA      | 0.0780  | -0.5351 | 0.2507  | -0.3801 | -0.7447 |
| RPL32   | 7 | -0.9101 | -0.8451 | -0.0010 | -0.1887 | -0.1247 | -0.0030 | -0.4625 | 0.3633  | -0.7267 | -0.2864 |
| RPL36   | 7 | -1495   | -1163   | -0.2340 | 0.0911  | -0.0015 | 0.0119  | -0.6999 | 0.2655  | -0.3571 | -0.5322 |
| RPL36A  | 7 | NA      | 0.3180  | -1081   | -0.1358 | NA      | -0.0563 | 0.4049  | 0.3680  | -0.4168 | 0.6362  |
| RPL37A  | 7 | -0.8739 | -0.6155 | -0.1404 | -0.5702 | -0.0741 | -0.0128 | -0.6025 | 0.3430  | NA      | -0.4223 |
| RPL4    | 7 | -1468   | -1070   | -0.5771 | -0.7385 | 0.0160  | -0.0138 | -0.5424 | 0.2918  | -0.7910 | -0.6174 |
| RPS13   | 7 | -0.9926 | -0.6324 | -0.5417 | -0.6154 | -0.0823 | -0.0616 | -0.4082 | 0.2370  | -0.0024 | -0.1990 |
| RPS15   | 9 | -1166   | -0.8418 | -0.4925 | -0.8488 | 0.0338  | 0.0922  | -0.6080 | 0.3007  | -0.5968 | -0.6624 |
| RPS16   | 7 | -0.8017 | -0.6789 | -0.0643 | -0.2239 | 0.1677  | -0.1742 | -0.4744 | 0.3388  | -0.8580 | -0.6479 |
| RPS19   | 7 | -0.6976 | -0.8979 | -0.1873 | -0.0388 | -0.1196 | -0.0234 | -0.5021 | 0.3020  | -0.6981 | -0.7129 |
| RPS9    | 7 | -0.4845 | -0.3524 | -0.0443 | -0.2244 | 0.2107  | 0.2326  | -0.0249 | 0.2947  | 0.3030  | 0.2208  |
| RPUSD4  | 7 | -1277   | -0.8092 | -0.5028 | -0.4674 | -0.1095 | 0.0244  | -0.6266 | -0.0393 | -0.3140 | -0.9402 |
| RRN3    | 7 | -1488   | -0.6501 | -0.5717 | -0.3272 | -0.1902 | -0.0778 | -0.7839 | 0.3442  | -0.7449 | -0.8487 |
| RRS1    | 7 | -1713   | -0.9144 | -0.6941 | -1262   | NA      | 0.0639  | -1143   | 0.0738  | -0.3055 | -0.9235 |
| RSAD1   | 7 | -1621   | -1152   | -0.2604 | -0.5725 | NA      | 0.0106  | -1086   | 0.1505  | -0.7041 | -0.9363 |
| RUSC1   | 7 | -0.9274 | -0.4549 | -0.8769 | -0.4730 | 0.0301  | 0.1451  | -0.5401 | -0.0971 | 0.1787  | -0.3184 |
| S100A12 | 8 | 3179    | 3376    | 2459    | 2496    | -0.0276 | 0.4381  | 3234    | 0.1883  | 1965    | 3506    |
| S100A6  | 7 | 0.9528  | 0.8264  | 0.4043  | -0.8508 | -0.1367 | -0.3078 | 0.8422  | 0.0818  | 0.5639  | 1060    |
| S100A8  | 8 | 0.9531  | 1298    | 2591    | 2672    | 0.0249  | 0.1596  | 1128    | 0.3317  | 1548    | 2422    |
| S100A9  | 8 | 0.8986  | 1362    | 2238    | 3318    | -0.0541 | 0.0801  | 1505    | 0.3567  | 1157    | 2223    |

| SAP30L   | 7 | 1181    | 0.3112  | -0.1292 | 0.6875  | -0.0425 | -0.3152 | 0.4211  | NA      | 0.4234  | 1063    |
|----------|---|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| SCRN1    | 7 | -1543   | -1302   | -0.0392 | -0.6325 | NA      | 0.1065  | -1280   | 0.4153  | -0.5716 | -0.9078 |
| SDCBP    | 7 | 1533    | 0.4198  | NA      | -0.1350 | 0.0568  | -0.3893 | 0.3529  | 0.1747  | 0.4741  | 0.4593  |
| SDF2     | 7 | 0.6842  | 0.6202  | 0.2716  | 0.3602  | -0.2284 | 0.0103  | 0.7250  | 0.1073  | 0.6031  | 1223    |
| SDHAF1   | 7 | NA      | -0.5086 | -0.1627 | NA      | -0.4149 | NA      | -0.2685 | 0.1053  | -0.2194 | -0.2042 |
| SDHC     | 7 | 0.6576  | 0.4637  | NA      | -0.9551 | -0.0089 | -0.0425 | 0.3488  | -0.2051 | 0.8487  | 0.5069  |
| SELL     | 8 | 1519    | 0.2594  | 2199    | 2331    | 0.1351  | 0.2592  | 0.3431  | 0.3027  | 0.2188  | 0.4853  |
| SEMA4A   | 8 | 1603    | 0.5967  | 1022    | 2100    | -0.2761 | 0.3953  | 0.7471  | NA      | 0.7320  | NA      |
| SENP5    | 7 | 0.8974  | -0.1726 | -0.0794 | 0.3287  | -0.1890 | -0.0545 | -0.3448 | -0.0263 | -0.2127 | -0.1761 |
| SEPHS2   | 7 | 1296    | 0.5262  | 0.2670  | -0.1837 | 0.0891  | -0.2413 | 0.7033  | -0.2232 | 1096    | 1195    |
| SERPINB1 | 8 | 1993    | 2293    | 0.7577  | 0.9335  | 0.0027  | 0.2177  | 1827    | -0.1703 | 1412    | 1464    |
| SET      | 7 | -1018   | -0.8132 | -0.7531 | -0.4266 | -0.3611 | 0.0584  | -0.4764 | 0.3077  | -0.1576 | -0.5795 |
| SF3A3    | 7 | -1648   | -1030   | -0.3909 | -0.5770 | -0.4115 | -0.0376 | -0.7957 | -0.0390 | -0.6253 | -0.9132 |
| SFXN5    | 7 | 0.7346  | 0.3944  | 0.2461  | -0.4978 | NA      | 0.1768  | 0.3495  | NA      | 0.6126  | 0.9542  |
| SH2B2    | 7 | 1042    | -0.3004 | 0.6076  | 0.0982  | -0.1755 | 0.1509  | 0.4685  | -0.0043 | 0.5987  | 0.2462  |
| SH2D1A   | 9 | -2500   | -0.2216 | 0.5304  | 0.9929  | 0.0551  | -0.2342 | -0.4833 | 0.5462  | -0.9048 | -0.6259 |
| SH3GLB1  | 7 | 1883    | 0.7652  | 0.8302  | 0.2292  | 0.4258  | -0.0207 | 1365    | NA      | 1298    | 1577    |
| SIL1     | 7 | 1346    | 0.3996  | -0.0290 | -0.7526 | 0.2331  | 0.0479  | 0.4803  | -0.2526 | 0.5414  | 0.6244  |
| SIN3B    | 7 | -0.6470 | -0.5930 | 0.0234  | -0.3616 | -0.3990 | 0.1198  | -0.5753 | 0.1514  | -0.5225 | -0.2942 |
| SIPA1    | 7 | 0.5197  | -0.2904 | 0.7749  | 0.8450  | -0.3038 | -0.2671 | -0.1452 | 0.0617  | 0.1592  | 0.2431  |
| SKAP1    | 7 | -3022   | -1549   | NA      | 1575    | NA      | -0.0487 | -1362   | 0.6445  | -1519   | -1697   |
| SKAP2    | 7 | 1212    | 1150    | NA      | -0.1672 | 0.3116  | -0.0263 | 0.4105  | 0.2502  | 0.7940  | 0.9117  |
| SLA      | 8 | 1515    | 0.8058  | NA      | 2520    | 0.5645  | -0.0945 | 0.8261  | 0.1800  | 0.7315  | 0.9017  |
| SLC11A1  | 7 | NA      | 0.8181  | NA      | 1280    | 0.3555  | 0.1017  | 0.9404  | 0.1533  | 0.5415  | 0.4250  |
| SLC12A9  | 7 | 1007    | 0.3694  | 0.8990  | -0.1769 | 0.4317  | 0.1370  | 0.5635  | 0.0697  | 0.9073  | 0.7099  |
| SLC22A4  | 7 | NA      | 1471    | NA      | 0.8514  | 0.2262  | NA      | 1690    | -0.2568 | 1514    | 1739    |
| SLC25A5  | 7 | -0.7192 | -0.7125 | -0.5987 | -0.5593 | -0.0675 | -0.0128 | -0.3988 | 0.0905  | -0.3293 | -0.3824 |
| SLC35A5  | 8 | 0.7116  | 0.8087  | 0.4888  | 0.5800  | -0.1802 | -0.1943 | 0.5193  | -0.0152 | 0.6476  | 0.7976  |
| SLC35B2  | 9 | -0.9764 | -0.6854 | -0.4117 | 0.4798  | -0.6840 | 0.1766  | -0.3965 | -0.1180 | -0.4178 | -0.4616 |
| SLC39A10 | 7 | -1551   | -1122   | -0.5281 | -0.5062 | NA      | -0.0015 | -1088   | NA      | -0.8353 | -0.6516 |
| SLC41A1  | 7 | -2534   | -1017   | -0.3790 | 0.4113  | NA      | 0.0296  | -0.7718 | NA      | -0.7146 | -1045   |

| SLC5A6   | 8 | -1124   | -0.3240 | -0.5830 | -1129   | 0.0420  | 0.1518  | -0.2732 | -0.0725 | -0.3140 | -0.6741 |
|----------|---|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| SLC9A3R1 | 9 | -0.8568 | -0.7930 | 0.4707  | 0.7416  | -0.3524 | -0.0841 | -0.5423 | 0.1933  | -0.6200 | -0.9987 |
| SMAD4    | 7 | -0.1147 | -0.5725 | -0.2591 | 0.5421  | -0.0645 | -0.3361 | -0.4416 | -0.3269 | -0.2719 | -0.7329 |
| SMAD7    | 7 | NA      | -0.7782 | -0.0580 | 0.9663  | -0.6749 | -0.0503 | -0.9340 | 0.1421  | -0.3266 | -0.6682 |
| SMARCC1  | 7 | -0.6121 | -0.5971 | -0.7491 | -0.7273 | 0.0758  | 0.0404  | -0.7523 | -0.0622 | -0.4942 | -0.3844 |
| SMCHD1   | 7 | -0.0041 | -0.5942 | 0.4260  | NA      | 0.3132  | -0.0136 | -0.7067 | 0.2937  | -0.4549 | -0.6948 |
| SMYD3    | 7 | -1896   | -0.5122 | -0.3682 | 0.1237  | NA      | -0.0430 | -0.4424 | 0.2420  | -0.8623 | -0.3851 |
| SND1     | 7 | -0.4295 | -0.5722 | -0.4964 | -1086   | 0.0655  | 0.2284  | -0.4892 | 0.0012  | -0.5410 | -0.6488 |
| SNRPA    | 8 | -0.7231 | -0.8618 | -0.5869 | -0.5656 | NA      | 0.1763  | -0.4836 | 0.0045  | -0.2495 | -0.3713 |
| SNRPG    | 7 | -0.4717 | 0.8246  | -0.6732 | -0.5127 | -0.1976 | 0.1627  | 0.9959  | 0.1617  | NA      | 1560    |
| SNX10    | 8 | 1440    | 0.9225  | 0.2582  | 1558    | -0.0681 | -0.7789 | 0.4141  | 0.1328  | 0.9261  | 1001    |
| SORT1    | 7 | 2709    | 1624    | 0.3069  | -2067   | 1131    | 0.4064  | 1283    | -0.2750 | 1623    | NA      |
| SPATA5L1 | 7 | 0.0861  | 0.2643  | -0.4580 | -0.2753 | -0.2172 | 0.0223  | 0.2632  | -0.0447 | 0.3153  | 0.2601  |
| SPNS3    | 8 | -3069   | -0.5394 | 0.3029  | NA      | -0.2130 | 0.0934  | -0.2150 | 0.4308  | -0.6860 | -0.4691 |
| SPOCK2   | 7 | -2750   | -0.7197 | 0.7699  | 2908    | -0.1517 | -0.0798 | -1036   | NA      | -1562   | -1387   |
| SPPL2A   | 8 | 1590    | 1358    | 0.4457  | 0.8606  | -0.3926 | 0.0908  | 1095    | -0.0585 | 0.7220  | 1272    |
| SRFBP1   | 7 | -1339   | -0.236  | -0.1686 | -0.5557 | NA      | -0.0447 | -0.2459 | -0.1550 | -0.3528 | -0.3013 |
| SRGN     | 8 | 0.7517  | 0.424   | NA      | 0.6052  | -0.0304 | -0.2876 | 0.8230  | 0.3483  | 0.3421  | 0.6888  |
| SRM      | 7 | -1332   | -0.962  | -0.8002 | -1303   | -0.0089 | 0.1898  | -0.3862 | -0.0678 | -0.4970 | -0.4403 |
| SRP68    | 9 | -0.8930 | -0.622  | -0.3637 | 0       | -0.2897 | 0.2001  | -0.5911 | 0.1137  | -0.4721 | -0.4023 |
| SRP72    | 7 | -0.9245 | -0.555  | -0.3050 | -0.5069 | -0.1304 | 0.0570  | -0.4980 | -0.0098 | -0.5226 | -0.2429 |
| SRPRB    | 7 | -1560   | -1268   | -0.6285 | -1768   | NA      | 0.1123  | -0.6123 | 0.2365  | -0.4285 | -1042   |
| SRRM1    | 7 | -0.4958 | -0.6979 | -0.4521 | -0.0265 | -0.1053 | -0.0692 | -1174   | 0.1459  | -0.6669 | -0.9162 |
| SSRP1    | 7 | -1057   | -0.9197 | -0.4751 | -0.5796 | 0.0050  | -0.0076 | -0.9151 | 0.0505  | -1005   | -1144   |
| ST3GAL1  | 7 | -0.0365 | -0.4319 | 0.1614  | 1998    | 0.4593  | 0.0014  | -0.7450 | -0.0415 | -0.2951 | -0.6841 |
| ST3GAL2  | 8 | 1090    | 0.2232  | 0.2671  | 0.6454  | -0.2933 | 0.0145  | 0.4270  | -0.1080 | 0.6535  | 0.2117  |
| ST6GAL1  | 7 | NA      | -1321   | -0.0011 | 0.2425  | -0.3073 | 0.0162  | -1512   | 0.2763  | -1093   | -1710   |
| ST6GALN  | 7 | -1572   | -0.2776 | 0.3097  | -0.2111 | 0.3432  | 0.0275  | -1      | 0.2095  | -0.6989 | -0.4765 |
| STAM2    | 7 | 1014    | 0.3988  | 0.1519  | 0.7679  | -0.0997 | -0.0802 | 0.2237  | NA      | 0.4957  | 0.4836  |
| STARD7   | 7 | -0.7261 | -0.3611 | 0.1429  | -0.7831 | -0.2288 | 0.1736  | -0.5655 | 0.0860  | -0.5221 | -0.6118 |
| STAT4    | 7 | -1591   | -1644   | 0.6156  | 3171    | -0.1177 | 0.0015  | -1498   | NA      | -1022   | -1629   |

| STK10    | 7 | 0.2687  | -0.4570 | 0.6961  | -0.0394 | -0.1906 | 0.1807  | -0.3528 | 0.1283  | -0.5385 | -0.4843 |
|----------|---|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| STK40    | 7 | 0.3309  | -0.4980 | 0.2104  | -0.3196 | -0.1659 | -0.0242 | -0.4447 | 0.1582  | -0.0554 | -0.2532 |
| STOM     | 7 | 2206    | 2672    | NA      | 1751    | NA      | -0.1268 | 2054    | -0.7320 | 1606    | 1921    |
| SUCLG1   | 7 | 0.2048  | 0.3333  | -0.1853 | -0.6166 | -0.3525 | -0.1666 | 0.4267  | -0.0896 | 0.5429  | 0.8965  |
| SUMF1    | 8 | 0.7006  | 0.7057  | -0.1327 | -0.6872 | 0.5163  | -0.1920 | 0.3743  | -0.1374 | 0.0485  | 0.8099  |
| SUPT16H  | 9 | -0.9037 | -0.5900 | -0.6110 | -0.6549 | -0.2258 | 0.1989  | -0.6706 | -0.1046 | -0.8505 | -0.4302 |
| SUPV3L1  | 7 | -1253   | -0.5066 | -0.4505 | -0.0957 | NA      | 0.0649  | -0.4488 | -0.0008 | -0.6506 | -0.7491 |
| SURF6    | 7 | -0.8368 | -0.4505 | -0.7297 | -0.2108 | -0.4692 | 0.1074  | -0.3465 | 0.1204  | -0.5427 | -0.0163 |
| TAF15    | 7 | -0.6782 | -0.9450 | NA      | -0.3290 | -0.2524 | 0.0353  | -0.4338 | -0.2523 | -0.8938 | -1536   |
| TAF4     | 7 | -1338   | 0.0911  | -0.4594 | -0.2185 | -0.2885 | -0.1585 | -1158   | 0.2276  | -0.8033 | -0.4505 |
| TARBP2   | 8 | -1340   | -0.3484 | -0.5166 | -0.8385 | 0.1399  | 0.0495  | -0.1633 | -0.0045 | 0.1456  | -0.3294 |
| TATDN2   | 7 | -0.7039 | -0.3856 | 0.2747  | -0.1281 | -0.1820 | 0.1459  | -0.4138 | -0.0242 | -0.8325 | -0.6771 |
| TBC1D10A | 8 | -0.9096 | -0.7332 | 0.1553  | 0.5781  | -0.5082 | 0.0169  | -0.6564 | 0.1720  | -0.2557 | -0.1666 |
| TBC1D10C | 8 | -0.6220 | -0.7808 | 1608    | 0.9601  | -0.3686 | 0.1763  | -0.4266 | 0.2650  | -0.1324 | -0.3468 |
| TBC1D14  | 8 | 1030    | 0.4231  | 0.5795  | -0.4870 | 1309    | 0.2741  | 0.2110  | -0.0893 | 0.4382  | 0.7059  |
| TBC1D9   | 7 | -2065   | -0.2849 | -0.1887 | 2415    | NA      | -0.0684 | -0.3458 | -0.1871 | -1047   | -0.1980 |
| TBCD     | 7 | -1011   | -0.2882 | -0.1245 | -0.0359 | 0.0190  | 0.1509  | -0.4769 | 0.1062  | -0.4965 | -0.5375 |
| TBL3     | 8 | -1180   | -0.5016 | -0.2550 | -0.5121 | NA      | 0.0562  | -0.3296 | 0.0977  | -0.2818 | -0.3187 |
| TGIF2    | 7 | -0.7214 | -0.7403 | -0.2946 | 0.3160  | -0.7186 | -0.0301 | -0.7755 | NA      | -0.6188 | -0.6150 |
| THOC1    | 7 | -1705   | -0.5725 | -0.5265 | -0.2673 | -0.7235 | -0.0257 | -0.6638 | NA      | -0.9605 | -0.7919 |
| TIGD2    | 7 | -1121   | -0.5322 | -0.1505 | -0.2664 | NA      | 0.0516  | -0.3989 | NA      | -0.0490 | -0.3356 |
| TIMM44   | 7 | -2119   | -0.3988 | -0.4826 | -0.8441 | NA      | 0.0639  | -0.1547 | -0.0055 | -0.5016 | -0.0371 |
| TIMM9    | 7 | -1731   | -0.8405 | -0.6592 | -0.5759 | 0.1582  | 0.0526  | -0.4709 | 0.0483  | -0.3171 | -0.4971 |
| TK1      | 8 | 1399    | 0.5577  | -0.8414 | 0.6576  | NA      | 0.2216  | 0.7321  | -0.1367 | 0.5353  | 0.5910  |
| TLR2     | 7 | 2623    | 0.5921  | 0.1784  | 1665    | 2346    | -0.0116 | 0.8493  | NA      | 0.9794  | 0.8085  |
| TLR5     | 8 | 2893    | 2407    | 1553    | -0.7302 | 0.9072  | 0.3242  | 2232    | -0.2747 | 2244    | 2198    |
| TMBIM4   | 7 | 0.4384  | 0.3155  | 0.5150  | 0.2343  | -0.1347 | -0.2313 | 0.5992  | NA      | 0.4368  | 0.7631  |
| TMC8     | 7 | -1058   | -1231   | 0.2929  | 0.1418  | -0.3539 | -0.0070 | -1319   | 0.1475  | -1155   | -1237   |
| TMCC1    | 7 | NA      | -0.8907 | 0.0167  | -0.4680 | -0.3842 | -0.0777 | 0.0196  | 0.4577  | -0.5610 | 0.1338  |
| TMEM106  | 7 | -1178   | -0.8566 | -0.0840 | 0.0271  | 0.4313  | -0.2223 | -0.3917 | -0.0212 | -0.3167 | -0.6565 |
| TMEM109  | 9 | -1529   | -0.9417 | -0.4742 | 0.0564  | -0.3192 | 0.1608  | -1103   | 0.3405  | -0.8052 | -0.8988 |

| TMEM120  | 7 | 1225    | 0.7815  | 0.6567  | NA      | 0.2171  | 0.0926  | 0.9782  | 0.1207  | 1292    | 1272    |
|----------|---|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| TMEM14A  | 7 | -2858   | -0.7370 | -0.7082 | 0.5065  | NA      | 0.0167  | -0.6888 | 0.0995  | -0.5128 | -0.8180 |
| TMEM165  | 7 | 2388    | 0.3037  | -0.0118 | 0.9180  | 0.0530  | -0.1097 | 1072    | -0.3131 | 1203    | 0.5090  |
| TMEM50B  | 8 | -1050   | -0.5495 | 0.1129  | 0.1914  | -0.2756 | 0.0678  | -0.4452 | 0.2177  | -0.4565 | -0.8954 |
| TMEM55A  | 7 | 0.7303  | 0.9715  | 0.3678  | 0.0268  | -0.3011 | -0.2813 | 0.7226  | 0.1963  | NA      | 1344    |
| TNFAIP2  | 8 | 0.4110  | -1356   | 0.4590  | -0.6880 | -0.7578 | 0.2274  | -1077   | 0.5083  | -0.5594 | NA      |
| TNFAIP3  | 7 | 1665    | 0.2286  | 0.5070  | 1573    | 0.4120  | -0.0337 | 0.2375  | -0.2832 | 0.8173  | 0.6126  |
| TNFRSF1E | 8 | 0.7116  | -0.3942 | 1735    | 0.9467  | -0.1915 | -0.1531 | -0.3138 | 0.0583  | -0.3408 | -0.4768 |
| TNFRSF25 | 7 | -2918   | -0.9263 | 0.0826  | 2190    | -0.3170 | 0.0021  | -0.1416 | 0.4133  | -1035   | -0.4051 |
| TNNI2    | 7 | 1112    | 0.3062  | 0.1468  | -1727   | -0.4388 | -0.0037 | 0.4726  | 0.0593  | 0.3584  | 0.7626  |
| TOLLIP   | 7 | 0.9153  | 0.4728  | 0.3831  | -0.7089 | -0.0709 | 0.0981  | 0.2641  | -0.0188 | 0.4376  | 0.5506  |
| TOR1AIP1 | 7 | 0.4440  | 1022    | 0.4885  | 0.7698  | -0.1907 | -0.2891 | 0.0906  | NA      | 0.3383  | 0.7735  |
| TPD52L2  | 8 | 0.8269  | 0.3755  | NA      | -0.8495 | 0.2524  | -0.2301 | 0.4410  | -0.0108 | 0.4932  | 0.6106  |
| TPM3     | 7 | 1115    | 0.3058  | 0.1324  | -0.4474 | 0.1568  | -0.0122 | 0.1618  | 0.1062  | 0.1623  | 0.1422  |
| TPST2    | 7 | 1350    | 1032    | NA      | -0.1441 | 0.5977  | -0.0979 | 1317    | -0.2593 | 0.6508  | 1289    |
| TRAF3IP3 | 8 | -1084   | -0.9901 | 0.9521  | 0.8512  | 0.1095  | 0.2047  | -0.5727 | NA      | -0.3459 | -0.5340 |
| TRAM2    | 7 | -0.7622 | -0.3934 | -0.3214 | -0.7241 | NA      | 0.1334  | -0.3614 | 0.0265  | -0.4435 | -0.4097 |
| TRAP1    | 8 | -1940   | -0.5924 | -0.8546 | -1016   | NA      | 0.0974  | -0.4730 | -0.0590 | -0.9420 | -0.8005 |
| TRIM25   | 8 | 1547    | 0.6809  | 0.9085  | -0.4310 | 1425    | 0.2985  | 0.8264  | -0.1132 | 0.8813  | 0.7786  |
| TRIM28   | 7 | -1206   | -1328   | -0.2460 | -0.0900 | -0.2797 | 0.2018  | -1003   | -0.0203 | -0.6696 | -0.5282 |
| TRIP6    | 7 | 0.3448  | -0.0389 | -0.7522 | -0.8011 | 0.0936  | 0.1163  | 0.3555  | -0.3588 | 0.7784  | 0.3416  |
| TRIT1    | 7 | -1941   | -0.7887 | -0.6594 | -0.0685 | -0.1756 | -0.1123 | -0.8171 | -0.0070 | -0.9609 | -1105   |
| TROAP    | 7 | 1595    | 0.3320  | -0.6112 | 0.2352  | NA      | 0.0723  | NA      | -0.1193 | 0.3327  | 0.5519  |
| TRPM2    | 7 | NA      | 0.5240  | 0.0390  | 0.1285  | 0.9064  | 0.0597  | 0.5573  | -0.6504 | 1458    | 0.7464  |
| TSFM     | 7 | -0.9422 | -0.2548 | -0.3358 | 0.7339  | NA      | 0.0196  | -0.3751 | 0.0733  | -0.4964 | -0.2870 |
| TSPAN14  | 7 | 1098    | 0.4127  | 0.5230  | 0.9741  | 0.4927  | 0.0823  | 0.1559  | NA      | 0.3751  | 0.4346  |
| TSPYL1   | 8 | -0.5023 | -0.6697 | 0.1388  | 0.6793  | -0.1194 | -0.2039 | -0.7037 | 0.2586  | -0.1147 | -0.8409 |
| TXNIP    | 8 | 0.1222  | -0.8072 | 0.9431  | -0.6712 | 0.3129  | -0.2881 | -0.6557 | 0.3275  | -0.4435 | -0.7045 |
| TYROBP   | 7 | 0.5326  | 0.3346  | 2571    | 0.0256  | -0.0866 | 0.1622  | 0.4284  | 0.4187  | 0.1112  | 0.2627  |
| UBA3     | 7 | 0.7493  | 0.7061  | 0.2130  | NA      | -0.2303 | -0.0795 | 0.6410  | 0.1232  | 0.3377  | 0.9694  |
| UBA52    | 8 | -0.4664 | -0.2449 | -0.3657 | -0.4967 | -0.0237 | -0.1202 | -0.3370 | 0.3025  | -0.1509 | -0.2123 |

| UBAP1  | 7 | 0.9814  | 0.6758  | 0.5291  | 0.6209  | 0.1402  | -0.0938 | 0.6790    | -0.1020 | 0.6093  | 0.6185  |
|--------|---|---------|---------|---------|---------|---------|---------|-----------|---------|---------|---------|
| UBE2A  | 7 | 0.4985  | 0.3416  | NA      | 0.3703  | 0.1306  | -0.0822 | 0.4846    | -0.0693 | 1049    | 0.6618  |
| UBE2C  | 7 | NA      | 0.6204  | -0.3474 | 0.4449  | NA      | -0.0171 | 1049      | -0.3005 | 0.6394  | 0.9338  |
| UBE2E2 | 7 | -1618   | -0.6297 | -0.4702 | -0.5517 | 0.0510  | -0.0606 | -0.7653   | NA      | -0.3112 | -0.7176 |
| UBE2Q2 | 7 | -1386   | -1166   | -0.1727 | -0.0190 | 0.1096  | -0.2569 | -10896518 | 0.3948  | -0.5669 | -0.6049 |
| UBE2W  | 7 | 0.9172  | 0.9399  | -0.0032 | 0.1399  | 0.1633  | -0.0812 | 0.7693    | 0.1480  | 1098    | NA      |
| UBTD1  | 7 | 0.9526  | 0.4504  | 0.8371  | -0.7243 | 0.0908  | 0.2184  | 0.4151    | 0.0092  | 0.6928  | 0.5079  |
| UFSP2  | 7 | -1389   | -0.8665 | -0.3098 | NA      | -0.3860 | 0.0264  | -0.4623   | 0.0070  | -0.7821 | -0.3298 |
| UGCG   | 8 | 3108    | 2292    | 0.7518  | 1391    | 0.5244  | 0.2591  | NA        | -0.4981 | 2417    | 2377    |
| UPF1   | 7 | 0.0062  | -0.4455 | 0.1741  | -0.4774 | 0.2156  | 0.1559  | -0.4188   | 0.0313  | -0.2166 | -0.2089 |
| UPRT   | 7 | -1079   | -0.6725 | -0.3976 | -0.1847 | -0.1049 | -0.0350 | -0.8049   | 0.2247  | -0.4206 | -0.4002 |
| UQCRQ  | 7 | -0.4393 | 0.6027  | -0.6053 | -0.6862 | -0.0893 | 0.4978  | 0.9973    | 0.2737  | 0.2446  | 1787    |
| UROS   | 7 | -1184   | -0.5155 | -0.4780 | -1011   | 0.0603  | 0.0235  | -0.3507   | 0.3027  | -0.1900 | -0.1870 |
| USP3   | 9 | 0.8324  | 0.3466  | 0.4607  | 0.4092  | 0.2349  | 0.1950  | 0.3761    | NA      | 0.2261  | 0.3918  |
| UTP14A | 7 | -1028   | -0.6598 | -0.2759 | -0.4375 | NA      | 0.0801  | -0.1317   | -0.0293 | -0.5293 | -0.2210 |
| UTP6   | 7 | -0.4606 | -0.6130 | -0.3854 | -0.2190 | -0.3775 | -0.1464 | -0.1910   | 0.3194  | -0.6423 | -0.2927 |
| UXT    | 7 | -0.6771 | -0.5537 | -0.2192 | 0.2534  | -0.1677 | 0.1760  | -0.2396   | 0.1187  | 0.1981  | 0.1318  |
| VAMP2  | 7 | -0.7742 | -0.7679 | 0.6534  | 0.1458  | -0.0074 | 0.1912  | -1005     | NA      | -0.1915 | -0.6144 |
| VAMP7  | 7 | 0.5348  | 0.8423  | 0.0202  | NA      | -0.1808 | -0.0976 | 0.6063    | 0.1249  | 0.9273  | 1282    |
| VDAC1  | 8 | -0.6655 | 0.1759  | -0.6400 | -0.8456 | -0.3012 | 0.3027  | -0.3558   | -0.1158 | 0.2484  | -0.5865 |
| VIPR1  | 7 | -1135   | -0.7691 | 0.3867  | 0.3517  | 0.0125  | 0.0855  | -0.6402   | NA      | -0.8810 | -0.9299 |
| VNN2   | 7 | 1287    | 1197    | -0.0060 | 0.4449  | 0.1930  | 0.0349  | 1275      | 0.3683  | 0.3423  | 0.8356  |
| WBP11  | 8 | -0.9854 | -1138   | -0.1068 | -0.1123 | -0.3870 | -0.0215 | -1071     | 0.2458  | -0.7676 | -0.5449 |
| WDR46  | 8 | -1298   | -0.2804 | -0.5209 | -0.8083 | -0.2043 | 0.2169  | -0.4168   | 0.0035  | -0.4646 | -0.4055 |
| WDR54  | 7 | -2212   | -1365   | -0.9207 | 0.9382  | -0.2383 | -0.0178 | -0.8828   | 0.0143  | -0.5914 | -1356   |
| WDR74  | 7 | -2395   | -0.8731 | NA      | -0.1708 | 0.3006  | -0.0059 | -0.3071   | 0.0095  | -0.5264 | -0.4698 |
| WDR77  | 8 | -1391   | -0.3531 | -0.4701 | -0.3472 | -0.0118 | 0.0949  | -0.2687   | -0.0008 | -0.6952 | -1191   |
| WDR82  | 7 | -0.6459 | -0.8255 | 0.6965  | NA      | -0.1470 | 0.2130  | -0.8770   | NA      | -0.5535 | -0.8664 |
| XPO5   | 7 | -1533   | -0.3921 | -0.6189 | -0.5137 | NA      | 0.0182  | -0.4918   | 0.0715  | -0.7472 | -0.5007 |
| XPO6   | 7 | 1101    | 0.1135  | 0.7783  | -0.2591 | 0.9796  | 0.2671  | 0.3172    | 0.0800  | 0.1704  | 0.2527  |
| XRCC6  | 7 | -1      | -0.9041 | NA      | -0.1350 | -0.0987 | 0.2342  | -0.5597   | 0.2948  | -0.2730 | -0.7702 |

| YWHAQ   | 8 | -0.6238 | -0.4144 | -0.6234 | -0.4648 | -0.0012 | -0.3958 | -0.5066 | 0.0198  | -0.3001 | -0.2767 |
|---------|---|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| YY1     | 7 | -0.0819 | -0.5354 | NA      | 0.2860  | -0.2330 | -0.4709 | -0.3018 | 0.1756  | -0.1418 | -0.3430 |
| ZBTB2   | 7 | -0.9999 | -0.5737 | -0.1414 | 0.4974  | -0.2204 | -0.0989 | -0.7992 | -0.0490 | -0.2781 | -0.3738 |
| ZBTB4   | 7 | -1499   | -0.7238 | NA      | 0.2050  | -0.2207 | -0.1087 | -0.6413 | 0.3188  | -0.7208 | -1533   |
| ZBTB9   | 7 | -2073   | -0.6368 | -0.4368 | -0.6536 | NA      | 0.0626  | -0.5928 | NA      | -0.2987 | -0.5524 |
| ZC3H12A | 9 | 1978    | 0.3764  | 0.5785  | 1456    | -0.2232 | 0.1805  | 0.4818  | -0.2188 | 0.6718  | 0.7471  |
| ZDHHC12 | 7 | 1023    | 0.3633  | 0.2811  | 0.0996  | -0.1959 | 0.2239  | 0.3467  | NA      | 0.8635  | 0.8167  |
| ZDHHC3  | 7 | 1389    | 1180    | 0.2169  | -0.2116 | 0.1381  | 0.1696  | 0.5437  | NA      | 0.9065  | 1445    |
| ZMYND19 | 7 | -1922   | -0.3181 | -0.7605 | -0.5745 | NA      | 0.0429  | -0.2665 | NA      | -0.3709 | -0.2576 |
| ZNF281  | 7 | 1104    | 0.9704  | 0.7133  | 0.9846  | 1003    | 0.1590  | 0.7569  | -0.0930 | 0.8877  | NA      |
| ZNF329  | 8 | -2348   | -1189   | -0.1799 | -0.1207 | -0.2407 | -0.0017 | -0.9658 | 0.3292  | -0.3012 | -0.7565 |
| ZNF559  | 8 | -1516   | -1138   | -0.2231 | 0.1710  | -0.3451 | -0.1039 | -1018   | NA      | -0.4366 | -0.9328 |

| ~~      | <i>J</i> 1  | <i>J</i> . | <i>J</i> J <i>J J</i> | 0         |           |           |           |          |           |          | 1        |
|---------|-------------|------------|-----------------------|-----------|-----------|-----------|-----------|----------|-----------|----------|----------|
| Gene    | nsigstudies | GSE13015   | GSE28750              | GSE32707  | GSE46955  | GSE49757  | GSE54514  | GSE57065 | GSE67652  | GSE69063 | GSE95233 |
| FCER1G  | 8           | 3.14E+03   | 8.03E+06              | 1.27E+09  | 2.07E+09  | 0.0084618 | 0.1055214 | 1.11E-10 | 0.8065696 | 2.77E-10 | 1.11E-15 |
| GPR84   | 7           | 5.70E+03   | 1.13E+03              | 3.41E-04  | 7.06E+09  | 0.1328291 | 0.5590299 | 3.95E-03 | NA        | 6.21E-08 | 2.21E-16 |
| DYSF    | 8           | 7.87E+03   | 8.76E+06              | 6.51E-04  | 0.7592669 | 0.0107861 | 0.027234  | 1.26E-06 | 0.1452541 | 1.15E-05 | 1.44E-02 |
| TLR5    | 8           | 1.67E+04   | 1.13E+03              | 1.56E+09  | 0.3654939 | 0.0278729 | 0.1558305 | 8.39E-14 | 0.0037686 | 5.42E-11 | 3.38E-09 |
| MMP9    | 9           | 3.09E+04   | 2.53E+06              | 3.42E-04  | 3.12E-01  | 8.47E+08  | 0.0393654 | 2.74E-06 | 0.0326073 | 1.20E-03 | 3.72E-06 |
| HP      | 7           | 3.67E+04   | 1.75E+03              | 7.32E+09  | 9.14E-01  | 0.1119298 | 0.6193582 | 8.09E-07 | 0.0024331 | 2.07E-13 | 5.51E-20 |
| RAB32   | 7           | 1.55E+05   | 7.26E+05              | 0.0382286 | 0.8893501 | 0.4971537 | 0.2258945 | 3.15E-08 | 0.0272385 | 2.09E-03 | 1.86E-13 |
| S100A12 | 8           | 3.65E+05   | 4.04E+01              | 3.12E+09  | 0.0001841 | 0.8818664 | 0.1182596 | 1.11E-14 | 0.0411347 | 4.20E-18 | 8.29E-21 |
| PFKFB3  | 7           | 4.31E+04   | 5.43E+04              | NA        | 0.000321  | 0.4605598 | NA        | 8.28E-03 | 0.004812  | 5.01E-10 | 3.39E-08 |
| DDAH2   | 8           | 4.31E+04   | 2.26E+07              | 9.05E+09  | 0.0169819 | 0.0584674 | 0.8170874 | 1.34E-03 | 0.0040862 | 7.25E-05 | 1.63E-09 |
| SH3GLB1 | 7           | 4.31E+04   | 0.00025989            | 0.0033377 | 0.3419421 | 0.0011166 | 9.34E-01  | 1.70E-03 | NA        | 3.97E-06 | 5.42E-07 |
| PGLYRP1 | 8           | 6.54E+05   | 1.33E+07              | 8.11E+07  | 0.479304  | 1.88E-01  | 0.0080864 | 1.08E-05 | 0.0036683 | 3.51E-05 | 1.04E-04 |
| IFNGR2  | 8           | 8.11E+05   | 0.00987831            | 0.0013776 | 0.012446  | 0.0008162 | 0.8168352 | 1.19E+09 | 0.7432529 | 6.05E-04 | 7.28E+02 |
| FPR1    | 9           | 9.10E+05   | 4.19E-04              | 7.15E+09  | 0.0400248 | 2.02E-04  | 6.31E-01  | 1.41E+03 | 0.0021367 | 2.86E+06 | 7.29E+04 |
| PGS1    | 7           | 1.09E+06   | 1.85E+07              | 0.0029496 | NA        | 0.032722  | 0.6039737 | 9.90E-08 | 0.7556796 | 1.33E-06 | 1.26E-10 |
| HK3     | 8           | 1.11E+06   | 2.21E+04              | 1.22E+09  | 7.83E-02  | 0.0037616 | 0.0261197 | 7.90E-08 | NA        | 3.84E-07 | 3.10E-15 |
| AQP9    | 8           | 1.16E+06   | 6.35E+09              | 0.0003152 | 1.99E+09  | 0.1903581 | 0.8468034 | 1.78E+06 | 0.0057495 | 2.81E+03 | 2.12E+04 |
| RGL4    | 8           | 1.27E+06   | 3.88E+06              | 2.19E+09  | NA        | 0.0179863 | 0.9453887 | 1.98E-02 | 0.0058659 | 1.56E-03 | 1.13E-19 |
| GADD45B | 7           | 1.59E+06   | 1.00E-03              | 0.0032458 | 7.87E-01  | 0.014045  | 0.7280176 | 1.19E-03 | 0.3289707 | 1.39E-09 | 2.76E-04 |
| ID3     | 8           | 1.96E+06   | 1.72E+04              | 1.56E+08  | 0.0001641 | 0.0026489 | 0.7015292 | 2.45E-05 | 0.3741736 | 2.33E+03 | 1.94E-04 |
| TRIM25  | 8           | 1.99E+06   | 3.25E-03              | 0.0007804 | 0.0756835 | 0.0003681 | 0.043671  | 1.37E+03 | 0.1616623 | 1.90E-03 | 5.11E+04 |
| CNIH4   | 7           | 2.70E+06   | 4.48E+04              | 6.29E-01  | 0.0107821 | 0.0777265 | 0.3018905 | 1.23E+01 | 0.006246  | 5.89E-14 | 1.80E-17 |
| ANXA3   | 9           | 3.66E+06   | 7.83E+03              | 1.20E-02  | 0.003152  | 4.73E-02  | 0.3678683 | 3.14E-14 | NA        | 1.09E-18 | 2.14E-17 |
| ACSL1   | 9           | 4.14E+06   | 1.03E+08              | 0.0397904 | 3.69E-02  | 0.0052866 | 0.00539   | 1.97E-01 | 0.1813689 | 1.31E-15 | 1.61E-02 |
| FLOT1   | 8           | 4.19E+06   | 2.73E-04              | 3.38E-02  | 0.0005288 | 0.9715024 | 0.365475  | 8.52E-03 | 0.0053993 | 8.97E-13 | 6.48E-11 |
| LMNB1   | 7           | 4.69E+06   | 4.93E+08              | 1.17E-01  | 0.0992537 | 0.0047543 | 0.4327227 | 2.31E-02 | 0.0021367 | 4.36E-04 | 1.64E+01 |
| SORT1   | 7           | 5.49E+06   | 3.92E+06              | 0.2845243 | 0.0002008 | 0.0037413 | 0.0316943 | 9.34E+02 | 0.0505777 | 1.58E-03 | NA       |
| IL18R1  | 7           | 5.49E+06   | 9.41E+08              | 0.1493638 | 0.0002623 | 3.76E+07  | 0.8587684 | 5.09E-03 | NA        | 2.56E-16 | 2.26E-14 |
| IL18RAP | 8           | 7.50E+06   | 1.65E+07              | 0.0006953 | 0.0128446 | 0.0002046 | 0.9579791 | 1.14E-06 | 0.1970552 | 1.10E-07 | 5.66E-15 |

Supplementary table 3: p-values for differentially expressed genes in each GSE

| CKAP4   | 7   | 8.27E+06 | 2.30E+06   | 9.39E+09  | 0.9856811 | 0.0441474 | 0.0996788 | NA       | 0.0021367 | 2.24E-10 | 4.76E-18 |
|---------|-----|----------|------------|-----------|-----------|-----------|-----------|----------|-----------|----------|----------|
| MYD88   | 8   | 8.73E+04 | 1.83E-02   | 6.37E+09  | 0.3027634 | 0.0001185 | 0.0281235 | 8.28E+07 | 0.5919174 | 6.46E+02 | 5.15E+04 |
| ITGAM   | 8   | 9.30E+06 | 3.86E+06   | 1.76E-03  | 4.04E-02  | 0.0298729 | 0.1228347 | 5.47E-05 | NA        | 9.81E+02 | 1.04E-01 |
| BRI3    | 8   | 1.00E+07 | 0.00193317 | 0.0032696 | 0.0043267 | 0.5017974 | 0.0055582 | 9.52E+03 | NA        | 5.17E-06 | 3.01E-04 |
| TPST2   | 7   | 1.24E+07 | 1.12E+08   | NA        | 0.1329261 | 0.0115231 | 0.4411075 | 2.56E-08 | 0.0090378 | 4.65E+05 | 6.30E-09 |
| SELL    | 8   | 1.27E+07 | 0.12106582 | 8.38E+09  | 0.0008679 | 0.2658512 | 0.0395039 | 8.94E+08 | 0.0027604 | 1.87E+06 | 1.60E+07 |
| PSTPIP2 | 7   | 1.48E+07 | 3.02E+07   | 0.0022508 | 3.72E+09  | 0.7007554 | 0.9671686 | 3.15E-01 | NA        | 1.12E-07 | 6.73E-09 |
| CST7    | 9   | 1.48E+07 | 4.13E+04   | 5.09E+08  | 0.0014852 | 0.0365756 | 0.8827977 | 8.62E-08 | 0.0005796 | 1.26E-07 | 1.02E-04 |
| PHF21A  | 7   | 1.49E+07 | 2.27E-02   | 1.99E-01  | 7.90E+09  | 0.3750616 | 0.7995419 | 1.10E+05 | 0.0298743 | 1.16E+02 | 5.60E+06 |
| STOM    | 7   | 1.52E+07 | 1.06E+04   | NA        | 5.97E+08  | NA        | 2.50E-01  | 2.41E-02 | 0.0006499 | 1.22E-11 | 1.59E-18 |
| CTSD    | 8   | 2.02E+07 | 1.17E+07   | 9.75E+09  | 0.1866086 | 0.5129912 | 0.0011773 | 3.10E+03 | 0.0147398 | 1.19E-02 | 1.45E+04 |
| S100A9  | 8   | 2.34E+07 | 1.75E+03   | 2.19E+09  | 2.47E+09  | 0.5392234 | 0.1068696 | 3.52E-16 | 0.0036954 | 1.09E-12 | 2.18E-22 |
| JUNB    | 7   | 2.60E+06 | 2.16E-02   | 0.0388258 | 0.4802375 | 0.2274305 | 0.2747504 | 7.01E+05 | 0.0347967 | 1.41E-08 | 5.28E+04 |
| FAIM3   | 7   | 2.71E+07 | 9.45E+04   | 0.0338452 | 0.0059397 | 0.0044705 | 0.8695988 | 2.70E-10 | NA        | NA       | 8.59E-09 |
| SDCBP   | 7   | 3.42E+07 | 2.57E-02   | NA        | 7.34E-01  | 0.4331405 | 0.013572  | 9.51E+08 | 0.0165344 | 8.35E+01 | 1.62E+06 |
| CDA     | 8   | 3.49E+07 | 6.52E-03   | 7.17E-03  | 0.0712957 | 0.0375483 | 0.233197  | 9.70E+06 | 0.032871  | 2.94E-02 | 1.81E+06 |
| FGFBP2  | 7   | 3.55E+07 | 1.45E-04   | 0.0085225 | 0.0069535 | 0.2061774 | 0.2397635 | 3.91E+05 | NA        | 4.11E+06 | 1.22E-01 |
| BASP1   | 7   | 3.78E+07 | 8.80E+09   | 4.04E-01  | 5.90E+08  | 0.0178906 | 0.0594805 | 4.22E+05 | 0.9035138 | 4.06E-02 | 3.08E+05 |
| MTF1    | 9   | 3.88E+07 | 8.36E+05   | 0.0001056 | 0.0014495 | 0.9139693 | 9.24E+09  | 1.01E-04 | 0.026054  | 7.71E+04 | 7.00E-05 |
| OSM     | 8   | 4.03E+07 | 3.40E-03   | 1.20E-02  | 8.43E+09  | 5.22E+08  | 0.3563131 | NA       | 0.0026794 | 3.86E-11 | 6.25E-03 |
| FLOT2   | 7   | 4.03E+07 | 8.08E-04   | 3.26E-02  | 5.60E+08  | 0.1645145 | 0.6657358 | 7.43E+02 | 0.6153604 | 6.56E-02 | 1.28E+00 |
| CXCL16  | 7   | 4.95E+07 | 1.04E-02   | 0.9219969 | 0.0002443 | 6.01E+06  | 0.509069  | 1.51E-02 | NA        | 8.27E-06 | 8.89E-04 |
| IL10RB  | 7   | 5.46E+07 | 0.00016355 | NA        | 0.0066881 | 0.1602656 | 0.0180194 | 1.53E-02 | 0.1414105 | 3.16E-08 | 8.35E-10 |
| KLHL2   | 8   | 6.47E+07 | 7.09E+08   | 5.79E-01  | 0.032605  | 0.0088187 | 0.0115639 | 6.71E-01 | NA        | 2.70E-12 | 2.13E-06 |
| TMEM165 | 7   | 7.40E+07 | 0.0009856  | 9.63E-01  | 0.0026934 | 0.8540853 | 0.266118  | 3.68E+01 | 0.0097564 | 1.30E-11 | 4.09E+07 |
| GRAMD1  | . 7 | 7.40E+07 | 1.31E-04   | 4.19E-02  | 1.25E+08  | 0.7421849 | 9.74E-01  | 1.53E+05 | NA        | 2.13E-07 | 5.52E-02 |
| AIM2    | 7   | 7.40E+07 | 1.86E+09   | 0.4017583 | 0.0079405 | 7.51E-01  | 0.0270692 | 1.27E+02 | NA        | 5.52E-06 | 1.08E-02 |
| ENTPD1  | 8   | 8.81E+07 | 1.63E+09   | 2.24E-03  | 9.03E+09  | 0.0006698 | 7.36E-02  | 5.20E+00 | 0.0561154 | 1.51E+07 | 8.26E-01 |
| PIK3AP1 | 7   | 8.88E+07 | 5.12E+07   | 2.03E-02  | 0.0004626 | 0.0123143 | 0.0539378 | 4.67E+06 | NA        | 6.62E+00 | NA       |
| GNS     | 7   | 9.62E+07 | 4.25E+08   | 0.3704314 | 0.0896493 | 0.0013806 | 0.3438336 | 2.26E+07 | 0.0036174 | 4.41E+05 | 8.90E+03 |
| CD160   | 7   | 9.92E+07 | 1.72E+07   | 0.4130903 | 0.0361713 | 1         | 0.0014802 | 2.72E+03 | NA        | 4.50E+02 | 3.31E-06 |

| NCF4    | 8 | 1.08E+08 | 1.35E-04   | NA        | 0.0323963 | 0.3493764 | 1.48E+08  | 2.90E+03 | 0.0054482 | 3.77E-06 | 1.65E-02 |
|---------|---|----------|------------|-----------|-----------|-----------|-----------|----------|-----------|----------|----------|
| VNN2    | 7 | 1.10E+08 | 1.19E+09   | 0.9321742 | 0.0001425 | 0.1100305 | 0.8827977 | 2.53E+01 | 0.0024331 | 9.14E+07 | 8.16E+05 |
| KLRB1   | 7 | 1.10E+08 | 3.84E+08   | 0.0016436 | 1.17E-01  | 0.2013392 | 7.24E-03  | 6.44E+01 | NA        | 4.44E+08 | 7.01E+01 |
| FGR     | 7 | 1.21E+08 | 4.72E+09   | 0.6497458 | 1.39E+09  | 0.722467  | 0.9189468 | 1.38E+05 | 0.0039255 | 1.46E-02 | 3.92E+01 |
| SEMA4A  | 8 | 1.28E+08 | 1.08E-02   | 0.0024224 | 5.49E+08  | 0.0211453 | 0.0059192 | 1.82E+05 | NA        | 4.49E+04 | NA       |
| IER3    | 7 | 1.29E+08 | 6.16E+09   | 0.5926209 | 0.0012794 | 0.0486614 | 0.6756075 | 4.12E+04 | NA        | 3.24E+02 | 3.30E-06 |
| EOMES   | 7 | 1.29E+08 | 1.43E+08   | 0.0005499 | 0.017297  | 0.7724763 | 0.1989757 | 2.53E+01 | NA        | 1.59E+04 | 1.98E-07 |
| CD6     | 7 | 1.33E+08 | 2.79E+06   | 0.0038913 | 3.82E-03  | 0.1058934 | 0.9557351 | 3.47E-06 | 0.2062753 | 1.70E-06 | 8.73E-04 |
| CD2     | 7 | 1.33E+08 | 6.05E+06   | 0.0010428 | 0.0009539 | 0.1132488 | 0.6279737 | 4.24E-01 | NA        | 4.47E-02 | 9.73E-07 |
| NFKBIA  | 7 | 1.35E+08 | 0.07815391 | 0.0019248 | 0.0012442 | 0.0091363 | 0.8324099 | 1.23E+04 | NA        | 5.95E+03 | 1.12E+00 |
| UGCG    | 8 | 1.65E+08 | 2.10E+07   | 0.0036747 | 0.0068927 | 0.0308621 | 0.2611001 | NA       | 0.0028531 | 5.13E-10 | 1.20E-14 |
| PCNX    | 8 | 1.72E+08 | 0.00030551 | 0.0022651 | 3.48E+09  | 0.0009874 | 0.2111311 | 6.65E+05 | 0.0313208 | NA       | 1.13E+06 |
| RHBDF2  | 7 | 1.75E+08 | 0.02610173 | 0.3571162 | 0.0190349 | 0.3964457 | 0.0656179 | 3.55E-04 | 0.0449196 | 8.30E+02 | 3.93E+02 |
| ALOX5AP | 7 | 1.80E+08 | 6.68E+08   | 5.28E+09  | 0.1036802 | 9.47E-01  | 0.9455392 | 1.53E-02 | 0.0086692 | 3.22E+01 | 1.05E-09 |
| NTSR1   | 7 | 1.85E+08 | 5.49E-04   | 0.0092221 | 4.79E-01  | 0.0408149 | 0.7916274 | 1.27E+09 | NA        | 2.96E-04 | 2.04E+08 |
| SLA     | 8 | 1.85E+08 | 1.95E-03   | NA        | 7.13E+09  | 0.0181356 | 0.2371982 | 4.81E+04 | 0.0202086 | 5.03E-07 | 1.44E+01 |
| PTPRCAP | 7 | 2.06E+08 | 1.01E+06   | 2.84E-04  | 0.0006307 | 0.6758535 | 0.3860607 | 1.19E+06 | 0.0890838 | 3.72E+05 | 8.79E+00 |
| TLR2    | 7 | 2.13E+08 | 1.79E-02   | 0.4840663 | 8.18E+08  | 8.55E+08  | 0.9381336 | 1.27E+07 | NA        | 2.11E-01 | 4.52E+07 |
| IFNAR1  | 7 | 2.50E+07 | 1.19E-04   | 0.0003716 | 0.0377185 | 0.5216913 | 0.7654936 | 2.16E-04 | 0.8873546 | 9.40E+01 | 2.11E+03 |
| CTSA    | 9 | 2.56E+08 | 0.00019761 | 0.0068628 | 0.0106861 | 0.0283727 | 0.0077579 | 7.77E+06 | NA        | 4.86E-02 | 2.95E+09 |
| SPOCK2  | 7 | 2.59E+08 | 7.39E+08   | 4.73E-02  | 0.0006992 | 0.1763956 | 0.811919  | 5.89E-09 | NA        | 5.59E-03 | 1.32E-07 |
| S100A8  | 8 | 2.70E+08 | 3.35E+05   | 1.62E+09  | 0.0003432 | 0.8760581 | 0.065566  | 3.15E-08 | 0.0449196 | 6.66E-15 | 2.56E-20 |
| GPR160  | 7 | 3.05E+08 | 3.28E+07   | 0.8650717 | 0.0102629 | 0.1651905 | 0.0063445 | 1.70E-01 | 0.9640948 | 3.15E-16 | 6.70E-10 |
| SH2D1A  | 9 | 3.09E+08 | 0.04940154 | 0.001543  | 0.0208596 | 0.5008826 | 2.64E-04  | 1.36E+07 | 0.0317486 | 8.50E+03 | 6.85E+01 |
| SPPL2A  | 8 | 3.09E+08 | 1.09E+07   | 0.0494031 | 5.30E+08  | 3.12E+06  | 0.6284021 | 7.20E+01 | 0.4117019 | 7.73E+00 | 1.65E-02 |
| LY96    | 7 | 3.12E+08 | 2.91E+07   | 8.52E+09  | 0.5430897 | 0.0255825 | 0.5525968 | 1.27E+05 | 0.1826623 | 2.37E-12 | 3.71E-08 |
| CD82    | 7 | 3.27E+08 | 0.00640921 | NA        | 3.28E-04  | 0.0004102 | 0.8127916 | 2.56E+03 | 0.897688  | 8.14E+08 | 3.41E+00 |
| IFNGR1  | 7 | 3.38E+08 | 2.57E+08   | 0.003128  | 7.98E-02  | 0.0058681 | 0.2786359 | 1.62E-01 | 0.1141394 | 1.69E-07 | 1.45E-06 |
| GNA15   | 8 | 3.40E+08 | 1.97E+07   | 0.0007777 | 1.49E-04  | 0.0037927 | 0.1666456 | 2.02E+05 | NA        | 8.45E+05 | 2.29E+03 |
| BIN1    | 7 | 3.50E+08 | 1.06E+08   | NA        | 0.0497765 | 0.0494819 | NA        | 2.07E-06 | 0.5263574 | 4.84E-02 | 1.54E+00 |
| PYGL    | 8 | 3.57E+08 | 1.76E+07   | 0.0639424 | 3.99E-02  | 0.0213803 | 0.4442449 | 5.58E-06 | 0.0093815 | 5.25E+05 | 1.03E-02 |

| DDX18    | 8 | 3.65E+07 | 2.34E+09   | 0.2638456 | 0.0039094 | 2.28E-02  | 0.2452073 | 7.64E+00 | 0.0058659 | 8.99E-01 | 1.62E-01 |
|----------|---|----------|------------|-----------|-----------|-----------|-----------|----------|-----------|----------|----------|
| C17orf62 | 7 | 3.86E+08 | 1.63E-03   | 9.80E+09  | 0.0077916 | 0.0647775 | 6.46E+07  | 4.15E+07 | 0.3560475 | NA       | 6.61E-03 |
| RASGRP1  | 8 | 3.91E+08 | 6.71E+08   | 0.2457724 | 0.0006269 | 0.0039047 | 0.0012379 | 2.06E+00 | NA        | 4.93E-06 | 7.30E-07 |
| EP400    | 8 | 3.94E+07 | 1.80E-03   | 0.0044668 | 0.0013568 | 0.0001251 | 0.2776441 | 1.74E+04 | 0.6054053 | 1.86E-11 | 2.47E-07 |
| GAPDH    | 7 | 4.06E+08 | 6.09E+05   | 0.805639  | 0.9305574 | 0.0452481 | 0.0610678 | 3.90E-02 | 0.0063148 | 5.62E-04 | 4.41E-05 |
| HCK      | 9 | 4.11E+08 | 1.32E-02   | 4.12E+09  | 3.08E+07  | 1.11E-02  | 0.2770428 | 2.26E+07 | 0.0187224 | 1.45E+01 | 2.09E+06 |
| LBH      | 7 | 4.21E+08 | 1.04E+06   | 5.64E-01  | 0.0016149 | 0.0835593 | 0.0189468 | 9.88E-07 | NA        | 2.12E+04 | 1.65E-07 |
| CD55     | 8 | 4.35E+08 | 1.52E+06   | 0.0811636 | 3.59E+08  | 0.0005996 | 0.1357499 | 1.77E-04 | 0.0250045 | 3.79E-01 | 1.44E-03 |
| IFITM1   | 8 | 4.48E+07 | 0.00639724 | 0.0004175 | 0.0058647 | 3.78E-04  | 0.7636443 | 2.43E+07 | NA        | 8.12E-02 | 3.48E-02 |
| DOK3     | 8 | 4.58E+08 | 2.18E-04   | 0.0011072 | 1.06E-02  | 0.230584  | 0.6966368 | 1.32E+06 | 0.0492792 | 2.83E+03 | 1.25E+07 |
| ACAA1    | 7 | 5.06E+08 | 0.00041561 | 7.63E+09  | 0.5034814 | 0.9437272 | 1.58E-02  | 1.36E+07 | 0.2782577 | 1.06E+04 | 1.81E-04 |
| GZMH     | 8 | 5.11E+08 | 4.76E-03   | 0.0012139 | 0.0149466 | 0.9988811 | 0.3833839 | 4.65E-04 | 0.0121954 | 8.59E+09 | 5.67E+02 |
| CEBPD    | 7 | 5.17E+08 | 0.0001002  | 0.0029082 | 0.5569872 | 5.67E+07  | 0.9364082 | 1.10E+00 | 0.9086592 | 3.32E-06 | 1.59E-06 |
| LTB4R    | 7 | 5.51E+08 | 6.66E+08   | 0.0006043 | 0.6638795 | 0.1472392 | 0.0318463 | 6.55E-01 | 0.9035138 | 4.66E-04 | 1.15E+08 |
| CD3G     | 8 | 5.54E+07 | 5.39E+07   | 0.0118089 | 0.0048022 | NA        | 0.0006953 | 5.58E+03 | 0.099017  | 4.76E-07 | 2.52E-09 |
| NFE2     | 7 | 6.14E+08 | 5.18E+08   | 1.38E-03  | 0.0206731 | 0.4717044 | 0.713058  | 1.92E+03 | 0.2500556 | 6.83E-04 | 2.75E-01 |
| HIST2H2B | 7 | 6.54E+08 | 5.21E+09   | 5.25E-03  | 1.87E+09  | 0.0515659 | 0.7041515 | 1.15E+08 | NA        | 1.14E-08 | 1.52E-06 |
| RAB24    | 7 | 6.57E+08 | 2.43E-04   | NA        | 0.0484717 | 0.0229452 | 0.7267084 | 2.17E+07 | 0.1833323 | 2.95E-07 | 5.83E-05 |
| ICOS     | 7 | 6.70E+08 | 5.91E+08   | 0.045098  | 1.11E-02  | NA        | 0.4597591 | 4.48E+03 | NA        | 4.43E+02 | 2.02E+01 |
| HNRNPA0  | 7 | 7.64E+08 | NA         | 6.13E+08  | NA        | 0.9865416 | 0.0150837 | 4.15E+00 | 0.040819  | 6.98E-03 | 1.73E-04 |
| PRPS1    | 8 | 7.86E+07 | 1.70E+07   | 0.0003065 | 0.3739585 | 0.0056561 | 0.6938285 | 1.30E-02 | 0.0453489 | 2.33E+08 | 3.44E+03 |
| Clorf162 | 7 | 8.09E+07 | 2.24E+08   | 2.92E+09  | 0.8222679 | 0.0295526 | 0.5989937 | 1.47E+05 | NA        | 2.40E+07 | 2.93E-02 |
| SRGN     | 8 | 8.24E+08 | 8.64E-04   | NA        | 0.0019358 | 0.395456  | 0.0456611 | 2.05E-06 | 0.0033186 | 2.20E+00 | 3.86E-03 |
| SERPINB1 | 8 | 8.42E+08 | 1.56E+06   | 0.0116193 | 0.0025316 | 0.9933919 | 0.4323425 | 6.67E-04 | 0.0259919 | 7.73E-09 | 3.54E-10 |
| NFIL3    | 8 | 8.85E+08 | 0.00282836 | 0.3688418 | 2.72E+05  | 8.03E+09  | 8.33E+09  | 2.31E+03 | 0.5099232 | 2.64E-11 | 1.12E+01 |
| KLHL22   | 8 | 9.19E+08 | 4.94E+07   | 0.0031769 | 0.0360066 | 0.1495491 | 0.2718276 | 1.43E-03 | 0.0151133 | 1.34E-02 | 1.90E-05 |
| MAP4K1   | 7 | 9.23E+08 | 1.73E+07   | NA        | 0.013336  | 0.8098299 | 3.18E-02  | 6.29E-04 | NA        | 3.07E-03 | 7.91E-11 |
| WDR74    | 7 | 9.28E+08 | 3.89E+06   | NA        | 0.0344474 | 0.0196545 | 0.8689793 | 1.61E-04 | 0.846917  | 3.12E+08 | 4.36E+07 |
| ZC3H12A  | 9 | 9.49E+08 | 2.05E-02   | 5.57E+09  | 0.0012115 | 0.1055488 | 0.0288647 | 8.70E+08 | 0.0139723 | 5.71E+09 | 1.61E+02 |
| CD52     | 7 | 1.00E+09 | 0.01467488 | 0.0002113 | 8.73E+09  | 0.1997789 | 0.4333836 | NA       | 0.009247  | 3.01E+09 | 4.20E-03 |
| CLIC1    | 8 | 1.02E+09 | 9.36E+05   | 0.0047271 | 2.09E-02  | 0.7856149 | 0.1672896 | 1.67E+00 | 0.0472646 | 3.07E-11 | 1.37E-16 |
| SNX10   | 8 | 1.03E+09 | 1.61E-02   | 4.24E-01  | 0.0035655 | 0.5219259 | 8.80E+05  | 9.11E-03 | 0.0397716 | 8.45E-02 | 3.12E+06 |
|---------|---|----------|------------|-----------|-----------|-----------|-----------|----------|-----------|----------|----------|
| GNG5    | 7 | 1.08E+07 | 1.48E+09   | 2.48E-01  | 5.14E+09  | 6.68E-02  | 1.68E-01  | 9.63E+00 | 0.0178077 | 4.01E+01 | 7.61E-11 |
| DYNLT1  | 7 | 1.08E+07 | 3.58E+08   | 7.64E-04  | 0.2010583 | 0.011867  | 0.2079517 | 1.10E+04 | 0.3471391 | 3.68E-04 | 1.20E-14 |
| ZNF329  | 8 | 1.12E+09 | 8.12E+07   | 0.0114848 | 0.5558849 | 0.0100212 | 0.9782301 | 3.26E+00 | 0.0095448 | 2.13E+09 | 1.17E+05 |
| IFITM2  | 7 | 1.16E+09 | 0.0689834  | 1.38E-02  | 0.2315708 | 0.0121617 | 0.4603625 | 2.45E+08 | 0.0200553 | 2.06E-03 | 1.65E-04 |
| DIRC2   | 7 | 1.16E+09 | 5.38E+07   | 4.62E-01  | 0.0017845 | 0.0006408 | 0.4311347 | 6.09E-01 | 0.0028435 | 6.59E+06 | NA       |
| IMP3    | 8 | 1.17E+09 | 1.72E+07   | 1.35E-02  | 0.7149962 | 0.0006368 | 0.9718371 | 2.61E-05 | 0.0211151 | 3.80E+04 | 2.26E-06 |
| GIMAP7  | 7 | 1.18E+09 | 6.07E+09   | NA        | 0.0015484 | 0.5466657 | 1.95E+09  | 2.23E-04 | NA        | 7.56E+03 | 2.43E+09 |
| FES     | 8 | 1.21E+09 | 1.33E+09   | 1.11E+09  | 0.0400276 | 6.26E-03  | 0.898772  | 3.03E+05 | 0.6413626 | 1.88E-02 | 9.63E-04 |
| RNMT    | 7 | 1.30E+09 | 6.85E+07   | 0.1526179 | 4.38E+09  | 0.0129554 | 0.0679405 | 4.55E+00 | 0.677844  | 6.26E+02 | 1.54E-09 |
| FBL     | 7 | 1.50E+09 | 6.11E+06   | 1.62E-03  | 0.0265059 | 1.05E-01  | 0.8814821 | 8.56E+03 | 0.2667132 | 1.69E-04 | 2.66E-02 |
| GZMA    | 7 | 1.57E+09 | 0.00146607 | 0.0009017 | 0.0009229 | 8.89E-01  | 0.2343003 | 1.34E+07 | NA        | 3.94E+09 | 4.18E+06 |
| APEX1   | 7 | 1.66E+09 | 2.89E+06   | NA        | 3.07E-02  | 0.0295458 | 0.2001125 | 9.28E+05 | 0.2476189 | 1.90E+02 | 2.43E+01 |
| RETN    | 7 | 1.68E+09 | 8.33E+00   | 2.69E+09  | 0.0582124 | 0.4523545 | 0.2647522 | 2.44E-02 | 0.0308956 | 1.37E+02 | 7.87E-02 |
| IL2RB   | 8 | 1.78E+09 | 3.62E+05   | 0.067609  | 1.51E-04  | 0.0044277 | 0.0302279 | 1.93E-09 | NA        | 2.44E+03 | 6.73E-14 |
| SKAP1   | 7 | 1.81E+07 | 8.48E+05   | NA        | 0.0038524 | NA        | 0.4989646 | 5.93E-01 | 0.0421408 | 6.00E-03 | 2.91E-08 |
| RPL36   | 7 | 1.88E+09 | 2.87E+08   | 0.0099596 | 0.8449033 | 0.9855273 | 0.6806007 | 3.32E+09 | 0.0143613 | 7.01E-03 | 1.44E+09 |
| FERMT3  | 7 | 1.95E+09 | 2.27E-04   | NA        | NA        | 0.0435985 | 0.0038817 | 7.20E+08 | 0.4022814 | 2.19E-04 | 5.77E-01 |
| GZMK    | 7 | 2.03E+09 | 0.00011399 | 2.03E-04  | 0.0032032 | 0.602173  | 0.0544084 | 4.20E+01 | NA        | 2.20E+04 | 9.49E-02 |
| ZBTB4   | 7 | 2.04E+08 | 1.18E+08   | NA        | 0.4715825 | 0.0167498 | 0.1129455 | 9.62E+01 | 0.0106393 | 8.99E+05 | 3.49E-12 |
| RPL18   | 7 | 2.05E+09 | 6.81E+05   | 0.1460317 | NA        | 0.0121617 | 0.9510087 | 1.27E+05 | 0.0114218 | 2.15E+05 | 1.10E+01 |
| UBAP1   | 7 | 2.05E+09 | 6.11E+08   | 4.58E-02  | 0.0024552 | 0.218887  | 0.4391242 | 3.96E+01 | 0.0705055 | 3.59E+00 | 7.42E+00 |
| APH1B   | 8 | 2.06E+09 | 2.93E+09   | 0.0014737 | 1.33E-02  | 0.000545  | 0.5957998 | 6.22E+08 | 0.8362993 | 6.25E+05 | 2.75E+08 |
| STAT4   | 7 | 2.08E+09 | 1.09E+07   | 0.0050128 | 8.67E+05  | 0.408341  | 0.9926893 | 5.52E-04 | NA        | 2.41E+05 | 4.36E-01 |
| TMEM109 | 9 | 2.11E+09 | 2.41E+08   | 0.0136757 | 0.8457429 | 0.0489165 | 0.0384393 | 2.27E-06 | 0.0104476 | 1.95E+03 | 4.60E-08 |
| FBXO6   | 7 | 2.17E+09 | 9.98E-03   | 0.0010803 | 0.0286435 | 0.9645726 | 0.8647693 | 9.10E-04 | NA        | 6.01E+01 | 3.78E+03 |
| CASP5   | 7 | 2.23E+09 | 0.13404416 | 0.0397904 | 2.88E-03  | 0.0863194 | 0.4220029 | 3.55E+08 | 0.0413181 | 4.58E-04 | 3.29E+07 |
| COQ10A  | 7 | 2.29E+08 | 1.32E+07   | 4.75E-03  | 3.28E-04  | 0.1431762 | 0.5169853 | 4.24E+00 | 0.0850097 | 1.69E+08 | 3.12E-04 |
| WDR54   | 7 | 2.40E+09 | 3.43E+04   | 6.56E-04  | 0.0006285 | 0.0769698 | 0.9095375 | 8.15E-02 | 0.7990997 | 1.10E+00 | 2.15E-06 |
| CD7     | 7 | 2.52E+09 | NA         | 0.0010964 | 2.30E-03  | 1.77E+08  | 0.7313119 | 3.64E-07 | 0.6818203 | 1.57E+08 | 3.62E+08 |
| PAG1    | 8 | 2.53E+08 | 3.82E+09   | NA        | 0.0009685 | 0.0023975 | 0.4048996 | 6.50E+06 | 0.0320425 | 1.19E+04 | 2.68E-01 |

| ZDHHC3   | 7 | 2.65E+09 | 1.89E+07   | 0.0456881 | 0.5243102 | 0.2595438 | 0.0348483 | 1.23E+04 NA         | 1.19E-08 | 1.66E-13 |
|----------|---|----------|------------|-----------|-----------|-----------|-----------|---------------------|----------|----------|
| POR      | 7 | 2.80E+09 | 8.21E+08   | 2.16E-01  | 0.0420693 | 0.0385821 | 0.2798827 | 4.06E+02 0.9247385  | 8.36E-05 | 1.05E+02 |
| MXD1     | 7 | 2.80E+09 | 0.0189841  | 1.24E-03  | 0.0083231 | 0.4526296 | 0.8633579 | 3.21E-04 0.0063614  | 3.74E+08 | 5.41E-01 |
| CD3E     | 8 | 2.81E+09 | 5.19E+05   | 7.13E-04  | 0.0192568 | NA        | 0.0395945 | 4.96E-05 NA         | 3.09E-05 | 4.54E-07 |
| CYB5R4   | 8 | 2.96E+09 | NA         | 0.0031059 | 0.0402602 | 0.6255381 | 0.0026745 | 1.79E+06 0.0047711  | 1.95E+00 | 5.64E+02 |
| FAM89A   | 8 | 3.13E+09 | 4.56E+07   | 0.0344734 | 0.0002719 | 0.1042628 | 0.9278054 | 1.04E+04 0.0028909  | 1.01E+08 | 1.96E-01 |
| GLOD4    | 7 | 3.18E+09 | 4.39E+09   | 0.001665  | NA        | 0.9816821 | 0.276408  | 6.70E+04 0.0278904  | 5.04E-06 | 3.38E+05 |
| ORM1     | 7 | 3.19E+09 | 3.96E+09   | 3.12E-04  | 0.1221315 | 0.0001392 | 0.3189191 | 3.71E+04 0.3954678  | 7.80E+08 | 1.84E+02 |
| XRCC6    | 7 | 3.45E+09 | 1.78E+08   | NA        | 0.6516215 | 0.2690863 | 0.0039734 | 1.60E+07 0.0028909  | 1.58E+09 | 5.94E-04 |
| PCSK7    | 7 | 3.60E+08 | 3.39E+07   | 1.89E-02  | 0.02519   | 0.689652  | 0.0908969 | 1.10E-04 NA         | 5.35E-07 | 1.22E-17 |
| NAT10    | 8 | 3.61E+09 | 3.99E+08   | 3.11E+09  | 0.0057253 | 0.2924575 | 0.6908434 | 1.82E-05 0.0380333  | 3.68E-10 | 3.85E-12 |
| PPP1R13B | 7 | 3.73E+08 | 6.71E+08   | 0.0004245 | 0.0046524 | NA        | 0.7180988 | 4.08E+05 0.7817715  | 1.11E+00 | 5.88E-09 |
| PPM1M    | 7 | 3.81E+09 | 1.02E+08   | 0.0006614 | 3.12E-02  | 0.5248702 | 0.9031289 | 8.47E+06 NA         | 1.03E+06 | 1.97E-01 |
| LDHA     | 7 | 3.83E+09 | 5.33E+06   | 1.75E-01  | 1.59E-03  | 0.070984  | 0.1074304 | 2.34E+00 0.0028531  | 1.30E-02 | 1.47E-12 |
| SLC9A3R1 | 9 | 4.02E+09 | 1.74E+08   | 0.0324921 | 0.0010347 | 0.0158634 | 0.5121724 | 1.23E+07 0.0097239  | 2.67E+04 | 1.33E-08 |
| MFNG     | 7 | 4.11E+09 | 1.36E+06   | 0.0023131 | 0.0069508 | 0.4532831 | 0.1209211 | 7.79E+02 NA         | 1.08E+02 | 7.75E-05 |
| TBCD     | 7 | 4.46E+09 | 8.48E-03   | 0.0198486 | 0.8630072 | 0.9105828 | 0.0032476 | 1.29E+05 0.1001406  | 2.07E+03 | 6.66E+00 |
| CAMK1    | 7 | 4.47E+09 | 0.00096044 | 0.0799082 | 0.0029296 | 0.1582038 | 0.0393092 | 2.95E+09 NA         | 2.96E-03 | 8.83E+05 |
| EIF2B1   | 7 | 4.49E+09 | 5.61E-03   | 0.0679605 | 0.0005894 | 0.0279722 | 0.703005  | 1.02E+06 0.1940629  | 1.18E+04 | 1.15E+09 |
| NUP93    | 7 | 4.49E+09 | 1.94E+08   | 2.68E+09  | 0.0625124 | 0.1669326 | 0.1101269 | 8.82E-07 0.0021953  | 7.57E-03 | 8.65E-15 |
| XPO6     | 7 | 4.64E+09 | 6.27E-01   | 1.02E-02  | 0.34902   | 1.83E+08  | 0.0230318 | 7.98E-04 0.1361614  | 2.34E-02 | 2.35E-02 |
| HIST1H3D | 7 | 4.74E+09 | 5.92E-04   | 0.068547  | 0.0012086 | 0.796819  | 0.6022628 | 1.64E+02 0.039386   | 3.74E-02 | 8.97E-06 |
| CARD11   | 7 | 4.82E+09 | 2.67E+08   | 1.51E-02  | 3.50E-03  | 0.9104234 | 0.0953955 | 2.34E-05 NA         | 8.03E-05 | 2.66E-02 |
| GPD1L    | 7 | 4.95E+09 | 2.20E-02   | 0.0197158 | 0.000228  | 0.2149301 | 0.1997837 | 4.65E+02 0.3554171  | 1.63E+02 | 2.39E+07 |
| MARCKSI  | 7 | 5.08E+09 | 1.13E+07   | 0.9093305 | 0.0027221 | 0.0004177 | 0.9756361 | 4.29E-04 0.2291697  | 4.83E+08 | 3.97E-02 |
| GCA      | 9 | 5.26E+09 | 1.61E+08   | 0.0011166 | 1.67E-02  | 0.2480172 | 0.0167564 | 2.60E+02 0.0096656  | 5.97E-08 | 2.81E+00 |
| SF3A3    | 7 | 5.30E+09 | 5.46E+08   | 0.103243  | 0.0088493 | 0.0047454 | 0.7895508 | 6.44E+05 0.5793783  | 8.14E+03 | 3.62E+00 |
| UFSP2    | 7 | 5.43E+09 | 3.21E+08   | 0.0255288 | NA        | 0.0176532 | 0.4753538 | 1.14E-04 0.9631257  | 5.40E-03 | 2.82E-04 |
| KCNJ2    | 9 | 5.43E+09 | 2.97E-03   | 0.0026646 | 8.71E-04  | 0.6710429 | 0.9419686 | 0.0002614 0.0230792 | 4.47E-01 | 1.51E-04 |
| BATF     | 8 | 5.44E+09 | 2.23E+07   | 1.36E+09  | 2.70E-01  | 0.0413383 | 0.630327  | 1.57E+05 0.0027853  | 1.70E+02 | 6.02E-07 |
| NELL2    | 7 | 5.44E+09 | 1.07E+05   | 1.03E-01  | 0.0012776 | 0.0003077 | 0.8124171 | 1.01E-08 NA         | 1.02E-07 | 1.45E-06 |

| CD63    | 7 | 5.48E+08 | 2.32E+06   | 3.58E-02  | 6.02E+09  | 0.3076869 | 0.4645261 | 5.89E-09  | 0.8326212 | 7.33E+04  | 1.59E-08 |
|---------|---|----------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----------|
| SAP30L  | 7 | 5.50E+09 | 2.00E-03   | 0.4199421 | 5.14E-03  | 0.6713549 | 4.07E+09  | 5.85E+09  | NA        | 1.34E+07  | 1.38E-04 |
| UBE2Q2  | 7 | 5.50E+09 | 0.00132525 | 0.4264012 | 0.942689  | 0.1763956 | 0.001399  | 1.09E+05  | 0.0095892 | 3.46E+09  | 9.67E+07 |
| NPTN    | 7 | 5.56E+09 | 3.66E-02   | 0.4451582 | 0.2945012 | 0.0286129 | 0.0135366 | 4.17E-03  | NA        | 4.89E+07  | 8.96E+09 |
| IL7R    | 7 | 5.61E+09 | 1.84E+07   | NA        | 1.56E-03  | 0.0001468 | NA        | 2.21E+00  | NA        | 1.97E-02  | 1.69E-03 |
| C3AR1   | 9 | 5.64E+08 | 5.62E+06   | 0.0022508 | 0.0021409 | 0.016951  | 0.0393287 | 2.56E+01  | 0.6235126 | 3.11E-03  | 3.85E-05 |
| ITK     | 8 | 5.71E+09 | 1.62E+07   | 0.013549  | 0.0004626 | 0.0048085 | 0.6188752 | 1.30E-03  | NA        | 2.61E+00  | 3.42E-04 |
| DCUN1D3 | 7 | 5.81E+09 | 0.00552661 | 0.0124837 | 0.0116791 | 0.1030135 | 0.6072299 | 9.14E+09  | 0.1627041 | 3.73E-01  | 6.68E+07 |
| USP3    | 9 | 6.06E+09 | 0.02408319 | 3.80E-03  | 0.0322919 | 0.0257556 | 0.0192175 | 6.06E+09  | NA        | 6.45E+05  | 3.84E+09 |
| FBXO21  | 7 | 6.16E+09 | 7.19E-01   | 0.0001685 | 0.0040434 | 0.9265011 | 0.7488447 | 1.04E-06  | 0.0440936 | 4.73E-03  | 2.03E-05 |
| RPS15   | 9 | 6.27E+09 | 1.19E+07   | 0.0024629 | 0.0049993 | 0.6562848 | 0.0016663 | 1.78E+06  | 0.0073807 | 2.52E+04  | 9.91E+05 |
| RPL4    | 7 | 6.44E+09 | 3.29E+08   | 0.0240337 | 0.0547192 | 0.8418272 | 0.9548815 | 8.33E+09  | 0.0137765 | 3.31E+01  | 1.06E+05 |
| UPRT    | 7 | 6.48E+09 | 0.01238934 | 1.62E+09  | 0.1032294 | 0.550398  | 0.424633  | 1.17E+05  | 0.0184558 | 2.82E+08  | 3.00E-04 |
| PI4KAP2 | 7 | 7.18E+08 | 4.23E+08   | 2.87E-02  | NA        | 0.4168119 | 0.0152814 | 4.75E+03  | 0.0484848 | NA        | 4.74E+02 |
| ACD     | 7 | 7.20E+09 | 4.47E+07   | 6.62E-04  | 4.70E-01  | 0.5043245 | 0.1657122 | 3.29E+08  | 0.0179108 | 6.73E+03  | 1.15E+02 |
| ENOPH1  | 7 | 7.53E+09 | 2.80E-02   | 0.0003487 | 0.0022754 | 0.3039984 | 0.0542856 | 1.16E-03  | 0.4257854 | 1.82E+04  | 1.41E-03 |
| IL10RA  | 7 | 7.60E+09 | 7.75E+07   | 0.0001434 | 4.87E+09  | 0.7614561 | 0.9765628 | 1.06E-02  | 0.3492778 | 7.11E+05  | 7.53E-12 |
| SIL1    | 7 | 7.71E+09 | 1.64E-04   | 6.26E-01  | 0.0096075 | 0.0686971 | 0.6406854 | 2.66E+06  | 0.0060829 | 2.29E+06  | 9.75E+03 |
| LEO1    | 8 | 7.71E+09 | 5.86E-03   | 0.0002651 | 0.0358535 | 0.0003681 | 4.22E-01  | 9.38E-04  | 0.757327  | 2.81E+01  | 2.83E+09 |
| LILRB2  | 8 | 7.84E+09 | 0.0006712  | 0.005519  | 0.4975696 | 0.0471208 | 0.2180977 | 3.27E+08  | 0.004817  | 4.37E-02  | 2.87E-03 |
| EEF2K   | 7 | 8.19E+09 | 1.70E+08   | 0.0013347 | 0.0013762 | 0.9505854 | 2.03E-01  | NA        | 0.0276044 | 1.13E-08  | 1.85E-06 |
| FARS2   | 7 | 8.26E+09 | 9.35E-03   | 0.0034081 | 4.83E-01  | NA        | 0.046121  | 1.14E+08  | NA        | 1.98E+03  | 4.75E-02 |
| UXT     | 7 | 8.26E+08 | 5.44E+09   | 0.0348734 | 0.3819614 | 0.0058657 | 0.0539375 | 2.77E-02  | 0.0479563 | 1.92E-02  | 1.19E-01 |
| CMTM6   | 7 | 8.27E+09 | 0.00085245 | 0.0012488 | 8.36E-02  | 0.069524  | 0.1545876 | 5.48E+07  | 0.0352969 | 2.90E-06  | 6.56E+05 |
| RFTN1   | 7 | 8.28E+09 | 4.98E+06   | 0.1943768 | 1.39E+09  | 0.0059118 | 4.10E-01  | 1.21E-04  | 0.0594536 | 3.87E-01  | 5.47E-10 |
| LFNG    | 7 | 8.46E+09 | 1.79E+09   | 0.0432476 | 0.0827259 | 0.0001089 | 0.1919518 | 1.31E+04  | NA        | 1.91E+04  | 2.34E-01 |
| SUPV3L1 | 7 | 8.50E+09 | 0.01105686 | 5.90E-03  | 0.6466111 | NA        | 0.0299692 | 4.14E+08  | 0.9893771 | 3.31E+05  | 6.82E+02 |
| CEACAM3 | 7 | 8.56E+09 | 5.82E-03   | 4.28E+08  | 0.0009707 | 0.0058657 | 0.4535039 | 0.0011902 | NA        | 0.0147084 | NA       |
| NUP210  | 7 | 8.59E+09 | 1.07E+07   | 0.0258721 | 0.7704812 | NA        | 0.0154034 | 4.30E-06  | 0.4880974 | 1.01E-01  | 3.27E+02 |
| IGSF6   | 7 | 8.59E+09 | 1.19E-02   | 3.01E+09  | 0.0088374 | 0.2903136 | 0.8374634 | 3.46E+03  | NA        | 3.42E+06  | 1.05E+07 |
| COPS6   | 7 | 8.93E+09 | 0.00056256 | 0.0014014 | 0.0234952 | 0.1250011 | 0.1989157 | 0.0225402 | 0.0301818 | 2.54E+09  | 1.10E-01 |

| ST6GALN  | 7  | 8.95E+09  | 2.93E-02   | 0.0345222 | 0.5359101 | 0.0344227 | 0.8474414 | 1.65E+03  | 0.0947661 | 4.20E+08 | 4.08E+09 |
|----------|----|-----------|------------|-----------|-----------|-----------|-----------|-----------|-----------|----------|----------|
| SPNS3    | 8  | 9.05E+09  | 0.00183191 | 0.0005665 | NA        | 0.1899702 | 0.0342345 | 3.35E-02  | 0.0206837 | 4.58E+02 | 3.63E+07 |
| MPHOSPH  | 7  | 9.05E+09  | 1.68E+09   | 0.8075941 | 0.0105833 | 0.3022816 | 0.0164102 | 5.16E+07  | 0.1652121 | 6.66E+04 | 1.43E+07 |
| GZMM     | 7  | 9.10E+09  | 4.53E+08   | 0.0033448 | 0.0047291 | 0.6964219 | 0.7889797 | 4.90E+05  | 0.3741583 | 4.63E-01 | 3.40E-02 |
| DKC1     | 7  | 9.23E+09  | 7.74E+06   | 2.52E+09  | 0.0001109 | 0.091472  | 0.1069317 | 1.79E-01  | 0.9853273 | 5.92E-06 | 4.32E+00 |
| NIP7     | 7  | 9.62E+09  | NA         | 0.0008835 | 0.0319166 | 0.0013229 | 0.0999934 | NA        | 0.0148808 | 1.54E-02 | 4.24E-03 |
| ITGB7    | 7  | 9.79E+09  | 2.52E+09   | 6.31E+09  | 0.1245701 | 0.9861732 | 0.1105285 | 8.35E-02  | 0.0113794 | 3.20E-06 | 4.78E-11 |
| RGS19    | 7  | 1.02E-04  | 9.35E-03   | 2.40E+09  | 0.7656126 | 0.003194  | 3.12E-01  | 0.0064895 | 0.1225018 | 6.87E-03 | 7.59E-07 |
| GLA      | 7  | 0.000103  | 7.24E+07   | 0.6954591 | 0.3496839 | 0.0327286 | 0.012468  | 6.57E+03  | 0.1738454 | 9.96E-07 | 4.37E-01 |
| NOV      | 8  | 1.08E-04  | 1.15E-04   | 0.9606309 | 0.0018852 | 0.3498167 | 0.0364168 | 1.20E-07  | 0.0036925 | 9.63E-03 | 3.35E-01 |
| COPZ1    | 7  | 0.0001086 | 1.81E+09   | 0.0280585 | 0.0283489 | 0.9739635 | 0.1642911 | 2.43E+04  | 0.0865587 | 4.32E-03 | 2.75E+05 |
| MOSPD2   | 7  | 0.0001091 | 1.07E-04   | NA        | 0.001259  | 0.2869922 | 0.0139294 | 3.97E-03  | NA        | 1.20E+04 | 5.41E+02 |
| CLEC4E   | 7  | 1.09E-04  | 1.31E-04   | 0.0344263 | 5.01E+08  | 2.78E+09  | 0.1243257 | NA        | NA        | 8.07E+02 | 2.18E-11 |
| DUSP3    | 8  | 1.10E-04  | 1.47E-03   | 0.0040725 | 1.32E-01  | 0.785936  | 0.0001313 | 3.22E-03  | 0.0079119 | 1.03E-05 | 8.83E-04 |
| C21orf33 | 7  | 1.11E-04  | 9.58E+06   | 0.0161026 | 0.0065792 | 0.0098053 | 0.0978243 | 4.18E+02  | 0.3150315 | NA       | 2.90E-06 |
| EXOSC7   | 7  | 0.0001123 | 5.32E+08   | 0.0007957 | 1.43E+09  | NA        | 0.4345454 | 5.49E-03  | 0.9045188 | 2.24E-01 | 4.54E+07 |
| PTEN     | 7  | 0.0001159 | 0.00031644 | 5.99E-01  | 0.1770487 | 0.0151239 | 0.0627488 | 7.35E+04  | 0.0045165 | 3.52E-01 | 1.67E+04 |
| VIPR1    | 7  | 0.0001173 | 9.81E+05   | 0.0088798 | 0.004127  | 0.9552428 | 2.86E-01  | 7.61E+00  | NA        | 1.93E-02 | 2.06E+01 |
| B3GNT8   | 7  | 0.000119  | 0.00234539 | 0.0002836 | 0.229202  | 0.7934164 | 0.1215581 | 8.04E+03  | 0.0283469 | 1.18E-02 | 8.22E+02 |
| RPS16    | 7  | 0.0001209 | 1.79E+08   | 8.72E-01  | 0.1141624 | 0.0140022 | 0.2312665 | 2.39E+07  | 0.0190336 | 3.06E+00 | 2.89E+03 |
| ARPC5    | 7  | 1.21E-04  | 1.73E-02   | 0.0433911 | 0.7642502 | 0.1017602 | 5.86E+06  | 3.80E+09  | NA        | 2.17E+04 | 2.19E+03 |
| S100A6   | 7  | 1.21E-04  | 7.04E+07   | 0.1645778 | 0.0105522 | 0.2915592 | 0.028901  | 1.82E+02  | 0.2682257 | 5.86E+08 | 4.99E-12 |
| ATIC     | 7  | 1.23E-04  | 2.72E+06   | 0.0142606 | 3.17E-02  | 0.7235795 | 0.1469072 | 8.04E-01  | 0.5431481 | 1.51E-03 | 8.37E-06 |
| IL17RA   | 10 | 1.24E-04  | 2.09E+07   | 6.50E+09  | 1.88E-02  | 0.0103201 | 0.0008744 | 3.74E+00  | 0.033698  | 5.41E+06 | 9.05E+07 |
| PAQR8    | 7  | 0.0001262 | 1.68E+08   | 2.38E-02  | 0.0028198 | NA        | 0.6676587 | 2.93E-04  | NA        | 9.50E-06 | 3.94E-09 |
| GMFG     | 8  | 0.000127  | 8.09E+09   | 2.06E+09  | 0.6728912 | 0.0014326 | 0.9895042 | 4.96E+00  | 0.0086692 | 1.43E+03 | 4.93E-09 |
| WBP11    | 8  | 0.0001284 | 6.46E+05   | 0.0319525 | 0.3952726 | 7.84E+09  | 0.2554447 | 2.04E-08  | 0.0149933 | 1.06E+03 | 1.90E-01 |
| MORC2    | 7  | 0.0001328 | 4.58E+06   | 0.0029012 | 0.0017705 | NA        | 0.0526347 | 6.19E-04  | 0.1627952 | 4.62E-05 | 5.60E+04 |
| OGFOD1   | 7  | 0.000135  | 5.29E+07   | 0.0014405 | 0.1970981 | NA        | 0.0286797 | 4.78E-06  | 0.9597726 | 1.14E+03 | 3.92E-03 |
| SLC12A9  | 7  | 0.0001355 | 7.60E-03   | 0.0043329 | 0.6592064 | 0.0488567 | 0.3947835 | 1.26E+04  | 0.4412141 | 1.29E+04 | 4.03E+03 |
| CIRBP    | 7  | 1.37E-04  | 2.23E+07   | 0.5046274 | 0.5326829 | 0.047979  | 0.7702712 | 7.46E+06  | 0.0103003 | 1.46E+00 | 9.57E+04 |

| DNASE1L   | 7 | 1.38E-04  | 6.83E+08   | 0.7374698 | 0.3939301 | 0.0045074 | 0.7447463 | 1.37E+02 | 0.0259125 | 1.19E+08  | 9.60E+00 |
|-----------|---|-----------|------------|-----------|-----------|-----------|-----------|----------|-----------|-----------|----------|
| WDR46     | 8 | 1.46E-04  | 4.61E-02   | 0.0003449 | 2.46E-03  | 0.1856709 | 0.0003418 | 3.92E+06 | 0.9538456 | 1.26E+05  | 2.45E+06 |
| RFWD2     | 7 | 1.49E-04  | 1.16E-02   | 0.6188499 | 0.9241531 | 0.0125957 | 1.61E-02  | 1.87E-02 | 0.0067058 | NA        | 8.16E-04 |
| TRAF3IP3  | 8 | 0.0001545 | 1.80E+07   | 0.0002534 | 0.0101812 | 0.4017311 | 0.012468  | 1.57E+06 | NA        | 1.95E+06  | 2.46E+06 |
| RPA1      | 7 | 0.0001546 | 5.55E+07   | 3.04E-02  | 0.1147275 | 0.0994791 | 0.2600216 | 1.88E-02 | 0.0019786 | 2.41E-06  | 6.93E+03 |
| NCOA5     | 7 | 0.0001565 | 3.34E-04   | 0.0024419 | 8.63E-01  | 0.4539326 | 0.0006192 | 1.39E-01 | NA        | 2.15E+01  | 6.76E-06 |
| RAB27A    | 8 | 1.58E-04  | 1.18E+09   | 1.25E-02  | 1.93E-02  | 0.0059936 | 0.7944027 | 4.51E+03 | 0.1166617 | 3.99E-05  | 4.23E-08 |
| NUDCD3    | 8 | 0.0001585 | 4.83E+07   | 0.0030271 | 0.0800231 | 0.0471208 | 0.0001262 | 1.88E+05 | 0.1632161 | 7.26E-04  | 2.28E-06 |
| IMPDH2    | 7 | 0.0001643 | 2.70E+06   | 0.0018268 | 2.82E-01  | 0.0196142 | 0.1627841 | 5.81E+03 | 0.3204749 | 9.16E-04  | 2.90E+04 |
| SKAP2     | 7 | 0.0001651 | 1.12E+08   | NA        | 6.49E-01  | 5.25E+09  | 0.898772  | 2.33E+09 | 0.0255256 | 5.27E+02  | 3.47E+01 |
| LONP1     | 9 | 0.0001778 | 1.42E+09   | 0.0005065 | 0.0032559 | 0.0011385 | 3.25E-03  | 1.30E+08 | 0.683709  | 4.44E+04  | 2.64E-03 |
| MRPS9     | 7 | 1.80E-04  | 4.13E+07   | 0.001921  | 0.0001284 | NA        | 0.0509774 | 7.32E+09 | 0.1466105 | 6.18E-02  | 2.23E+09 |
| ZNF559    | 8 | 1.86E-04  | 2.15E+09   | 2.21E-02  | 3.78E-01  | 0.0224499 | 0.028012  | 1.11E+05 | NA        | 3.55E+08  | 4.87E+05 |
| TMEM50B   | 8 | 1.87E-04  | 2.39E-04   | 1.59E-01  | 0.2529064 | 0.0169497 | 3.88E-03  | 1.73E+06 | 0.0203431 | 2.69E+07  | 6.78E-04 |
| NUP85     | 8 | 1.89E-04  | 1.74E+08   | 1.11E-02  | 0.0528933 | 0.0410756 | 0.0470238 | 2.94E+08 | 0.3367634 | 0.0001037 | 8.77E+08 |
| CHIC2     | 7 | 1.92E-04  | 1.02E-01   | 3.84E-03  | 0.000108  | 1.70E-02  | 0.9652809 | 2.53E+07 | 0.5128476 | 7.02E+00  | 3.32E+03 |
| METAP1    | 7 | 0.0001944 | 3.29E+08   | 0.022107  | 0.0016887 | 0.801543  | 0.7475885 | 4.47E+03 | 0.3741736 | 4.70E-03  | 5.42E+04 |
| AKR1B1    | 8 | 0.0001978 | 7.91E+04   | 0.0053939 | 4.54E+07  | 0.0287406 | 0.7351674 | 4.13E+03 | 0.8136926 | 1.80E-03  | 1.95E-04 |
| GGA2      | 7 | 0.0001998 | 2.54E-04   | 0.0635704 | 0.0192078 | 0.076931  | 0.0823579 | 1.82E+05 | 0.0246103 | 4.18E+03  | 2.06E-04 |
| MYL6      | 7 | 0.0002035 | 0.0009856  | 0.0008471 | 6.97E-02  | 0.7235795 | 0.5334058 | 3.53E-08 | 0.0014427 | 4.13E-01  | 1.41E-16 |
| PLEKHO2   | 8 | 0.000211  | 1.65E-01   | 0.0004949 | NA        | 0.029148  | 0.0096075 | 6.53E-04 | 0.0145941 | 7.83E+04  | 1.08E+09 |
| TAF4      | 7 | 2.20E-04  | 5.55E-01   | 2.18E+08  | 0.0270435 | 0.2429331 | 1.81E-02  | 1.88E-01 | 0.0958226 | 7.86E-02  | 1.84E+02 |
| SET       | 7 | 2.23E-04  | 1.72E+08   | 9.63E-03  | 0.0670632 | 0.0140415 | 0.5618594 | 4.26E+07 | 0.012988  | 5.04E-02  | 1.71E+02 |
| DNAJA3    | 7 | 0.0002259 | 1.73E+08   | 3.03E+09  | 0.0210973 | 0.4438176 | 3.91E-01  | 6.55E+00 | 0.3188626 | 4.74E+07  | 1.10E+01 |
| EMILIN2   | 7 | 0.0002265 | 1.80E+05   | 0.0019397 | 0.1630761 | 1.14E-02  | 0.2732134 | NA       | 0.0008917 | 3.06E+02  | 1.26E+02 |
| TBC1D14   | 8 | 2.29E-04  | 8.41E-03   | 0.0264956 | 0.2828363 | 1.24E+09  | 0.0239644 | 4.23E-02 | 0.058949  | 5.11E+09  | 2.48E+06 |
| C14orf169 | 7 | 2.32E-04  | 0.00042882 | 4.35E+09  | 0.0050282 | 0.2479308 | 3.80E-01  | 1.09E+00 | 0.0315936 | NA        | 4.87E-04 |
| PIK3C2B   | 7 | 2.36E-04  | 1.87E+06   | 0.000587  | 0.4182952 | 0.014045  | 0.3697511 | 3.90E-06 | 0.1956959 | 5.76E-06  | 3.34E-04 |
| PROK2     | 8 | 2.39E-04  | 6.27E+08   | 0.0015245 | 0.0398767 | 0.0010132 | 0.1158584 | 1.04E+08 | NA        | 2.87E-05  | 1.09E+09 |
| RPL32     | 7 | 2.43E-04  | 3.43E+08   | 0.9971519 | 0.1202588 | 0.0426562 | 0.9328377 | 3.13E+09 | 0.0057851 | 4.31E+08  | 2.49E-03 |
| DNMT1     | 7 | 2.45E-04  | 4.65E+07   | 0.0021411 | 0.0050472 | 0.5994953 | 0.8516394 | 3.31E-03 | 0.2495846 | 3.74E-10  | 2.37E-01 |

| CCND3    | 7 | 2.57E-04  | 0.94966176 | 4.97E-03  | 0.017539  | 7.37E+06  | 0.5414142 | 1.18E-03  | 0.8474469 | 1.40E-02 | 1.34E+04 |
|----------|---|-----------|------------|-----------|-----------|-----------|-----------|-----------|-----------|----------|----------|
| SMYD3    | 7 | 2.59E-04  | 4.62E+09   | 0.0002693 | 5.42E-01  | NA        | 0.2722733 | 7.72E+08  | 0.0037287 | 6.18E-04 | 3.36E+09 |
| DDX56    | 8 | 2.65E-04  | 3.98E+08   | 0.0092068 | 0.0202924 | 0.2168527 | 0.0405669 | 3.52E+01  | 0.9097472 | 3.39E+07 | 9.58E+04 |
| CCDC115  | 8 | 0.0002785 | 2.78E+08   | 1.72E-02  | 0.0118046 | 0.1538382 | 0.2221998 | 1.45E+01  | 0.0170548 | 1.47E+07 | 3.92E+07 |
| DENND3   | 7 | 2.79E-04  | 1.73E-01   | 0.0177434 | 0.0002245 | 5.84E-02  | 0.0023498 | 1.39E-03  | NA        | 5.90E+05 | 1.71E+07 |
| FAM53C   | 7 | 2.87E-04  | 4.60E-03   | 0.0623335 | 0.2875489 | 0.0130916 | 0.0147941 | 5.35E+07  | 0.2583155 | 8.21E+06 | 1.65E+06 |
| ACTR1B   | 8 | 2.88E-04  | 6.82E-04   | 0.0517406 | 0.0048121 | 0.0047325 | 0.0194396 | 5.00E+02  | 0.0650366 | 6.32E-04 | 1.29E+03 |
| EDF1     | 7 | 2.89E-04  | 7.73E+09   | NA        | 0.1963414 | 0.0020596 | 0.0013862 | 1.10E-01  | 0.021701  | 5.29E+09 | 2.23E+05 |
| PHB      | 7 | 2.89E-04  | 8.24E+09   | 0.0003641 | 7.95E+09  | 0.9615794 | 0.9236872 | 2.31E+05  | 0.1845831 | 3.48E+09 | 2.42E+01 |
| KIAA0141 | 7 | 0.0002997 | 4.88E+08   | 0.8843868 | 0.0287038 | 0.6107379 | 0.0012885 | 1.59E+05  | 0.0142754 | NA       | 2.48E+09 |
| POLE3    | 7 | 0.0003046 | 1.34E+08   | 0.0014363 | 2.94E-02  | 0.3468788 | 0.5334058 | 9.41E-04  | 0.2726939 | 2.36E-04 | 7.47E+09 |
| PIK3IP1  | 7 | 0.0003052 | 9.70E+09   | 0.0275321 | NA        | 0.0025956 | 9.88E-01  | 2.91E-02  | NA        | 1.60E+03 | 7.35E+08 |
| QPCT     | 7 | 0.0003132 | 0.00027024 | 0.2700683 | 0.0014368 | 8.96E+09  | 0.2922412 | 1.91E-03  | NA        | 7.35E-01 | 1.90E+07 |
| FGFR1OP2 | 7 | 0.0003175 | 3.17E-04   | 0.2039736 | 0.1425974 | 4.42E-02  | 8.05E+05  | 1.17E-03  | NA        | 9.15E+06 | 5.94E+01 |
| C16orf72 | 7 | 0.0003195 | 1.15E+09   | 2.27E+09  | 0.9619619 | 0.0071193 | 0.3919289 | 4.27E+03  | 0.1408373 | 7.90E-01 | 2.49E+06 |
| B3GALT6  | 7 | 0.0003202 | 2.15E+07   | 4.00E-02  | 3.08E-02  | 0.2589771 | 0.0001126 | NA        | 0.1678854 | 6.82E-04 | 1.73E+00 |
| NDUFAF1  | 7 | 3.24E-04  | 5.30E+09   | 0.9098053 | 0.0719135 | 0.0078776 | 0.4492813 | 7.09E-02  | 0.0406159 | 2.12E+04 | 3.46E-10 |
| LANCL2   | 7 | 3.27E-04  | 9.20E-04   | 9.92E-04  | 0.024985  | NA        | 0.2656477 | 1.58E-02  | NA        | 1.38E-03 | 4.27E+09 |
| TPD52L2  | 8 | 3.27E-04  | 1.87E-02   | NA        | 0.0176398 | 0.0057799 | 0.0392747 | 4.34E+08  | 0.9171391 | 9.10E+04 | 9.09E+03 |
| ARHGEF1  | 7 | 0.0003504 | 1.36E+06   | 0.2186348 | 0.7328127 | 0.0457951 | 0.5046133 | 8.93E-07  | 0.049705  | 2.54E-08 | 2.19E-08 |
| P2RY8    | 7 | 0.0003518 | 2.52E+07   | 0.0001697 | 0.00246   | 0.0667727 | 0.2146965 | 9.36E+03  | 0.8871512 | 6.88E-03 | 7.33E-08 |
| MRPL54   | 7 | 0.0003554 | 3.63E-03   | 0.5143839 | 2.15E-02  | 0.0002748 | 0.0016304 | 3.85E-01  | 0.0024331 | 2.47E-01 | 2.69E-02 |
| EXOSC5   | 8 | 3.66E-04  | 5.13E+08   | 3.52E+09  | 0.0006401 | NA        | 0.0159727 | 1.86E+07  | 0.344958  | 2.92E+00 | 9.28E-03 |
| ICAM2    | 8 | 3.68E-04  | 2.89E+05   | 0.0001853 | 0.0263953 | 0.0047705 | 0.2063059 | NA        | 0.0186669 | 1.24E+01 | 6.30E+01 |
| PWP1     | 7 | 0.0003732 | 4.07E+08   | 2.26E-02  | 0.02329   | 0.9892076 | 0.1375687 | 1.77E+05  | 0.1160815 | 2.82E-03 | 4.48E-03 |
| ERCC1    | 8 | 0.0003803 | 6.71E-04   | 0.1238733 | 0.0140916 | 0.1951695 | 0.0478649 | 4.41E-02  | 0.0336098 | 7.47E+08 | 5.11E-09 |
| NOL11    | 7 | 3.85E-04  | 2.27E-04   | 3.78E-04  | 0.4514261 | 0.5905453 | 0.188496  | 1.23E+06  | 0.0177996 | 6.32E+02 | 6.10E-04 |
| TIMM9    | 7 | 3.88E-04  | 6.53E+08   | 0.0001496 | 0.0497106 | 0.3505921 | 0.2860538 | 2.31E-04  | 0.526     | 2.35E-04 | 5.79E+07 |
| TMEM14A  | 7 | 3.92E-04  | 4.37E-04   | 2.59E+09  | 0.0107232 | NA        | 0.6559403 | 2.55E+07  | 0.1767364 | 7.99E+05 | 1.30E+05 |
| CD27     | 7 | 0.000396  | 5.64E+05   | 1.28E-03  | 3.60E-02  | NA        | 0.9374238 | 7.47E+00  | NA        | 3.21E-01 | 6.98E-01 |
| POLR2I   | 7 | 0.0004013 | 0.00624884 | 0.0426398 | 0.0453183 | 0.0037616 | 0.0116946 | 0.4700522 | 0.0252021 | 0.089924 | 3.70E-01 |

| NCOR2    | 7 | 0.0004189 | 0.63627768 | 0.481772  | 0.0009375 | 0.0014127 | 0.004059  | 2.90E+02  | 0.1229775 | 1.68E+04  | 8.38E-04 |
|----------|---|-----------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----------|
| FURIN    | 7 | 0.000422  | 5.44E+09   | 0.0811369 | 0.8596459 | 0.009068  | 0.011173  | 8.58E-04  | NA        | 8.86E+02  | 4.16E+09 |
| COX10    | 7 | 0.0004333 | 2.34E-03   | 4.64E-04  | 0.0001373 | NA        | 0.4380519 | 1.56E+06  | NA        | 1.55E+06  | 1.07E+05 |
| EXOSC8   | 7 | 4.34E-04  | 1.02E-03   | 0.0305776 | 0.475038  | 0.4736234 | 1.05E-01  | 3.15E-02  | 0.0049622 | 3.28E+05  | 4.12E+07 |
| BZW2     | 8 | 0.0004404 | 1.72E+09   | 2.64E+09  | 0.0051562 | 0.0488067 | 0.6638025 | 4.07E+08  | 0.4199638 | 4.75E+06  | 1.34E+04 |
| HACL1    | 7 | 4.48E-04  | 6.40E+08   | 0.0058549 | 5.44E-01  | 0.6901014 | 0.6808844 | 4.71E+06  | 0.0449196 | 8.39E+00  | 1.20E-04 |
| DHPS     | 7 | 4.57E-04  | 9.05E+09   | NA        | 0.0135746 | 0.8839534 | 0.0008253 | 8.85E+09  | 0.0265027 | 2.69E-01  | 7.21E+08 |
| RPL37A   | 7 | 0.0004734 | 4.81E+08   | 5.18E-03  | 0.0275568 | 0.2976432 | 7.55E-01  | 2.46E+03  | 0.0090814 | NA        | 4.94E+04 |
| CCR7     | 7 | 0.0004876 | 5.22E+04   | 0.0149983 | 4.10E+09  | 0.6024989 | 3.99E-01  | 5.67E+01  | 0.1167534 | 4.79E+04  | 2.13E+02 |
| PBXIP1   | 7 | 4.97E-04  | 1.60E+07   | 0.8574509 | 0.0998763 | 0.5688516 | 0.0119808 | 4.68E-02  | 0.0185813 | 9.61E+01  | 1.12E-20 |
| UBE2W    | 7 | 0.0005196 | 4.56E+08   | 0.9744361 | 0.4121951 | 0.0243482 | 0.0036341 | 1.30E+05  | 0.0162115 | 1.49E-06  | NA       |
| PRKRA    | 7 | 0.0005206 | NA         | 0.000462  | 0.4457996 | 0.0056979 | 0.003211  | 1.24E+03  | 0.2149268 | 4.48E+02  | 4.07E+08 |
| MRPS27   | 7 | 5.46E-04  | 4.02E+07   | 0.0002399 | 0.0145662 | NA        | 0.2655978 | 3.93E+03  | 0.9886692 | 9.26E+00  | 2.43E-02 |
| BLOC1S1  | 7 | 0.0005492 | 6.92E+05   | 0.0091536 | 0.3315372 | 0.4024405 | 0.0215414 | 1.64E-01  | 0.1146411 | 4.77E-05  | 2.36E-15 |
| TRIT1    | 7 | 0.0005572 | 0.00011397 | 4.34E+08  | 7.51E-01  | 0.3288496 | 0.0336023 | 1.32E+03  | 0.9559138 | 2.52E+01  | 1.58E-01 |
| LHFPL2   | 7 | 5.62E-04  | 7.35E+09   | 0.2087427 | 0.4355009 | 0.0301166 | 0.0268904 | 6.99E+08  | 0.5579025 | 1.26E+06  | 4.16E+08 |
| HIST1H2A | 7 | 0.000568  | 0.04565732 | 0.0475873 | 4.50E+09  | 0.7773395 | 0.028648  | 0.0001621 | NA        | 2.64E-01  | 4.27E-01 |
| SCRN1    | 7 | 0.0005712 | 3.72E+07   | 0.8363756 | 0.0005714 | NA        | 0.0872742 | 5.57E-04  | 0.0116845 | 3.65E+07  | 1.14E+01 |
| ARPC1B   | 7 | 0.00058   | 0.00317464 | 8.24E+09  | NA        | 0.0471208 | 0.2427621 | 1.95E+09  | 0.2963411 | 4.50E+06  | 1.60E+04 |
| TOLLIP   | 7 | 0.0005898 | 0.000834   | 0.0105882 | 7.51E-03  | 0.7312066 | 0.1225692 | 3.92E-03  | 0.8229906 | 4.02E+07  | 3.33E+06 |
| SEPHS2   | 7 | 0.0006245 | 2.35E-03   | 0.076833  | 0.4671225 | 0.6989646 | 0.0010471 | 1.92E+04  | 0.0022867 | 8.40E-07  | 2.17E-07 |
| GSR      | 7 | 0.0006365 | 3.24E+03   | NA        | 0.0038541 | 0.0330619 | 0.8043537 | 1.47E+04  | NA        | 2.99E+09  | 2.89E+01 |
| E2F5     | 7 | 0.0006424 | 5.04E-04   | 0.0072602 | 0.0183101 | 0.5291633 | 0.0608877 | 8.94E+08  | NA        | 2.32E-04  | 8.38E+05 |
| PHKA2    | 8 | 6.46E-04  | 7.08E-03   | 0.0018085 | 0.0100889 | 0.1200755 | 0.0759325 | 4.90E+07  | 0.0055634 | 6.07E+02  | 2.28E+00 |
| NUBP1    | 8 | 6.61E-04  | 5.65E+09   | 1.00E-02  | 0.0061966 | NA        | 0.12175   | 7.40E-03  | 0.0308956 | 1.40E-04  | 3.04E-04 |
| RNASE6   | 7 | 0.0007031 | 0.00599778 | 0.0047337 | 0.853355  | 0.0116527 | 0.9094038 | 3.16E-02  | NA        | 6.54E-04  | 7.23E-03 |
| CYBB     | 7 | 0.0007135 | 0.52494997 | 3.10E+09  | 0.0289373 | 1.83E+09  | 0.0295466 | NA        | 0.1198768 | 0.0250162 | 4.70E+06 |
| ARL2BP   | 7 | 7.18E-04  | 2.14E-03   | 0.0414998 | 0.7822871 | 0.4015107 | 0.0223089 | 3.32E+06  | 0.0095448 | 9.97E-02  | 2.83E-04 |
| SUPT16H  | 9 | 7.38E-04  | 1.90E+09   | 0.0003728 | 0.0006801 | 0.0248591 | 0.0012027 | 1.99E-02  | 0.3120948 | 2.71E+00  | 3.22E+06 |
| UROS     | 7 | 0.0007408 | 0.00043201 | 0.0062624 | 0.0002245 | 0.7231776 | 0.881229  | 5.60E-03  | 0.0182198 | 4.78E-03  | 6.39E-02 |
| RAB8B    | 7 | 0.0007449 | 3.83E+07   | 0.0031402 | 0.0692076 | 0.0343621 | 0.2156254 | 4.69E+09  | 0.1232854 | 1.83E+04  | 1.44E-06 |

| ALKBH2   | 8 | 0.0007553 | 2.13E-04   | 0.0005278 | 0.0018947 | NA        | 0.0013486 | 4.37E-04  | 0.2832495 | 2.01E+08 | 4.06E-04  |
|----------|---|-----------|------------|-----------|-----------|-----------|-----------|-----------|-----------|----------|-----------|
| NCL      | 9 | 0.000758  | 2.45E+06   | 0.0129925 | 0.0001007 | 0.0031027 | 0.7340383 | 1.29E+00  | 0.0200659 | 7.52E-07 | 4.96E-10  |
| C16orf80 | 7 | 7.59E-04  | 3.56E+05   | 0.048211  | 0.5053816 | 8.07E+09  | 0.2045924 | 6.55E-02  | 0.0302612 | NA       | 8.83E+04  |
| CD19     | 7 | 0.0007898 | 3.06E-04   | 0.6002332 | 0.0023133 | 0.3022816 | 0.0067988 | 9.61E+08  | NA        | 3.51E+09 | 8.97E+09  |
| GTF2H4   | 7 | 0.0008028 | 0.00567447 | 0.0155765 | 0.0118046 | 0.6019106 | 0.0359911 | 3.49E+05  | 0.9385555 | 2.47E-02 | 4.78E-01  |
| CLC      | 7 | 8.06E-04  | 2.72E-01   | 0.0073291 | 0.0057436 | 6.49E-03  | 0.4465294 | 3.33E-02  | 0.0006548 | 1.24E-03 | 6.34E-02  |
| TNFRSF25 | 7 | 0.0008061 | 2.19E+06   | 0.2509092 | 0.0079597 | 0.041234  | 0.9487446 | 2.34E-02  | 0.0817867 | 1.24E-05 | 7.68E+06  |
| SRP68    | 9 | 0.0008061 | 9.56E+09   | 0.0332586 | 0.0322615 | 0.0058354 | 0.0020042 | 9.48E+05  | 0.1119369 | 4.01E+01 | 2.72E+09  |
| MFN2     | 7 | 8.21E-04  | 6.41E-03   | 0.8594255 | 0.0018127 | 0.7413191 | 0.027017  | NA        | 0.0372174 | 3.73E-03 | 1.36E-03  |
| HSPA1B   | 8 | 0.0008359 | 0.00036519 | 0.1853399 | 0.0013185 | 0.030955  | 0.6471958 | 0.0047081 | 0.025842  | 5.87E+07 | 0.0124598 |
| MAP3K5   | 7 | 0.0008411 | 0.00720803 | 1.22E-03  | 0.0006282 | 0.3349057 | 0.3125527 | 0.0013853 | 0.0574175 | 1.17E-02 | 2.20E-04  |
| RPUSD4   | 7 | 0.0008452 | 9.87E+07   | 0.0041002 | 0.0374634 | 0.3770319 | 0.8475938 | 1.26E+05  | 0.7820267 | 1.91E+09 | 1.84E+00  |
| UTP14A   | 7 | 0.0008513 | 6.76E+09   | 0.023983  | 0.0121747 | NA        | 2.79E+08  | 2.23E-01  | 0.7016622 | 1.15E+08 | 1.77E-04  |
| ZBTB9    | 7 | 0.0008579 | 1.42E+08   | 0.0002431 | 0.0128518 | NA        | 0.1975392 | 3.52E+01  | NA        | 1.60E+09 | 2.49E+03  |
| PRPF19   | 7 | 0.0008666 | 3.33E+09   | 2.06E+09  | 0.0034264 | NA        | 0.1713313 | 3.29E+04  | 0.1974132 | 3.22E-02 | 2.13E-03  |
| RPS13    | 7 | 8.72E-04  | 1.71E-04   | 0.0191021 | 0.0292441 | 0.0977171 | 7.51E-01  | 3.73E+09  | 0.0298951 | 9.89E-01 | 2.98E-02  |
| CTDSPL2  | 7 | 8.74E-04  | 0.03884494 | 0.8412742 | 0.4043025 | 0.0073979 | 0.0173647 | NA        | 0.0029501 | 2.39E-01 | 6.27E+04  |
| MSRA     | 7 | 0.0008841 | 6.79E+08   | 6.27E-02  | 0.0001141 | 0.0499066 | 0.5137503 | 7.32E+06  | 0.9368583 | 3.38E+06 | 6.79E+07  |
| PIH1D1   | 7 | 0.0008914 | 3.85E-04   | 0.545938  | 0.037399  | 0.9897717 | 8.04E-03  | 1.19E-03  | 0.5940958 | 4.21E+07 | 1.52E-02  |
| ADK      | 7 | 9.06E-04  | 8.06E+08   | 2.29E-03  | 0.0012131 | 0.3928115 | 0.9036557 | NA        | 0.0039337 | 3.38E+07 | 2.57E+08  |
| NOSIP    | 8 | 0.0009229 | 4.45E+05   | 0.3869899 | 0.0251614 | 0.1750442 | 0.0049022 | 2.73E+04  | 0.0260786 | 7.04E-03 | 1.44E+07  |
| RAB33B   | 7 | 0.0009256 | 0.001423   | 9.45E-01  | 0.0401137 | 0.0831206 | 0.0019531 | 0.0099165 | NA        | 2.05E-11 | 9.49E+01  |
| SH2B2    | 7 | 0.0009268 | 0.10641211 | 3.11E+09  | 0.5170336 | 0.0439904 | 2.52E-02  | 3.48E+09  | 0.9780591 | 9.70E+04 | 0.0397772 |
| HSPA8    | 7 | 0.0009304 | 9.06E+08   | NA        | 0.0001171 | 0.6117465 | NA        | 3.57E+05  | 0.0172761 | 7.97E+09 | 2.07E+08  |
| CDK4     | 7 | 0.0009403 | 6.02E+06   | 0.0002871 | 0.0003248 | 0.3349305 | 0.7506074 | 7.75E+07  | 0.2416739 | 2.20E+04 | 5.40E+04  |
| TARBP2   | 8 | 9.47E-04  | 1.09E-04   | 5.97E+09  | 0.000357  | 0.4218748 | 0.0318463 | 7.41E-03  | 0.928764  | 4.22E-02 | 2.19E-04  |
| PQLC1    | 8 | 0.0009532 | 0.0020009  | 0.0355223 | 0.0105708 | 0.013561  | 0.9358355 | 5.05E+05  | NA        | 4.02E+06 | 8.24E+03  |
| TBC1D10C | 8 | 0.0009714 | 6.40E+08   | 4.66E+09  | 0.0168982 | 0.0188444 | 0.0863107 | 2.16E+09  | 0.007092  | 1.51E-01 | 3.12E+08  |
| PARP1    | 7 | 9.74E-04  | 3.23E+07   | 9.59E+09  | 0.0374634 | 0.1816033 | 3.09E-01  | 9.66E-07  | 0.6194673 | 1.53E-09 | 1.24E-03  |
| CBY1     | 7 | 0.0009797 | 1.77E-03   | 0.0009985 | 0.0494058 | NA        | 0.1493274 | 4.67E+05  | NA        | 3.97E+07 | 6.09E+07  |
| WDR82    | 7 | 0.0009926 | 4.81E+08   | 0.0004973 | NA        | 0.1040052 | 0.017374  | 2.32E-01  | NA        | 2.59E-05 | 5.77E-05  |

| PRPF31  | 8 | 0.0009964 | 8.49E+07   | 0.0647935 | 0.0177484 | 0.0011704 | 8.58E+08  | 2.34E+05  | 0.2451592 | 6.06E+03 | 3.04E+09  |
|---------|---|-----------|------------|-----------|-----------|-----------|-----------|-----------|-----------|----------|-----------|
| TMEM106 | 7 | 0.0009981 | 1.51E-04   | 0.7059062 | 0.8337719 | 0.0004225 | 1.96E+06  | 3.97E-03  | 0.8805002 | 2.59E-04 | 1.55E+05  |
| YWHAQ   | 8 | 1.02E-03  | 4.85E-02   | 0.0230523 | 0.0280284 | 0.9891956 | 4.82E+09  | 8.57E+06  | 0.8266547 | 8.68E+09 | 1.30E-03  |
| GOT2    | 8 | 1.05E-03  | 7.74E+07   | 0.000429  | 0.0481847 | 0.4924575 | 0.0215414 | 5.58E+03  | 0.7007722 | 6.19E+07 | 1.88E-03  |
| TRIM28  | 7 | 1.06E-03  | 1.13E+07   | 0.1894061 | 7.98E-01  | 5.78E-03  | 2.22E-03  | 3.19E+00  | 0.6703891 | 2.14E+02 | 2.48E+09  |
| PDHB    | 7 | 0.0010576 | 0.00126403 | 0.0098585 | 0.0258853 | 1.65E-01  | 0.2333651 | 0.0431757 | 0.03675   | 4.34E+03 | 0.3835109 |
| HIF1A   | 7 | 1.06E-03  | 0.00562424 | 0.3771382 | 3.87E+09  | 0.2020099 | 0.0067156 | 1.96E-03  | NA        | 6.51E+04 | 1.29E+02  |
| CARD6   | 7 | 1.11E-03  | 3.23E+06   | 0.1336161 | 0.0030878 | NA        | 0.1069144 | 3.15E-08  | 0.0366093 | 3.61E-07 | 2.08E-07  |
| PAAF1   | 7 | 0.0011131 | 2.51E+08   | 0.0002091 | NA        | NA        | 0.1171437 | 6.77E-03  | 0.0412577 | 1.52E+04 | 1.78E+05  |
| TIGD2   | 7 | 0.0011381 | 0.0041123  | 0.0106025 | 0.0065158 | NA        | 0.012468  | 1.60E-03  | NA        | 5.94E-01 | 1.03E-03  |
| NARF    | 7 | 0.0011905 | 0.00056656 | 0.0042129 | 0.0172832 | 0.6031753 | 0.1313413 | 5.34E-01  | 0.9433159 | 2.03E-05 | 1.41E+02  |
| PPRC1   | 7 | 0.0012097 | 1.94E+07   | 1.63E+08  | 0.0115968 | 0.1281304 | 0.5305794 | 3.97E-03  | 0.0696887 | 7.33E+02 | 6.21E-03  |
| SLC41A1 | 7 | 0.0012101 | 8.34E+04   | 4.07E+09  | 0.0152718 | NA        | 0.3588119 | 5.71E+04  | NA        | 1.10E+03 | 4.79E+00  |
| ENDOG   | 7 | 0.0012391 | 3.60E+09   | 3.03E+09  | 0.0232464 | NA        | 0.0162799 | 1.85E-03  | 0.4227606 | 1.32E-01 | 5.21E+08  |
| RPS19   | 7 | 0.0012414 | 1.59E+04   | 0.5265167 | 0.9030775 | 0.0421287 | 0.9077987 | 2.57E+08  | 0.0203921 | 1.32E+04 | 8.11E+05  |
| RAB10   | 7 | 1.26E-03  | 4.13E+04   | 0.882993  | 0.1083605 | 0.2182309 | 0.039883  | 2.06E-03  | 0.0346032 | 4.13E+01 | 4.03E-06  |
| ZDHHC12 | 7 | 0.0012891 | 0.00190027 | 0.0251945 | 0.6971196 | 0.1650998 | 0.0113684 | 2.34E+09  | NA        | 7.31E-01 | 5.58E+00  |
| RANBP9  | 7 | 0.0013172 | NA         | 0.0298899 | 0.2626446 | 0.931048  | 0.006556  | 0.0100067 | 0.0021367 | 2.84E+05 | 1.46E-01  |
| GSS     | 8 | 1.35E-03  | 0.0011176  | 0.0023703 | 0.0043773 | NA        | 0.0031951 | 5.69E+07  | 0.384348  | 8.27E+05 | 1.47E+05  |
| PTPN12  | 7 | 0.0013968 | 1.28E-01   | NA        | 0.0111704 | 0.6669761 | 0.0001536 | 0.0029974 | 0.0254585 | 1.68E-01 | 4.35E+04  |
| ACTR5   | 7 | 0.0014167 | 7.44E+08   | 0.0007156 | 0.0024142 | NA        | 0.1631895 | 2.34E+01  | NA        | 4.86E+00 | 6.38E+00  |
| TPM3    | 7 | 0.0014229 | 1.97E-02   | 0.2365478 | 0.0006145 | 0.1758783 | 0.6806768 | 2.37E-02  | 0.0197019 | 1.12E-02 | 2.43E-03  |
| HADH    | 8 | 0.0014306 | 0.00147611 | 8.08E+09  | 0.0113428 | NA        | 0.032607  | 0.0329765 | 0.7298264 | 2.02E-04 | 6.12E+09  |
| CCDC17  | 7 | 1.44E-03  | 7.11E-04   | 0.7163056 | 0.1397215 | 0.0140415 | 0.0036509 | 2.57E+07  | NA        | 2.29E+06 | 9.15E+03  |
| RBM4B   | 8 | 0.0014539 | 9.40E+07   | 0.0113018 | 0.5618216 | 0.0022418 | 0.1298421 | 8.75E+01  | 0.0430896 | 7.06E+04 | 3.53E-06  |
| CHD9    | 8 | 1.45E-03  | 5.37E-04   | 2.56E-04  | 0.86733   | 0.0029684 | 0.0021044 | 7.06E-03  | 0.3923868 | 5.77E-02 | 5.22E+09  |
| NADK    | 7 | 0.0014623 | 0.03414925 | 0.0019248 | 0.0088806 | 0.006157  | 9.59E+08  | 0.2242458 | 0.0151379 | 9.08E-01 | 1.20E-01  |
| CS      | 7 | 0.0014703 | 1.80E+09   | 0.511303  | 0.0399752 | 0.0011262 | 0.7001781 | 1.14E+01  | 0.4313936 | 1.85E+04 | 3.20E+01  |
| CD44    | 7 | 1.49E-03  | 1.57E-04   | 0.0316992 | 0.0044244 | 0.122811  | 0.9661207 | 2.76E-03  | 0.0114467 | 1.73E+02 | 1.17E-01  |
| LRPAP1  | 8 | 0.0014934 | 9.16E+09   | 0.9700792 | 0.0322473 | 0.0213981 | 0.0342763 | 4.68E+02  | 0.3714581 | 8.15E+02 | 1.33E-03  |
| UBTD1   | 7 | 1.63E-03  | 8.20E+09   | 2.35E+08  | 5.29E-02  | 6.23E-01  | 0.0172011 | 1.70E+08  | 0.8881511 | 8.33E-01 | 2.73E+04  |

| MCM3 7    | 0.0016366 | 2.00E-04   | NA        | 0.7783423 | 0.0002767 | 0.0467945 | 2.41E+01  | 0.1402754 | 1.22E-09  | 1.04E-01  |
|-----------|-----------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| THOC1 7   | 0.0016863 | 1.02E-04   | 0.0003028 | 0.0701548 | 0.0010737 | 0.6764056 | 2.17E+04  | NA        | 3.83E-03  | 2.03E+04  |
| FEM1C 8   | 1.74E-03  | 9.80E+08   | 0.0069393 | 0.6177274 | 0.0132101 | 0.7457734 | 4.19E+04  | 0.0345304 | 5.39E-12  | 1.40E-02  |
| RAB11A 7  | 0.001743  | 0.00330977 | 7.71E-01  | 0.836636  | 0.2508196 | 2.92E+07  | 5.97E+06  | 0.0261384 | 1.34E+06  | 7.66E-05  |
| RCC2 7    | 0.0017479 | 1.13E+09   | 0.0006097 | 3.72E+09  | 0.0581508 | 0.992366  | 8.73E+02  | 0.3680563 | 2.63E+04  | 3.45E-06  |
| SDF2 7    | 0.0017485 | 4.06E+09   | 1.38E-01  | 0.0254638 | 0.0014853 | 0.9284584 | 1.12E+02  | 0.1687736 | 1.23E-02  | 9.15E-14  |
| FBXO34 7  | 0.0017739 | 0.07238696 | 3.67E-02  | 0.0378953 | 0.6554923 | 0.0031496 | 2.13E-01  | 0.0178077 | 2.47E+07  | 3.87E+08  |
| GSTP1 7   | 0.0018018 | 4.09E-04   | 0.0022613 | 0.3629031 | 0.8396182 | 0.8987174 | 3.70E+08  | 0.0203431 | 2.42E-04  | 5.17E+01  |
| NOL8 8    | 1.80E-03  | 0.00863705 | 0.000478  | 6.09E-03  | 0.0173768 | 0.6213577 | 4.45E+08  | 0.9288148 | 2.59E+07  | 1.11E-03  |
| RSAD1 7   | 1.82E-03  | 1.04E+07   | 0.0023654 | 0.0012097 | NA        | 0.7750827 | 6.56E-06  | 0.07756   | 2.23E+03  | 4.76E-05  |
| ST3GAL2 8 | 0.0018204 | 0.03262168 | 0.0143601 | 0.0003432 | 0.0140415 | 0.8468034 | 1.29E+08  | 0.0832333 | 3.66E+04  | 0.0011624 |
| DOLK 7    | 0.0018262 | 0.00996106 | 2.54E+09  | 0.0108903 | NA        | 0.1579712 | 1.14E+05  | 0.9329876 | 3.49E+08  | 0.0020324 |
| AARSD1 7  | 0.0018315 | 0.04299893 | 4.02E-04  | 0.0003975 | NA        | 0.0274482 | 8.06E-04  | 0.3879974 | NA        | 6.92E+03  |
| MICAL1 8  | 1.83E-03  | 1.82E-04   | 0.0001374 | 0.0035726 | 0.3657954 | 0.0345997 | 1.53E+08  | 0.192527  | 3.85E+04  | 2.74E+03  |
| PTBP1 8   | 0.0018341 | 0.00018889 | 0.0016864 | 0.0352153 | 0.5307413 | 0.0001922 | 3.49E+01  | 0.7669588 | 1.75E-08  | 2.54E-06  |
| UBE2A 7   | 1.91E-03  | 2.34E-03   | NA        | 0.010035  | 0.047979  | 0.4010825 | 1.26E+06  | 0.2026539 | 4.95E-04  | 3.25E-01  |
| TYROBP 7  | 0.0019129 | 0.03879047 | 3.01E+09  | 0.9247775 | 1.04E-01  | 0.098449  | 2.95E-04  | 0.0022042 | 4.32E-02  | 7.64E+08  |
| TMEM120 7 | 1.92E-03  | 2.13E-04   | 0.0020394 | NA        | 0.0802358 | 0.6338543 | 9.00E+01  | 0.0445212 | 9.49E-07  | 4.67E-07  |
| DDX55 7   | 0.002005  | 6.28E-03   | 0.0398813 | 1.02E-02  | 0.5321216 | 0.7075736 | 9.81E-04  | 0.3912647 | 3.46E-01  | 5.44E+09  |
| LAGE3 7   | 2.01E-03  | 1.25E+08   | 0.0112395 | 6.62E-04  | 0.4988178 | 0.0396888 | 3.87E+09  | 0.8820996 | 1.50E-01  | 1.16E-02  |
| MYCBP2 7  | 0.0021017 | 6.89E+08   | 0.9946005 | 0.0092733 | 0.0823935 | 8.96E+09  | 1.28E-02  | NA        | 3.45E-06  | 2.87E-05  |
| TNFAIP3 7 | 2.14E-03  | 2.02E-01   | 0.0077829 | 0.0069584 | 0.0080497 | 0.8548702 | 1.94E-01  | 0.0078943 | 5.34E+09  | 4.58E-04  |
| SURF6 7   | 0.0021394 | 3.99E+08   | 3.03E+09  | 0.2009427 | 0.0107842 | 0.0614447 | 5.33E+08  | 0.0348253 | 8.37E+08  | 0.8632793 |
| COX4I1 7  | 2.16E-03  | 9.10E-04   | 0.7539451 | 0.0079975 | 0.0242729 | 0.7193201 | 3.43E-01  | 0.007026  | 1.92E-02  | 5.67E+06  |
| NSUN4 7   | 0.0021658 | 7.00E-01   | 0.0054098 | 0.0298608 | 0.0130916 | 0.7659216 | NA        | 0.0276233 | 1.03E+04  | 6.13E-03  |
| DDX46 7   | 0.0021759 | 0.5734213  | 0.0001439 | 0.0411195 | 0.0423606 | 0.2253736 | 1.06E-03  | 0.0352969 | 7.67E-01  | 1.55E-01  |
| CCDC6 7   | 0.0021864 | 2.97E-02   | 0.0011777 | 0.0019153 | 0.0978758 | 0.4546328 | NA        | 0.0176588 | 1.13E+04  | 2.11E+03  |
| CARS2 8   | 0.002196  | 0.00030618 | 0.5271995 | 3.62E-03  | 0.1318997 | 0.0336559 | 0.0062908 | 0.0251744 | 2.16E+05  | 3.67E+02  |
| GBGT1 9   | 0.0022064 | 0.02083179 | 0.0283007 | 0.0478951 | 0.0171305 | 0.4469633 | 1.37E-03  | 0.0443797 | 2.69E+03  | 1.20E+01  |
| LSM4 9    | 0.0022291 | 4.16E+09   | 0.0100892 | 0.0050341 | 0.0446659 | 0.7604717 | 2.90E-04  | 0.0216357 | 0.0008496 | 1.26E+05  |
| PRDX5 7   | 0.0022291 | 1.71E-03   | NA        | 8.08E-01  | 0.0004127 | 0.0343637 | 3.42E+03  | 0.2223051 | 5.91E+09  | 1.97E+04  |

| NFKB1    | 7 | 0.002439  | 0.85601324 | 0.0246696 | 0.0001014 | 3.80E+08  | 0.0114592 | 0.4882046 | 0.0041616 | 9.39E-03  | 2.77E-01  |
|----------|---|-----------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| TSFM     | 7 | 0.0024855 | 1.82E-02   | 1.73E-04  | 0.0010433 | NA        | 0.6414581 | 1.35E+07  | 0.2150861 | 8.73E+06  | 2.31E+08  |
| RNASEH1  | 7 | 0.002489  | 0.0145255  | 0.2975354 | 0.001213  | 0.0436476 | 0.595233  | 2.85E-03  | 0.1593827 | 3.40E+00  | 6.82E-02  |
| PIK3CD   | 9 | 0.002505  | 2.57E-02   | 0.0012647 | 0.0029872 | 0.0256382 | 0.0053707 | 6.74E+08  | 0.0175706 | 0.2759606 | 3.25E+05  |
| FASN     | 7 | 0.0025719 | 1.34E-03   | 7.73E+09  | 0.0061966 | NA        | 0.6415948 | 8.83E+09  | 0.0286707 | 1.72E-02  | 7.17E-01  |
| BCAT2    | 7 | 0.0025881 | 1.71E+09   | 3.59E+09  | 3.10E+09  | NA        | 0.4759076 | 0.0001046 | 0.9084857 | 1.85E+09  | 1.16E+07  |
| LRP10    | 7 | 0.0026062 | 0.24441708 | 0.0419356 | 5.51E+09  | 0.0191893 | 0.5605405 | 1.05E+09  | 0.0930108 | 1.50E+04  | 0.0011385 |
| TMC8     | 7 | 0.0026072 | 3.42E+04   | 0.0003672 | 0.4048133 | 0.0958872 | 0.8312158 | 1.24E-03  | 0.0369473 | 3.03E-04  | 2.07E-02  |
| SLC39A10 | 7 | 2.61E-03  | 6.58E-04   | 6.19E+09  | 0.0016043 | NA        | 0.9806286 | 1.94E+05  | NA        | 2.53E+01  | 5.37E+06  |
| C9orf91  | 8 | 0.0026203 | 5.96E+07   | 1.96E-03  | 0.5554388 | 0.0002866 | 0.0284927 | 2.20E+00  | 0.0037851 | NA        | 2.01E+02  |
| MGMT     | 7 | 0.0026726 | 6.47E+07   | 0.000324  | 0.0505586 | NA        | 0.3321439 | 4.74E+08  | 0.0309993 | 7.30E+04  | 2.40E+08  |
| PRDX6    | 7 | 2.70E-03  | 3.45E-02   | 0.0358963 | 0.571823  | 0.0738546 | 2.38E+09  | 5.18E+08  | 0.004955  | 8.40E-01  | 1.83E+07  |
| ZNF281   | 7 | 2.73E-03  | 8.68E+08   | 0.0046635 | 0.0004724 | 9.84E+09  | 0.3093088 | 5.50E+05  | 0.19486   | 6.85E-04  | NA        |
| SRFBP1   | 7 | 0.002824  | 4.58E-02   | 0.0031521 | 0.0003248 | NA        | 1.58E-01  | 3.39E-02  | 0.2140339 | 0.0009355 | 4.98E-03  |
| CSE1L    | 8 | 0.0028741 | 0.01924003 | 2.19E+09  | 0.9417573 | 3.53E+09  | 0.5137503 | 0.0004139 | 0.01895   | 7.58E+08  | 0.0007521 |
| RBM14    | 7 | 0.0029517 | 8.94E-04   | 4.89E-03  | 0.0076891 | 0.5901792 | 0.937386  | 1.50E+03  | 0.6048313 | 1.20E+03  | 3.10E+04  |
| AFG3L2   | 7 | 0.0030083 | 0.00052831 | 0.0003458 | 0.0006622 | 0.2730455 | 0.1637384 | 1.43E+05  | NA        | 1.44E+02  | 6.94E+05  |
| FBXW2    | 7 | 0.0030126 | 1.39E+09   | 0.907862  | 0.0218204 | 0.3622989 | 0.4575553 | 7.97E+06  | 0.008088  | 2.57E-04  | 1.12E+00  |
| EDEM2    | 7 | 0.0030999 | 0.00486456 | 0.0077706 | 0.1768467 | 0.150668  | 5.44E-01  | 1.07E+09  | 0.014266  | 6.37E-02  | 4.53E-01  |
| UBE2E2   | 7 | 0.0032278 | 0.00356668 | 0.0092281 | 0.0064084 | 0.7639407 | 0.368363  | 1.13E+07  | NA        | 3.48E-03  | 4.05E+07  |
| ABCC2    | 7 | 0.0032338 | 0.0010473  | 3.10E+09  | 0.9280242 | NA        | 0.1601013 | 9.52E+04  | 0.0054925 | 1.98E-04  | 1.44E+06  |
| POLR1C   | 7 | 0.003283  | 9.81E+08   | NA        | 0.0214141 | 0.6846714 | 0.0463517 | 2.12E+04  | 0.2746018 | 5.23E+01  | 1.35E+05  |
| RBBP7    | 7 | 0.0034598 | 5.69E+07   | 6.31E+09  | 0.2106201 | 0.8767307 | 0.0074259 | 2.01E+05  | 0.0817867 | 7.45E-01  | 3.56E+03  |
| RFX5     | 7 | 0.003465  | 2.15E+07   | NA        | 0.0010433 | 5.09E+09  | 0.4762249 | 1.03E-01  | 0.1791192 | 1.30E+02  | 2.34E-01  |
| EARS2    | 7 | 0.0034943 | 5.37E-03   | 0.0028208 | 4.54E+07  | NA        | 4.48E-01  | 1.45E+08  | NA        | 1.43E-04  | 1.80E+04  |
| TBC1D9   | 7 | 0.0035193 | 0.02935476 | 2.05E-01  | 0.0001411 | NA        | 0.3148252 | 3.98E+07  | 0.0099275 | 4.79E+04  | 8.23E-03  |
| XPO5     | 7 | 3.56E-03  | 6.17E-04   | 1.03E+09  | 0.0069508 | NA        | 0.6256112 | 2.43E+04  | 0.3907414 | 2.29E+01  | 1.05E+03  |
| NAT9     | 7 | 0.0036074 | 0.03099943 | 0.3249465 | 0.0189978 | 0.0209286 | 0.2886824 | 2.11E+05  | 0.0832333 | 1.91E+05  | 0.010257  |
| BBS2     | 7 | 0.0036119 | 3.68E+09   | 0.0017715 | 0.0004034 | NA        | 0.4650891 | 1.92E+01  | 0.3886903 | 8.21E+00  | 1.89E+02  |
| GORASP2  | 7 | 0.0036326 | 1.57E-04   | 0.007107  | 0.0008719 | 0.1583954 | 0.8468034 | 1.17E+03  | 0.7952907 | 5.24E+06  | 1.78E-02  |
| POGK     | 7 | 3.71E-03  | 6.70E-04   | 0.0455991 | 2.00E-02  | 0.9034187 | 0.8502587 | 5.68E+00  | 0.7055613 | 2.08E+09  | 2.41E-02  |

| LEPROT  | 8 | 0.0037788 | 7.85E+08   | 1.54E+09  | 0.0309717 | 0.0162393 | 0.7313119 | 4.33E+05  | 0.7917434 | 2.81E-02  | 1.61E-04  |
|---------|---|-----------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| MYO1F   | 7 | 0.0038101 | 0.17150288 | 2.36E+08  | 0.4901048 | 0.0450553 | 0.0048347 | 5.11E-01  | 0.0013114 | 1.09E-03  | 4.76E-02  |
| ABHD12  | 7 | 0.0038356 | 0.00018946 | 0.0008906 | 0.0017891 | NA        | 0.5867884 | 2.30E-03  | NA        | 1.48E+09  | 4.87E-04  |
| GTF3C1  | 8 | 0.0039522 | 1.29E+09   | 1.82E-02  | 6.13E-01  | 0.0125957 | 0.011173  | 1.05E+02  | NA        | 1.36E+05  | 3.32E-03  |
| LARS    | 7 | 0.0040252 | 1.76E-04   | 0.0004851 | 0.0030811 | 0.3825761 | 0.4358792 | 2.86E+04  | 0.7010862 | 5.46E-05  | 1.96E-02  |
| PPP2R5A | 7 | 0.0040409 | 0.01316239 | 0.0034775 | 0.0013691 | 0.710239  | 0.8603317 | 0.015714  | 0.9959223 | 4.66E+04  | 7.68E-04  |
| CD300LB | 7 | 4.12E-03  | 5.10E+09   | 0.0027511 | 0.0001373 | 0.0228342 | 0.2750589 | 1.34E+05  | NA        | 2.66E+06  | NA        |
| CNNM3   | 7 | 0.0043236 | 1.46E+06   | 0.0006912 | 0.0186471 | 0.4477292 | 0.0579345 | 4.75E+00  | 0.0625259 | 1.78E+01  | 2.14E-03  |
| PTMA    | 7 | 0.0043381 | 3.25E+07   | 0.0323706 | 0.5326829 | 0.1206564 | 0.0001384 | 6.24E+04  | 0.0117981 | NA        | 2.28E-04  |
| ODF2    | 7 | 4.44E-03  | 1.07E-03   | 0.0022159 | 0.0268102 | 0.0553685 | 0.0008453 | NA        | 0.0982528 | 1.02E-02  | 1.33E+00  |
| KIF20A  | 7 | 0.0045264 | 2.59E+09   | 0.0002907 | 0.1976546 | NA        | 0.0071848 | 2.91E+08  | 0.0856782 | 3.94E-03  | 2.39E-04  |
| CWF19L2 | 7 | 0.0045622 | 2.91E-01   | 0.0038876 | 0.0020543 | 0.0072559 | 0.7539763 | NA        | 0.0182809 | 1.04E+07  | 2.17E+09  |
| NUP107  | 7 | 0.0045936 | 0.04805921 | 0.0005593 | 0.8255531 | 0.4065808 | 5.35E-01  | 2.05E-03  | 0.0168094 | 3.95E+03  | 5.53E-04  |
| FXYD5   | 7 | 4.67E-03  | 1.31E+07   | 0.583694  | 0.0039512 | 0.0330348 | 0.282374  | 4.96E+02  | 0.2941865 | 1.24E+07  | 8.94E+05  |
| DUS1L   | 7 | 0.0047436 | 2.94E+09   | 0.0001665 | 0.0003339 | NA        | 0.3938826 | 6.34E+06  | 0.5919174 | 1.29E-04  | 5.68E+08  |
| COPS7B  | 8 | 4.76E-03  | 7.98E+09   | 0.0335453 | 0.0109498 | 0.322502  | 0.0423379 | 2.52E+02  | NA        | 1.70E-04  | 1.80E-01  |
| PPAN    | 7 | 0.0048242 | 0.00031148 | 5.57E+09  | 0.0066863 | NA        | 0.020728  | 1.09E+05  | 0.1548057 | NA        | 1.65E-03  |
| DUSP2   | 8 | 0.0048336 | 1.91E+09   | 0.0006953 | 0.3171269 | 0.0002539 | 0.0431908 | 4.59E+02  | 0.1398056 | 4.80E-02  | 2.65E+08  |
| SLC25A5 | 7 | 0.0049163 | 3.23E+08   | 0.0156749 | 0.0030005 | 0.3302459 | 0.9466687 | 1.73E-04  | 0.0841877 | 4.25E+09  | 5.41E+06  |
| ZMYND19 | 7 | 0.0049943 | 0.00840085 | 4.15E+09  | 0.0115664 | NA        | 0.1735517 | 0.0005085 | NA        | 5.34E+07  | 6.88E-03  |
| TRAP1   | 8 | 5.02E-03  | 2.92E+09   | 0.0002516 | 0.0023782 | NA        | 0.0121165 | 2.88E+06  | 0.2676085 | 1.34E-05  | 1.27E+03  |
| LMO2    | 7 | 0.005057  | 0.31613953 | 0.0009631 | 0.090847  | 0.0175618 | 0.014824  | 2.70E-02  | NA        | 1.04E+06  | 0.0025808 |
| IMP4    | 7 | 0.0051711 | 3.39E+08   | 1.51E-02  | 0.0280284 | 0.7825479 | 0.2216389 | 6.46E-04  | 0.1788555 | 2.05E-02  | 2.24E+04  |
| FOXN2   | 8 | 0.0052765 | NA         | 0.0481057 | 0.0004724 | 0.0195294 | 0.0044308 | 4.25E+07  | NA        | 2.02E+02  | 1.17E-03  |
| PPP1R2  | 8 | 0.0053587 | 1.34E+07   | 0.0323826 | 0.0003975 | 0.0791299 | 7.86E+08  | 1.90E+05  | NA        | 0.0060093 | 2.40E+01  |
| DDX21   | 7 | 0.0054307 | 0.00590989 | 0.0007776 | 0.0079582 | 0.9742436 | 0.5043689 | NA        | 0.0241577 | 2.15E+09  | 5.55E+04  |
| GRWD1   | 7 | 0.0056807 | 5.09E-03   | 3.04E+09  | 0.0078552 | NA        | 0.226815  | 1.57E+07  | 0.8040569 | 2.73E+04  | 1.64E-02  |
| PLEKHG4 | 7 | 0.0058117 | 1.88E+07   | 0.0025156 | 0.0012246 | NA        | 0.3339857 | 8.09E+05  | 0.0155305 | 1.57E-01  | 1.09E+08  |
| SLC35A5 | 8 | 0.0058362 | 1.39E-02   | 0.0046361 | 5.80E-04  | 0.0880424 | 0.0236911 | 4.48E-04  | 0.8332102 | 7.84E+04  | 8.07E+04  |
| HSPA9   | 7 | 5.88E-03  | 1.91E-03   | 1.42E-03  | 0.0004441 | 0.7423731 | 0.278255  | 3.93E+05  | 0.8771672 | 4.93E-01  | 2.34E+02  |
| CTCF    | 7 | 0.006002  | 0.00324298 | 0.8723497 | 0.0472563 | 0.0213437 | 0.3475078 | 3.13E+04  | 0.1056899 | 1.31E-09  | 7.55E-02  |

| TK1     | 8 | 6.07E-03  | 1.44E-04   | 0.0052984 | 7.09E-03  | NA        | 0.0012192 | 5.81E+05 | 0.0981791 | 5.55E+06  | 2.48E+08 |
|---------|---|-----------|------------|-----------|-----------|-----------|-----------|----------|-----------|-----------|----------|
| LEPROTL | 8 | 0.0060923 | 4.05E+07   | 0.9619442 | 0.0261847 | 0.9627751 | 8.25E+07  | 3.41E-02 | 0.0223758 | 4.08E+05  | 4.88E+07 |
| SMARCC1 | 7 | 0.0061202 | 1.35E-04   | 0.0002398 | 0.0002066 | 6.63E-01  | 0.5710636 | 1.43E-03 | 0.3419245 | 8.06E-02  | 2.13E+04 |
| DPEP2   | 7 | 6.24E-03  | 7.78E+06   | 3.17E-04  | 0.0618423 | 0.8760581 | 0.7819534 | 6.91E+09 | 0.0301818 | 1.79E+04  | 1.66E+05 |
| SSRP1   | 7 | 0.0062847 | 1.18E+08   | 2.05E-02  | 0.0286795 | 0.9822867 | 0.884188  | 3.83E+00 | 0.2653852 | 2.38E-05  | 5.88E-02 |
| PUS7    | 7 | 6.35E-03  | 0.0263875  | 0.0001077 | 0.0003449 | 0.0695101 | 0.3420365 | 6.25E+00 | 0.3089563 | 1.67E-04  | 5.66E+06 |
| CEBPA   | 8 | 0.0066107 | 2.45E+09   | 0.000396  | 4.64E+09  | 0.3581055 | 0.063416  | 2.17E-04 | 0.008088  | 1.40E-04  | 1.73E+01 |
| FARSA   | 8 | 0.0066536 | 0.00026648 | 0.0001962 | 0.0001428 | NA        | 0.0003579 | 3.65E-04 | 0.3719171 | 0.0001123 | 3.28E+04 |
| DDX17   | 7 | 0.0066633 | 7.52E-03   | NA        | 0.0041723 | 0.0785457 | 0.7304515 | 5.31E+08 | 0.008088  | 2.96E+05  | 2.26E+08 |
| EIF3A   | 7 | 0.0067506 | 1.32E-04   | 2.73E-03  | NA        | 0.3899194 | 0.0013878 | 1.32E+06 | 0.4264615 | 2.13E-08  | 1.98E-08 |
| CDCA5   | 8 | 0.0068243 | 0.00010183 | 0.0053146 | 0.0039341 | NA        | 0.0162691 | 5.76E+07 | 0.1615626 | 0.0033023 | 6.25E+07 |
| SFXN5   | 7 | 0.0068989 | 0.00020738 | 0.1183021 | 0.001408  | NA        | 0.0052079 | 3.37E+05 | NA        | 1.83E+03  | 1.58E-05 |
| HSH2D   | 7 | 0.0069178 | 6.96E+07   | 0.0002986 | 0.0177019 | 0.2394455 | 0.7173625 | 2.77E+03 | NA        | 3.76E+04  | 1.31E+03 |
| ENO2    | 7 | 0.0069178 | 4.36E+08   | 0.0174058 | 8.04E-01  | 0.000152  | 0.1940586 | 1.95E+04 | 0.1501201 | 1.83E+04  | 5.41E+03 |
| CECR5   | 7 | 6.94E-03  | 3.45E+09   | 0.0001094 | 2.66E+08  | 0.0094076 | 0.2367432 | 1.57E-03 | 0.2651776 | NA        | 6.57E-04 |
| RUSC1   | 7 | 0.0071904 | 1.94E-03   | 6.09E+09  | 0.1466421 | 0.8631239 | 0.016761  | 1.28E+06 | 0.0987922 | 1.23E-02  | 1.06E-03 |
| INTS9   | 7 | 7.34E-03  | 7.81E+08   | 0.0986362 | NA        | 2.66E+06  | 0.0139969 | 1.31E-06 | 0.0558355 | 8.94E-05  | 1.21E+06 |
| TMEM55A | 7 | 0.0074317 | 0.02228509 | 0.0789931 | 0.9305457 | 0.0219169 | 0.0039734 | 1.79E+09 | 0.0261384 | NA        | 3.38E+00 |
| CCDC107 | 7 | 0.0076125 | 2.26E-04   | 0.9571429 | 0.0102052 | NA        | 0.7191168 | 7.35E+08 | 0.0295859 | 5.58E+06  | 6.06E+02 |
| PRMT7   | 7 | 7.63E-03  | 3.94E+06   | 8.13E+09  | 0.0472767 | NA        | 0.1600231 | 2.49E+07 | 0.5464907 | 3.54E-09  | 2.67E+04 |
| NPM3    | 7 | 0.0077051 | 5.29E-03   | 0.0008786 | 0.6146775 | 0.3682811 | 0.047827  | 7.25E-04 | 0.008088  | 0.0821285 | 2.91E-02 |
| RHOT2   | 8 | 7.89E-03  | 1.77E-02   | 0.8283208 | 0.013666  | 0.0282545 | 0.003177  | 7.35E+09 | 0.0773922 | 2.41E-04  | 4.01E+05 |
| SLC5A6  | 8 | 0.008109  | 0.00209893 | 0.002066  | 0.0001536 | 0.8546134 | 2.05E+08  | 3.54E-04 | 0.3535909 | 0.0001923 | 4.08E+04 |
| PIP5K1C | 7 | 8.16E-03  | 2.93E-03   | 0.4563357 | 0.0164384 | 0.368221  | 0.0015859 | 9.24E+03 | 0.8102036 | 6.83E+04  | 1.43E-03 |
| CCT4    | 7 | 0.0081911 | 4.33E+08   | 3.26E+09  | 0.0094173 | NA        | 0.8994252 | 1.88E-02 | 0.5272653 | 1.15E-03  | 9.21E-03 |
| ADORA2A | 7 | 0.0083392 | 2.42E-01   | 5.31E+07  | 5.60E+08  | 0.0350681 | 0.0002358 | 4.08E+08 | NA        | 1.41E-01  | 1.39E+00 |
| PTDSS1  | 7 | 0.0084217 | 0.00012018 | 0.844657  | 0.0019236 | 0.3657382 | 0.0059856 | 1.01E+04 | 0.2177864 | 3.36E+05  | 2.51E+08 |
| SRPRB   | 7 | 0.0084962 | 1.04E+09   | 0.0038024 | 4.31E+09  | NA        | 0.2745079 | 6.70E+09 | 0.0828236 | 7.23E+05  | 6.72E+01 |
| ALDH16A | 7 | 0.0085624 | 1.06E+09   | 6.82E-01  | 0.0170972 | 0.3571114 | 0.0220044 | 6.75E+04 | 0.2434794 | 5.68E+08  | 5.47E+09 |
| EPRS    | 8 | 0.0085996 | 1.79E+08   | 1.56E-02  | 0.0008023 | 0.0202503 | 0.5161478 | 1.96E-04 | 0.7487954 | 6.67E+00  | 5.56E+03 |
| LIG1    | 7 | 0.0086115 | 9.19E+08   | 0.0524414 | 0.135698  | 0.8663518 | 0.0235063 | 5.88E+06 | 0.0242079 | 1.32E+05  | 1.83E+04 |

| ALDOC   | 8 | 0.0086733 | 1.26E+07   | 9.27E-04  | 0.000105  | 0.0001206 | 0.9229901 | 7.59E+06  | 0.7160378 | 1.49E+09 | 0.0064356 |
|---------|---|-----------|------------|-----------|-----------|-----------|-----------|-----------|-----------|----------|-----------|
| PRPSAP2 | 7 | 8.90E-03  | 9.25E-04   | NA        | 0.9512233 | 0.0004046 | 0.4961573 | 1.93E+09  | 0.0171418 | 5.09E-03 | 1.89E-02  |
| TATDN2  | 7 | 0.0089771 | 1.26E-03   | 0.0114236 | 0.6557993 | 0.1521832 | 0.0062141 | 3.18E+03  | 0.7282503 | 7.82E-07 | 2.84E-01  |
| RING1   | 7 | 8.99E-03  | 1.35E+08   | 1.11E-01  | 0.6289034 | 0.0423566 | 0.0410992 | 2.50E+02  | 0.7285289 | 1.25E+09 | 7.66E-05  |
| ABHD5   | 7 | 8.99E-03  | 2.79E-02   | 4.92E-01  | 6.75E-03  | 1.52E+09  | 0.3269215 | NA        | 0.0470116 | 3.33E-04 | 4.78E+08  |
| FUNDC1  | 8 | 9.01E-03  | 9.51E+07   | 0.1578683 | 0.0120159 | 0.0163526 | 1.86E-02  | 5.53E-03  | 0.0073939 | 6.61E-03 | 8.35E-01  |
| IDH3B   | 8 | 0.0093988 | 7.23E+08   | 0.1174893 | 0.0092989 | 0.1171759 | 0.0249545 | 7.17E+03  | 0.0349599 | 1.05E+07 | 8.08E+02  |
| RAVER1  | 7 | 9.89E-03  | 0.0012486  | 0.0141812 | 0.0540446 | 0.0408086 | 0.0026393 | 1.13E+08  | 0.0703384 | 3.21E-01 | 2.77E-02  |
| RHOF    | 7 | 0.0102768 | 5.20E+05   | 0.0004759 | 0.4349036 | 0.00047   | 0.6574653 | 2.14E-03  | NA        | 2.75E+02 | 4.42E-03  |
| LCP2    | 7 | 0.0103533 | 0.06215867 | 0.0003745 | 0.0338269 | 0.1367795 | 0.0756583 | 9.97E+06  | 0.0254585 | 6.99E-04 | 2.82E+07  |
| IVD     | 7 | 1.04E-02  | 3.88E+08   | 6.84E-03  | 0.0104937 | NA        | 0.1243257 | 1.12E+00  | 0.7483644 | 1.05E+05 | 6.65E+06  |
| WDR77   | 8 | 1.06E-02  | 0.00010991 | 0.0001269 | 7.35E-04  | 0.9629907 | 0.0001832 | 3.08E+07  | 0.9908898 | 2.40E-02 | 1.09E-07  |
| GLT1D1  | 7 | 0.0106396 | 0.00037484 | 0.0033203 | 0.0778575 | 0.9977795 | 0.307125  | 1.67E+00  | 0.0052952 | 6.70E+06 | 4.89E+03  |
| DDX1    | 8 | 0.0107986 | 0.01326797 | 0.0029415 | 0.0068378 | 0.767847  | 0.0057117 | 3.42E-02  | 0.2256107 | 4.39E+06 | 2.24E-02  |
| ABCB7   | 8 | 1.10E-02  | 1.22E-04   | 1.91E+09  | 0.3233582 | 0.0178302 | 0.0295475 | 1.07E-04  | 0.2822361 | 4.26E+08 | 4.19E-03  |
| DEXI    | 7 | 0.011352  | 2.41E+09   | 0.0065817 | 0.0455614 | 0.6541187 | 0.530399  | 1.90E+07  | 0.3047053 | 9.72E+09 | 2.31E+04  |
| ERLIN1  | 7 | 1.16E-02  | 8.51E+07   | 0.3804214 | 0.0068927 | 0.0248795 | 0.5618594 | 4.18E+01  | 0.0874354 | 1.02E-04 | 4.40E+02  |
| CDC20   | 8 | 0.0117351 | 4.74E+09   | 0.0037194 | 0.0479669 | NA        | 0.0326884 | 9.96E+07  | 0.1563661 | 3.95E-04 | 7.35E+07  |
| MCM5    | 7 | 0.0120452 | 2.51E+09   | 4.04E-02  | 0.0830463 | 0.6920728 | 0.0017672 | 2.31E-02  | 0.0141744 | 1.01E-06 | NA        |
| AKR7A2  | 8 | 1.21E-02  | 3.34E+09   | 0.0267159 | 0.0058653 | 0.0002217 | 0.6515954 | 1.15E-03  | 0.0509099 | 7.73E+09 | 3.51E-04  |
| ADAM17  | 7 | 1.22E-02  | 0.00281836 | 0.5538763 | 0.9341569 | 0.0123143 | 0.5852355 | 2.35E+06  | 0.0057495 | 1.89E+09 | 6.42E-04  |
| AP3S1   | 7 | 1.24E-02  | 0.00283578 | 0.4207531 | 0.0043442 | 0.7650497 | 0.0176458 | 1.64E+08  | NA        | 2.00E+02 | 3.55E-09  |
| LTB     | 8 | 0.0123775 | 1.25E+08   | NA        | 0.0028198 | 0.0002539 | NA        | 0.0010243 | 0.0057495 | 1.13E+04 | 4.05E+03  |
| LIPA    | 7 | 1.27E-02  | 2.51E-02   | 0.6691865 | 7.13E+09  | 0.5788307 | 0.7335856 | 2.21E-03  | 0.0311048 | 2.41E-03 | 1.80E-04  |
| PPM1G   | 7 | 0.0128278 | 7.76E-04   | 0.7901197 | 0.0034325 | 2.55E-01  | 0.0434189 | 6.87E+04  | 0.1996689 | 3.46E+09 | 6.72E+06  |
| IDH2    | 7 | 1.28E-02  | 4.89E+09   | 0.4607163 | 6.46E-02  | 0.001737  | 2.71E+08  | 5.83E-02  | 0.0047422 | 6.20E+07 | 1.20E-03  |
| PALB2   | 7 | 0.0130294 | 0.00431592 | 3.80E+09  | 0.0473959 | NA        | 0.6788864 | 3.23E+02  | NA        | 8.74E+08 | 3.78E-03  |
| NUDC    | 7 | 0.0131636 | 9.94E+08   | 0.0014366 | 0.00388   | 0.0199262 | 0.3143812 | 3.31E+09  | 0.8972046 | 8.63E-01 | 2.60E+07  |
| RBM15B  | 7 | 0.0133442 | 0.03206425 | 0.0040017 | 0.0093679 | NA        | 0.6995826 | 9.23E-04  | NA        | 2.50E-04 | 1.28E+05  |
| CCNDBP1 | 7 | 0.0134301 | 1.23E-03   | 0.7896663 | 5.33E+09  | 0.6815895 | 0.0558544 | 2.61E+07  | 0.0243635 | 1.45E-04 | 2.67E-03  |
| PFAS    | 7 | 0.0134938 | 0.00012947 | 1.19E+09  | 0.0003105 | NA        | 0.0980124 | 4.52E-01  | 0.9751866 | 1.69E-05 | 3.68E-04  |

| FMNL1    | 7 | 0.0148173 | 2.47E-01   | 4.46E-02  | 0.2205856 | 0.70747   | 3.74E+06  | 1.80E+08  | 0.0086692 | 2.68E-02 | 2.43E-04  |
|----------|---|-----------|------------|-----------|-----------|-----------|-----------|-----------|-----------|----------|-----------|
| STAM2    | 7 | 0.0151531 | 0.04057959 | 0.1104321 | 0.0007893 | 0.4279945 | 3.25E-03  | 0.0411301 | NA        | 3.30E+02 | 6.37E+06  |
| CHST11   | 7 | 1.53E-02  | 3.05E-04   | 0.768447  | 0.4408453 | 0.0039623 | NA        | 1.51E+08  | 0.0174405 | 3.21E+06 | 3.08E+04  |
| PRPF4    | 7 | 0.0155732 | 0.00139214 | 9.38E+09  | 0.0071569 | 0.1229324 | 0.1217857 | 4.28E+04  | 0.7195546 | 5.14E+04 | 3.53E+08  |
| LAS1L    | 7 | 0.0156082 | 1.62E+07   | 3.04E+09  | 0.0321274 | NA        | 0.7200889 | 1.67E+00  | 0.416886  | 2.13E-07 | 9.94E-04  |
| ACN9     | 7 | 0.0157078 | 3.45E+09   | NA        | 0.0019459 | 0.0278272 | 0.1500869 | 6.09E+02  | 0.044759  | NA       | 1.43E-05  |
| DISP1    | 7 | 0.0163047 | 0.00023733 | 0.0238305 | 0.0008407 | NA        | 0.4325339 | 3.26E+08  | 0.2720638 | 1.36E+07 | 7.13E+03  |
| ASB13    | 7 | 1.63E-02  | 1.42E+08   | 2.99E+09  | 0.0040894 | NA        | 1.19E-03  | 0.4088424 | 0.9162535 | 2.49E-03 | 1.38E-03  |
| HEBP2    | 7 | 1.65E-02  | 1.07E+07   | 0.1595372 | 0.5386038 | 0.0081763 | 0.0007563 | 1.88E-03  | 0.7350165 | 1.31E-05 | 8.94E-13  |
| REV1     | 8 | 1.70E-02  | 0.01062536 | 0.0011874 | 0.5726132 | 0.0217711 | 0.0256546 | 9.00E+07  | 0.9057605 | 3.03E+02 | 4.05E+05  |
| PGM1     | 7 | 1.73E-02  | 9.16E-03   | 0.3382047 | 0.8633511 | 7.16E+09  | 0.1124919 | 1.37E+04  | 0.0348837 | 1.54E+02 | 8.64E+04  |
| STARD7   | 7 | 1.73E-02  | 4.67E-02   | 0.2974412 | 5.36E+09  | 1.31E-01  | 0.0135572 | 3.50E+08  | 0.2231169 | 8.48E+04 | 4.65E+00  |
| PRR7     | 7 | 0.017412  | 0.02686517 | 0.0251945 | 0.6984985 | 0.0003681 | 0.0494782 | 0.2151036 | 0.7263211 | 1.93E+08 | 0.0013746 |
| CAD      | 7 | 1.77E-02  | 0.00021509 | 0.0001237 | 2.83E+09  | NA        | 0.169923  | 4.44E+03  | 0.2593351 | 2.46E-02 | 1.73E+08  |
| VAMP2    | 7 | 0.0177656 | 7.72E+07   | 0.0014505 | 0.357275  | 0.9552138 | 0.0341427 | 7.03E-06  | NA        | 2.24E-02 | 8.55E-01  |
| CCT8     | 7 | 0.0178825 | 3.91E-04   | 0.0167753 | 0.0485075 | 0.6097383 | 0.2917332 | 5.57E-04  | 0.9986063 | 1.44E-04 | 3.51E-02  |
| PRTN3    | 7 | 0.0178964 | 2.72E+09   | 0.0020587 | 0.2938534 | NA        | 0.0250421 | 6.01E+08  | NA        | 4.56E-04 | 0.0002742 |
| NCAPD3   | 7 | 0.0180738 | 1.68E-03   | 3.95E+09  | 4.25E-04  | NA        | 0.2668423 | 9.95E+05  | 0.2676985 | 8.73E-07 | 4.26E-04  |
| CLTC     | 7 | 0.0183078 | 0.00024922 | 0.0009568 | 0.9053937 | 0.3624576 | 0.0101761 | 1.67E-04  | NA        | 4.37E-02 | 4.73E+04  |
| SNRPG    | 7 | 0.0184828 | 2.48E-03   | 0.1135396 | 0.0081303 | 0.014045  | 0.3091759 | 6.76E+07  | 0.0166365 | NA       | 4.12E-05  |
| BCS1L    | 7 | 0.0184828 | 0.00103736 | 5.12E+09  | 0.0078921 | NA        | 0.0280009 | 1.60E-01  | 0.8507533 | 1.84E+08 | 0.0029771 |
| JARID2   | 7 | 0.0185775 | 3.94E+08   | 0.5752203 | 8.67E+05  | 0.166937  | 0.2986334 | 1.96E+03  | 0.0175706 | 3.88E-05 | 1.07E+00  |
| SRRM1    | 7 | 1.86E-02  | 0.00015098 | 0.0011665 | 0.881237  | 0.1463679 | 0.4368136 | 1.50E-08  | 0.0415427 | 1.88E+02 | 1.02E-10  |
| LARP1    | 7 | 0.0187268 | 0.90724163 | 0.7652056 | 0.0012641 | 0.4987447 | 0.0035908 | 0.0201093 | 0.007647  | 1.31E+07 | 3.38E-02  |
| TNFRSF1E | 8 | 0.018795  | 0.02390495 | 0.0002816 | 6.13E-03  | 0.0077751 | 0.2092376 | 7.49E-03  | 0.3207634 | 2.71E+07 | 9.41E+07  |
| TNNI2    | 7 | 1.89E-02  | 4.84E-03   | 0.0831398 | 1.80E+08  | 0.0038211 | 0.9505798 | 6.37E+07  | 0.4892286 | 1.20E+08 | 4.35E+04  |
| PLEKHO1  | 7 | 1.97E-02  | 7.60E+07   | 0.3622956 | 4.64E+09  | 0.000217  | 0.6107801 | 3.30E+01  | NA        | 5.43E+02 | 2.46E+06  |
| GADD45G  | 7 | 0.0196694 | 0.02200593 | 0.0059014 | 0.9936222 | 0.005544  | 0.3097536 | 6.78E+06  | 0.0595653 | 4.93E+07 | 6.85E+03  |
| DGCR8    | 7 | 0.0198157 | 1.71E-04   | 0.9815256 | 3.80E+09  | 0.3341716 | 0.0318131 | 2.16E-04  | 0.3691756 | 1.40E+02 | 4.89E+02  |
| RRN3     | 7 | 1.99E-02  | 0.05189696 | 3.04E+09  | 0.3570981 | 0.2995514 | 0.0059307 | 2.04E+08  | 0.0138638 | 5.76E+01 | 2.49E+03  |
| INSIG2   | 7 | 0.0204137 | 5.34E-03   | 9.79E-01  | 0.001412  | 0.0156198 | 0.1556741 | 2.03E-02  | 0.4860161 | 6.42E+08 | 1.44E+05  |

| ALG1    | 7 | 0.0206189 | 2.16E-02   | 3.59E+09  | 0.1340753 | NA        | 0.0077642 | 1.77E+09  | 0.0500676 | 1.29E+09  | 5.05E-03 |
|---------|---|-----------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----------|
| MRPS17  | 8 | 0.021038  | 0.01806754 | 9.78E+09  | 0.0070739 | 0.0093308 | 0.9678575 | 4.59E-02  | 0.7678429 | 2.81E+06  | 4.27E+09 |
| ELP4    | 7 | 0.0211794 | 0.00100512 | 3.01E+09  | 0.0028959 | NA        | 0.2472511 | 0.0402862 | 0.1669135 | 3.81E+08  | 3.52E+07 |
| BCORL1  | 7 | 0.0214299 | 0.0019791  | 0.2955384 | 0.2938331 | 0.0057578 | 0.0182786 | 9.04E-01  | 0.0279051 | 1.51E-02  | 1.86E-04 |
| GIMAP1  | 7 | 0.0217091 | 1.86E+09   | 0.1841848 | 0.0007638 | NA        | 0.0067455 | 2.74E+00  | NA        | 1.09E+01  | 8.14E+02 |
| MRPS23  | 8 | 0.0218292 | 1.45E-02   | 1.13E-04  | 0.0236165 | NA        | 0.8523028 | 2.58E-03  | 0.0185813 | 3.46E+09  | 1.36E+09 |
| ISOC1   | 8 | 0.022242  | 0.00357635 | 1.85E+09  | 0.1426622 | 4.25E-02  | 0.0002209 | 1.00E+08  | 0.8190393 | 1.23E+07  | 1.51E-03 |
| TBL3    | 8 | 0.0224452 | 9.16E+09   | 0.0399849 | 0.0289743 | NA        | 0.0104431 | 7.60E+07  | 0.2779508 | 3.42E+08  | 1.54E+09 |
| RRS1    | 7 | 2.25E-02  | 2.70E+09   | 8.26E+07  | 0.0044244 | NA        | 0.2274657 | 2.78E-03  | 0.6685096 | 5.69E-04  | 3.46E+02 |
| SRP72   | 7 | 0.0229546 | 4.43E-04   | 0.0219841 | 0.0265689 | 0.3214696 | 0.2966169 | 8.18E+09  | 0.9146105 | 7.34E+04  | 9.60E-03 |
| ANKRD54 | 7 | 0.0230848 | 4.27E-02   | 0.0046378 | 0.7868357 | 0.0286492 | 0.4098823 | 7.12E+08  | NA        | 1.65E-03  | 9.54E+04 |
| SLC35B2 | 9 | 0.0233842 | 5.33E+09   | 0.0265002 | 0.0388157 | 0.0003681 | 0.0020373 | 4.95E+09  | 0.0861953 | 3.36E-03  | 1.25E+09 |
| CD300LF | 8 | 0.0234679 | 0.0153253  | 0.0025216 | 0.0268401 | 0.0212391 | 0.0184808 | 0.0621015 | NA        | 0.0001991 | 1.65E+06 |
| INPP5E  | 7 | 0.0235661 | 0.00010419 | 0.0002248 | 0.0381381 | 0.503419  | 0.0742387 | 2.86E-02  | 0.8190393 | 1.17E+05  | 8.02E+02 |
| ACSS1   | 7 | 0.0245125 | 5.96E+08   | 0.0006359 | 0.1736687 | 0.3647528 | 0.0033752 | 1.04E-02  | 0.021964  | 1.21E-02  | 4.75E-01 |
| DNTTIP1 | 7 | 0.0248825 | 0.01208085 | 0.7257565 | 0.0006332 | 0.011675  | 0.4494389 | 1.00E+08  | 0.0567915 | 4.65E+01  | 3.93E-02 |
| TSPYL1  | 8 | 2.52E-02  | 0.00168691 | 0.545584  | 7.29E-04  | 3.38E-02  | 0.0178827 | 2.34E+03  | 0.0101996 | 1.76E-01  | 1.77E-02 |
| RBMX    | 7 | 2.54E-02  | 4.71E+09   | 1.25E-02  | 0.0115571 | 0.8040321 | 0.9698    | 8.61E+04  | 0.1911352 | 2.79E+06  | 3.43E+00 |
| RNF4    | 8 | 0.0259982 | 1.63E+09   | 0.0584869 | 0.5286159 | 0.0311679 | 0.0182786 | 1.55E+01  | 0.0365812 | 9.96E-03  | 2.45E+02 |
| LILRB3  | 7 | 0.026194  | 1.63E+09   | 0.0002884 | 0.7971133 | 0.9626561 | 0.4951365 | 6.22E+04  | 0.003324  | 7.05E-06  | 2.37E+02 |
| POP7    | 7 | 0.0262323 | 0.89770111 | 0.0403651 | 0.0004889 | NA        | 8.62E-01  | 0.03307   | 0.0308753 | 0.0135041 | 2.48E-02 |
| RNH1    | 7 | 2.82E-02  | 1.46E-02   | 0.8855946 | 8.18E+08  | NA        | 0.0120684 | 7.73E-04  | 0.7187354 | 2.35E-02  | 1.60E+08 |
| CNOT10  | 7 | 0.0288523 | 0.00014034 | 0.0252542 | 0.5157115 | 0.013809  | 0.0216819 | 5.86E+09  | 0.5041988 | 1.32E+06  | 1.13E-01 |
| TSPAN14 | 7 | 0.0289811 | 0.00908008 | 3.42E-03  | 0.0038617 | 0.0049371 | 0.3071229 | 1.70E-01  | NA        | 6.11E+06  | 1.73E+08 |
| TMBIM4  | 7 | 2.91E-02  | 0.00918531 | 0.1027867 | 0.3410665 | 0.0107111 | 0.0336559 | 7.04E+03  | NA        | 1.00E+05  | 1.18E-03 |
| C7orf26 | 8 | 0.0292653 | 1.22E+09   | 0.0358242 | 0.1865825 | 0.0056979 | 0.0002325 | 4.56E+08  | 0.684558  | 5.59E+07  | 6.34E-03 |
| NAP1L1  | 9 | 0.0298608 | 2.91E+07   | 0.0176492 | 0.0419907 | 0.0188444 | 0.011013  | 3.25E+02  | 0.0534836 | 1.14E+08  | 1.35E+07 |
| PILRA   | 7 | 0.0309283 | 0.00534155 | NA        | 3.06E+08  | 0.3131216 | 0.1528675 | 0.0442818 | 0.0045165 | 3.88E-03  | 1.83E+09 |
| ECHS1   | 7 | 0.0309641 | 2.38E+07   | 6.09E+09  | 5.30E+08  | 0.0533326 | 0.5062695 | 2.19E+05  | 0.3397137 | 2.13E+08  | 9.18E+02 |
| PNPO    | 8 | 0.0311207 | 7.81E+08   | 5.85E+09  | 0.0004046 | 0.3981321 | 0.1653637 | 1.17E+00  | 0.0336018 | 6.57E-03  | 2.33E-01 |
| EIF5B   | 7 | 0.0311503 | 0.00035675 | 6.40E+08  | 3.15E-03  | 0.3022816 | 0.3835723 | 1.30E+02  | 0.1050788 | 2.73E-04  | 1.24E-02 |

| PFKP     | 7 | 0.0311666 | 0.00061725 | 0.0054598 | 0.0008417 | 0.0027329 | 0.0641038 | 4.92E+08  | 0.3610686 | 7.42E-01  | 2.72E+00  |
|----------|---|-----------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| TIMM44   | 7 | 0.0312239 | 0.00178873 | 0.00013   | 0.0005821 | NA        | 0.0080385 | 3.09E-02  | 0.937763  | 8.03E+04  | 6.40E-01  |
| MAN2A2   | 7 | 0.032008  | 0.00012677 | 0.3182364 | 0.0289743 | 0.0085791 | 0.1440332 | 3.47E+07  | 0.2180355 | 1.00E+09  | 1.88E+06  |
| PTGES    | 7 | 3.21E-02  | 2.48E-02   | 3.41E+09  | 3.53E+06  | 0.0061329 | 0.3272702 | NA        | NA        | 1.99E+07  | 1.82E+07  |
| HBD      | 7 | 0.0323055 | 8.34E-04   | 0.0007623 | 0.7822325 | NA        | 0.7267084 | 3.39E-03  | 0.0308956 | 9.63E+08  | 7.05E-02  |
| ANGEL2   | 7 | 0.0323055 | 2.03E-02   | 0.2925077 | 0.0098918 | 0.0277049 | 0.9878389 | 3.33E+09  | 0.0565929 | 1.47E-04  | 3.24E+06  |
| NSUN2    | 7 | 3.35E-02  | 0.00066982 | 0.0001056 | 0.4897773 | 0.0452719 | 0.582382  | 1.83E+00  | 0.9788398 | 8.94E-04  | 1.44E+06  |
| IRF9     | 8 | 0.0340708 | 2.36E-02   | 0.0019839 | NA        | 0.9803579 | 0.0181109 | 3.30E-04  | 0.0106341 | 8.60E-03  | 1.69E-02  |
| RPS9     | 7 | 0.0341995 | 0.03247494 | 9.04E-01  | 0.4090761 | 0.0207502 | 0.0240089 | 8.07E-01  | 0.0040418 | 6.40E+09  | 2.91E-04  |
| CKAP2L   | 7 | 0.0342835 | 0.18766997 | 0.0007553 | 0.3605366 | 0.0043538 | 0.0272466 | 0.0002624 | NA        | 1.26E+07  | 6.58E+09  |
| RPL26L1  | 7 | 0.0347766 | 0.00625783 | 0.0007553 | 0.0057794 | 0.011653  | 0.4478728 | 1.11E+08  | 0.1330692 | 2.09E-01  | 1.68E-05  |
| RBM28    | 7 | 0.0351271 | 0.00068072 | 0.3458319 | 0.0002749 | 0.3258619 | 0.0255886 | 0.0485488 | 0.9275481 | 7.29E-05  | 2.48E-04  |
| SIPA1    | 7 | 0.0354631 | 0.11421652 | 2.44E+09  | 0.0070739 | 0.0011523 | 0.0033739 | 5.13E-02  | 0.2150152 | 0.0163554 | 1.83E-02  |
| MYBBP1A  | 8 | 0.0355395 | 0.00194201 | 9.76E+09  | 0.0096748 | NA        | NA        | 2.32E+09  | 0.0156019 | 2.40E-05  | 4.79E+04  |
| PEX11B   | 7 | 0.0355571 | 0.00860031 | 0.6476059 | 0.6436606 | 0.0205405 | 0.0334004 | 1.06E-04  | 0.0154908 | 1.42E-02  | 2.89E-01  |
| LRMP     | 7 | 3.60E-02  | 3.11E-02   | 0.0011654 | 0.006072  | 0.1651372 | 0.2375833 | 4.12E-02  | 0.0122768 | 4.24E+05  | 7.73E-01  |
| ITPR1    | 7 | 0.036006  | 0.28340532 | 0.0002531 | 0.0081686 | 0.0141768 | 0.1160671 | 2.15E+07  | 0.550144  | 2.08E-11  | 2.14E+03  |
| ADCK1    | 7 | 0.0362607 | 2.86E+09   | 0.172495  | 0.000886  | NA        | 2.29E+09  | 6.11E+01  | NA        | 2.04E+00  | 9.70E+07  |
| UBA3     | 7 | 3.64E-02  | 0.01460022 | 0.2235747 | NA        | 0.0249762 | 0.1895442 | 5.76E+09  | 0.0286707 | 1.89E+08  | 2.21E+04  |
| RABAC1   | 8 | 0.0367454 | 6.75E-03   | 0.0001984 | 0.4823973 | 0.0424962 | 0.0001858 | 2.97E+06  | 0.5837683 | 1.79E+01  | 1.37E+09  |
| SENP5    | 7 | 0.0379027 | 4.44E-02   | 3.12E-01  | 0.0170164 | 0.0529868 | 0.0240989 | 4.25E+01  | 0.644961  | 1.53E-04  | 1.22E-03  |
| NMI      | 7 | 3.79E-02  | 1.97E-03   | 0.2826258 | 0.0502619 | 0.7683119 | 0.0337998 | 1.44E+08  | 0.0058659 | 1.09E+08  | 4.93E-01  |
| SUMF1    | 8 | 3.80E-02  | 2.81E-04   | 0.487972  | 0.003252  | 0.0157423 | 0.0167254 | 0.000334  | 0.0298247 | 6.81E-01  | 1.02E+05  |
| ARHGEF3  | 8 | 3.97E-02  | 0.02485253 | 2.78E-01  | 0.001396  | 0.0072229 | 0.032432  | 7.44E+04  | 0.1521749 | 5.92E+06  | 3.51E+04  |
| GOLGA1   | 8 | 0.0400042 | 3.60E+08   | 0.1669867 | 0.039888  | 0.018172  | 0.0640179 | 1.11E+07  | 0.0303045 | 0.0108154 | 2.31E+08  |
| HIST1H2B | 7 | 4.05E-02  | 0.0029663  | 0.4063944 | 0.0125129 | 0.3453087 | 0.0047946 | 1.54E+03  | NA        | 1.89E+07  | 6.56E+07  |
| DRG1     | 7 | 0.0412144 | 7.34E-01   | 0.061238  | 0.0394086 | 0.0102695 | 1.53E-04  | 0.2960441 | 0.0257248 | 5.86E-03  | 0.0001657 |
| ARL6IP5  | 7 | 4.14E-02  | 1.32E-01   | 0.0540416 | 0.0022016 | 0.0023625 | 0.0001684 | 0.0010551 | 0.9853273 | 0.0370893 | 3.39E+09  |
| SDHC     | 7 | 0.0414478 | 1.06E-02   | NA        | 0.0003639 | 0.9402274 | 0.6770575 | 9.25E+09  | 0.0168743 | 2.47E+03  | 2.24E+07  |
| ARF5     | 7 | 0.0420068 | 0.80773858 | 0.0085375 | 0.8072396 | 0.0296401 | 0.0383867 | 8.95E-01  | 0.004328  | 1.25E-03  | 1.21E+08  |
| TBC1D10  | 8 | 0.0422537 | 1.18E+09   | 0.2252337 | 0.0087159 | 0.0003248 | 0.7217739 | 7.63E-07  | 0.0119753 | 0.0040121 | 9.69E-03  |

| PRKAR2A  | 7 | 0.0433978 | 6.68E-04   | 0.0135749 | 0.0005138 | 0.5393006 | 0.6330365 | 6.00E+06  | NA        | 1.82E+06  | 1.45E+08  |
|----------|---|-----------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| SNRPA    | 8 | 4.35E-02  | 4.04E+07   | 0.0013372 | 0.0037584 | NA        | 0.0035904 | 4.80E+08  | 0.9338959 | 2.15E-02  | 1.73E+09  |
| TAF15    | 7 | 0.0437026 | 1.56E+09   | NA        | 0.3528553 | 3.76E-03  | 0.4223212 | 1.07E-04  | 0.0363995 | 1.17E-08  | 1.12E-12  |
| E4F1     | 8 | 0.0440076 | 0.06476062 | 0.0305668 | 0.902524  | 0.0033531 | 0.00021   | 2.04E-03  | 0.0458894 | 4.20E-04  | 1.44E-02  |
| VAMP7    | 7 | 4.43E-02  | 3.17E-04   | 0.9424389 | NA        | 0.0120646 | 0.3761755 | 2.71E+08  | 0.0428997 | 1.49E-03  | 1.10E-05  |
| TROAP    | 7 | 4.51E-02  | 1.45E-03   | 0.0010399 | 0.0118738 | NA        | 0.0039734 | NA        | 0.0784694 | 2.38E+09  | 5.91E-04  |
| FGD3     | 7 | 0.0452058 | 0.00011178 | 0.0019845 | 0.0125404 | 0.4653815 | 0.6927148 | 3.24E-02  | 0.0054925 | 7.33E-04  | 6.73E-02  |
| SRM      | 7 | 0.0462092 | 8.97E+07   | 0.0016475 | 0.0026654 | 0.960895  | 0.0677023 | 1.82E-02  | 0.201155  | 3.01E+09  | 7.20E+09  |
| GALNT11  | 7 | 0.0462893 | 0.0022267  | 7.63E-01  | 0.0087514 | 0.4128694 | 0.0135692 | 1.86E-04  | 0.9181791 | 5.35E+09  | 2.17E-04  |
| GOLPH3   | 7 | 4.74E-02  | 0.00561201 | 0.0112327 | 0.1075127 | 7.75E-03  | 0.0021938 | 0.5742693 | 0.1857909 | 1.53E+09  | 0.0031466 |
| GOLGA3   | 7 | 4.75E-02  | 2.34E-01   | 0.764169  | 0.0001441 | 0.0082616 | 0.0003736 | 4.73E-02  | 0.0964337 | 3.46E+03  | 4.13E-02  |
| VDAC1    | 8 | 0.0477544 | 0.16295857 | 0.0118505 | 0.0051402 | 0.0002275 | 2.23E-04  | 3.87E-04  | 0.2153577 | 4.64E-02  | 4.38E+04  |
| OSBPL9   | 8 | 4.78E-02  | 2.86E-02   | 0.6767647 | 0.0179245 | 0.0001226 | 0.8041918 | 1.04E+07  | 0.0293606 | 4.87E+09  | 1.40E+01  |
| DIABLO   | 7 | 0.0482989 | 4.16E+09   | 0.293421  | 0.0021435 | 0.0284875 | 0.9414031 | 3.05E-02  | 0.0171794 | 4.99E-04  | 4.06E-01  |
| POLR3A   | 7 | 4.84E-02  | 0.00014596 | 6.40E-01  | 0.0093232 | 0.3746744 | 0.0126259 | 1.36E-04  | 0.2501416 | 7.52E+02  | 2.00E-02  |
| PAXIP1   | 7 | 0.0492425 | 0.01386775 | 9.83E+09  | 0.0260925 | 0.9119945 | 0.7242999 | 5.13E+07  | 0.1940629 | 9.72E+03  | 2.10E+08  |
| CHD4     | 8 | 4.94E-02  | 1.87E-03   | 0.6286792 | 0.0437357 | 0.0268373 | 5.80E+04  | 3.29E+03  | 0.6769342 | 8.77E+03  | 6.69E-03  |
| NLK      | 7 | 0.0495227 | 0.00022064 | 1.46E-02  | 0.5285804 | NA        | 0.0131814 | 9.89E+03  | 0.1047872 | 1.08E+06  | 2.37E+08  |
| RNASE2   | 7 | 0.8864361 | 1.83E+05   | 7.34E+07  | 0.0399752 | 8.84E-01  | 0.0003764 | 6.40E-12  | NA        | 1.82E-01  | 2.90E-06  |
| TGIF2    | 7 | 6.30E-02  | 4.49E+05   | 0.0060623 | 0.0255467 | 0.0001309 | 0.5788392 | 1.97E+00  | NA        | 6.19E+06  | 2.51E+03  |
| ST6GAL1  | 7 | NA        | 5.84E+06   | 0.9898646 | 0.0179458 | 0.0058448 | 0.4285558 | 1.16E-05  | 0.0053223 | 3.01E-04  | 3.55E-09  |
| LGALS1   | 7 | 0.9731509 | 1.86E+07   | 0.0358228 | 0.0544142 | 0.000316  | 0.0457559 | 2.64E+03  | 0.3819302 | 4.84E+06  | 1.21E+07  |
| TMCC1    | 7 | NA        | 1.87E+07   | 0.7855399 | 0.0130355 | 0.0297043 | 0.0061192 | 0.9317516 | 0.0037287 | 4.56E+07  | 0.0147968 |
| RPL29    | 8 | NA        | 4.59E+07   | 7.93E+09  | 0.0107551 | NA        | 0.0139579 | 9.89E+09  | 0.0281342 | 0.0117551 | 2.41E+07  |
| DRAM1    | 7 | NA        | 6.85E+07   | 0.0490294 | NA        | 0.0008359 | NA        | 1.23E-03  | 0.0212071 | 7.72E-07  | 4.87E-08  |
| EPHX2    | 8 | 0.0890416 | 7.31E+07   | 0.0306233 | 0.0231848 | NA        | 0.0004228 | 2.73E-02  | 0.0159368 | 5.00E-03  | 1.39E+00  |
| SLC22A4  | 7 | NA        | 8.89E+07   | NA        | 0.0110169 | 0.036787  | NA        | 4.12E-08  | 0.0319752 | 6.47E-12  | 2.52E-05  |
| PHF1     | 8 | 0.1278604 | 1.40E+08   | 0.0085511 | 0.0312277 | 0.0090081 | 0.3041274 | 7.11E+00  | 0.0307843 | 0.0350463 | 2.21E+06  |
| PRKD2    | 7 | NA        | 2.37E+08   | 0.0103541 | 0.000256  | 0.9286354 | 0.0013394 | 1.67E+06  | 0.0514606 | 0.0012017 | 2.85E+03  |
| TOR1AIP1 | 7 | 0.0792484 | 4.36E+08   | 0.0022149 | 0.0013341 | 0.0288125 | 0.0147173 | 0.4334746 | NA        | 1.77E+04  | 1.09E+02  |
| BBX      | 7 | 0.9928077 | 6.40E+08   | 0.0378561 | 0.0014912 | 0.0526852 | 0.0030428 | 9.60E+04  | NA        | 0.0043328 | 1.98E+06  |

| NDE1     | 7 | 0.1942169 | 7.50E+07   | 0.0029179 | 5.39E+08  | 0.1080802 | 0.7313119 | 0.0009757 | 0.0097067 | 2.04E+00  | 1.00E+03  |
|----------|---|-----------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| YY1      | 7 | 0.836863  | 8.68E+08   | NA        | 0.0396598 | 0.0169086 | 7.35E+09  | 0.0004468 | 0.0201498 | 0.0693827 | 2.51E+07  |
| MDH2     | 7 | 0.1177303 | 1.06E+09   | 0.0106369 | 0.0006873 | 0.3793957 | 0.0483325 | 0.0002817 | 0.9120891 | 6.94E+09  | 3.63E+07  |
| SLC11A1  | 7 | NA        | 1.56E+09   | NA        | 0.0001997 | 0.0020193 | 0.1402463 | 3.75E+06  | 0.0184558 | 9.28E+08  | 0.0025493 |
| HCP5     | 7 | 0.5140667 | 1.91E+09   | 0.0023297 | 1.83E+09  | 0.0041424 | 0.1616613 | 5.02E+08  | NA        | 0.0026093 | 1.68E+07  |
| MRPL4    | 7 | NA        | 2.64E+09   | 0.0317338 | 0.0077191 | NA        | 0.0020042 | 0.0181214 | 0.9815366 | 0.0012805 | 0.0010555 |
| SDHAF1   | 7 | NA        | 3.36E+09   | 0.0014703 | NA        | 0.0020848 | NA        | 3.99E+08  | 0.0352966 | 0.0126562 | 0.0022417 |
| AKNA     | 7 | 0.2477872 | 3.84E+09   | 0.0001977 | 0.3214327 | 0.0006759 | 0.0005562 | 5.55E+04  | NA        | 7.22E+09  | 1.02E-04  |
| LYSMD2   | 7 | 0.5929564 | 4.42E+09   | 0.3058923 | 0.001015  | 0.0050457 | 0.0258213 | 2.78E+07  | 0.0026794 | 0.4432121 | 0.0004803 |
| SMAD4    | 7 | 0.6890318 | 4.58E+09   | 0.2204249 | 0.0006331 | 0.4300489 | 1.48E+08  | 0.0010614 | 0.0137122 | 3.49E+06  | 1.30E-03  |
| SND1     | 7 | 0.1466842 | 9.57E+09   | 0.0041903 | 0.0001544 | 0.6557181 | 0.0049853 | 6.66E+06  | 0.9810432 | 2.63E+00  | 7.15E+03  |
| UBE2C    | 7 | NA        | 0.00011008 | 5.86E+09  | 0.0302673 | NA        | 0.5640609 | 6.57E+03  | 0.0165344 | 1.59E-01  | 2.50E+05  |
| FAM49B   | 7 | NA        | 0.00013107 | NA        | 0.0187959 | 0.2818231 | 8.01E+07  | 3.54E+06  | 0.0028435 | 1.78E-09  | 1.20E-02  |
| MBP      | 7 | 0.7027868 | 0.00013294 | NA        | 0.0007383 | 0.0084178 | 0.0129755 | 1.06E+05  | NA        | 0.0007447 | 5.21E-01  |
| TNFAIP2  | 8 | 0.4924032 | 0.00014417 | 0.0199356 | 0.0189112 | 5.09E+09  | 0.0165832 | 7.57E+08  | 0.0022735 | 0.0002528 | NA        |
| SIN3B    | 7 | 0.1789076 | 0.00019334 | 0.8345948 | 0.0104814 | 0.0058837 | 0.0010177 | 2.94E+03  | 0.0786356 | 7.75E+02  | 2.61E+09  |
| TRPM2    | 7 | NA        | 0.00022693 | 0.3303496 | 0.0148085 | 0.0090174 | 0.5462315 | 5.17E+07  | 0.0173477 | 7.43E-07  | 1.65E+01  |
| ASF1B    | 7 | 0.2640969 | 0.00022809 | 0.0001016 | 0.0007454 | 0.0555841 | 0.0443938 | 0.0265767 | 0.0092749 | 3.74E+07  | 0.9362616 |
| APEH     | 7 | 0.3475274 | 0.0003072  | 0.0404639 | 3.63E+09  | 0.4074117 | 0.000274  | 8.32E+08  | 0.7380168 | 7.51E+07  | 3.07E+08  |
| ARPC3    | 7 | 0.2409001 | 0.00031316 | 0.0382309 | 0.02519   | 0.1800138 | 0.6448115 | 7.11E+00  | 0.0066184 | 2.58E-06  | 7.20E-05  |
| IDS      | 7 | 0.5395781 | 0.00039792 | NA        | 0.0007653 | 0.057547  | 9.93E+08  | 1.43E+09  | 0.0091023 | 2.30E+07  | 3.31E+05  |
| Clorf174 | 7 | NA        | 0.00043488 | 0.0122451 | 0.0377976 | 0.0192454 | NA        | NA        | 0.0154908 | 0.0001595 | 0.0001756 |
| CSTA     | 7 | 0.0561166 | 0.00049465 | 0.0006563 | 0.00334   | 0.0311679 | 0.6255742 | 5.19E+03  | NA        | 1.20E-05  | 6.02E-14  |
| TXNIP    | 8 | 0.7997172 | 0.00056277 | 0.0116124 | 0.0204912 | 7.52E+09  | 0.0512813 | 2.99E+09  | 0.0159368 | 4.55E+02  | 3.31E+03  |
| UTP6     | 7 | 0.1297585 | 0.00073076 | 0.0465535 | 0.1623174 | 0.033091  | 0.0215423 | 0.0514644 | 0.0029669 | 1.12E-01  | 0.0001226 |
| CDC42SE2 | 8 | 0.8062787 | 0.00081783 | 0.9027235 | 0.0001515 | 0.022717  | 3.74E+06  | 3.44E+03  | 0.0082882 | 1.38E+07  | 1.49E+00  |
| MAZ      | 7 | NA        | 0.00117175 | 0.8830925 | 0.0365093 | 0.0249081 | 0.0103897 | 8.02E+08  | 0.0805562 | 0.0013592 | 1.90E+09  |
| PPP2R1A  | 8 | 0.0675065 | 0.00130026 | 0.0491982 | 0.0385807 | 0.0001236 | 0.0305361 | 6.60E-02  | 0.0433196 | 5.01E+07  | 0.1975175 |
| PSMC6    | 7 | 0.6571336 | 0.00146231 | NA        | 0.0071955 | 0.0025401 | 0.0016874 | 2.11E+08  | 0.3222284 | 2.20E+03  | 8.28E-02  |
| SUCLG1   | 7 | 0.3954805 | 0.00150103 | 0.4426105 | 0.0060255 | 0.0021735 | 0.0114394 | 2.72E+08  | 0.3127465 | 6.67E+01  | 2.21E-06  |
| DDX27    | 7 | 0.7469697 | 0.00192191 | 0.1242479 | 0.7958963 | 0.0014695 | 0.0006192 | 1.72E+01  | 0.0134479 | 1.05E+02  | 5.37E+06  |

| MYO1G   | 8 | 0.1672012 | 0.00197081 | 0.022525  | 0.0001619 | 0.7005796 | 0.0084369 | 0.0094954 | 0.0188719 | 5.31E+07  | 0.0044376 |
|---------|---|-----------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| SMAD7   | 7 | NA        | 0.00241778 | 0.3857268 | 0.0115571 | 0.0004341 | 0.0380761 | 5.34E+01  | 0.1443635 | 0.0052084 | 3.25E+07  |
| UPF1    | 7 | 0.9875105 | 0.00255933 | 0.2891657 | 0.0161003 | 0.0105366 | 0.0026976 | 3.28E+09  | 0.5902908 | 0.0026837 | 0.0039361 |
| DOCK8   | 7 | 0.5281093 | 0.00286923 | 0.0051369 | 0.0023327 | 0.1175102 | 0.9926893 | 0.0068881 | 0.036274  | 8.55E+06  | 5.65E-01  |
| G6PC3   | 7 | 0.1130012 | 0.00304172 | 0.0001271 | 0.0175103 | NA        | 0.003963  | 0.3562696 | 0.0092749 | 2.52E+06  | 0.0062531 |
| STK10   | 7 | 0.3032873 | 0.00398309 | 0.0004966 | 0.8845251 | 0.05867   | 0.0027407 | 1.88E+09  | 0.0250045 | 5.26E-03  | 4.61E+05  |
| RCSD1   | 9 | 0.687014  | 0.00422287 | 0.0012398 | 0.0011896 | 0.024307  | 0.0189329 | 2.06E+00  | 0.0053993 | 3.36E+08  | 7.49E+09  |
| MAN2B1  | 7 | 0.9602841 | 0.00644797 | 0.0003892 | 0.1506133 | 0.0020802 | 0.0004765 | 0.0001192 | 0.8866679 | 5.09E+08  | 1.32E+09  |
| UBA52   | 8 | 0.0806127 | 0.00772447 | 0.0001331 | 0.044934  | 0.7771609 | 0.0266463 | 2.07E+07  | 0.0040533 | 0.0194983 | 0.0020038 |
| ENO1    | 8 | 0.6770404 | 0.00820519 | 0.0059875 | 8.71E+08  | 0.0001751 | 0.1351093 | 7.52E+08  | 0.0005796 | 0.0002702 | 3.33E+06  |
| INPP5D  | 7 | 0.4558717 | 0.00850124 | 0.0011754 | 0.5547451 | 0.3135321 | 4.06E+09  | 1.64E+09  | 0.0379114 | 2.36E+02  | 2.39E+05  |
| TRAM2   | 7 | 0.2627268 | 0.00965255 | 0.0007124 | 0.0009821 | NA        | 0.0291551 | 0.0032031 | 0.7949641 | 0.0007607 | 9.41E+08  |
| STK40   | 7 | 0.0776918 | 0.00983291 | 0.0321821 | 0.0029296 | 0.044483  | 0.4481687 | 3.49E+08  | 0.0260786 | 0.5112443 | 0.0061559 |
| UQCRQ   | 7 | 0.0975129 | 0.01056233 | 0.1328163 | 0.0112819 | 0.2441294 | 0.0001861 | 1.71E+07  | 0.0027604 | 0.020813  | 1.03E-10  |
| ST3GAL1 | 7 | 0.9370911 | 0.01190993 | 0.0414998 | 4.16E+08  | 0.0017534 | 0.9772386 | 2.46E+02  | 0.5368939 | 0.0002939 | 1.42E+04  |
| COX8A   | 7 | 0.6404474 | 0.01220859 | 0.7623483 | 0.0001218 | 0.6751449 | 0.0041932 | 0.0051805 | 0.0425217 | 3.16E+06  | 4.96E+07  |
| ITGAL   | 8 | 0.1118919 | 0.01274695 | 0.0001718 | 0.0099255 | 0.0011103 | 0.0011663 | 5.37E+09  | NA        | 1.49E+05  | 1.15E-02  |
| HDDC3   | 7 | 0.0990879 | 0.01334205 | 0.0084625 | 0.0089756 | 0.0124643 | 0.0407256 | 0.7301674 | 0.040203  | 0.128888  | 2.08E+08  |
| DCTN6   | 8 | 0.9491837 | 0.01463163 | 0.0069105 | 0.7934295 | 0.0016779 | 0.0013394 | 2.39E+09  | 0.0211151 | 8.04E+01  | 2.06E-09  |
| FAM96A  | 7 | 0.145592  | 0.01493441 | NA        | 0.0072507 | 0.105334  | 0.0280013 | 0.0035054 | 0.0059291 | 3.55E+05  | 1.10E+01  |
| SMCHD1  | 7 | 0.9929217 | 0.01533345 | 0.0102792 | NA        | 0.0234634 | 0.9148397 | 6.66E+09  | 0.0089048 | 8.20E+08  | 6.11E+08  |
| IKZF1   | 7 | 0.9533651 | 0.01692517 | 0.003926  | 0.0286046 | 0.1955932 | 0.0072348 | 5.33E+04  | 0.5306669 | 5.47E+01  | 1.00E-08  |
| PPHLN1  | 8 | 0.0898357 | 0.01955167 | 0.0119243 | 0.5732247 | 0.0064307 | 0.0050901 | 1.01E+07  | 0.0106093 | 9.76E+05  | 8.32E+09  |
| RPL36A  | 7 | NA        | 0.02250399 | 1.31E+09  | 0.0588424 | NA        | 0.0021026 | 0.000219  | 0.007092  | 0.0007354 | 5.60E+06  |
| EVI2A   | 7 | 0.8431753 | 0.02299479 | 0.6462614 | 0.006167  | 0.0236857 | 0.267353  | 0.0320377 | 0.0027268 | 1.64E+08  | 1.34E+06  |
| CYB5D1  | 7 | 0.9912981 | 0.02455805 | 8.69E+08  | 0.002528  | 0.0068094 | 0.0043678 | 0.2128026 | 0.0383156 | 6.55E+08  | 0.1559    |
| PAK1    | 8 | 0.8020561 | 0.02634703 | 0.0071967 | 0.0646735 | 0.0005019 | 0.0086035 | 1.37E+09  | 0.0022517 | 0.0007354 | 4.41E+09  |
| RNF175  | 7 | 0.7029387 | 0.0295331  | 0.8290993 | 0.0308137 | 0.0238467 | 0.047036  | 0.0041412 | NA        | 9.14E+06  | 5.27E+00  |
| BMP6    | 7 | 0.9700235 | 0.03199051 | 1.63E+08  | 5.45E+09  | 1.32E+07  | 0.0404307 | 0.0035907 | 0.7432529 | 0.0008171 | 0.4835455 |
| KDELR1  | 7 | 0.911642  | 0.03285944 | 0.0014969 | 0.0190258 | 0.6669131 | 0.0299692 | 0.0030469 | 0.0491812 | 0.1016001 | 0.0028226 |
| RGS18   | 9 | 0.7568575 | 0.04078208 | 0.0075218 | 0.0176425 | 0.0014853 | 0.0001278 | 0.0001084 | 0.0024331 | 1.42E+08  | 4.86E-03  |

| KIF3B    | 7 | 0.531234  | 0.0428803  | 0.0003601 | 0.131851  | 0.00034   | 0.710044  | 6.71E+04  | 0.0091296 | 0.0125272 | 0.0394159 |
|----------|---|-----------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| SPATA5L1 | 7 | 0.7965108 | 0.04289941 | 0.0001961 | 0.0149466 | 0.0012754 | 0.7874399 | 0.0020828 | 0.6105431 | 6.47E+09  | 6.59E-04  |
| ZBTB2    | 7 | 0.0778656 | 0.04611249 | 0.0232685 | 0.0181465 | 0.10301   | 5.16E+09  | 6.09E+03  | 0.4962739 | 0.0010285 | 5E-04     |
| RDH11    | 7 | 0.4615358 | 0.15033588 | 0.0002549 | 0.000357  | 0.2656855 | 0.0002358 | 8.51E+07  | 0.0170724 | 3.77E+05  | 0.0412389 |
| PLCB2    | 7 | 0.4045452 | 0.15372052 | 0.000678  | 7.28E+09  | 0.0026183 | 0.0004098 | 0.0169201 | 0.0073939 | 2.78E+01  | 0.2392025 |
| TRIP6    | 7 | 0.3850632 | 0.78922682 | 0.0011916 | 0.0005726 | 0.5188254 | 0.0028911 | 0.0001095 | 0.0090814 | 8.75E+01  | 6.91E+08  |
| CREB1    | 7 | 0.4481084 | 0.06908904 | 0.0017516 | 0.0374529 | 0.8135645 | 9.44E+06  | 9.70E+04  | 0.0093906 | 2.56E+03  | 9.15E+00  |
| CFDP1    | 7 | 0.7107272 | 0.10832324 | 0.0035793 | 0.0005244 | 0.0130113 | 0.0325186 | 0.0054639 | 0.5757147 | 3.56E+08  | 1.24E+06  |
| IKBKE    | 7 | 0.3951883 | 0.39469856 | 0.0047471 | 0.011471  | 0.0013469 | 0.0003102 | 0.0017634 | NA        | 8.21E+09  | 2.08E-03  |
| NDUFS5   | 7 | 0.4798981 | 0.14028178 | 0.0395779 | 0.0023839 | 0.0329314 | 0.1528028 | 5.60E+06  | 0.0278275 | 0.0357634 | 1.96E-09  |
| IMPA1    | 7 | 0.8265722 | 0.13300845 | 0.9868604 | 0.0001366 | 0.0010268 | 0.0002224 | 0.03689   | 0.0097239 | 1.18E+04  | 1.83E+03  |
| BUD31    | 7 | 0.8330695 | 0.71965227 | 0.7736367 | 0.0048713 | 0.0027887 | 0.0426212 | 1.47E+06  | 0.0244423 | 0.0005437 | 3.55E-09  |

| Inflammatory | Mean cytokine      | $\pm$ s.d (pg/µl) |
|--------------|--------------------|-------------------|
| mediator     | Sham               | CLP               |
| G-CSF        | $21.89 \pm 5.90$   | $29.07 \pm 2.25$  |
| IL-10        | $232.41 \pm 16.98$ | $261.24 \pm 9.46$ |
| IL-1β        | $22.91 \pm 8.19$   | $36.14 \pm 8.01$  |
| IL-2         | 9.03 ± 1.47        | $16.09 \pm 3.05$  |
| IL-4         | $4.67\pm0.30$      | 5.63 ± 0.25       |
| IFN-y        | $10.4 \pm 0.55$    | $15.53 \pm 1.28$  |
| IL-5         | $7.3 \pm 0.18$     | $9.53 \pm 0.17$   |
| IL-13        | $5.05 \pm 0.81$    | $9.66 \pm 0.97$   |
| IL-12p70     | $22.35 \pm 5.78$   | $48.22\pm0.87$    |
| TNF-α        | $2.98 \pm 0.46$    | $4.8 \pm 0.12$    |

Supplementary table 5. Serum cytokine measurement of sham and CLP animals.

PARTE III

## DISCUSSÃO

A EAS caracteriza-se por uma disfunção cerebral, ainda pouco compreendida, que ocorre com frequência devido à grave inflamação sistêmica desencadeada durante a fase aguda da sepse. De maneira geral, um acometimento cerebral em pacientes com sepse é considerado um fator independente de mal prognóstico. Diversos estudos já foram realizados na clínica a fim de identificar possíveis biomarcadores para diagnosticar de maneira precoce essa complicação que ocorre durante a sepse, permitindo antecipar o início do tratamento, diminuindo a sua taxa de mortalidade e os danos a longo prazo. Nesse sentido, um desbalanço no perfil sorológico de aminoácidos foi observado em pacientes com EAS, sendo esse perfil distinto entre paciente sobreviventes e não-sobreviventes (Mizock, Sabelli et al. 1990, Sprung, Cerra et al. 1991, Basler, Meier-Hellmann et al. 2002). Assim, a avaliação desse parâmetro emerge como um promissor biomarcador de dano cerebral de potencial uso clínico. Nessa tese nós observamos que animais submetidos à LCP possuem alterações sorológicas no perfil de aminoácidos semelhante ao observado em pacientes com EAS.

A diminuição nos níveis de glutamato e também da proporção de glutamato/glutamina observada no modelo de LCP possui valor preditivo de mortalidade em pacientes com sepse, como descrito por Poeze e colaboradores. Além disso, parecem ser mais precisos do que os parâmetros utilizados rotineiramente na prática clínica (Poeze, Luiking et al. 2008). O mecanismo exato que leva a diminuição na concentração plasmática de glutamato durante a sepse ainda não está esclarecido. Alguns autores atribuem essa redução ao seu consumo como substrato energético (Kantrow, Taylor et al. 1997), enquanto outros indicam que durante a sepse o glutamato é utilizado para a síntese *de novo* de glutamina e alanina (Bruins, Deutz et al. 2003). De fato, em nosso estudo não observamos alterações significativas nos

177

níveis sanguíneos desses aminoácidos, que provavelmente estão sendo mantidos às custas da utilização de glutamato. Além dos níveis de glutamato, a proporção de aminoácidos de cadeia lateral ramificada (BCAA, do inglês *branched-chain amino acid*) e dos aminoácidos aromáticos (AA) também já foi demonstrada estar alterada precocemente em pacientes acometidos por EAS (Basler, Meier-Hellmann et al. 2002). Corroborando, nosso modelo animal também apresenta uma diminuição da proporção BCAA/AA no soro, às custas de aumentados níveis de fenilalanina e triptofano. Assim, um elevado influxo de fenilalanina da corrente sanguínea para o cérebro contribuiria para acelerar a síntese de serotonina. Já a fenilalanina seria capaz de promover a síntese de catecolaminas e de falsos neurotransmissores, contribuindo para o dano cerebral observado durante a EAS (Fernstrom and Fernstrom 2007).

A avaliação do perfil de aminoácidos no LCR realizada nesse trabalho nos permitiu investigar a associação entre o perfil de aminoácidos observado no soro com àquele presente no SNC. Observamos, assim, que os níveis de BCAAs no LCR e no soro se correlacionam de maneira robusta (correlação forte). Enquanto os dos AAs e lisina e ornitina apresentaram uma correlação moderada. alanina. os de Adicionalmente, uma abordagem utilizando uma análise de redes de aminoácidos foi conduzida para identificar a associação entre os aminoácidos em cada fluido analisado. De modo geral, tanto no soro quanto no LCR de animais induzidos à sepse foi observada uma hiperassociação entre os aminoácidos analisados, fenômeno evidenciado pela formação de clusters. No soro dos animais submetidos à LCP, observamos a presença de dois grandes clusters: o primeiro com os BCAAs e o glutamato, e o segundo com alanina e metionina como principais nodos. Em relação à nossa análise no LCR, demonstramos uma alteração mais organizada, com a identificação de um grande cluster contendo 9 aminoácidos, sendo a metionina o

principal nodo. Essas alterações observadas evidenciam um orquestrado e homogêneo fenômeno no SNC e que não está presente no soro de animais cirurgicamente submetidos à LCP. De maneira surpreendente, apesar não ter sido observada qualquer correlação entre os níveis de metionina nos fluidos analisados, esse aminoácido foi encontrado como o principal nodo nos *clusters* observados tanto no SNC como no soro. De fato, já foi demonstrado que metabólitos da metionina, como a Sadenosilmetionina e a cisteína, encontram-se alterados tanto em pacientes (Wexler, Gough et al. 2018) como em modelos animais de sepse (Semmler, Smulders et al. 2008). Contudo, a importância do desbalanço do metabolismo da metionina e suas consequências fisiopatológicas no contexto da EAS ainda precisam ser melhor investigados.

Os resultados encontrados nesse trabalho refletem o perfil de aminoácidos de animais 24 horas após a indução cirúrgica de sepse, tempo escolhido a fim de refletir a fase aguda da doença a qual ainda não é observado o óbito dos animais. Contudo, a partir desses resultados se torna de grande interesse uma avaliação mais completa, incluindo fases ainda mais iniciais do processo de sepse. Assim, uma conduta clínica poderia ser iniciada de maneira ainda mais precoce caso se encontrem alterações nos níveis de aminoácidos. Em geral, esses resultados demonstram que o modelo de LCP reproduz as alterações no perfil de aminoácidos observada em paciente acometidos por EAS. Desse modo, o uso desse modelo animal demonstra, em mais um aspecto, seu alto valor translacional, podendo ser aplicado para o desenvolvimento de terapias visando o restabelecimento dos níveis de determinados aminoácidos durante a fase aguda da sepse.

Em casos graves, a inflamação sistêmica atinge majoritária e irreversivelmente funções associadas a região hipocampal de maneira a conduzir um dano cognitivo a longo prazo (Chou, Lee et al. 2017). Corroborando, Semmler e colaboradores demonstraram uma acentuada atrofía hipocampal em pacientes sobreviventes à sepse (Semmler, Widmann et al. 2013). Recentemente, alguns estudos vêm sendo conduzidos com o intuito de investigar como a inflamação sistêmica impacta diferentes funções cerebrais, porém na maioria dos casos com foco neuronal ou microglial, enquanto que, o papel dos astrócitos nesses mecanismos de interação periférico/central permanece pouco elucidado. Nesse sentido, o uso de modelos de estudos apropriados para entender a participação dessas células em disfunções cerebrais decorrentes de episódios sistêmicos torna-se bastante importante.

A utilização da cultura primária de astrócitos representa uma alternativa ao estudo utilizando o tecido cerebral como um todo, pois nos permite elucidar o exato papel dessas células em diversas situações, sem a interferência de outros tipos celulares que podem mascarar a resposta astrocitária. Porém, cabe ressaltar que as condições de cultivo podem afetar a expressão gênica e o funcionamento de receptores, influenciando a interpretação dos dados obtidos (Lange, Bak et al. 2012). Esse fator é particularmente importante quando utilizamos como ferramenta de investigação a cultura de astrócitos provenientes de animais adultos submetidos a um insulto prévio, visto que a capacidade desses astrócitos manterem o fenótipo obtido durante a situação de injúria ainda permanece elusivo. Por esse motivo, nós desenvolvemos um estudo onde verificamos a resposta da cultura de astrócitos hipocampais provenientes de animais que sofreram um episódio de inflamação sistêmica severa e aguda, induzido por LCP, paralelamente a análise do tecido hipocampal total desses mesmos animais. Primeiramente, conforme esperado, observamos que os astrócitos provenientes de animais submetidos à LCP apresentaram um fenótipo pró-inflamatório, com aumento de expressão gênica e liberação de importantes citocinas pró-inflamatórias, como TNF- $\alpha$  e IL-1 $\beta$ . Concomitante, observamos o aumento da expressão do fator de transcrição NF $\kappa$ B e da enzima iNOS tanto em culturas de astrócitos quando no tecido hipocampal total de animais sépticos, evidenciando que esses astrócitos carregam uma assinatura gênica que se mantém mesmo após o longo tempo de cultivo (3 a 4 semanas). Esses dados reforçam estudos prévios do nosso grupo que demonstraram que astrócitos provenientes de cérebro envelhecido possuem características distintas daqueles cultivados a partir de neonatos, conservando de certa forma as características do sistema a qual elas são provenientes (Bellaver, Souza et al. 2016, Souza, Bellaver et al. 2016).

Por outro lado, observamos algumas divergências importantes nas análises entre os dois tipos de amostras (tecido total e cultura de astrócitos). Em relação ao fator de crescimento endotelial vascular (VEGF, do inglês vascular endothelial growth factor), um fator expresso por astrócitos, microglia e oligodendrócitos que é capaz de controlar a permeabilidade da BSC, constatamos um aumento na sua expressão apenas em amostras de tecido hipocampal total de animais submetidos à LCP, enquanto que em culturas de astrócitos seus níveis de RNAm permaneceram inalterados. O aumento observado na expressão gênica de VEGF apenas em tecido total pode ser explicado pelo fato de diversos tipos celulares do SNC serem capazes de expressar esse fator, e portanto, os astrócitos não serem os principais responsáveis pelo aumento da sua expressão em resposta ao estímulo inflamatório (Ma, Zechariah et al. 2012, Wang, Kang et al. 2016). Além disso, o microambiente ao qual os astrócitos estão inseridos são grande determinantes da sua funcionalidade. Assim, o momento em que essas células são isoladas, perdendo o contato com a células endoteliais e outros tipos celulares do SNC, parece ser determinante para a perda das suas características como componentes da BSC (Jensen, Massie et al. 2013).

A interação entre diferentes tipos celulares também parece ter sido um fator determinante para alterações na expressão de TLRs nesse estudo. Enquanto os níveis de RNAm de TLR2 aumentaram apenas na cultura de astrócitos provenientes de animais submetidos à LCP, a expressão gênica de TLR4 aumentou apenas no tecido total, permanecendo inalterada na cultura de astrócitos. Sabe-se que as células microgliais são as células cerebrais que possuem maiores quantidades de TLR4 e que, além disso, respondem a ligantes de TLR mais rapidamente do que os astrócitos, sendo assim provável que a ativação dessas células seja capaz de mascarar a resposta astrocitária quando se trata de uma análise de tecido total (Carpentier, Begolka et al. 2005, Kielian 2006). Além disso, a microglia parece ter uma resposta a ligantes Gram-positivos que não envolva a ativação de TLR2, corroborando com os níveis inalterados de TLR2 observados na análise do tecido hipocampal total (Kielian 2006).

Apesar de observarmos essa clara resposta astrocitária frente a um quadro de sepse aguda, os mecanismos pelos quais essa inflamação sistêmica severa impacta tão fortemente a habilidade dos astrócitos manterem a homeostasia celular permanece pouco entendida. A compreensão desses mecanismos é particularmente desafiadora no contexto dessa patologia devido a grande heterogeneidade observada em relação a expressão gênica, a análise de citocinas alteradas e também aos desfechos observados entre os estudos (Tang, Huang et al. 2010, Iskander, Osuchowski et al. 2013). Ainda, devido às acentuadas diferenças entre a resposta imune na fase aguda e tardia da sepse, se faz necessária a avaliação e identificação dos mecanismos relacionados ao dano em cada uma das fases de maneira isolada. Baseado nisso, com o intuito de identificar as características em comum entre pacientes acometidos por sepse na sua fase aguda, nesse trabalho nós realizamos uma análise de transcriptoma sanguíneo de pacientes sépticos em comparação com indivíduos saudáveis, utilizando banco de dados disponíveis

online. De maneira interessante, apesar de nesse estudo terem sido encontrados diversos genes diferencialmente expressos (DEGs) e também processos biológicos infra e/ou suprarregulados relacionados à resposta imune e inflamatória, nossa análise visando identificar vias de sinalização acometidas durante a sepse não apontou alterações em vias diretamente relacionadas à inflamação. Contudo, nossa análise, que incluiu 10 estudos independentes, evidenciou alterações em vias de sinalização relacionadas ao metabolismo energético dentre os processos com mais DEGs durante a fase aguda de sepse. Assim, genes chave envolvidos no metabolismo de carbono, no TCA e nos processos de glicólise e gliconeogênese encontram-se suprarregulados em pacientes acometidos por sepse. Corroborando, Escobar e colaboradores demonstraram previamente, em modelo animal, que a estimulação de vias de regulação energética, como a da proteína cinase ativada por AMP (AMPK), é capaz de proteger contra a falência de órgãos e conferir uma maior taxa de sobrevivência após a indução de sepse (Escobar, Botero-Quintero et al. 2015). Adicionalmente, crescentes evidências sugerem que o desenvolvimento de disfunção cardíaca durante a sepse possa estar associado com uma deficiência no metabolismo energético e redução na produção de energia nos cardiomiócitos (Drosatos, Lymperopoulos et al. 2015). Já a extensão e o impacto dessas alterações energéticas no cérebro durante a EAS sobre a funcionalidade astrocitária permanecem ainda muito pouco explorados.

Com o intuito de transpor os achados encontrados nas análises de transcriptoma em células sanguíneas humanas para o nosso modelo experimental em roedores, e ainda verificar a sua influência no quadro de EAS, nós realizamos uma análise de metabolismo energético cerebral em animais submetidos à LCP. Assim, nós demonstramos, através da utilização de [<sup>18</sup>F]FDG PET em modelo animal, um robusto hipometabolismo de glicose cerebral *in vivo* em ratos sépticos. Recentemente, uma

183

redução no metabolismo global de [<sup>18</sup>F]FDG também foi demonstrada em modelo de sepse induzido por Escherichia coli em camundongos (Catarina, Luft et al. 2018). Atualmente o hipometabolismo indexado por [<sup>18</sup>F]FDG PET é considerado um importante biomarcador de disfunção sináptica, com seus valores associados com déficit cognitivo na doença de Alzheimer (Pagani, De Carli et al. 2015, Gardener, Sohrabi et al. 2016, Weise, Chen et al. 2018). Assim, corroborando com os nossos resultados de hipometabolismo cerebral em modelo animal, sabe-se que indivíduos que experienciaram um episódio de sepse possuem um aumentado risco de desenvolverem demência à longo prazo (Cunningham and Hennessy 2015, Chou, Lee et al. 2017). A análise de metabolismo de glicose cerebral realizada nesse estudo demonstrou um hipometabolismo em diversas áreas, incluindo o hipocampo. De maneira controversa, Semmler e colaboradores, utilizando um modelo de injeção de LPS, não observaram alterações na captação hipocampal de [<sup>18</sup>F]FDG (Semmler, Hermann et al. 2008). Como mencionado previamente, o hipocampo é uma das regiões cerebrais mais vulneráveis à sepse em humanos, e essa discrepância evidência a importância do cuidado ao utilizar diferentes modelos para indução de sepse. Assim, visando um estudo translacional, o modelo de LCP é visto na literatura especializada como o que melhor se correlaciona com a condição clínica observada em humanos (Lee and Huttemann 2014).

Nosso grupo recentemente demonstrou que a captação de glutamato pelos astrócitos está acoplada com o sinal de [<sup>18</sup>F]FDG, sugerindo que a captação de [<sup>18</sup>F]FDG reflete o metabolismo astrocitário (Zimmer, Parent et al. 2017). Consistentemente, nesse estudo nós observamos uma diminuição da captação de glutamato astrocitária em animais submetidos à LCP. Essa disfunção a captação de glutamato pelos astrócitos pode levar a hiperestimulação do sistema glutamatérgico decorrente dos níveis aumentados de glutamato na fenda sináptica, um fenômeno

extremamente prejudicial a homeostasia cerebral. Nesse sentido, a ocorrência de excitotoxicidade glutamatérgica está implicada na patologia de diversas doenças que acometem o SNC, incluindo no quadro de EAS (Gardoni and Di Luca 2006, Michels, Steckert et al. 2015). Contudo, apesar da redução na captação de glutamato astrocitária observada nesse trabalho, os níveis de glutamato no LCR dos animais induzidos à sepse não se alteraram em relação ao controle. Algumas hipóteses podem ser levantadas a partir desse achado. Primeiramente, nossas análises foram realizadas em um período de 24 h após a inducão cirúrgica da sepse, e apesar de ter sido observada uma captação de glutamato astrocitária prejudicada, esse curto período pode não ser o suficiente para que haja acúmulo de glutamato cerebral. Segundo, já foi demonstrado na literatura que em situações de baixa disponibilidade de glicose os neurônios são capazes de oxidar eficientemente glutamato para suprir suas demandas energéticas e manter a produção de metabólitos mitocondriais, sendo assim, um quantidade reduzida de glutamato estaria disponível para liberação como neurotransmissor (Divakaruni, Wallace et al. 2017, Fendt and Verstreken 2017). Nesse sentido, a escassa disponibilidade de glicose observada durante a fase aguda da sepse impulsionaria os neurônios a utilizarem glutamato como substrato energético, fazendo com que haja uma liberação diminuída de glutamato após estimulação neuronal, prevenindo que ocorra seu acúmulo. Outro ponto importante a ser ressaltado é que apesar da quantificação de glutamato no LCR ser amplamente utilizada como representativa do ambiente extracelular in vivo, ela pode não captar pequenas flutuações decorrentes da sua liberação sináptica ou da sua captação astrocitária localizada em certas regiões (Featherstone and Shippy 2008).

Sabendo-se que a captação de glutamato do espaço extracelular é realizada primariamente por dois transportadores de glutamato exclusivamente astrocitários, GLAST e GLT-1, aqui nós observamos uma diminuição na expressão gênica de GLAST que é contrabalanceada por um significativo aumento de GLT-1 em astrócitos provenientes de animais submetidos a um episódio de inflamação sistêmica severa. Uma vez que, aproximadamente 95% da captação de glutamato no cérebro adulto é realizada por GLT-1 (Holmseth, Dehnes et al. 2012), esse aumento importante na sua expressão pode indicar uma tentativa por parte dos astrócitos de reciclar os transportadores que estão com a sua atividade prejudicada. Contudo, esse aumento a nível de RNAm não se refletiu em uma efetiva tradução proteica. Nesse sentido, nossa análise de transcriptoma evidenciou uma suprarregulação de processos biológicos relacionados à tradução proteica ribossomal em pacientes acometidos por sepse, nos permitindo assim extrapolar que esses processos também estejam alterados em nosso modelo animal. Corroborando, um estudo recente demonstrou que um prejuízo na translação proteica está diretamente relacionado com dano renal durante a sepse, e que a reversão desse bloqueio atenua os sintomas promovidos nessa patologia (Hato, Maier et al. 2019). Em conjunto, esses achados apontam para a importância da realização de uma análise muito mais elaborada de translatoma, que vai além do transcriptoma e da proteômica, para que tenhamos um melhor entendimento dos processos deletérios envolvidos na sepse (Brar and Weissman 2015).

O processo de reatividade glial é característico da resposta astrocitária mediante alguma ameaça, e pode exercer tanto efeitos benéficos, quando ocorrer de maneira transitória, quanto deletérios, quando se torna um processo crônico (Filous and Silver 2016). Já vem sendo bem caracterizado na literatura que os astrócitos são ativados durante um processo inflamatório, aumentando a expressão de GFAP e liberando uma gama de citocinas e quimicionas pro-inflamatórias (Brahmachari, Fung et al. 2006, Gorina, Santalucia et al. 2009). Nesse sentido, nós observamos que os astrócitos hipocampais cultivados de animais que sofreram um insulto inflamatório severo e agudo apresentam níveis aumentados de GFAP, indicando um fenótipo reativo dessas células gliais. Além disso, em relação ao citoesqueleto de actina nós observamos um rearranjo das fibras de estresse em astrócitos provenientes de animais LCP quando comparado ao grupo *sham*. O citoesqueleto astrocitário é uma estrutura altamente dinâmica que se reorganiza continuamente sempre que a célula altera a sua forma, se divide ou responde ao ambiente. As mudanças no citoesqueleto de actina são chave para a transmissão de sinal que levam à uma resposta celular apropriada, exercendo influência em funções críticas dos astrócitos, como sinalização de cálcio, homeostase iônica e transporte de glutamato (Alberts, Johnson et al. 2002).

Devido ao fato de o cérebro não ser uma estrutura imunologicamente privilegiada, as PBMCs estão constantemente patrulhando o SNC (Kleine and Benes 2006). Contudo, no contexto da sepse existe uma alta taxa de infiltração dessas células que podem resultar em prejuízo das funções cerebrais. Nesse sentido, a interação dinâmica entre PBMCs e astrócitos já foi previamente demonstrada no contexto da neuroAIDS (Richards, Narasipura et al. 2015), entretanto o seu papel na sepse permanece indefinido. Assim, visando analisar um possível envolvimento das PBMCs na ativação astrocitária nós expusemos culturas de astrócitos ao meio condicionado de culturas de PBMC (PBMC CM) obtidas a partir de animais sépticos. De forma interessante, enquanto no soro de animais sépticos nós observamos um aumento na liberação de diversas citocinas pró-inflamatórias (como IL-1β, IL-12p70, IFN-y e TNF- $\alpha$ ), no PBMC CM só foi observado um aumento nos níveis de TNF- $\alpha$  e IL-10, acompanhado de uma diminuição de do fator estimulante de colônia de granulócito (G-CSF, do inglês granulocyte-colony stimulating factor). Assim, a presença desses fatores foi capaz de promover uma ativação astrocitária direta, independente da presença de microglia, acompanhada de uma diminuição nas atividade de captação de glicose e

glutamato astrocitárias. Nesse sentido, estudos prévios demonstraram que mesmo um sutil aumento de níveis de TNF- $\alpha$  cerebrais é capaz de promover uma diminuição da atividade dos transportadores de glutamato astrocitários (Clark and Vissel 2016). Além disso, ratos com deleção de receptor de TNF- $\alpha$  tipo 1 não demonstraram perda cognitiva após indução de sepse por CLP (Calsavara, Soriani et al. 2015). Esses achados sugerem que importantes mediadores inflamatórios, como IL-1 $\beta$ , são dispensáveis para ativação astrocitária e consequente para a promoção do déficit energético durante a sepse. Baseado nesse contexto e nos achados presentes nesse trabalho, o TNF- $\alpha$  emerge como um crucial e independente fator de ativação astrocitária. É importante ressaltar que nesse estudo nós analisamos uma quantidade restrita de citocinas liberadas pelas PBMCs, dessa maneira, outros mediadores não avaliados podem estar também envolvidos no processo de ativação astrocitária aqui observado.

O mecanismo envolvido na regulação do metabolismo energético cerebral durante a sepse é muito pouco compreendido. Aqui nós demonstramos que o tratamento das células com PBMC CM provenientes de animais sépticos provoca uma diminuição nos processos de captação de glicose e glutamato astrocitários concomitante à diminuição da fosforilação de fosfatidilinositol 3-quinase (PI3K, do inglês *phosphoinositide 3-kinase*). Corroborando, nossa análise de transcriptoma apontou o gene de PI3K com um dos DEGs suprarregulados em pacientes com sepse, acompanhando por um aumento na expressão de seu regulador negativo, a PTEN. A via da PI3K contribui para uma variedade de processos que são críticos na mediação de muitos aspectos da função celular, incluindo captação de nutrientes, reações anabólicas e crescimento celular. Além disso, a via PI3K/Akt/mTOR é considerada reguladora-chave do metabolismo glicolítico aeróbio, modulando a captação de glicose celular através do controle da expressão dos transportadores de glicose de superfície (Ward and

Thompson 2012). Além disso, estudos prévios demonstram que essa via está envolvida na modulação da expressão de transportadores de glutamato, especificamente de GLT-1 (Zhang, Shi et al. 2013). No que diz respeito à sepse, já foi demonstrado que a inibição de PI3K diminui a taxa de sobrevivência em animais submetidos à LCP, além de promover um início mais rápido e severo dos sintomas (Wrann, Tabriz et al. 2007). A inibição da sinalização de PI3K/Akt ainda demonstrou aumentar a resposta inflamatória induzida por LPS em diferentes tipos celulares (Guha and Mackman 2002). Nesse sentido, aqui nós observamos que a inibição farmacológica de PI3K em culturas de astrócitos tratados com PBMC CM de animais sépticos produziu uma redução ainda mais acentuada na atividade de captação de glutamato. De maneira controversa, a inibição de PI3K não afetou a captação de glicose astrocitária em astrócitos tratados com PBMC CM de animais sépticos. Assim, o acoplamento entre captação de glutamato e captação de glicose astrocítico previamente reportado na literatura parece ser interrompido a nível de PI3K. Esses resultados sugerem que outras vias envolvidas no metabolismo energético podem estar atuando em paralelo na regulação da captação de glicose. Ainda, outras proteínas do eixo PI3K/Akt/mTOR necessitam ser avaliadas com o intuito de melhor compreender essa complexa regulação.

## CONCLUSÃO

Os resultados obtidos nessa tese indicam que alterações sorológicas no perfil de aminoácidos refletem o desbalanço que ocorre no SNC, sugerindo a avaliação do perfil sorológico de aminoácidos como um potencial biomarcador na detecção precoce de EAS. Além disso, eles demonstram o grande potencial translacional do modelo animal de LCP para esse campo de pesquisa. Adicionalmente, aqui fornecemos novas evidências da participação direta dos astrócitos nos mecanismos pelos quais a inflamação sistêmica impacta negativamente a homeostase cerebral. Destacamos a
cultura de astrócitos provenientes de animais adultos como uma importante ferramenta de estudo das funções astrocitárias nessa condição patológica. Evidenciamos ainda o papel das PBMCs como importantes promotores da reatividade astrocitária e indutores ativos do hipometabolismo energético cerebral. Por fim, foi sugerido um papel regulatório para a via da PI3K no metabolismo astrocitário durante a sepse aguda. Com isso, nós avançamos na compreensão dos mecanismos pelo qual a inflamação sistêmica impacta na funcionalidade cerebral, indicando potenciais alvos para futuras modulações terapêuticas.

### REFERÊNCIAS BIBLIOGRÁFICAS

Abbott, N. J., L. Ronnback and E. Hansson (2006). "Astrocyte-endothelial interactions at the blood-brain barrier." <u>Nat Rev Neurosci</u> **7**(1): 41-53.

Adrie, C., M. Bachelet, M. Vayssier-Taussat, F. Russo-Marie, I. Bouchaert, M. Adib-Conquy, J. M. Cavaillon, M. R. Pinsky, J. F. Dhainaut and B. S. Polla (2001). "Mitochondrial membrane potential and apoptosis peripheral blood monocytes in severe human sepsis." <u>Am J Respir Crit</u> Care Med **164**(3): 389-395.

Alberts, B., A. Johnson, J. Lewis, M. Raff, K. Roberts and P. Walter (2002). <u>Molecular Biology</u> of the Cell.

Anderson, C. M. and R. A. Swanson (2000). "Astrocyte glutamate transport: review of properties, regulation, and physiological functions." <u>Glia</u> **32**(1): 1-14.

Annane, D. (2009). "Hippocampus: a future target for sepsis treatment!" <u>Intensive Care Med</u> **35**(4): 585-586.

Attwell, D. and S. B. Laughlin (2001). "An energy budget for signaling in the grey matter of the brain." J Cereb Blood Flow Metab **21**(10): 1133-1145.

Basler, T., A. Meier-Hellmann, D. Bredle and K. Reinhart (2002). "Amino acid imbalance early in septic encephalopathy." <u>Intensive Care Med</u> **28**(3): 293-298.

Belanger, M., I. Allaman and P. J. Magistretti (2011). "Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation." <u>Cell Metab</u> **14**(6): 724-738.

Bellaver, B., J. P. Dos Santos, D. T. Leffa, L. D. Bobermin, P. H. A. Roppa, I. L. da Silva Torres, C. A. Goncalves, D. O. Souza and A. Quincozes-Santos (2017). "Systemic

Inflammation as a Driver of Brain Injury: the Astrocyte as an Emerging Player." <u>Mol Neurobiol</u>. Bellaver, B., D. G. Souza, D. O. Souza and A. Quincozes-Santos (2014). "Resveratrol increases antioxidant defenses and deceases proinflammatory cytokines in hippocampal astocyte cultures from newborn, adult and aged Wistar rats." <u>Toxicology in vitro</u> **28**: 479-484.

Bellaver, B., D. G. Souza, D. O. Souza and A. Quincozes-Santos (2016). "Hippocampal Astrocyte Cultures from Adult and Aged Rats Reproduce Changes in Glial Functionality Observed in the Aging Brain." <u>Mol Neurobiol</u>.

Biron, B. M., A. Ayala and J. L. Lomas-Neira (2015). "Biomarkers for Sepsis: What Is and What Might Be?" <u>Biomark Insights</u> **10**(Suppl 4): 7-17.

Boomer, J. S., J. M. Green and R. S. Hotchkiss (2014). "The changing immune system in sepsis: is individualized immuno-modulatory therapy the answer?" <u>Virulence</u> **5**(1): 45-56.

Booth, H. D. E., W. D. Hirst and R. Wade-Martins (2017). "The Role of Astrocyte Dysfunction in Parkinson's Disease Pathogenesis." <u>Trends Neurosci</u> **40**(6): 358-370.

Brahmachari, S., Y. K. Fung and K. Pahan (2006). "Induction of glial fibrillary acidic protein expression in astrocytes by nitric oxide." J Neurosci **26**(18): 4930-4939.

Bramanti, V., D. Tomassoni, M. Avitabile, F. Amenta and R. Avola (2010). "Biomarkers of glial cell proliferation and differentiation in culture." <u>Front Biosci (Schol Ed)</u> **2**: 558-570.

Brar, G. A. and J. S. Weissman (2015). "Ribosome profiling reveals the what, when, where and how of protein synthesis." <u>Nat Rev Mol Cell Biol</u> **16**(11): 651-664.

Bruins, M. J., N. E. Deutz and P. B. Soeters (2003). "Aspects of organ protein, amino acid and glucose metabolism in a porcine model of hypermetabolic sepsis." <u>Clin Sci (Lond)</u> **104**(2): 127-141.

Calandra, T. and J. Cohen (2005). "The international sepsis forum consensus conference on definitions of infection in the intensive care unit." <u>Crit Care Med</u> **33**(7): 1538-1548.

Calsavara, A. C., F. M. Soriani, L. Q. Vieira, P. A. Costa, M. A. Rachid and A. L. Teixeira (2015). "TNFR1 absence protects against memory deficit induced by sepsis possibly through over-expression of hippocampal BDNF." <u>Metab Brain Dis</u> **30**(3): 669-678.

Cannon, J. G. (2000). "Inflammatory Cytokines in Nonpathological States." <u>News Physiol Sci</u> **15**: 298-303.

Carpentier, P. A., W. S. Begolka, J. K. Olson, A. Elhofy, W. J. Karpus and S. D. Miller (2005). "Differential activation of astrocytes by innate and adaptive immune stimuli." <u>Glia</u> **49**(3): 360-374.

Carter, S. F., K. Herholz, P. Rosa-Neto, L. Pellerin, A. Nordberg and E. R. Zimmer (2019). "Astrocyte Biomarkers in Alzheimer's Disease." <u>Trends Mol Med</u>.

Casey, L. C. (2000). "Immunologic response to infection and its role in septic shock." <u>Crit Care</u> <u>Clin</u> **16**(2): 193-213.

Catarina, A. V., C. Luft, S. Greggio, G. T. Venturin, F. Ferreira, E. P. Marques, L. Rodrigues, K. Wartchow, M. C. Leite, C. A. Goncalves, A. T. S. Wyse, J. C. Da Costa, J. R. De Oliveira, G. Branchini and F. B. Nunes (2018). "Fructose-1,6-bisphosphate preserves glucose metabolism integrity and reduces reactive oxygen species in the brain during experimental sepsis." <u>Brain</u> <u>Res</u> 1698: 54-61.

Chen, L. F. and W. C. Greene (2004). "Shaping the nuclear action of NF-kappaB." <u>Nat Rev Mol</u> <u>Cell Biol</u> **5**(5): 392-401.

Chou, C. H., J. T. Lee, C. C. Lin, Y. F. Sung, C. C. Lin, C. H. Muo, F. C. Yang, C. P. Wen, I. K. Wang, C. H. Kao, C. Y. Hsu and C. H. Tseng (2017). "Septicemia is associated with increased risk for dementia: a population-based longitudinal study." <u>Oncotarget</u> **8**(48): 84300-84308.

Cinel, I. and S. M. Opal (2009). "Molecular biology of inflammation and sepsis: a primer." <u>Crit</u> <u>Care Med</u> **37**(1): 291-304.

Clark, I. A. and B. Vissel (2016). "Excess cerebral TNF causing glutamate excitotoxicity rationalizes treatment of neurodegenerative diseases and neurogenic pain by anti-TNF agents." J <u>Neuroinflammation</u> **13**(1): 236.

Clarke, L. E. and B. A. Barres (2013). "Emerging roles of astrocytes in neural circuit development." <u>Nat Rev Neurosci</u> 14(5): 311-321.

Comim, C. M., V. Freiberger, L. Ventura, F. Mina, G. K. Ferreira, M. Michels, J. S. Generoso, E. L. Streck, J. Quevedo, T. Barichello and F. Dal-Pizzol (2017). "Inhibition of indoleamine 2,3-dioxygenase 1/2 prevented cognitive impairment and energetic metabolism changes in the hippocampus of adult rats subjected to polymicrobial sepsis." <u>J Neuroimmunol</u> **305**: 167-171. Cotena, S. and O. Piazza (2012). "Sepsis-associated encephalopathy." <u>Transl Med UniSa</u> **2**: 20-27.

Cunningham, C. and E. Hennessy (2015). "Co-morbidity and systemic inflammation as drivers of cognitive decline: new experimental models adopting a broader paradigm in dementia research." <u>Alzheimers Res Ther</u> **7**(1): 33.

Danbolt, N. C. (2001). "Glutamate uptake." Prog Neurobiol 65(1): 1-105.

Divakaruni, A. S., M. Wallace, C. Buren, K. Martyniuk, A. Y. Andreyev, E. Li, J. A. Fields, T. Cordes, I. J. Reynolds, B. L. Bloodgood and L. A. Raymond (2017). "Inhibition of the mitochondrial pyruvate carrier protects from excitotoxic neuronal death." **216**(4): 1091-1105. Dringen, R. (2000). "Metabolism and functions of glutathione in brain." <u>Prog Neurobiol</u> **62**(6): 649-671.

Drosatos, K., A. Lymperopoulos, P. J. Kennel, N. Pollak, P. C. Schulze and I. J. Goldberg (2015). "Pathophysiology of sepsis-related cardiac dysfunction: driven by inflammation, energy mismanagement, or both?" <u>Curr Heart Fail Rep</u> **12**(2): 130-140.

Ebersoldt, M., T. Sharshar and D. Annane (2007). "Sepsis-associated delirium." <u>Intensive Care</u> <u>Med</u> **33**(6): 941-950.

Eng, L. F., R. S. Ghirnikar and Y. L. Lee (2000). "Glial fibrillary acidic protein: GFAP-thirty-one years (1969-2000)." <u>Neurochem Res</u> **25**(9-10): 1439-1451.

Escobar, D. A., A. M. Botero-Quintero, B. C. Kautza, J. Luciano, P. Loughran, S. Darwiche, M. R. Rosengart, B. S. Zuckerbraun and H. Gomez (2015). "Adenosine monophosphate-activated protein kinase activation protects against sepsis-induced organ injury and inflammation." J Surg Res **194**(1): 262-272.

Failli, V., M. A. Kopp, C. Gericke, P. Martus, S. Klingbeil, B. Brommer, I. Laginha, Y. Chen, M. J. DeVivo, U. Dirnagl and J. M. Schwab (2012). "Functional neurological recovery after spinal cord injury is impaired in patients with infections." <u>Brain</u> **135**(Pt 11): 3238-3250.

Faix, J. D. (2013). "Biomarkers of sepsis." Crit Rev Clin Lab Sci 50(1): 23-36.

Farina, C., F. Aloisi and E. Meinl (2007). "Astrocytes are active players in cerebral innate immunity." <u>Trends Immunol</u> **28**(3): 138-145.

Featherstone, D. E. and S. A. Shippy (2008). "Regulation of synaptic transmission by ambient extracellular glutamate." <u>Neuroscientist</u> **14**(2): 171-181.

Fendt, S. M. and P. Verstreken (2017). "Neurons eat glutamate to stay alive." **216**(4): 863-865. Fernstrom, J. D. and M. H. Fernstrom (2007). "Tyrosine, phenylalanine, and catecholamine synthesis and function in the brain." J Nutr **137**(6 Suppl 1): 1539S-1547S; discussion 1548S. Filous, A. R. and J. Silver (2016). ""Targeting astrocytes in CNS injury and disease: A translational research approach"." Prog Neurobiol **144**: 173-187.

Friberg, D., J. Bryant, W. Shannon and T. L. Whiteside (1994). "In vitro cytokine production by normal human peripheral blood mononuclear cells as a measure of immunocompetence or the state of activation." <u>Clin Diagn Lab Immunol</u> **1**(3): 261-268.

Garcia-Caceres, C., C. Quarta, L. Varela, Y. Gao, T. Gruber, B. Legutko, M. Jastroch, P. Johansson, J. Ninkovic, C. X. Yi, O. Le Thuc, K. Szigeti-Buck, W. Cai, C. W. Meyer, P. T. Pfluger, A. M. Fernandez, S. Luquet, S. C. Woods, I. Torres-Aleman, C. R. Kahn, M. Gotz, T. L. Horvath and M. H. Tschop (2016). "Astrocytic Insulin Signaling Couples Brain Glucose Uptake with Nutrient Availability." <u>Cell</u> **166**(4): 867-880.

Gardener, S. L., H. R. Sohrabi, K. K. Shen, S. R. Rainey-Smith, M. Weinborn, K. A. Bates, T. Shah, J. K. Foster, N. Lenzo, O. Salvado, C. Laske, S. M. Laws, K. Taddei, G. Verdile and R. N. Martins (2016). "Cerebral Glucose Metabolism is Associated with Verbal but not Visual Memory Performance in Community-Dwelling Older Adults." J Alzheimers Dis **52**(2): 661-672.

Gardoni, F. and M. Di Luca (2006). "New targets for pharmacological intervention in the glutamatergic synapse." <u>Eur J Pharmacol</u> **545**(1): 2-10.

Gasparotto, J., C. S. Girardi, N. Somensi, C. T. Ribeiro, J. C. F. Moreira, M. Michels, B. Sonai, M. Rocha, A. V. Steckert, T. Barichello, J. Quevedo, F. Dal-Pizzol and D. P. Gelain (2018). "Receptor for advanced glycation end products mediates sepsis-triggered amyloid-beta accumulation, Tau phosphorylation, and cognitive impairment." J Biol Chem **293**(1): 226-244. Godini, R. and H. Fallahi (2018). "Network analysis of inflammatory responses to sepsis by neutrophils and peripheral blood mononuclear cells." **13**(8): e0201674.

Gorina, R., T. Santalucia, V. Petegnief, A. Ejarque-Ortiz, J. Saura and A. M. Planas (2009). "Astrocytes are very sensitive to develop innate immune responses to lipid-carried short interfering RNA." <u>Glia</u> **57**(1): 93-107.

Gorshkov, K., F. Aguisanda, N. Thorne and W. Zheng (2018). "Astrocytes as targets for drug discovery." <u>Drug Discov Today</u> **23**(3): 673-680.

Gotts, J. E. and M. A. Matthay (2016). "Sepsis: pathophysiology and clinical management." <u>Bmj</u> **353**: i1585.

Guha, M. and N. Mackman (2002). "The phosphatidylinositol 3-kinase-Akt pathway limits lipopolysaccharide activation of signaling pathways and expression of inflammatory mediators in human monocytic cells." J Biol Chem **277**(35): 32124-32132.

Gupta, S. C., C. Sundaram, S. Reuter and B. B. Aggarwal (2010). "Inhibiting NF-kappaB activation by small molecules as a therapeutic strategy." <u>Biochim Biophys Acta</u> **1799**(10-12): 775-787.

Hamby, M. E., G. Coppola, Y. Ao, D. H. Geschwind, B. S. Khakh and M. V. Sofroniew (2012). "Inflammatory mediators alter the astrocyte transcriptome and calcium signaling elicited by multiple G-protein-coupled receptors." J Neurosci **32**(42): 14489-14510.

Hato, T., B. Maier, F. Syed, J. Myslinski, A. Zollman, Z. Plotkin, M. T. Eadon and P. C. Dagher (2019). "Bacterial sepsis triggers an antiviral response that causes translation shutdown." <u>J Clin</u> Invest **129**(1): 296-309.

Hayward, J. H. and S. J. Lee (2014). "A Decade of Research on TLR2 Discovering Its Pivotal Role in Glial Activation and Neuroinflammation in Neurodegenerative Diseases." <u>Exp</u> <u>Neurobiol</u> **23**(2): 138-147.

Heo, K., Y. J. Cho, K. J. Cho, H. W. Kim, H. J. Kim, H. Y. Shin, B. I. Lee and G. W. Kim (2006). "Minocycline inhibits caspase-dependent and -independent cell death pathways and is neuroprotective against hippocampal damage after treatment with kainic acid in mice." <u>Neurosci Lett</u> **398**(3): 195-200.

Herculano-Houzel, S. (2014). "The glia/neuron ratio: how it varies uniformly across brain structures and species and what that means for brain physiology and evolution." <u>Glia</u> **62**(9): 1377-1391.

Holmseth, S., Y. Dehnes, Y. H. Huang, V. V. Follin-Arbelet, N. J. Grutle, M. N. Mylonakou, C. Plachez, Y. Zhou, D. N. Furness, D. E. Bergles, K. P. Lehre and N. C. Danbolt (2012). "The density of EAAC1 (EAAT3) glutamate transporters expressed by neurons in the mammalian CNS." J Neurosci **32**(17): 6000-6013.

Hotchkiss, R. S., G. Monneret and D. Payen (2013). "Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach." <u>Lancet Infect Dis</u> **13**(3): 260-268.

Iskander, K. N., M. F. Osuchowski, D. J. Stearns-Kurosawa, S. Kurosawa, D. Stepien, C. Valentine and D. G. Remick (2013). "Sepsis: multiple abnormalities, heterogeneous responses, and evolving understanding." <u>Physiol Rev</u> **93**(3): 1247-1288.

Jensen, C. J., A. Massie and J. De Keyser (2013). "Immune players in the CNS: the astrocyte." <u>J</u> <u>Neuroimmune Pharmacol</u> **8**(4): 824-839.

Kang, W. and J. M. Hebert (2011). "Signaling pathways in reactive astrocytes, a genetic perspective." <u>Mol Neurobiol</u> **43**(3): 147-154.

Kantrow, S. P., D. E. Taylor, M. S. Carraway and C. A. Piantadosi (1997). "Oxidative metabolism in rat hepatocytes and mitochondria during sepsis." <u>Arch Biochem Biophys</u> **345**(2): 278-288.

Katafuchi, T., M. Ifuku, S. Mawatari, M. Noda, K. Miake, M. Sugiyama and T. Fujino (2012). "Effects of plasmalogens on systemic lipopolysaccharide-induced glial activation and b-amyloid accumulation in adult mice." <u>ANNALS of THE NEW YORK ACADEMY OF SCIENCES</u> **1262**: 85-92.

Katial, R. K., D. Sachanandani, C. Pinney and M. M. Lieberman (1998). "Cytokine production in cell culture by peripheral blood mononuclear cells from immunocompetent hosts." <u>Clin</u> <u>Diagn Lab Immunol</u> **5**(1): 78-81.

Khakh, B. S., V. Beaumont, R. Cachope, I. Munoz-Sanjuan, S. A. Goldman and R. Grantyn (2017). "Unravelling and Exploiting Astrocyte Dysfunction in Huntington's Disease." <u>Trends</u> <u>Neurosci</u> **40**(7): 422-437.

Kielian, T. (2006). "Toll-like receptors in central nervous system glial inflammation and homeostasis." J Neurosci Res **83**(5): 711-730.

Kleine, T. O. and L. Benes (2006). "Immune surveillance of the human central nervous system (CNS): different migration pathways of immune cells through the blood-brain barrier and blood-cerebrospinal fluid barrier in healthy persons." Cytometry A **69**(3): 147-151.

Kopitar-Jerala, N. (2015). "Innate Immune Response in Brain, NF-Kappa B Signaling and Cystatins." <u>Front Mol Neurosci</u> **8**: 73.

Lange, S. C., L. K. Bak, H. S. Waagepetersen, A. Schousboe and M. D. Norenberg (2012). "Primary cultures of astrocytes: their value in understanding astrocytes in health and disease." <u>Neurochem Res</u> **37**(11): 2569-2588.

Lee, I. and M. Huttemann (2014). "Energy crisis: the role of oxidative phosphorylation in acute inflammation and sepsis." <u>Biochim Biophys Acta</u> **1842**(9): 1579-1586.

Lee, S. M. and W. S. An (2016). "New clinical criteria for septic shock: serum lactate level as new emerging vital sign." <u>J Thorac Dis</u> **8**(7): 1388-1390.

Lim, C., M. P. Alexander, G. LaFleche, D. M. Schnyer and M. Verfaellie (2004). "The neurological and cognitive sequelae of cardiac arrest." <u>Neurology</u> **63**(10): 1774-1778. Liu, Z., Y. Li, Y. Cui, C. Roberts, M. Lu, U. Wilhelmsson, M. Pekny and M. Chopp (2014).

"Beneficial effects of gfap/vimentin reactive astrocytes for axonal remodeling and motor behavioral recovery in mice after stroke." <u>Glia</u> **62**(12): 2022-2033.

Lovatt, D., U. Sonnewald, H. S. Waagepetersen, A. Schousboe, W. He, J. H. Lin, X. Han, T. Takano, S. Wang, F. J. Sim, S. A. Goldman and M. Nedergaard (2007). "The transcriptome and metabolic gene signature of protoplasmic astrocytes in the adult murine cortex." <u>J Neurosci</u> **27**(45): 12255-12266.

Ma, Y., A. Zechariah, Y. Qu and D. M. Hermann (2012). "Effects of vascular endothelial growth factor in ischemic stroke." J Neurosci Res **90**(10): 1873-1882.

McAfoose, J., H. Koerner and B. T. Baune (2009). "The effects of TNF deficiency on agerelated cognitive performance." <u>Psychoneuroendocrinology</u> **34**(4): 615-619.

McKenna, M. C. (2007). "The glutamate-glutamine cycle is not stoichiometric: fates of glutamate in brain." <u>J Neurosci Res</u> **85**(15): 3347-3358.

Michels, M., A. V. Steckert, J. Quevedo, T. Barichello and F. Dal-Pizzol (2015). "Mechanisms of long-term cognitive dysfunction of sepsis: from blood-borne leukocytes to glial cells." Intensive Care Med Exp **3**(1): 30.

Miller, R. H. and M. C. Raff (1984). "Fibrous and protoplasmic astrocytes are biochemically and developmentally distinct." <u>J Neurosci</u> 4(2): 585-592.

Mincheva-Tasheva, S. and R. M. Soler (2013). "NF-kappaB signaling pathways: role in nervous system physiology and pathology." <u>Neuroscientist</u> **19**(2): 175-194.

Mizock, B. A., H. C. Sabelli, A. Dubin, J. I. Javaid, A. Poulos and E. C. Rackow (1990). "Septic encephalopathy. Evidence for altered phenylalanine metabolism and comparison with hepatic encephalopathy." <u>Arch Intern Med</u> **150**(2): 443-449.

Monje, M. L., H. Toda and T. D. Palmer (2003). "Inflammatory blockade restores adult hippocampal neurogenesis." <u>Science</u> **302**(5651): 1760-1765.

Neves, F. S., P. T. Marques, F. Barros-Aragao, J. B. Nunes, A. M. Venancio, D. Cozachenco, R. L. Frozza, G. F. Passos, R. Costa, J. de Oliveira, D. F. Engel, A. F. De Bem, C. F. Benjamim, F. G. De Felice, S. T. Ferreira, J. R. Clarke and C. P. Figueiredo (2016). "Brain-Defective Insulin Signaling Is Associated to Late Cognitive Impairment in Post-Septic Mice." <u>Mol Neurobiol</u>. Nolan, Y., V. A. Campbell, A. E. Bolton and M. A. Lynch (2005). "Evidence of an anti-inflammatory role for Vasogen's immune modulation therapy." <u>Neuroimmunomodulation</u> **12**(2): 113-116.

Nolan, Y., E. Vereker, A. M. Lynch and M. A. Lynch (2003). "Evidence that lipopolysaccharide-induced cell death is mediated by accumulation of reactive oxygen species and activation of p38 in rat cortex and hippocampus." <u>Exp Neurol</u> **184**(2): 794-804. Nortley, R. and D. Attwell (2017). "Control of brain energy supply by astrocytes." <u>Curr Opin</u> Neurobiol **47**: 80-85.

Pagani, M., F. De Carli, S. Morbelli, J. Oberg, A. Chincarini, G. B. Frisoni, S. Galluzzi, R. Perneczky, A. Drzezga, B. N. van Berckel, R. Ossenkoppele, M. Didic, E. Guedj, A. Brugnolo, A. Picco, D. Arnaldi, M. Ferrara, A. Buschiazzo, G. Sambuceti and F. Nobili (2015). "Volume of interest-based [18F]fluorodeoxyglucose PET discriminates MCI converting to Alzheimer's disease from healthy controls. A European Alzheimer's Disease Consortium (EADC) study." <u>Neuroimage Clin</u> **7**: 34-42.

Pehar, M., B. A. Harlan, K. M. Killoy and M. R. Vargas (2017). "Role and Therapeutic Potential of Astrocytes in Amyotrophic Lateral Sclerosis." <u>Curr Pharm Des</u> **23**(33): 5010-5021. Pekny, M., U. Wilhelmsson and M. Pekna (2014). "The dual role of astrocyte activation and reactive gliosis." <u>Neurosci Lett</u> **565**: 30-38.

Poeze, M., Y. C. Luiking, P. Breedveld, S. Manders and N. E. Deutz (2008). "Decreased plasma glutamate in early phases of septic shock with acute liver dysfunction is an independent predictor of survival." <u>Clin Nutr</u> **27**(4): 523-530.

Ransohoff, R. M. and M. A. Brown (2012). "Innate immunity in the central nervous system." J <u>Clin Invest</u> **122**(4): 1164-1171.

Ransohoff, R. M., D. Schafer, A. Vincent, N. E. Blachere and A. Bar-Or (2015). "Neuroinflammation: Ways in Which the Immune System Affects the Brain." <u>Neurotherapeutics</u> **12**(4): 896-909.

Reinhart, K., R. Daniels, N. Kissoon, F. R. Machado, R. D. Schachter and S. Finfer (2017). "Recognizing Sepsis as a Global Health Priority - A WHO Resolution." <u>N Engl J Med</u> **377**(5): 414-417.

Richards, M. H., S. D. Narasipura, S. Kim, M. S. Seaton, V. Lutgen and L. Al-Harthi (2015). "Dynamic interaction between astrocytes and infiltrating PBMCs in context of neuroAIDS." <u>Glia</u> **63**(3): 441-451.

Rivers, E., B. Nguyen, S. Havstad, J. Ressler, A. Muzzin, B. Knoblich, E. Peterson and M. Tomlanovich (2001). "Early goal-directed therapy in the treatment of severe sepsis and septic shock." <u>N Engl J Med</u> **345**(19): 1368-1377.

Rossi, D. (2015). "Astrocyte physiopathology: At the crossroads of intercellular networking, inflammation and cell death." <u>Prog Neurobiol</u> **130**: 86-120.

Rossi, D. J., J. D. Brady and C. Mohr (2007). "Astrocyte metabolism and signaling during brain ischemia." <u>Nat Neurosci</u> **10**(11): 1377-1386.

Russo, M. V. and D. B. McGavern (2015). "Immune Surveillance of the CNS following Infection and Injury." <u>Trends Immunol</u> **36**(10): 637-650.

Saha, R. N. and K. Pahan (2006). "Signals for the induction of nitric oxide synthase in astrocytes." <u>Neurochem Int</u> **49**(2): 154-163.

Santello, M., P. Bezzi and A. Volterra (2011). "TNFalpha controls glutamatergic

gliotransmission in the hippocampal dentate gyrus." <u>Neuron</u> **69**(5): 988-1001.

Schousboe, A., L. K. Bak and H. S. Waagepetersen (2013). "Astrocytic Control of Biosynthesis and Turnover of the Neurotransmitters Glutamate and GABA." <u>Front Endocrinol (Lausanne)</u> **4**: 102.

Semmler, A., S. Hermann, F. Mormann, M. Weberpals, S. A. Paxian, T. Okulla, M. Schafers, M. P. Kummer, T. Klockgether and M. T. Heneka (2008). "Sepsis causes neuroinflammation and concomitant decrease of cerebral metabolism." J Neuroinflammation **5**: 38.

Semmler, A., Y. Smulders, E. Struys, D. Smith, S. Moskau, H. Blom and M. Linnebank (2008). "Methionine metabolism in an animal model of sepsis." <u>Clin Chem Lab Med</u> **46**(10): 1398-1402.

Semmler, A., C. N. Widmann, T. Okulla, H. Urbach, M. Kaiser, G. Widman, F. Mormann, J. Weide, K. Fliessbach, A. Hoeft, F. Jessen, C. Putensen and M. T. Heneka (2013). "Persistent cognitive impairment, hippocampal atrophy and EEG changes in sepsis survivors." <u>J Neurol</u> <u>Neurosurg Psychiatry</u> **84**(1): 62-69.

Shao, Y. and K. D. McCarthy (1994). "Plasticity of astrocytes." <u>Glia</u> **11**(2): 147-155. Singer, M. (2014). "The role of mitochondrial dysfunction in sepsis-induced multi-organ failure." <u>Virulence</u> **5**(1): 66-72.

Singer, M., C. S. Deutschman, C. W. Seymour, M. Shankar-Hari, D. Annane, M. Bauer, R. Bellomo, G. R. Bernard, J. D. Chiche, C. M. Coopersmith, R. S. Hotchkiss, M. M. Levy, J. C. Marshall, G. S. Martin, S. M. Opal, G. D. Rubenfeld, T. van der Poll, J. L. Vincent and D. C. Angus (2016). "The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3)." Jama **315**(8): 801-810.

Sjovall, F., S. Morota, J. Persson, M. J. Hansson and E. Elmer (2013). "Patients with sepsis exhibit increased mitochondrial respiratory capacity in peripheral blood immune cells." <u>Crit</u> <u>Care</u> **17**(4): R152.

Skytt, D. M., K. K. Madsen, K. Pajecka, A. Schousboe and H. S. Waagepetersen (2010). "Characterization of primary and secondary cultures of astrocytes prepared from mouse cerebral cortex." <u>Neurochem Res</u> **35**(12): 2043-2052.

Sofroniew, M. V. (2014). "Astrogliosis." <u>Cold Spring Harb Perspect Biol</u> **7**(2): a020420. Souza, D. G., B. Bellaver, L. D. Bobermin, D. O. Souza and A. Quincozes-Santos (2016). "Anti-aging effects of guanosine in glial cells." <u>Purinergic Signal</u>.

Souza, D. G., B. Bellaver, D. O. Souza and A. Quincozes-Santos (2013). "Characterization of adult rat astrocyte cutures." <u>PLoS One</u> **8**: E60282.

Souza, D. G., B. Bellaver, S. R. Terra, F. C. Guma, D. O. Souza and A. Quincozes-Santos (2017). "In Vitro Adult Astrocytes Are Derived from Mature Cells and Reproduce In Vivo Redox Profile." <u>J Cell Biochem</u>.

Sprung, C. L., F. B. Cerra, H. R. Freund, R. M. Schein, F. N. Konstantinides, E. H. Marcial and M. Pena (1991). "Amino acid alterations and encephalopathy in the sepsis syndrome." <u>Crit Care Med</u> **19**(6): 753-757.

Steckert, A. V., D. Dominguini, M. Michels, H. M. Abelaira, D. B. Tomaz, B. Sonai, A. B. de Moura, D. Matos, J. B. I. da Silva, G. Z. Reus, T. Barichello, J. Quevedo and F. Dal-Pizzol (2017). "The impact of chronic mild stress on long-term depressive behavior in rats which have survived sepsis." J Psychiatr Res **94**: 47-53.

Stobart, J. L. and C. M. Anderson (2013). "Multifunctional role of astrocytes as gatekeepers of neuronal energy supply." <u>Front Cell Neurosci</u> **7**: 38.

Tang, B. M., S. J. Huang and A. S. McLean (2010). "Genome-wide transcription profiling of human sepsis: a systematic review." <u>Crit Care</u> **14**(6): R237.

Tang, B. M., A. S. McLean, I. W. Dawes, S. J. Huang and R. C. Lin (2009). "Gene-expression profiling of peripheral blood mononuclear cells in sepsis." <u>Crit Care Med</u> **37**(3): 882-888.

Waisman, A., R. S. Liblau and B. Becher (2015). "Innate and adaptive immune responses in the CNS." Lancet Neurol **14**(9): 945-955.

Wang, D. D. and A. Bordey (2008). "The astrocyte odyssey." <u>Prog Neurobiol</u> **86**(4): 342-367. Wang, X., K. Kang, S. Wang, J. Yao and X. Zhang (2016). "Focal cerebral ischemic tolerance and change in blood-brain barrier permeability after repetitive pure oxygen exposure preconditioning in a rodent model." <u>J Neurosurg</u> **125**(4): 943-952.

Ward, P. S. and C. B. Thompson (2012). "Signaling in control of cell growth and metabolism." <u>Cold Spring Harb Perspect Biol</u> **4**(7): a006783.

Weise, C. M., K. Chen, Y. Chen, X. Kuang, C. R. Savage and E. M. Reiman (2018). "Left lateralized cerebral glucose metabolism declines in amyloid-beta positive persons with mild cognitive impairment." <u>Neuroimage Clin</u> **20**: 286-296.

Wexler, O., M. S. Gough, M. A. M. Morgan, C. M. Mack, M. J. Apostolakos, K. P. Doolin, R. A. Mooney, E. Arning, T. Bottiglieri and A. P. Pietropaoli (2018). "Methionine Metabolites in Patients With Sepsis." J Intensive Care Med **33**(1): 37-47.

Wichterman, K. A., A. E. Baue and I. H. Chaudry (1980). "Sepsis and septic shock--a review of laboratory models and a proposal." J Surg Res **29**(2): 189-201.

Wilhelmsson, U., L. Li, M. Pekna, C. H. Berthold, S. Blom, C. Eliasson, O. Renner, E. Bushong, M. Ellisman, T. E. Morgan and M. Pekny (2004). "Absence of glial fibrillary acidic protein and vimentin prevents hypertrophy of astrocytic processes and improves post-traumatic regeneration." J Neurosci 24(21): 5016-5021.

Wilson, J. X. and G. B. Young (2003). "Progress in clinical neurosciences: sepsis-associated encephalopathy: evolving concepts." <u>Can J Neurol Sci</u> **30**(2): 98-105.

Wrann, C. D., N. A. Tabriz, T. Barkhausen, A. Klos, M. van Griensven, H. C. Pape, D. O. Kendoff, R. Guo, P. A. Ward, C. Krettek and N. C. Riedemann (2007). "The

phosphatidylinositol 3-kinase signaling pathway exerts protective effects during sepsis by controlling C5a-mediated activation of innate immune functions." <u>J Immunol</u> **178**(9): 5940-5948.

Yokoo, H., S. Chiba, K. Tomita, M. Takashina, H. Sagara, S. Yagisita, Y. Takano and Y. Hattori (2012). "Neurodegenerative evidence in mice brains with cecal ligation and puncture-induced sepsis: preventive effect of the free radical scavenger edaravone." <u>PLoS One</u> **7**(12): e51539.

Young, G. B. (2010). "Sparing brain damage in severe sepsis: a beginning." <u>Crit Care</u> **14**(3): 159.

Zhang, S., X. Wang, S. Ai, W. Ouyang, Y. Le and J. Tong (2017). "Sepsis-induced selective loss of NMDA receptors modulates hippocampal neuropathology in surviving septic mice." **12**(11): e0188273.

Zhang, X., M. Shi, M. Bjoras, W. Wang, G. Zhang, J. Han, Z. Liu, Y. Zhang, B. Wang, J. Chen, Y. Zhu, L. Xiong and G. Zhao (2013). "Ginsenoside Rd promotes glutamate clearance by up-regulating glial glutamate transporter GLT-1 via PI3K/AKT and ERK1/2 pathways." <u>Front</u> <u>Pharmacol</u> **4**: 152.

Ziaja, M. (2013). "Septic encephalopathy." Curr Neurol Neurosci Rep 13(10): 383.

Zimmer, E. R., M. J. Parent, D. G. Souza, A. Leuzy, C. Lecrux, H. I. Kim, S. Gauthier, L. Pellerin and E. Hamel (2017). "[18F]FDG PET signal is driven by astroglial glutamate transport."

### ANEXOS

ANEXO I: Artigos publicados durante o período de doutoramento cujos temas se relacionam a esta tese, mas não foram incluídos no corpo principal da tese

## ANEXO I-A: Resveratrol Protects Hippocampal Astrocytes Against LPS-Induced Neurotoxicity Through HO-1, p38 and ERK Pathways.

Publicado no periódico Neurochemical Research

ORIGINAL PAPER



## **Resveratrol Protects Hippocampal Astrocytes Against LPS-Induced Neurotoxicity Through HO-1, p38 and ERK Pathways**

Bruna Bellaver<sup>1</sup> · Débora Guerini Souza<sup>1</sup> · Larissa Daniele Bobermin<sup>1</sup> · Diogo Onofre Souza<sup>1</sup> · Carlos-Alberto Gonçalves<sup>1</sup> · André Quincozes-Santos<sup>1</sup>

Received: 25 January 2015/Revised: 3 June 2015/Accepted: 6 June 2015/Published online: 19 June 2015 © Springer Science+Business Media New York 2015

**Abstract** Resveratrol, a phytoalexin found in grapes and wine, exhibits antioxidant, anti-inflammatory, anti-aging and antitumor activities. Resveratrol also protects neurons and astrocytes in several neurological disease models. Astrocytes are responsible for modulating neurotransmitter systems, synaptic information, ionic homeostasis, energy metabolism, antioxidant defense and inflammatory response. In previous work, we showed that resveratrol modulates important glial functions, including glutamate uptake, glutamine synthetase activity, glutathione (GSH) levels and inflammatory response. Furthermore, astrocytes express toll-like receptors that specifically recognize lipopolysaccharide (LPS), which has been widely used to study experimentally inflammatory response. In this sense, LPS may stimulate pro-inflammatory cytokines release and oxidative stress. Moreover, there is interplay between these signals through signaling pathways such as NFkB, HO-1 and MAPK. Thus, here, we evaluated the effects of resveratrol on LPS-stimulated inflammatory response in hippocampal primary astrocyte cultures and the putative role of HO-1, p38 and ERK pathways in the protective effect of resveratrol. LPS increased the levels of TNF- $\alpha$ , IL-1 $\beta$ , IL-6 and IL-18 and resveratrol prevented these effects. Resveratrol also prevented the oxidative and nitrosative stress induced by LPS as well as the decrease in GSH content. Additionally, we demonstrated the involvement of NF $\kappa$ B, HO-1, p38 and ERK signaling pathways in the protective effect of resveratrol, providing the first mechanistic explanation for these effects in hippocampal astrocytes. Our findings reinforce the neuroprotective effects of resveratrol, which are mainly associated with anti-inflammatory and antioxidant activities.

Keywords Astrocytes  $\cdot$  Resveratrol  $\cdot$  LPS  $\cdot$  Cytokines  $\cdot$  NF{\kappa}B  $\cdot$  HO-1

#### Introduction

Astrocytes, the more versatile cells in the central nervous system (CNS), have a fundamental role in normal brain development and function [1, 2]. Astrocytes contribute to maintenance of synaptic information processing and ionic homeostasis; regulate energy metabolism and release of neurotrophic factors; modulate the biosynthesis and release of antioxidant defenses and the main anti- and proinflammatory cytokines [2–8]. Although immune responses in the CNS are mainly attributed to microglia, due to the capacity of these cells to present antigens, astrocytes express toll-like receptors (TLR) and build up responses to immune triggers by releasing proinflammatory molecules [9, 10].

Lipopolysaccharide (LPS) is the main component of outer membrane of gran-negative bacteria and has been widely used to study experimentally inflammatory response, including in the CNS [11, 12]. In this sense, astrocytes have TLR4, which belongs to TLR family receptors, and specifically recognizes LPS [12, 13]. The exposure to LPS can lead to release of proinflammatory cytokines and it in turn activate the transcription factor NF $\kappa$ B, nitric oxide (NO) release and overproduction of reactive oxygen species (ROS) [11, 14]. Furthermore, there is a close relationship between oxidative stress and

André Quincozes-Santos andrequincozes@ufrgs.br; andrequincozes@yahoo.com.br

<sup>&</sup>lt;sup>1</sup> Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 – Anexo, Bairro Santa Cecília, Porto Alegre, RS 90035-003, Brazil

# ANEXO I-B: Guanosine inhibits LPS-induced pro-inflammatory response and oxidative stress in hippocampal astrocytes through the heme oxygenase-1 pathway.

Publicado no periódico Purinergic Signaling

ORIGINAL ARTICLE



## Guanosine inhibits LPS-induced pro-inflammatory response and oxidative stress in hippocampal astrocytes through the heme oxygenase-1 pathway

Bruna Bellaver<sup>1</sup> • Débora Guerini Souza<sup>1</sup> • Larissa Daniele Bobermin<sup>1</sup> • Carlos-Alberto Gonçalves<sup>1</sup> • Diogo Onofre Souza<sup>1</sup> • André Quincozes-Santos<sup>1</sup>

Received: 23 June 2015 / Accepted: 24 September 2015 © Springer Science+Business Media Dordrecht 2015

Abstract Guanosine, a guanine-based purine, is an extracellular signaling molecule that is released from astrocytes and has been shown to promote central nervous system defenses in several in vivo and in vitro injury models. Our group recently demonstrated that guanosine exhibits glioprotective effects in the C6 astroglial cell line by associating the heme oxygenase-1 (HO-1) signaling pathway with protection against azideinduced oxidative stress. Astrocyte overactivation contributes to the triggering of brain inflammation, a condition that is closely related to the development of many neurological disorders. These cells sense and amplify inflammatory signals from microglia and/or initiate the release of inflammatory mediators that are strictly related to transcriptional factors, such as nuclear factor kappa B (NFKB), that are modulated by HO-1. Astrocytes also express toll-like receptors (TLRs); TLRs specifically recognize lipopolysaccharide (LPS), which has been widely used to experimentally study inflammatory response. This study was designed to understand the glioprotective mechanism of guanosine against the inflammatory and oxidative damage induced by LPS exposure in primary cultures of hippocampal astrocytes. Treatment of astrocytes with LPS resulted in deleterious effects, including the augmentation of pro-inflammatory cytokine levels, NFkB activation, mitochondrial dysfunction, increased levels of oxygen/nitrogen species, and decreased levels of antioxidative

defenses. Guanosine was able to prevent these effects, protecting the hippocampal astrocytes against LPS-induced cytotoxicity through activation of the HO-1 pathway. Additionally, the anti-inflammatory effects of guanosine were independent of the adenosinergic system. These results highlight the potential role of guanosine against neuroinflammatory-related diseases.

Keywords Guanosine  $\cdot$  Astrocytes  $\cdot$  Neuroinflammation  $\cdot$  Glioprotection  $\cdot$  HO-1  $\cdot$  NF $\kappa$ B

#### Introduction

Neuroinflammation, well-marked by activation of the innate immune system of the brain, plays a role in the early mechanisms involved in the pathology of many neurodegenerative and acute illnesses, such as Alzheimer's disease, Parkinson's disease, and stroke [1–3]. Brain inflammation is triggered by the activation of glial cells, which can promote an increase in the infiltration of peripheral immune cells, the production of inflammatory mediators, and the generation of reactive oxygen/nitrogen species (ROS/RNS) [4]. Thus, proper regulation of inflammation by glial cell management could be of vital importance to delay disease progression in several neurological disorders.

Astrocytes are the most abundant glial cell type in the central nervous system (CNS), and under physiological conditions, they play key housekeeping roles offering structural, metabolic, and trophic support to neuronal survivor [5–7]. However, astrocyte overactivation promotes the release of a broad array of cytokines, such as interleukin-1 $\beta$  (IL-1 $\beta$ ) and tumor necrosis factor  $\alpha$  (TNF- $\alpha$ ), chemokines, and ROS. Secondary waves of immune cell infiltration into the CNS are also a result, and all of these processes may lead to cognitive

Bruna Bellaver brunabellaver90@gmail.com

<sup>&</sup>lt;sup>1</sup> Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Anexo, Bairro Santa Cecília, Porto Alegre, RS 90035-003, Brazil

ANEXO II: Artigos publicados durante o período de doutoramento cujos temas não se relacionam diretamente a esta tese. ANEXO II-A: Astrocytes from adult Wistar rats aged in vitro show changes in glial functions.

Publicado no periódico Neurochemistry International

### ARTICLE IN PRESS

Neurochemistry International xxx (2015) 1-5



Contents lists available at ScienceDirect

## Neurochemistry International



## Astrocytes from adult Wistar rats aged *in vitro* show changes in glial functions

Débora Guerini Souza<sup>\*</sup>, Bruna Bellaver, Gustavo Santos Raupp, Diogo Onofre Souza, André Quincozes-Santos

Biochemistry Department, Basic Health Sciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil

#### ARTICLE INFO

Article history: Received 16 March 2015 Received in revised form 25 June 2015 Accepted 21 July 2015 Available online xxx

Keywords: Adult astrocytes Astrocytes aged in vitro Brain aging Glucose uptake Glutamine synthetase activity Glutathione

#### ABSTRACT

Astrocytes, the most versatile cells of the central nervous system, play an important role in the regulation of neurotransmitter homeostasis, energy metabolism, antioxidant defenses and the anti-inflammatory response. Recently, our group characterized cortical astrocyte cultures from adult Wistar rats. In line with that work, we studied glial function using an experimental *in vitro* model of aging astrocytes (30 days *in vitro* after reaching confluence) from newborn (NB), adult (AD) and aged (AG) Wistar rats. We evaluated metabolic parameters, such as the glucose uptake, glutamine synthetase (GS) activity, and glutathione (GSH) content, as well as the GFAP, GLUT-1 and xCT expression. AD and AG astrocytes take up less glucose than NB astrocytes and had decreased GLUT1 expression levels. Furthermore, AD and AG astrocytes showed an increase in GSH levels, along with an increase in xCT expression. NB, AD and AG astrocytes results improve the knowledge of cerebral senescence and represent an innovative tool for brain studies of aging.

© 2015 Elsevier Ltd. All rights reserved.

#### 1. Introduction

Astrocytes are robust glial cells that play several roles in central nervous system (CNS) homeostasis. They are responsible for neurotransmitter management, synaptic processing, ionic homeostasis, antioxidant defenses and the anti-inflammatory response as well as energy metabolism (Jiang and Cadenas, 2014; Maragakis and Rothstein, 2006; Parpura et al., 2012; Perea et al., 2014; Wang and Bordey, 2008). Their strategically positioned processes are able to reach both blood capillaries and other cells, allowing them to carry energy substrates that provide metabolic fuel for brain activity (Belanger et al., 2011; Schousboe et al., 2011). These functions can likely be attributed to an organized cytoskeleton, which implicates the presence of characteristic intermediate filaments, such as glial fibrillary acidic protein (GFAP), a classical cytoskeletal marker of astrocytes. GFAP is thought to contribute to a broad number of functions, such as mechanical strength and

\* Corresponding author. Biochemistry Department, Basic Health Sciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, Ramiro Barcelos, 2600, Anexo, PO Box: 90035-003, RS, Brazil.

E-mail address: debsrs@gmail.com (D.G. Souza).

astrocytic shape (Menet et al., 2001; Middeldorp and Hol, 2011).

Astrocytes are also known to be both highly oxidative and glycolytic, and through glucose transporter 1 (GLUT 1), they are able to transport glucose from the blood to the inside of the cell and thereby provide metabolic fuel for the CNS (Benarroch, 2014; Nedergaard et al., 2003). Moreover, astrocytes are critical cells in glutamatergic transmission homeostasis. They take up glutamate through their high-affinity glutamate transporters GLT-1 and GLAST (Anderson and Swanson, 2000; Benarroch, 2010; Danbolt, 2001; Ye and Sontheimer, 2002), which may then be used as a substrate for oxidation in the tricarboxylic acids cycle, to synthesize either the tripeptide glutathione (GSH), the major antioxidant of the brain, or glutamine through glutamine synthetase (EC 6.3.1.2) (Dringen, 2000; Uwechue et al., 2012; Mates et al., 2002; Lee et al., 2010). Astrocytes are not only able to take up glutamate but also able to release it in a non-vesicular manner through a cystineglutamate antiporter (system x<sub>c</sub>), allowing it to activate extrasynaptic receptors and shape synaptic activity. System  $x_c^-$  is an important source of cystine, which is intracellularly converted to cysteine, the rate-limiting substrate in GSH biosynthesis (Lewerenz et al., 2006; Sato et al., 1999).

Previous studies from our group have shown that adult and aged

http://dx.doi.org/10.1016/j.neuint.2015.07.016 0197-0186/© 2015 Elsevier Ltd. All rights reserved.

Please cite this article in press as: Souza, D.G., et al., Astrocytes from adult Wistar rats aged *in vitro* show changes in glial functions, Neurochemistry International (2015), http://dx.doi.org/10.1016/j.neuint.2015.07.016

## ANEXO II-B: Characterization of Amino Acid Profile and Enzymatic Activity in

## Adult Rat Astrocyte Cultures.

Publicado no periódico Neurochemical Research

ORIGINAL PAPER



## **Characterization of Amino Acid Profile and Enzymatic Activity in Adult Rat Astrocyte Cultures**

Débora Guerini Souza<sup>1</sup> · Bruna Bellaver<sup>1</sup> · Gisele Hansel<sup>1</sup> · Bernardo Assein Arús<sup>1</sup> · Gabriela Bellaver<sup>1</sup> · Aline Longoni<sup>1</sup> · Janaina Kolling<sup>1</sup> · Angela T. S. Wyse<sup>1</sup> · Diogo Onofre Souza<sup>1</sup> · André Quincozes-Santos<sup>1</sup>

Received: 24 November 2015/Revised: 1 February 2016/Accepted: 11 February 2016 © Springer Science+Business Media New York 2016

Abstract Astrocytes are multitasking players in brain complexity, possessing several receptors and mechanisms to detect, participate and modulate neuronal communication. The functionality of astrocytes has been mainly unraveled through the study of primary astrocyte cultures, and recently our research group characterized a model of astrocyte cultures derived from adult Wistar rats. We, herein, aim to characterize other basal functions of these cells to explore the potential of this model for studying the adult brain. To characterize the astrocytic phenotype, we determined the presence of GFAP, GLAST and GLT 1 proteins in cells by immunofluorescence. Next, we determined the concentrations of thirteen amino acids, ATP, ADP, adenosine and calcium in astrocyte cultures, as well as the activities of  $Na^+/K^+$ -ATPase and acetylcholine esterase. Furthermore, we assessed the presence of the GABA transporter 1 (GAT 1) and cannabinoid receptor 1 (CB 1) in the astrocytes. Cells demonstrated the presence of glutamine, consistent with their role in the glutamateglutamine cycle, as well as glutamate and D-serine, amino acids classically known to act as gliotransmitters. ATP was produced and released by the cells and ADP was consumed. Calcium levels were in agreement with those reported in the literature, as were the enzymatic activities measured. The presence of GAT 1 was detected, but the presence of CB 1 was not, suggesting a decreased neuroprotective capacity in adult astrocytes under in vitro conditions. Taken together, our results show cellular functionality regarding the astrocytic role in gliotransmission and neurotransmitter management since they are able to produce and release gliotransmitters and to modulate the cholinergic and GABAergic systems.

 $\label{eq:keywords} \begin{array}{l} \mbox{Adult astrocytes} \cdot \mbox{Gliotransmitters} \cdot \mbox{Amino} \\ \mbox{acids} \cdot \mbox{Na}^+/\mbox{K}^+ \mbox{-} \mbox{ATPase} \cdot \mbox{AChE} \end{array}$ 

#### Introduction

Astrocytes are multitasking players in brain complexity, acting as secretory cells of the central nervous system (CNS) releasing neurotransmitters, neuromodulators and trophic factors [1–3]. They sense neural communication, as is evident by the expression of numerous neurotransmitter receptors, transporters and enzymes on their membranes [4]. These cells also release gliotransmitters, such as glutamate, D-serine and ATP, which interact with pre- and post-synaptic receptors in the tripartite synapse [5–7]. Astrocytes are also primary homeostatic cells of the brain, and most of their functionality has been unraveled through the study of primary astrocyte cultures, especially those related to glutamate and GABA metabolism, their antioxidant defense and energy capabilities [8–11].

Recent studies have employed astrocyte cultures derived from adult rats, which are unsurprisingly different to those derived from newborn animals, since their connections on the tissue that they are inserted in are far more complex. As such, we previously published a routine astrocyte culture protocol from adult Wistar rats; these cells present classical astrocytic markers, take up glutamate, and actively participate in antioxidant and inflammatory responses [12]. Additionally, these cells presented age-related glial

Débora Guerini Souza debsrs@gmail.com

<sup>&</sup>lt;sup>1</sup> Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600, Anexo, PO Box: 90035-003, Porto Alegre, RS, Brazil

# ANEXO II-C: Signaling mechanisms underlying the glioprotective effects of resveratrol against mitochondrial dysfunction.

Publicado no periódico BBA - Molecular Basis of Disease

ELSEVIER



## Biochimica et Biophysica Acta



journal homepage: www.elsevier.com/locate/bbadis

## Signaling mechanisms underlying the glioprotective effects of resveratrol against mitochondrial dysfunction



Bruna Bellaver \*, Larissa Daniele Bobermin, Débora Guerini Souza, Marília Danielly Nunes Rodrigues, Adriano Martimbianco de Assis, Moacir Wajner, Carlos-Alberto Gonçalves, Diogo Onofre Souza, André Quincozes-Santos \*

Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil

#### ARTICLE INFO

Article history: Received 17 February 2016 Received in revised form 2 June 2016 Accepted 29 June 2016 Available online 01 July 2016

Keywords: Resveratrol Mitochondrial dysfunction Heme oxygenase-1 (HO-1) Hippocampal astrocytes Nuclear factor kappa B (NFr/B)

#### ABSTRACT

Resveratrol, a polyphenol found in grapes and red wine, exhibits antioxidant, anti-inflammatory, anti-aging and, neuroprotective effects. Resveratrol also plays a significant role modulating glial functionality, protecting the health of neuroglial cells against several neuropsychiatric in vivo and in vitro experimental models. Mitochondrial impairment strongly affected astrocyte functions and consequently brain homeostasis. Molecules that promote astrocyte mitochondrial protection are fundamental to maintain brain energy balance and cellular redox state, contributing to brain healthy. Thus, the present study was designed to evaluate some glioprotective mechanisms of resveratrol against mitochondrial damage promoted by azide exposure in hippocampal primary astrocyte cultures. Azide treatment provoked deleterious effects, including the dysfunction of mitochondria, the deterioration of redox homeostasis, the augmentation of pro-inflammatory cytokines and impairment of glutamate uptake activity. However, resveratrol prevented these effects, protecting hippocampal astrocytes against azide-induced cy-totoxicity through the heme-oxygenase-1 (HO-1) pathway and inhibiting p38 mitogen-activated protein kinase (p38 MAPK) and nuclear factor kappa B (NFkB) activation. Resveratrol also protected astrocytes via phosphatidylinositide 3-kinase (P13K)/Akt. These results contribute to the comprehension of the mechanisms by which resveratrol mediates hippocampal astrocyte protection against mitochondrial failure and implicate resveratrol as an important glioprotective molecule.

© 2016 Elsevier B.V. All rights reserved.

#### 1. Introduction

Mitochondrial failure is recognized as a common feature encountered in brain aging and many neurological diseases, particularly in the pathogenesis of neurodegenerative disorders [1-3]. The dysfunction of mitochondrial energy metabolism reduces ATP production, followed by the generation of reactive oxygen species (ROS). The decreased activity of complex IV in the electron transport chain has been detected in the brains of patients with ischemia, epilepsy, and Alzheimer's and Huntington's diseases [2,4,5]. Accordingly, sodium azide is a rapid inhibitor of cytochrome *c* oxidase, reflecting the frequent use of this molecule to induce acute oxidative stress.

Resveratrol (3,5,4'-trihidroxy-*trans*-stilbene) is a polyphenol commonly detected in a variety of dietary sources, including grapes, peanuts and wine. The neuroprotective effects of resveratrol might reflect the antioxidant, anti-inflammatory and anti-aging properties of this compound [6–11]. This phytoalexin has been implicated in the protection of astrocytes and neurons against in vivo and in vitro experimental models [12–16]. Recently, we demonstrated that the protective effects of resveratrol against an inflammatory challenge in astrocytes might be associated with heme oxygenase-1 (HO-1), p38 mitogen-activated protein kinase (p38 MAPK) and extracellular signal-regulated kinase (ERK) pathways [17]. Although the protective role of resveratrol in the central nervous system (CNS) has been well established, the mechanisms of the effects mediated by astrocytes have not been fully clarified.

Astrocytes are the most abundant glial cell type in the CNS, and these cells participate in a wide range of functions to maintain brain homeostasis [18–20]. Following brain damage, these cells become reactive, triggering a cascade of events, which play a key role in the recruitment of other glial cells, strongly affecting neuronal survival [21–23]. In conditions of oxidative injury and inflammation, the astrocytic synthesis

<sup>\*</sup> Corresponding authors at: Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade, Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 — Anexo, Bairro Santa Cecília, 90035-003, Porto Alegre, RS, Brazil.

*E-mail addresses:* brunabellaver90@gmail.com (B. Bellaver), andrequincozes@ufrgs.br (A. Quincozes-Santos).

ANEXO II-D: Higher Vulnerability of Menadione-Exposed Cortical Astrocytes of Glutaryl-CoA Dehydrogenase Deficient Mice to Oxidative Stress, Mitochondrial Dysfunction, and Cell Death: Implications for the Neurodegeneration in Glutaric Aciduria Type I.

Publicado no periódico Molecular Neurobiology



## Higher Vulnerability of Menadione-Exposed Cortical Astrocytes of Glutaryl-CoA Dehydrogenase Deficient Mice to Oxidative Stress, Mitochondrial Dysfunction, and Cell Death: Implications for the Neurodegeneration in Glutaric Aciduria Type I

Marília Danyelle Nunes Rodrigues<sup>1</sup> • Bianca Seminotti<sup>1</sup> • Ângela Zanatta<sup>1</sup> • Aline de Mello Gonçalves<sup>1</sup> • Bruna Bellaver<sup>1</sup> • Alexandre Umpierrez Amaral<sup>1</sup> • André Quincozes-Santos<sup>1</sup> • Stephen Irwin Goodman<sup>2</sup> • Michael Woontner<sup>2</sup> • Diogo Onofre Souza<sup>1</sup> • Moacir Wajner<sup>1,3</sup>

Received: 1 March 2016 / Accepted: 1 August 2016 © Springer Science+Business Media New York 2016

Abstract Patients affected by glutaric aciduria type I (GA-I) show progressive cortical leukoencephalopathy whose pathogenesis is poorly known. In the present work, we exposed cortical astrocytes of wild-type  $(Gcdh^{+/+})$  and glutaryl-CoA dehydrogenase knockout ( $Gcdh^{-/-}$ ) mice to the oxidative stress inducer menadione and measured mitochondrial bioenergetics, redox homeostasis, and cell viability. Mitochondrial function (MTT and JC1-mitochondrial membrane potential assays), redox homeostasis (DCFH oxidation, nitrate and nitrite production, GSH concentrations and activities of the antioxidant enzymes SOD and GPx), and cell death (propidium iodide incorporation) were evaluated in primary cortical astrocyte cultures of  $Gcdh^{+/+}$  and  $Gcdh^{-/-}$  mice unstimulated and stimulated by menadione. We also measured the proinflammatory response (TNF $\alpha$  levels, IL1- $\beta$  and NF-B) in unstimulated astrocytes obtained from these mice. Gcdh<sup>-/</sup> mice astrocytes were more vulnerable to menadione-induced oxidative stress (decreased GSH concentrations and altered activities of the antioxidant enzymes), mitochondrial dysfunction (decrease of MTT reduction and JC1 values), and cell death as compared with  $Gcdh^{+/+}$  astrocytes. A higher

- <sup>2</sup> Department of Pediatrics, University of Colorado Denver, Aurora, CO, USA
- <sup>3</sup> Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil

inflammatory response (TNF $\alpha$ , IL1- $\beta$  and NF-B) was also observed in *Gcdh*<sup>-/-</sup> mice astrocytes. These data indicate a higher susceptibility of *Gcdh*<sup>-/-</sup> cortical astrocytes to oxidative stress and mitochondrial dysfunction, probably leading to cell death. It is presumed that these pathomechanisms may contribute to the cortical leukodystrophy observed in GA-I patients.

**Keywords** Glutaric aciduria type I  $\cdot Gcdh^{-/-}$  mice astrocytes  $\cdot$  Oxidative stress  $\cdot$  Mitochondrial dysfunction  $\cdot$  Pro-inflammatory response

#### Introduction

Glutaric aciduria type I (GA-I, McKusick 23,167, OMIM #231,670) is a disorder of organic acid metabolism caused by mutations in the gene that codes glutaryl-CoA dehydrogenase (GCDH) that is involved in the degradation of the amino acids lysine, hydroxylysine, and tryptophan [1]. GCDH deficiency leads to predominant accumulation of glutaric acid (GA) and 3-hydroxyglutaric acid (3-HGA) in tissues and body fluids [2, 3].

Patients usually present at birth macrocephaly with frontotemporal atrophy, as well as progressive leukodystrophy with cortical atrophy and marked dystonia and dyskinesia following encephalopathic episodes during or following infections that are accompanied by destruction of striatal neurons [4, 5].

A knockout mice model of GA-I ( $Gcdh^{-/-}$ ) with complete loss of GCDH activity accompanied by high levels of GA-I metabolites in tissues and body fluids was established and

Moacir Wajner mwajner@ufrgs.br

<sup>&</sup>lt;sup>1</sup> Departamento e PPG Bioquímica, ICBS/Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos N° 2600, Anexo, Porto Alegre, RS CEP90035-003, Brazil

## ANEXO II-E: Anti-aging effects of guanosine in glial cells.

Publicado no periódico Purinegic Signalling

ORIGINAL ARTICLE



## Anti-aging effects of guanosine in glial cells

Débora Guerini Souza<sup>1</sup> · Bruna Bellaver<sup>1</sup> · Larissa Daniele Bobermin<sup>1</sup> · Diogo Onofre Souza<sup>1,2</sup> · André Quincozes-Santos<sup>1,2</sup>

Received: 13 April 2016 / Accepted: 24 August 2016 © Springer Science+Business Media Dordrecht 2016

Abstract Guanosine, a guanine-based purine, has been shown to exert beneficial roles in in vitro and in vivo injury models of neural cells. Guanosine is released from astrocytes and modulates important astroglial functions, including glutamatergic metabolism, antioxidant, and anti-inflammatory activities. Astrocytes are crucial for regulating the neurotransmitter system and synaptic information processes, ionic homeostasis, energy metabolism, antioxidant defenses, and the inflammatory response. Aging is a natural process that induces numerous changes in the astrocyte functionality. Thus, the search for molecules able to reduce the glial dysfunction associated with aging may represent an approach for avoiding the onset of agerelated neurological diseases. Hence, the aim of this study was to evaluate the anti-aging effects of guanosine, using primary astrocyte cultures from newborn, adult, and aged Wistar rats. Concomitantly, we evaluated the role of heme oxygenase 1 (HO-1) in guanosine-mediated glioprotection. We observed age-dependent changes in glutamate uptake, glutamine synthetase (GS) activity, the glutathione (GSH) system, proinflammatory cytokine (tumor necrosis factor  $\alpha$  (TNF- $\alpha$ ) and interleukin 1 $\beta$  (IL-1 $\beta$ )) release, and the transcriptional activity of nuclear factor kB (NFkB), which were prevented by guanosine in an HO-1-dependent manner. Our findings suggest gua-

André Quincozes-Santos andrequincozes@ufrgs.br

nosine to be a promising therapeutic agent able to provide glioprotection during the aging process. Thus, this study contributes to the understanding of the cellular and molecular mechanisms of guanosine in the aging process.

**Keywords** Aging · Adult/aged astrocytes · Guanosine · Heme oxygenase 1

#### Introduction

Guanine-based purines are known to act as extracellular signaling molecules, exerting trophic and neuroprotective roles in in vitro and in vivo experimental models [1-5]. Guanosine, more specifically, has been shown to induce numerous beneficial cellular responses in several brain injuries, such as seizures, hypoxia, anxiety-like behavior, ischemia, and glucose deprivation [1, 6-9]. In addition to demonstrating the ability to modulate glutamatergic metabolism, avoiding the overactivation of glutamate receptors, and exerting antioxidant and anti-inflammatory activities [10-12], guanosine can also modulate several signaling pathways to provide neuroprotection [1, 13, 14]. However, despite the increasing evidence of the protective effects of guanosine in neural cells, its mechanism of action is not fully understood.

Our group has previously demonstrated the interplay between guanosine and the enzyme heme oxygenase 1 (HO-1) [12, 14], which is the major enzyme responsible for the conversion of heme into CO and the antioxidant products biliverdin and bilirubin [15, 16]. It has been reported that HO-1 may be a therapeutic target in the aging process and/or neurodegenerative diseases. Increased HO-1 activity correlates with protection against stressful conditions, such as hypoxia/

<sup>&</sup>lt;sup>1</sup> Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, RS, Brazil

<sup>&</sup>lt;sup>2</sup> Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, RS, Brazil

### ANEXO II-F: Resveratrol modulates GSH system in C6 astroglial cells through

## heme oxygenase 1 pathway.

Publicado no periódico Molecular and Cellular Biochemistry



## **Resveratrol modulates GSH system in C6 astroglial cells through heme oxygenase 1 pathway**

Bernardo Assein Arús<sup>1</sup> · Débora Guerini Souza<sup>1</sup> · Bruna Bellaver<sup>1</sup> · Diogo Onofre Souza<sup>1</sup> · Carlos-Alberto Gonçalves<sup>1</sup> · André Quincozes-Santos<sup>1</sup> · Larissa Daniele Bobermin<sup>1</sup>

Received: 23 October 2016 / Accepted: 21 December 2016 © Springer Science+Business Media New York 2017

**Abstract** Resveratrol is a dietary polyphenol that displays neuroprotective properties in several in vivo and in vitro experimental models, by modulating oxidative and inflammatory responses. Glutathione (GSH) is a key antioxidant in the central nervous system (CNS) that modulates several cellular processes, and its depletion is associated with oxidative stress and inflammation. Therefore, this study sought to investigate the protective effects of resveratrol against GSH depletion pharmacologically induced by buthionine sulfoximine (BSO) in C6 astroglial cells, as well as its underlying cellular mechanisms. BSO exposure resulted in several detrimental effects, decreasing glutamate-cysteine ligase (GCL) activity, cystine uptake, GSH intracellular content and the activities of the antioxidant enzymes glutathione peroxidase (GPx) and glutathione reductase (GR). Moreover, BSO increased reactive oxygen/nitrogen species (ROS/RNS) levels and pro-inflammatory cytokine release. Resveratrol prevented these effects by protecting astroglial cells against BSO-induced cytotoxicity, by modulating oxidative and inflammatory responses. Additionally, we observed that pharmacological inhibition of heme oxygenase 1 (HO-1), an essential cellular defense against oxidative and inflammatory injuries, abolished all the protective effects of resveratrol. These observations suggest HO-1 pathway as a cellular effector in the mechanism by which resveratrol protects astroglial cells against GSH depletion, a condition that may be associated to neurodegenerative diseases.

**Keywords** Astroglial cells · Glutathione · Buthionine sulfoximine · Oxidative stress · Inflammatory response · Heme oxygenase 1

#### Introduction

The dietary polyphenol resveratrol (3,5,4'-trans-trihydroxystilbene), primarily available in peanuts, berries, grapes, and red wine, has been broadly studied due to its protective properties, such as antioxidant, anti-inflammatory, anti-aging, and cardioprotective activities [1–4]. Additionally, resveratrol is associated with neuroprotection, exhibiting beneficial effects in several in vitro and in vivo models of brain diseases, including Alzheimer's, Parkinson's, and stroke [5–8]. Although the mechanisms underlying the protective action of resveratrol are not fully understood, there is increasing evidence indicating that its potent antioxidant properties play an important role in neuroprotection. Such properties derive from resveratrol's ability to directly scavenge oxidative species and/or from the activation of pathways involved in antioxidant defenses [9–11].

Among these pathways, resveratrol is able to activate heme oxygenase 1 (HO-1), a fundamental defense mechanism for cells exposed to oxidant challenges [6, 12]. HO-1 (EC 1.14.14.18) is the inducible rate-limiting enzyme in the pathway through which pro-oxidant heme is degraded into antioxidants biliverdin and bilirubin [13–15]. Increase in HO-1 activity is associated with protection against stressful conditions, such as oxidative stress and inflammation. Among other effects, HO-1 is able to counteract the activation of nuclear factor  $\kappa B$  (NF $\kappa B$ ), the major inflammatory and oxidative regulator factor in the central nervous system (CNS) [16].

Larissa Daniele Bobermin larissabobermin@gmail.com

<sup>&</sup>lt;sup>1</sup> Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil

## ANEXO II-G: Homocysteine Induces Glial Reactivity in Adult Rat Astrocyte

Cultures.

Publicado no periódico Molecular Neurobiology



Aline Longoni<sup>1</sup> • Bruna Bellaver<sup>1</sup> • Larissa Daniele Bobermin<sup>1</sup> • Camila Leite Santos<sup>1</sup> • Yasmine Nonose<sup>1</sup> • Janaina Kolling<sup>1</sup> • Tiago M. dos Santos<sup>1</sup> • Adriano M. de Assis<sup>1</sup> • André Quincozes-Santos<sup>1,2</sup> • Angela T. S. Wyse<sup>1,2</sup>

Received: 12 December 2016 / Accepted: 16 February 2017 © Springer Science+Business Media New York 2017

Abstract Astrocytes are dynamic glial cells associated to neurotransmitter systems, metabolic functions, antioxidant defense, and inflammatory response, maintaining the brain homeostasis. Elevated concentrations of homocysteine (Hcy) are involved in the pathogenesis of age-related neurodegenerative disorders, such as Parkinson and Alzheimer diseases. In line with this, our hypothesis was that Hcy could promote glial reactivity in a model of cortical primary astrocyte cultures from adult Wistar rats. Thus, cortical astrocytes were incubated with different concentrations of Hcy (10, 30, and 100  $\mu$ M) during 24 h. After the treatment, we analyzed cell viability, morphological parameters, antioxidant defenses, and inflammatory response. Hcy did not induce any alteration in cell viability; however, it was able to induce cytoskeleton rearrangement. The treatment with Hcy also promoted a significant decrease in the activities of Na<sup>+</sup>, K<sup>+</sup> ATPase, superoxide dismutase (SOD), and glutathione peroxidase (GPx), as well as in the glutathione (GSH) content. Additionally, Hcy induced an increase in the pro-inflammatory cytokine release. In an attempt to elucidate the putative mechanisms involved in the Hcy-induced glial reactivity, we measured the nuclear factor kappa B (NFKB) transcriptional activity and heme oxygenase 1 (HO-1) expression, which were activated and inhibited by Hcy, respectively. In summary, our findings provide important evidences that Hcy modulates critical astrocyte parameters from adult rats, which might be associated to the aging process.

Keywords Homocysteine  $\cdot$  Cortical adult astrocytes  $\cdot$ Oxidative stress  $\cdot$  Inflammatory response  $\cdot$  NF $\kappa$ B  $\cdot$  Heme oxygenase 1

#### Introduction

Homocysteine (Hcy) is an amino acid sulfur and nonproteinogenic that is formed in unequal quantities in the metabolism of methionine, an essential amino acid. Hcy levels are controlled through two regulatory mechanisms: (a) remethylation, forming methionine and getting a methyl group from 5-methyltetrahydrofolate or betaine, and (b) transsulfuration, when it undergoes condensation with serine, producing cystathionine, via reaction catalyzed by cystathionine- $\beta$ -synthase, this product after being cleaved to cysteine [1]. Moreover, Hcy metabolism requires coenzymes such as vitamins  $B_6$  and  $B_{12}$  and folic acid. Deficiencies in these cofactors are associated with hyperhomocysteinemia (HHcy) that is an abnormal high level of Hcy in the blood, commonly associated to cytotoxicity. In addition, mild levels of Hcy (>30 µM) have been reported as an independent risk factor for cognitive dysfunction [2] and neurodegenerative disorders [3]. According to previous studies from our group, mild HHcy induces oxidative stress and neuroinflammation in the cerebral cortex of rats [4, 5]. Recently, we have also demonstrated that Hcy (30 µM) altered mitochondrial functionality and induced oxidative stress and neuronal death in slices from the cerebral cortex of rats [6].

Astrocytes correspond to 50% of the total number of cells in the central nervous system (CNS), being the most versatile



André Quincozes-Santos andrequincozes@ufrgs.br

<sup>&</sup>lt;sup>1</sup> Programa de Pós-graduação em Ciências Biológicas: Bioquímica, ICBS, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 Anexo, Bairro Santa Cecília, Porto Alegre, RS 90035–003, Brazil

<sup>&</sup>lt;sup>2</sup> Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil

## ANEXO II-H: Cortical Bilateral Adaptations in Rats Submitted to Focal Cerebral Ischemia: Emphasis on Glial Metabolism.

Publicado no periódico Molecular Neurobiology



## **Cortical Bilateral Adaptations in Rats Submitted to Focal Cerebral Ischemia: Emphasis on Glial Metabolism**

Yasmine Nonose<sup>1</sup> • Pedro E. Gewehr<sup>1</sup> • Roberto F. Almeida<sup>1</sup> • Jussemara S. da Silva<sup>1</sup> • Bruna Bellaver<sup>1</sup> • Leo A. M. Martins<sup>1</sup> • Eduardo R. Zimmer<sup>1,2</sup> • Samuel Greggio<sup>2</sup> • Gianina T. Venturin<sup>2</sup> • Jaderson C. Da Costa<sup>2</sup> • André Quincozes-Santos<sup>1,3</sup> • Luc Pellerin<sup>4</sup> • Diogo O. de Souza<sup>1,3</sup> • Adriano M. de Assis<sup>1</sup>

Received: 11 December 2016 / Accepted: 13 February 2017 © Springer Science+Business Media New York 2017

Abstract This study was performed to evaluate the bilateral effects of focal permanent ischemia (FPI) on glial metabolism in the cerebral cortex. Two and 9 days after FPI induction, we analyze [<sup>18</sup>F]FDG metabolism by micro-PET, astrocyte morphology and reactivity by immunohistochemistry, cytokines and trophic factors by ELISA, glutamate transporters by RT-PCR, monocarboxylate transporters (MCTs) by western blot, and substrate uptake and oxidation by ex vivo slices model. The FPI was induced surgically by thermocoagulation of the blood in the pial vessels of the motor and sensorimotor cortices in adult (90 days old) male Wistar rats. Neurochemical analyses were performed separately on both ipsilateral and contralateral cortical hemispheres. In both cortical hemispheres, we observed an increase in tumor necrosis factor alpha (TNF- $\alpha$ ), interleukin-1 $\beta$  (IL-1 $\beta$ ), and glutamate transporter 1 (GLT-1) mRNA levels; lactate oxidation; and glutamate uptake and a decrease in brain-derived neurotrophic factor (BDNF) after

**Electronic supplementary material** The online version of this article (doi:10.1007/s12035-017-0458-x) contains supplementary material, which is available to authorized users.

Adriano M. de Assis adriano.assis@ufrgs.br

- <sup>1</sup> Postgraduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600 – Anexo Santa Cecília, Porto Alegre, RS 90035-003, Brazil
- <sup>2</sup> Brain Institute of Rio Grande do Sul, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS 90619-900, Brazil
- <sup>3</sup> Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90035-003, Brazil
- <sup>4</sup> Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland

2 days of FPI. Nine days after FPI, we observed an increase in TNF- $\alpha$  levels and a decrease in BDNF, GLT-1, and glutamate aspartate transporter (GLAST) mRNA levels in both hemispheres. Additionally, most of the unilateral alterations were found only in the ipsilateral hemisphere and persisted until 9 days post-FPI. They include diminished in vivo glucose uptake and GLAST expression, followed by increased glial fibrillary acidic protein (GFAP) gray values, astrocyte reactivity, and glutamate oxidation. Astrocytes presented signs of long-lasting reactivity, showing a radial morphology. In the intact hemisphere, there was a decrease in MCT2 levels, which did not persist. Our study shows the bilateralism of glial modifications following FPI, highlighting the role of energy metabolism adaptations on brain recovery post-ischemia.

**Keywords** Astrocytes · Energy metabolism · Stroke · Contralateral hemisphere · Glial reactivity

#### Introduction

Stroke is responsible for significant mortality and long-term disability worldwide [1, 2]. In the USA, more than 140,000 people die each year from stroke (www.strokecenter.org), while most survivors need to receive continuous care due to sequelae [3, 4]. In acute ischemic stroke, the brain regions with severely impaired blood flow become rapidly and irreversibly injured and are referred to as ischemic *core* [5]. Surrounding the *core*, there is an area of constrained blood flow called ischemic *penumbra*, which presents a partially preserved energy metabolism and structural pattern. Salvage of this penumbral region is associated with neurological improvement and recovery [6, 7].

In addition to the ischemic penumbra, other brain areas might be relevant to improve outcome after stroke. Some

# ANEXO II-I: N-acetylcysteine Prevents Alcohol Related Neuroinflammation in Rats.

Publicado no periódico Neurochemical Research

ORIGINAL PAPER

## *N*-acetylcysteine Prevents Alcohol Related Neuroinflammation in Rats

Ricardo Schneider Jr<sup>1</sup> · Solange Bandiera<sup>2</sup> · Débora Guerini Souza<sup>3</sup> · Bruna Bellaver<sup>3</sup> · Greice Caletti<sup>2</sup> · André Quincozes-Santos<sup>3</sup> · Elaine Elisabetsky<sup>2,3</sup> · Rosane Gomez<sup>1,2</sup>

Received: 26 October 2016 / Revised: 17 January 2017 / Accepted: 25 February 2017 © Springer Science+Business Media New York 2017

Abstract Alcoholism has been characterized as a systemic pro-inflammatory condition and alcohol withdrawal has been linked to various changes in the brain homeostasis, including oxidative stress and glutamate hyperactivity. N-acetylcysteine (NAC) is an anti-inflammatory and antioxidant multi-target drug with promising results in psychiatry, including drug addiction. We assessed the effects of NAC on the serum and brain inflammatory cytokines after cessation of chronic alcohol treatment in rats. Male Wistar rats received 2 g/kg alcohol or vehicle twice a day by oral gavage for 30 days. Rats were treated, from day 31 to 34, with NAC (60 or 90 mg/kg) or saline, intraperitoneally, once daily. Rats were sacrificed at day 35, trunk blood was collected and the frontal cortex and hippocampus dissected for assessment of TNF-α, IL-1β, IL-6, IL-18, IL-10. NAC prevented the increase of pro-inflammatory cytokines and the decrease of anti-inflammatory cytokine in the frontal cortex and hippocampus. No changes were observed on serum cytokines. We conclude that NAC protects against inflammation induced by chronic (30 days) alcohol ingestion followed by 5 days cessation in two rat brain areas. Because inflammation has been documented and associated with craving and relapse in alcoholics, the data revealed by

<sup>3</sup> Programa de Pós-Graduação em Bioquímica, UFRGS, Rua Ramiro Barcelos, 2600, Porto Alegre, RS 90035003, Brazil



**Keywords** Cytokines  $\cdot$  Drug abuse  $\cdot$  Ethanol  $\cdot$  Frontal cortex  $\cdot$  Hippocampus  $\cdot$  NAC

#### Introduction

Alcohol use disorder is the cause of 3.3 million deaths every year [1] adding to the number of alcohol-impaired driving fatalities. Alcohol and its metabolites induce organ injury by inducing oxidative stress and increasing systemic endotoxins [1, 2]. These processes trigger inflammatory responses, affecting end organs such as the liver, blood vessels, heart, pancreas, brain, and others [2, 3]. Accordingly, alcoholism is now viewed as a systemic inflammatory condition and cytokines as biomarkers of alcohol abuse [4, 5].

In the central nervous system (CNS), alcohol-induced neuroinflammation activates microglia and astrocytes, contributing to neurodegeneration and impaired neuronal regeneration in alcoholics [2, 6]. The serum levels of interleukins as IL-6 and IL-10 are elevated after a single alcohol intake in alcoholics compared with non-alcoholic volunteers [5]. Postmortem study showed that the levels of the key pro-inflammatory cytokine MCP-1 (monocyte chemoattractant protein 1), as well as microglial activity are higher in alcoholic than non-alcoholic subjects [7]. Studies also suggest that cytokines regulate voluntary alcohol intake in rodents [8, 9]. The pro-inflammatory cytokines IL-1 $\beta$ , TNF- $\alpha$ , and NFkB are elevated after chronic alcohol administration or voluntary consumption in the rodents hippocampus and in the cortex [10, 11]. Studies evaluating CNS cytokine levels after alcohol cessation are scarce. In humans, IL-10, IL-12, and interferon (IFNy) plasma levels



Rosane Gomez rosane.gomez@ufrgs.br

<sup>&</sup>lt;sup>1</sup> Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Sarmento Leite, 500/305, Porto Alegre, RS 90050170, Brazil

<sup>&</sup>lt;sup>2</sup> Programa de Pós-Graduação em Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Sarmento Leite, 500/313, Porto Alegre, RS 90050170, Brazil

## ANEXO II-J: In Vitro Adult Astrocytes are Derived From Mature Cells and Reproduce in Vivo Redox Profile.

Publicado no periódico Journal of Cellular Biochemistry



## In Vitro Adult Astrocytes are Derived From Mature Cells and Reproduce in Vivo Redox Profile

Débora Guerini Souza (b),<sup>1</sup>\* Bruna Bellaver,<sup>1</sup> Silvia Resende Terra,<sup>1</sup> Fatima Costa Rodrigues Guma,<sup>1,2</sup> Diogo Onofre Souza,<sup>1,2</sup> and André Quincozes-Santos<sup>1,2</sup>\*

<sup>1</sup>Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil

#### ABSTRACT

Astrocytes are versatile cells involved in synaptic information processing, energy metabolism, redox homeostasis, inflammatory response, and structural support of the brain. Recently, we established a routine protocol of cultured astrocytes derived from adult and aged Wistar rats, which present several different responses compared to newborn astrocytes, commonly used to characterize the role of the astrocytes in the central nervous system. Previous studies hypothesized that astrocyte cultures prepared from adult animals derive from immature precursors present in the adult tissue throughout life. Since our group has already demonstrated that the glial functionality of adult astrocytes differs from newborn cultures, the aim of this study was to confirm that our in vitro astrocytes were derived from mature cells. Therefore, we evaluated cytoskeleton proteins, such as glial fibrillary acidic protein and vimentin, as well as Sox10, an essential marker of immature glial cells, in ex vivo tissue and in in vitro astrocytes from the same animals (1, 90, and 180 days old). In addition, we examined the mitochondrial functionality and the cellular redox homeostasis. Our results suggest that adult and aged astrocytes are derived from mature cells and that changes in mitochondrial parameters in ex vivo tissue were reproduced in in vitro astrocytes. J. Cell. Biochem. 118: 3111–3118, 2017. © 2017 Wiley Periodicals, Inc.

KEY WORDS: ADULT/AGED ASTROCYTES; Sox10; MITOCHONDRIAL FUNCTIONALITY

A strocytes, the most versatile cells of the central nervous system (CNS), are crucial for the metabolic and redox homeostasis, inflammatory response and structural support of the brain [Hertz and Zielke, 2004; Khakh and Sofroniew, 2015; Bolanos, 2016]. Much of the understanding of astrocytes has been obtained from studies conducted in cultured primary astrocytes in physiological and pathological conditions [Lange et al., 2012]. In this sense, cultured astrocytes are most often derived from newborn mice or rats, however, at this stage, gliogenesis is not complete [Hertz et al., 1998; Lange et al., 2012]. Once astrocytes are mature, the classical cytoskeleton astrocytic marker glial fibrillary acidic protein (GFAP) is present, and along with vimentin, plays an essential role in mechanical strength, intracellular transport, and astrocytic shape [Hol and Pekny, 2015; Yang and Wang, 2015].

There are important differences between the immature and the mature brain, with significant implications in brain functionality [Sun et al., 2013; Herculano-Houzel, 2014]. Astrocytes derived from mature animals contain well-established connections, more organized than immature tissue, which is more plastic and labile to stimuli. Thus, mature astrocytes may respond more reliably and help to elucidate the role of astrocytes in the aging brain [Souza et al., 2013; Bellaver et al., 2016]. In line with this, we have recently established a routine protocol of cultured mature astrocytes derived from adult and aged Wistar rats to study biochemical, pharmacological and morphological properties of the CNS associated to aging and/or age-related neurological diseases [Souza et al., 2013, 2016b]. A previous report has, however, suggested that preparing astrocyte cultures from adult animals does not result in mature astrocytes

Accepted manuscript online in Wiley Online Library (wileyonlinelibrary.com): 4 April 2017 DOI 10.1002/jcb.26028 • © 2017 Wiley Periodicals, Inc.

<sup>&</sup>lt;sup>2</sup>Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil

Conflict of interest: The authors declare there are no conflicts of interest.

Grant sponsor: Conselho Nacional de Desenvolvimento Científico e Tecnológico; Grant sponsor: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; Grant sponsor: Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul; Grant sponsor: Federal University of Rio Grande do Sul; Grant sponsor: Instituto Nacional de Ciência e Tecnologia para Excitotoxicidade e Neuroproteção.

<sup>\*</sup>Correspondence to: Débora Guerini de Souza, PhD, and André Quincozes-Santos, PhD, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Bairro Santa Cecília, 90035-003 Porto Alegre, RS, Brazil. E-mail: debsrs@gmail.com, andrequincozes@ufrgs.br

Manuscript Received: 11 December 2016; Manuscript Accepted: 3 April 2017

## ANEXO II-K: Increased Oxidative Parameters and Decreased Cytokine Levels in an Animal Model of Attention-Deficit/Hyperactivity Disorder.

Publicado no periódico Neurochemical Research

ORIGINAL PAPER



## Increased Oxidative Parameters and Decreased Cytokine Levels in an Animal Model of Attention-Deficit/Hyperactivity Disorder

Douglas Teixeira Leffa<sup>1,2,3</sup> · Bruna Bellaver<sup>4</sup> · Carla de Oliveira<sup>1,2,3</sup> · Isabel Cristina de Macedo<sup>2,3</sup> · Joice Soares de Freitas<sup>2,3</sup> · Eugenio Horacio Grevet<sup>5,6</sup> · Wolnei Caumo<sup>1</sup> · Luis Augusto Rohde<sup>5,6,7</sup> · André Quincozes-Santos<sup>4</sup> · Iraci L. S. Torres<sup>1,2,3</sup>

Received: 29 March 2017 / Revised: 25 May 2017 / Accepted: 22 June 2017 / Published online: 29 June 2017 © Springer Science+Business Media, LLC 2017

**Abstract** Attention-deficit/hyperactivity disorder (ADHD) is a highly heterogeneous disorder characterized by impairing levels of hyperactivity, impulsivity and inattention. Oxidative and inflammatory parameters have been recognized among its multiple predisposing pathways, and clinical studies indicate that ADHD patients have increased oxidative stress. In this study, we aimed to evaluate oxidative (DCFH oxidation, glutathione levels, glutathione peroxidase, catalase and superoxide dismutase activities) and inflammatory (TNF- $\alpha$ , IL-1 $\beta$  and IL-10) parameters in the most widely accepted animal model of ADHD, the spontaneously hypertensive rats (SHR). Prefrontal cortex, cortex (remaining regions), striatum and hippocampus of adult male SHR and Wistar Kyoto rats were studied. SHR

☑ Iraci L. S. Torres iltorres@hcpa.edu.br

- <sup>1</sup> Post-Graduate Program in Medicine: Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- <sup>2</sup> Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- <sup>3</sup> Laboratory of Pain Pharmacology and Neuromodulation: Pre clinical studies - Pharmacology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- <sup>4</sup> Biochemistry Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- <sup>5</sup> Psychiatry Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- <sup>6</sup> ADHD Outpatient Program, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- <sup>7</sup> National Institute of Developmental Psychiatry for Children and Adolescents, Porto Alegre, Brazil

presented increased reactive oxygen species (ROS) production in the cortex, striatum and hippocampus. In SHR, glutathione peroxidase activity was decreased in the prefrontal cortex and hippocampus. TNF- $\alpha$  levels were reduced in the prefrontal cortex, cortex (remaining regions), hippocampus and striatum of SHR. Besides, IL-1 $\beta$  and IL-10 levels were decreased in the cortex of the ADHD model. Results indicate that SHR presented an oxidative profile that is characterized by an increase in ROS production without an effective antioxidant counterbalance. In addition, this strain showed a decrease in cytokine levels, mainly TNF- $\alpha$ , indicating a basal deficit. These results may present a new approach to the cognitive disturbances seen in the SHR.

Keywords ADHD · SHR · Oxidative stress · Cytokines

#### Introduction

Attention-deficit/hyperactivity disorder (ADHD) is characterized by impairing levels of hyperactivity, impulsivity and inattention [1]. Its prevalence is estimated to be 5.3% in children and adolescents [2] and 2.5% in adults [3]. Although a common disorder, its pathophysiology is not completely understood. Studies on neuroimaging, cognition and biochemical assessment have been delineating ADHD as a heterogeneous disorder with a multifactorial causation [1].

Among the multiple pathways predisposing to ADHD phenotype, oxidative parameters have been increasingly investigated. There is a growing body of literature indicating that an increase in oxidative markers might be related with the pathophysiology of psychiatric disorders as cause and/or consequence of abnormal brain signaling [4]. In ADHD, a recent meta-analysis including six studies with
ANEXO II-L: Transcranial direct current stimulation improves long-term memory deficits in an animal model of attention-deficit/hyperactivity disorder and modulates oxidative and inflammatory parameters.

Publicado no peródico Brain Stimulation

Brain Stimulation 11 (2018) 743-751



Contents lists available at ScienceDirect

## **Brain Stimulation**

journal homepage: http://www.journals.elsevier.com/brain-stimulation

## Transcranial direct current stimulation improves long-term memory deficits in an animal model of attention-deficit/hyperactivity disorder and modulates oxidative and inflammatory parameters



霐

BRAIN

Douglas Teixeira Leffa <sup>a, b, c</sup>, Bruna Bellaver <sup>d</sup>, Artur Alban Salvi <sup>b, c</sup>, Carla de Oliveira <sup>a, b, c</sup>, Wolnei Caumo <sup>a, e</sup>, Eugenio Horacio Grevet <sup>g, h</sup>, Felipe Fregni <sup>f</sup>, André Quincozes-Santos <sup>d</sup>, Luis Augusto Rohde <sup>g, h, i</sup>, Iraci L.S. Torres <sup>a, b, c, \*</sup>

<sup>b</sup> Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil

<sup>e</sup> Pain and Palliative Care Service, Laboratory of Pain & Neuromodulation, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil

<sup>f</sup> Laboratory of Neuromodulation, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard University, Boston, United States

<sup>g</sup> Psychiatry Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil

<sup>h</sup> ADHD Outpatient Program, Hospital de Clínicas de Porto Alegre, Brazil

<sup>i</sup> National Institute of Developmental Psychiatry for Children and Adolescents, Brazil

#### A R T I C L E I N F O

Article history: Received 27 July 2017 Received in revised form 26 March 2018 Accepted 2 April 2018 Available online 5 April 2018

Keywords: ADHD tDCS SHR

### ABSTRACT

*Background:* Transcranial direct current stimulation (tDCS) is a technique that modulates neuronal activity and has been proposed as a potential therapeutic tool for attention-deficit/hyperactivity disorder (ADHD) symptoms. Although pilot studies have shown evidence of efficacy, its mechanism of action remains unclear.

*Objective/Hypothesis:* We evaluated the effects of tDCS on behavioral (working and long-term memory) and neurochemical (oxidative and inflammatory parameters) outcomes related to ADHD pathophysiology. We used the most widely accepted animal model of ADHD: spontaneously hypertensive rats (SHR). The selected behavioral outcomes have been shown to be altered in both ADHD patients and animal models, and were chosen for their relation to the proposed mechanistic action of tDCS.

*Methods:* Adult male SHR and their control, the Wistar Kyoto rats (WKY), were subjected to 20 min of bicephalic tDCS or sham stimulation for 8 consecutive days. Working memory, long-term memory, and neurochemical outcomes were evaluated.

*Results:* TDCS improved long-term memory deficits presented by the SHR. No change in working memory performance was observed. In the hippocampus, tDCS increased both the production of reactive oxygen species in SHR and the levels of the antioxidant molecule glutathione in both strains. TDCS also modulated inflammatory response in the brains of WKY by downregulating pro-inflammatory cytokines. *Conclusion:* TDCS had significant effects that were specific for strain, type of behavioral and neuro-chemical outcomes. The long-term memory improvement in the SHR may point to a possible therapeutic role of tDCS in ADHD that does not seem to be mediated by inflammatory markers. Additionally, the anti-inflammatory effects observed in the brain of WKY after tDCS needs to be further explored.

© 2018 Elsevier Inc. All rights reserved.

\* Corresponding author. Departamento de Farmacologia - ICBS, UFRGS; Rua Sarmento Leite, 500 sala 305, 90050-170, Porto Alegre, RS, Brazil. *E-mail address:* iltorres@hcpa.edu.br (I.L.S. Torres).

<sup>&</sup>lt;sup>a</sup> Post-Graduate Program in Medicine: Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil

<sup>&</sup>lt;sup>c</sup> Laboratory of Pain Pharmacology and Neuromodulation: Pre Clinical Studies - Pharmacology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil

<sup>&</sup>lt;sup>d</sup> Biochemistry Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil

ANEXO II-M: Combined use of alcohol and tobacco smoke change oxidative, inflammatory, and neurotrophic parameters in different brain areas of rats.

Publicado no periódico ACS Chemical Neuroscience

# Combined Exposure to Alcohol and Tobacco Smoke Changes Oxidative, Inflammatory, and Neurotrophic Parameters in Different Areas of the Brains of Rats

Dayane A. Quinteros,<sup>†</sup> Alana Witt Hansen,<sup>\*,†</sup><sup>©</sup> Bruna Bellaver,<sup>‡</sup> Larissa D. Bobermin,<sup>‡</sup> Rianne R. Pulcinelli,<sup>†</sup> Solange Bandiera,<sup>†</sup> Greice Caletti,<sup>†</sup> Paula E. R. Bitencourt,<sup>†</sup> André Quincozes-Santos,<sup>‡</sup> and Rosane Gomez<sup>†</sup>

<sup>†</sup>Programa de Pós-Graduação em Ciência Biológicas: Farmacologia e Terapêutica (PPGFT), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90040-060, Brazil

<sup>‡</sup>Programa de Pós-Graduação em Ciência Biológicas: Bioquímica, UFRGS, Porto Alegre 90050-170, Brazil

Supporting Information

ABSTRACT: Devastating effects of exposure to alcohol and tobacco smoke on health are extensively reported in the literature. However, few studies have attempted to elucidate the consequences of their combined use on the central nervous system. Here we studied the effect of this combined use on some oxidative, inflammatory, and neurotrophic parameters in the hippocampus, striatum, and frontal cortex of rats. Adult Wistar rats were allocated into control (CT), alcohol (AL), tobacco smoke (TB), or combined (ALTB) groups. Rats were exposed to environmental air (CT and AL groups) or to the



smoke from six cigarettes (TB and ALTB groups) immediately after tap water (CT and TB) or 2 g of alcohol/kg (AL and ALTB) oral gavage administration, twice a day, for 4 weeks. On day 28, rats were euthanized and areas of the brain were dissected to evaluate some cellular redox parameters, pro-inflammatory cytokine levels, and brain-derived neurotrophic factor (BDNF) levels. A one-way analysis of variance showed that the ALTB combined treatment significantly increased oxidative stress levels in the hippocampus. ALTB also increased interleukin-1 $\beta$  levels in the striatum and frontal cortex and tumoral necrosis factor- $\alpha$  levels in the frontal cortex compared with those of AL, TB, and CT rats. Combined treatment also decreased the BDNF levels in the frontal cortex of rats. Oxidative damage was found, more importantly, in the hippocampus, and inflammatory parameters were extended to all areas of the brain that were studied. Our results showed an interaction between alcohol and tobacco smoke according to the area of the brain, suggesting an additional risk of neural damage in alcoholics who smoke.

**KEYWORDS:** Cytokines, cigarette, ethanol, neurotrophine, neurotoxicity, oxidative stress

#### INTRODUCTION

According to the World Health Organization, the harmful use of alcohol causes great disease, social, and economic burdens. Alcohol use disorder causes more than 60 diseases and is associated with violence and road traffic accidents related to more than 3 million death per year.<sup>1</sup> Similarly, tobacco consumption is an epidemic and one of the greatest public health problems.<sup>1,2</sup> Active or passive tobacco smoking is associated with more than 6 million deaths per year, related to pulmonary, cardiac, and vascular diseases and different forms of cancer.<sup>2</sup> Although these alarming numbers are related to alcohol use and tobacco smoke, few studies have attempted to elucidate the biological and functional consequences of their combined use on the central nervous system (CNS). This is a relevant problem because studies have shown that almost 80% of alcoholics smoke regularly and smokers consume more alcohol per occasion than nonsmokers.<sup>3,4</sup> Additionally, smokers

consume alcohol in a larger quantity per occasion and more frequently than nonsmokers.<sup>4</sup> There is no evident reason for the prevalence of the combined use, and as mentioned above, few studies have explored the consequences of this association.

In vitro and in vivo studies showed that alcohol and its metabolite, acetaldehyde, changed the cellular redox status in the brain, generating oxidative and nitrosative stress and decreasing antioxidant enzyme levelss, with biomolecule damage being a consequence.<sup>5,6</sup> Moreover, chronic alcohol use has been recognized as a systemic inflammatory disease.<sup>7-9</sup> Indeed, alcohol use increases plasma levels of pro-inflammatory cytokines in humans and rodents.<sup>7,8,10</sup> In the brain, levels of cytokines such as tumor necrosis factor  $\alpha$  (TNF- $\alpha$ ) and

Received: August 11, 2018 Accepted: January 17, 2019 Published: January 17, 2019