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RESUMO

A primeira parte da tese apresenta uma nova expressão para a solução fundamental

Magneto-Eletro-Elástica explícita em termos de autovalores de Stroh, bem definida para

autovalores repetidos, e exata. Em seguida, uma série de Fourier dupla é utilizada como

uma forma rápida e robusta para avaliar a solução fundamental e as suas derivadas. As

expressões recém-desenvolvidas permitem calcular os coeficientes de Fourier para qual-

quer simetria ou anisotropia de material, o que é feito apenas uma vez para um dado

material. Diversos resultados são apresentados para materiais elásticos, piezoelétricos e

magneto-eletro-elásticos. A segunda parte desta tese apresenta uma formulação completa

para análise de sensibilidade em estruturas elasticas anisotrópicas baseada nestas funções

de Green recém apresentadas, incluindo condições de contato. A sensibilidade à parâ-

metros é avaliada utilizando o método do incremento complexo, método extremamente

robusto, similar a diferenciação finita (FD), mas independente do tamanho do incremento.

Problemas de contato de Hertz e não Hertzianos foram resolvidos, assim como um estudo

de aplicação de uma palheta de turbinas a gás. Foi avaliada a sensibilidade à variação de

forma das tensões de contato, tensões cisalhantes máximas e também nas tensões equi-

valentes de Von Mises, em diferentes materiais anisotrópicos. Os resultados mostraram

boa correlação com soluções analíticas assim como em outros trabalhos da literatura.

Quando comparado com FD, que não obteve convergência em um dos exemplos, o mé-

todo CS demonstrou excelente estabilidade e precisão para uma larga faixa de tamanhos

de incremento.

Palavras-chave: Elasticidade anisotrópica; Magneto-Eletro-Elasticidade; Funções de Green;

Método dos Elementos de Contorno; Sensibilidade de Forma; Método do Incremento Com-

plexo; Contato com Atrito.
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ABSTRACT

The first part of the thesis presents a new expression for the magneto electro elastic (MEE)

fundamental solution which is explicit in terms of the Stroh’s eigenvalues, remains well-

defined for repeated Stroh’s eigenvalues and is exact. We then define a fast and robust

numerical scheme to evaluate the function and its derivatives based on a double Fourier

series representation. These newly developed expressions allow to compute the Fourier

coefficients for any material symmetry or anisotropy, and is done only once for a given

material. One evaluates the Green’s function and its derivatives through simple trigono-

metric formulas. Several results are presented for elastic, piezoelectric/piezomagnetic and

magneto-eletro-elastic materials. The second part of the thesis provides a BEM-based

formulation for shape sensitivity analysis of anisotropic elastic media, also including con-

tact conditions, and based on the newly presented Green’s functions. The parameter

sensitivity is evaluated using the complex step (CS) method: An approach similar to fi-

nite differentiation (FD), with the advantage of being step-size independent, therefore an

extremely robust method. A convergence study on shape sensitivity is provided, proving

the efficiency of the CS-BEM approach. We solve Hertz and non-Hertzian type contact

problems as well as an application example of a dovetail joint found in gas turbines. We

analyzed several parmeter sensitivities to shape variation, such as contact pressure, shear

stress, as well as Von Mises stress, for both isotropic and anisotropic materials. The re-

sults showed good agreement with analytical solutions, as well as other works from the

literature. In comparison with FD, which did not converged for an example case, the CS

method showed excellent stability and precision for a broad range of step sizes.

Keywords: Shape Sensitivity; Anisotropic Elasticity; Magneto-Electro-Elasticity; Green’s

function; Boundary Element Method; Complex Step Method; Frictional Contact.
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ê Direction coordinate versor (‖ê‖ ≡ 1)
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1 INTRODUCTION

This chapter presents the motivation, objectives, and related literature support-

ing the development of this work. To provide some insights on the current engineering

applications, in Section 1.1.1, we address some recurring industrial examples.

1.1 Motivation

Contact problems occur often in engineering. While some of them may be sim-

plified or even assumed to be irrelevant, there exist cases where they are the reason for

the existence of that particular engineering problem. With the fast growth on the use

of advanced and high-performance materials in engineering, raises the need for highly

accurate numerical software for life-cycle prediction, where the contact stresses are a cru-

cial parameter. Tear, wear, fretting, among others, are all phenomena which could arise

by the occurrence of contact. The optimal design of contact shape in engineering struc-

tures can increase the fatigue life of components and also reduce the need for corrective

maintenance.

As stress smoothness in the contact zone has a direct influence on fatigue life and

sliding and friction-related wear [Collins and Dooner, 2003], the optimal shape between

contacting structures is a recurring subject of research. Haslinger et al., 1988, for instance,

treated this theme on a unilateral contact problem, with and without friction, to reduce

a preexisting stress concentration. In their work, the total potential energy was used as

a cost function to obtain contact shape without stress concentration. The authors con-

cluded that the minimization of this energy, in fact, leads to a constant distribution of flux

on the contact surface. In Haslinger, 1991, and Klarbring and Haslinger, 1993, the same

principles were applied to obtain a constant distribution of contact pressure through shape

optimization. In Haslinger and Klarbring, 1993, the authors proposed a different cost func-

tional, which resulted in constant contact traction. Fancello et al., 1995, compared the

two cost functions from Haslinger et al., 1988, and Haslinger and Klarbring, 1993, with

considerable differences in the resulting contact traction distribution. Haslinger, 1999,

demonstrated that the functionals on contact shape optimization are only directionally

differentiable. Furthermore, their derivatives result in another quadratic programming

problem. Vondrák et al., 2010, performed contact shape optimization for 3D FEM prob-
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lems using a domain decomposition method designed for parallel implementation. Wei

et al., 2017, proposed a new shape derivative methodology based on the adjoint variable

method, for nonlinear structures subject to contact without friction. Zhang and Niu,

2018, formulated a relaxation model to avoid null sensitivities on the free parts of the

boundary, aiming to perform shape optimization in constrained contact force problems.

The authors consider plane-strain and axisymmetric examples using the finite element

method (FEM) and the globally convergent method of moving asymptotes (MMA).

It is also possible to find works combining shape and topology optimization, under

the influence contact conditions, or to find a better contact stress smoothness. One

may notice that gradient-based methods, in particular, the Solid Isotropic Material with

Penalization (SIMP) and level set (LS) methods, are the most efficient, and very often

are preferred over their alternatives [Niu et al., 2019].

Fancello, 2006, performed topology optimization considering contact and local fail-

ure constraints for multiple load cases, using SIMP. Luo et al., 2016, employed the adjoint

variable method on the topology optimization of hyperelastic structures under sliding con-

tact supports by a mathematical programming algorithm. Strömberg and Klarbring, 2010,

minimized the compliance under a volume constraint, considering unilateral contact for a

3D support. Jeong et al., 2018, obtained considerable different topologies for bonded and

contact type interfaces. The authors minimized structural compliance while satisfying a

volume constraint. Sensitivity was calculated using the adjoint method. Strömberg, 2018,

is one of the few works considering contact and anisotropic materials. One of the latest

papers using SIMP, Niu et al., 2019, provides an extensive literature review of topologi-

cal optimization methodologies including contact conditions. The authors employed the

adjoint method for the shape sensitivity derivation and estimated the contact pressure

sensitivity to the design variables with an additional FEM analysis.

Among the works which use the LS method is possible to list: Myśliński, 2008,

proposed a LS algorithm for shape and topology optimization, for the case of a body in

contact with a rigid foundation. For the minimization of normal contact stress, the au-

thors employed the material derivative-adjoint variable (MADV) for the shape derivative;

Liu et al., 2016, using the extended finite element method (XFEM), considered cohe-

sive interface effects in the topology and shape optimization. The authors employed a

multi-phase material and calculate the objective function sensitivities using the adjoint
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method; Maury et al., 2017, used the LS method along with various objective functions

to optimise the topology and shape other than the contact boundaries. The authors used

two approaches (i) minimize volume under a compliance constraint and (ii) optimize the

contact pressure with a volume constraint. Shape derivatives were calculated using the

MADV. A considerable number of plane optimization examples were solved and a few

similar cases with 3D geometry. Although the shape profiles obtained in 3D are similar

to the ones in 2D, they have considerable differences along the third dimension, which is

motivation to employ 3D formulations for real use-cases. Also, different friction laws or

frictionless contact seem to influence the optimal shape considerably; Lawry and Maute,

2018, developed a shape and topology optimization based on the LS considering two dif-

ferent components or phases. The formulation considers finite strains and adopts XFEM.

That work enforces the contact restrictions with a method similar to the augmented La-

grangian.

Among the works above, one finds two main characteristics crucial to the opti-

mization performance and quality:

(i) Sensitivity accuracy: Fancello, 2006, for instance, has developed integral forms

for the sensitivity, based on boundary only integrals, but a volume integration scheme was

adopted due to poor FEM boundary results; Lawry and Maute, 2018, analyzed several

problems to determine the sensitivity accuracy and investigates the semi-analytic method

comparing it with direct finite differentiation (FD); Zhang and Niu, 2018, also employed

the traditional semi-analytic sensitivity scheme differentiating the structural response with

the design variable.

(ii) Contact solution quality: Although the FEM is the base of these works, Liu

et al., 2016, adopted the XFEM, which allows representing the contacting parts of the

problem with greater accuracy; Lawry and Maute, 2018, used the XFEM enrichment for

both the finite strain assumption and for the contact problem using a surface-to-surface

integration.

What is found in the aforementioned works, is that the consideration of 3D prob-

lems showed significant influence on the optimal shapes and topologies. In many of these,

dealing with topological optimization only, the contact shape is not allowed to change.

Most works focus on stiffness maximization subjected to a volume constraint. Although

one can consider a variety of objective functions, Calvo and Gracia, 2001, showed that
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the vast majority of them result in a boundary-only integral formulation in which the

boundary element method (BEM) offers many advantages. Nevertheless, achieving a uni-

form distribution of contact pressure is still a challenging issue in structural optimization

of continuum structures [Niu et al., 2019]. Ostanin et al., 2017, presented the BEM as a

powerful method to be used on structural optimization, due to its sensitivity precision,

the possibility of boundary only representation, allied with the scalability and speed of

the fast multipole method (FMM).

Sensitivity analysis is a critical task for all the gradient-based shape or topological

optimization algorithms aforementioned. Even tough Strömberg, 2018, shows that for

orthotropic media, different material orientation results in entirely different material dis-

tributions, however, neither of these works studied the influence or considered the effects

of material anisotropy in the optimal contact shape of these structures. Due to this sce-

nario, the development of fast and reliable sensitivity algorithms is an utmost necessity.

Therefore, without an efficient and reliable contact stress prediction, there are no possible

means for this achievement.

The objective of this work is to provide a framework for sensitivity analysis of 3D

anisotropic structures based on the BEM, including contact type boundary conditions,

which, to the best of our knowledge, one can not find in the literature.

The motivation for the development of these procedures is related to the advan-

tages of BEM, including its contact stress accuracy, and the reduction of the problem’s

dimension, i.e., the boundary only representation, which provides simpler meshing and

modification, among many other advantages (see Ostanin et al., 2017, for instance).

1.1.1 Engineering application

According to Langston, 2015, and also reported by Koff, 1989, single crystal blades

have been the answer for combined increases in military engine thrust, creep resistance,

and their subsequent fatigue life. Over the years, these blades migrated to civil aircraft

engines to provide fuel economy, and to dedicated power generation turbines, with blades

four to five times the size of the aircraft ones [Langston, 2015]. The addition of a steam

turbine to the cycle due to this increase in output temperature can yield over 60% net

energy efficiency to the combined cycle [Vandervort et al., 2016].

According to Lee et al., 2011, more than 80% of the CO2 emissions are due to the
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energy production industry. Also, fossil fuel engines’ emissions play a crucial role in the

increase in mean global temperature, and they are expected to continue increasing along

the years [Macmillan, 2010]. Power plants based on gas-turbines are among the best

solutions in terms of reducing this environmental impact, since their environmentally

harmful gas emissions, including NOx, are much lower than any other heat engine [Lee

et al., 2011]. Also, due to their higher thermal efficiency and fuel flexibility, these systems

have been increasingly applied over the last years. Their fuel flexibility allows utilization

of biomass, which has a lower economic cost ($/GJ) than natural gas and can sustain

near null CO2 emissions [Moharamian et al., 2017].

The key aspect in the construction of these engines is mechanical contact: the as-

sembly mechanism of the hundreds of blades which provide air compression and transform

heat in mechanical energy is through contact couplings such as fir-tree and dovetail types

(Figure 1.1), being a recurrent motivation as well as direct subject of research [Arakere

and Swanson, 2000; Arakere et al., 2006; Xue et al., 2014; Bagault, 2013; Bharatish et al.,

2018].

Although these blades suffer corrosion due to their operating conditions, a failure

mode frequently found in the literature is in their connections [Ruiz and Nowell, 2000],

and generally occurs due to fretting fatigue [Carter, 2005; Shi et al., 2016; Barella et al.,

2011; Yang et al., 2017; Rani et al., 2017], caused by the combination between fretting

and cyclic tangential loading [Arakere and Swanson, 2000]. Therefore, the development

of numerical methods for their design optimization must provide excellent contact stress

accuracy, where the BEM lies as a strong candidate [Reyhani et al., 2013; Brandão et al.,

2016].

Another application example of highly anisotropic materials which commonly finds

contact conditions are fiber reinforced plastic (FRP) composites. Their usage is in con-

stant rise due to their lightness and toughness. The easiness of manufacturing intricate

shapes without expensive machinery and tooling is another advantage over metallic struc-

tures [Jones, 1999].

Although these structures are usually designed to carry large loads per unit weight,

they are not as resistant to the compression loads generally occurring in contact inter-

faces and are known to have a lower bearing strength than the traditional metallic and

ceramic materials. Many FRP parts must provide metallic inserts [Jones, 1999; Camanho
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and Matthews, 2000] to allow their assembly and alignment by conventional fasteners

or pins, which can cause a negative influence in their weight, stiffness, and durability.

Henceforth, the development of numerical software capable of correctly reproducing their

elastic behavior and failure is key to their engineering analysis and design [Camanho and

Matthews, 1999; Tserpes et al., 2002; Warren et al., 2016].

Figure 1.1 – Single crystal HPT blade for CF6-80E engine (General Electric). [Adapted

from: Walston et al., 2005]

1.2 A review of BEM applications in structural optimization, shape sensi-

tivity considering anisotropic elasticity and contact problems

In the last decades, BEM has appeared as a popular alternative to FEM, particu-

larly in situations where it does not perform well. The characteristics that makes BEM

attractive to its application in engineering problems come from its mathematical founda-

tion: Contrary to the FEM, which comes from a weak formulation, the BEM comes from

the integral form of the inverse governing problem. The weighting functions employed

(fundamental solutions) have the same continuity requirements from the analytical solu-

tion, which gives to the method an exceptional precision [Beer et al., 2008; Brebbia et al.,

2012].

One of the most relevant BEM characteristics is that it just requires the boundary

information. Besides greatly simplifying tasks such as mesh generation, this BEM charac-
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teristic allows a more straightforward computer aided design (CAD) integration because

it is closer to the geometric definition. Beyond that, unlike FEM’s stiffness matrix which

is defined node-to-node, needing an explicit connection between the elements to transfer

the volume load, BEM does not need this connection, allowing for local mesh refinements,

an attractive characteristic for contact problems, where small fractions of the geometry

may need a more detailed discretization than the rest.

In BEM displacement and traction are primal variables, an attractive characteristic

to solve contact problems, leading to better accuracy, also it is easier to treat bonded

contact problems by a simple introduction of the compatibility conditions at the contact

interface. Moreover, since the contact is a boundary-only non-linearity, there is no need

to rewrite the boundary integral equations (BIE).

Fast matrix-vector product approximation schemes such as the adaptive cross ap-

proximation (ACA) [Bebendorf and Rjasanow, 2003], and the FMM [Rokhlin, 1985; Liu,

2009], which reduce the method’s computational cost has been proven to increase per-

formance while maintaining solution quality [Ostanin et al., 2017]. Therefore, they allow

large-scale simulations with BEM, which would otherwise require a computer cluster, in

desktop computers. It also reduces considerably the method’s computational cost, which,

allied with the excellent precision and easiness of re-meshing, brings a diversity of advan-

tages during the product conception. The isogeometric shape definition is another feature

which increases the attention to BEM [Li and Qian, 2011], as the boundary meshing can

be superseded by the CAD definition itself, cutting analysis preprocessing time which,

depending on the geometry and simplicity of the analysis tool available, can be not only

time-consuming but also tediously empirical. Campos et al., 2017, provide a considerable

review on this topic.

1.2.1 3D contact solution with BEM

Most of the works considering contact with BEM throughout the years were plane

or axisymmetric [Andersson, 1981; Man et al., 1993; Blázquez et al., 1998]. Blázquez

et al., 2006, is one of the first considering anisotropic elasticity.

Until recently, 3D BEM challenged the available computational power, meaning

high computation time, or limited to relatively small problems. Many methodologies

have arisen to manage this problem and were superseded by FMM and ACA methods.
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In one of the first 3D contact applications, París et al., 1992, used constant trian-

gles to solve 3D contact problems without friction to overcome the difficulties involved

with memory requirements. As the constant element have only one central collocation

point, it has a total of three degrees of freedom (DOF) per element. Also, due to its

unitary interpolation function, the integration can be performed analytically for most

kernels, resulting in a fast assembly and solution. That work used the well-known itera-

tive procedure to find a compatible contact solution. Although the high contact traction

gradients are challenging to interpolate, the constant boundary element is not found to

increase the problem’s stiffness [París et al., 1992]. Besides using fewer elements within

the contact area, the obtained results were in good agreement with finer meshes using 2D

BEM and FEM.

Frictionless contact problems only need to fulfill the simple unilateral contact con-

dition, i.e., the non-negative distance between the bodies and non-positive surface trac-

tions. Ghaderi-Panah and Fenner, 1998, propose a similar approach to the one found in

Katsikadelis and Kokkinos, 1993: An iterative procedure tries to guess the initial contact

state, and iterates until it fulfills all possible contact restrictions. The algorithm checks

are of interpenetration outside the contact zone or the existence of tensile stress. The au-

thors included the matrix forms of the generated system of linear equations (SLE), using

node to node contact. In one of the examples (a flat punch on an elastic foundation), the

authors compared their results with the ones seen in París et al., 1992. While Segond and

Tafreshi, 1998, used linear triangles, Leahy and Becker, 1999, used the 8-node quadratic

rectangular element, both 3D contact formulations performed iterative checking of tensile

stress and interpenetration at each incremental loading step. Espinosa and Mediavilla,

2012, presented a purely iterative process to solve thermoelastic contact problems with-

out friction. Comparing the obtained solutions with 2D and 3D algorithms the authors

concluded that the 3D solution provides better results on the coupling’s thermal resis-

tance. Sfantos and Aliabadi, 2007, developed a wear modeling solution using BEM, with a

simplification that does not consider friction, taking the material loss into account via ge-

ometry updates. The authors validated the BEM procedure against analytical solutions,

experimental data, and FEM results.

The iterative-incremental technique was also successfully applied in frictional prob-

lems, such as Sahli et al., 2008, which suggested two approaches for non-conforming fric-
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tional contact using 3D BEM. The contact state solution is iterative, with an incremental

loading procedure. Examples considered were of a flat punch and a cylinder-flat inden-

tation. Yu et al., 2005, applied the FMM to accelerate the 3D BEM on the solution of

frictional contact. The authors used a point to surface non-conforming coupling algorithm

by interpolation of the target point at the secondary body. The contact conditions were

applied using a mathematical programming approach, while a GMRES(m) algorithm was

employed to solve the contact problem iteratively in a two-step approach, similar to the

Uzawa method. As an example, the authors solved a flat punch problem. Chen et al.,

2010 also used the mathematical programming approach and the FMM, now based on

Taylor series, using a node to surface coupling scheme, for frictional contact problems.

The Penalty and Lagrange multiplier methods are well-known regularization ap-

proaches to deal with the inequalities arising in contact problems, and they are also found

in algorithms using BEM. Yamazaki et al., 1994b, solved 3D contact using the penalty

parameter formulation from a previous work Yamazaki and Mori, 1989,. The problems

analyzed were of the Hertzian kind, and most meshes presented very distorted elements,

which does not seem to hinder the results. Weber et al., 2011, used the penalty method to

consider frictional contact on the analysis of crack closure problems in fatigue simulation.

González et al., 2008, and Rodríguez-Tembleque et al., 2008, treated the contact

coupling between FEM and BEM problems using the notion of localized Lagrange mul-

tipliers. These works propose a coupling method which interpolates the displacements

and does the traction-force transformation and interpolation in an intermediary surface,

called the contact frame. Rodríguez-Tembleque and Abascal, 2010, motivated by these

previous works, used the same Augmented Lagrangian formulation based on Alart and

Curnier, 1991, which circumvents some weaknesses existing on the Lagrangian multiplier

and penalty methods. The contact restrictions are imposed using projection functions,

resulting in a robust framework for both FEM and BEM frictional contact analysis. By

taking advantage of the traction and gap normal complementarity, the authors reduced the

DOF needed for the system solution. As these functions result in a non-linear system of

equations, the authors use the generalized Newton method with line search (GNMls). The

GNMls is a generalization of the standard Newton’s method to B-differentiable functions1,

with an unconstrained optimization (line search) between each iteration to accelerate its
1See, e.g., Pang, 1990.
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convergence. Rodríguez-Tembleque et al., 2010, studied wear in rolling contact problems,

while Rodríguez-Tembleque and Abascal, 2010, use this method to solve rolling contact

problems coupling FEM and BEM. In these works, the tangential slip velocity also plays

a role in the system of equations and contact restrictions.

1.2.2 Anisotropic BEM and Contact

Since the 1970s, applying BEM in 3D anisotropic elasticity was a matter of much

interest. However, methods for numerically evaluating fundamental solutions, in this case,

resulted in elevated relative computational cost, Vogel and Rizzo, 1973, for instance, have

not solved any numerical example, but presented the formulation to compute the needed

fundamental solutions in detail. The references for these functions were the works of John,

1955, Synge and Rheinboldt, 1957.

Wilson and Cruse, 1978, discussed the heavy dependence of the anisotropic 3D

BEM on efficient methods for evaluating the fundamental solutions and proposed an

approximation method using cubic interpolation and precomputation of tabulated values

on a sphere. Wilson and Cruse evaluated the line integrals numerically, using Simpson’s

rule, and forms a database of modulation functions, which are the material and position-

dependent part of the fundamental solutions (the second Barnett-Lothe tensor). This

methodology is often called as the Wilson-Cruse approach.

Sales and Gray, 1998, developed a formulation based on residue calculus [Svesh-

nikov and Tikhonov, 1971] and found it to be four times faster than the Wilson-Cruse

approach, which, according to the authors, was not very practical due to the pre-calculated

tables storage cost. Also, the cubic interpolation could lead to errors in materials with

mechanical behavior more than moderately anisotropic. This solution is not stable for

the degenerate case, and more recently, Phan et al., 2005, provided a solution for this

problem with some algebraic enhancements to reduce its computation time. Ting and

Lee, 1997, appear in the literature as the first complete fundamental solution for general

anisotropic elasticity in explicit form in terms of the Stroh’s eigenvalues [Stroh, 1958] also

valid when these are equal, a key feature on the implementation of a general BEM code.

Over the years, many anisotropic BEM related works focus on fracture mechanics.

Pan and Yuan, 2000b, studied stress concentration in cracked transversely isotropic solids

using 3D BEM and fundamental solutions from Pan and Chou, 1976.
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Tonon et al., 2001, presented a complete 3D BEM implementation for anisotropic

elasticity, including internal stress. The authors approximate complicated parts of the

second-order derivative by a Lagrange polynomial, an approach proposed by Pan and

Tonon, 2000, for piezoelectric solids.

Wang and Denda, 2007, performed analytical integration of the triangular bound-

ary element, using the fundamental solution in integral form. This way, one can obtain

boundary element matrices by performing a line integral over a semi-circle. The authors

present numerical examples considering a cube and a spherical cavity for some anisotropic

materials like aluminum crystal and sapphire.

Benedetti et al., 2009, developed a fast large-scale Dual BEM for the analysis

of cracked anisotropic solids using the Wilson-Cruse approach, with ACA acceleration

algorithm. They investigate optimum preconditioning schemes by performing many com-

parisons on the solution speed, and also the influence of the modulation function approx-

imation on the final solution accuracy.

Approximated fundamental solutions are also found in Shiah et al., 2012, using

a Fourier series approach. Tan et al., 2013, presented a simplified and real-valued for-

mulation for these, implemented in a BEM code. Later, these functions were applied by

Rodríguez et al., 2014, along with the ACA on large scale problems. These approximated

modulation functions are much faster to compute than their analytic counterparts and

are also more general due to their dependence on pre-computed coefficients only.

Távara et al., 2008, presented real-valued equations for the particular case of trans-

versely isotropic solids in their unique explicit form. Távara et al., 2012, presented a

formulation for the second-order derivative of the Green’s function in the same fashion as

their previous work, to evaluate internal stress through the hypersingular integral identity.

Buroni et al., 2011 and Buroni and Sáez, 2013, used the Stroh’s formalism and

residue calculus to obtain the Green’s function and its first-order derivative for general

anisotropy. These functions are explicit in terms of the Stroh’s eigenvalues, and the residue

theorem provided an alternative formulation to deal with degeneracies appearing when

eigenvalues are close to each other. Buroni and Sáez, 2010, provided these functions for

fully coupled magneto electro elastic (MEE) materials.

One of the first anisotropic 3D BEM application in contact problems is due to

Rodríguez-Tembleque et al., 2011, where the augmented Lagrangian provided the contact
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restrictions using projection functions. The fundamental solutions employed were the

formulation from Buroni et al., 2011. The authors obtained excellent agreement with

analytic solutions using relatively coarse BEM meshes in comparison with the works

of Alart and Lebon, 1998, Peillex et al., 2008, Lovell, 1998, and Arakere et al., 2006, for

instance, where the FEM mesh refinement is extreme. Rodríguez-Tembleque et al., 2013a,

and Rodríguez-Tembleque et al., 2013b, focused their studies in the 3D contact between

polymer composites, using similar formulations as their previous work. As the frictional

contact restrictions result in a non-linear system of equations, solved the problem with

two different methods: GNMls, and the iterative (Uzawa) approach. Both procedures are

due to Alart and Curnier, 1991.

The general approach used in these works, based on the augmented Lagrangian

with projection functions, is also found in several other works [González et al., 2008;

Rodríguez-Tembleque and Abascal, 2013; Rodríguez-Tembleque et al., 2016; Cavalcante

et al., 2017; Rodríguez-Tembleque et al., 2019], proving its reliability and efficiency.

1.2.3 Shape optimization and sensitivity

Dostál et al., 1996, stated that BEM is more adequate than FEM in shape opti-

mization, as the domain remeshing hinders the accuracy of the shape derivatives in the

latter. Zhang and Niu, 2018, for instance, had to apply a Laplacian smoothing tech-

nique on the interior nodes to avoid mesh distortion. Also, it needed a considerably fine

mesh in the contact area, which hinders its application for 3D problems, due to the high

computational cost.

Since the 80s, the well-known advantages of BEM in shape optimization and its

subsequent application in these problems has motivated shape sensitivity development

with the method [Barone and Yang, 1988, 1989]. For instance, Soares et al., 1984, opti-

mized shaft cross-sections for maximum torsional stiffness and Mota Soares et al., 1984,

optimized the shape of plane structures for minimum compliance.

Barone and Yang, 1989, one of the first works to deal with 3D shape sensitivities,

performed an error analysis, showing that the general sensitivity results were extremely

accurate. According to Kočandrle and Koška, 1996, there are two basic methods for deriv-

ing shape sensitivities: MADV and implicit differentiation (ID). Although these methods

rely on numerical integration, they are often called analytical methods. Bonnet, 1997, per-
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formed a profound analysis, concluding that the implicit differentiation approach remains

valid under the assumption of regularized BIE from Guiggiani et al., 1992, Guiggiani

et al., 1992, such that the resulting sensitivities possess the same level of singularity as

the governing BIE. The author based his proof on the context of the spherical limiting

process on the Somigliana’s identity, i.e., proving that boundary perturbations do not

alter the free term arising from the limit. Yamazaki et al., 1994a, performed shape op-

timization of 3D isotropic structures using a mathematical programming approach using

ID.

Erman and Fenner, 1997, proposed the evaluation of the sensitivity to the normal

outward direction at the design variable point, reducing the computational time by a

factor of three. The resulting sensitivities must be obtained through hypersingular inte-

gration, which was performed via element subdivision and with the rigid body translation

technique. Sensitivities were calculated for simple examples comparing it with FD.

Shape sensitivity also has been used for the computation of stress intensity factors

[Matsumto et al., 2000] and for more general fracture analysis, related to crack shape

sensitivity [Bonnet, 2001]. Tafreshi, 2015, used an ID shape sensitivity approach for cal-

culating the J2 integral. Tafreshi, 2016, performed a similar analysis on bi-material prob-

lems. Morse et al., 2019, analyzed the mechanical reliability of structures for creep with

a viscoelastic material consideration on plane-stress problems. The analysis employed a

high-order shape sensitivity formulation, obtained with ID.

The MADV was the method used in Burczyński et al., 1995 and Burczyński et al.,

1997, that compared it with the ID method, and next by Kočandrle and Koška, 1996,

which performed shape optimization of 3D structures using the design sensitivity method-

ologies from Choi, 1987 and Choi and Kwak, 1988. Calvo and Gracia, 2001, investigated

the MADV shape sensitivity approach in functional form, similar to that Fancello, 2006,

in FEM. This treatment is useful in the context of BEM, as, in general, all shape deriva-

tives result in boundary-only integrals. Notice also that, according to Rus and Gallego,

2007, the ID technique requires significantly less discretization density than the MADV

approach developed by Burczyński et al., 1995.

Tai and Fenner, 1996, optimized the position of holes in a bracket for two cases: (i)

minimizing the maximum equivalent stress and (ii) to equalize the force between them.

The authors suggested a coordinate transformation that reduces the singularity of the
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shape derivative kernels, simplifying their integration. The displacement and traction

shape derivative kernels are integrated using Gauss quadrature and rigid body displace-

ments, respectively.

Li and Qian, 2011, for instance, optimized the shape of 2D and 3D structures using

non-uniform rational B-spline (NURBS) based isogeometric BEM and gradient based

shape optimization (MMA). The authors solved two examples based on minimizing the

volume under maximum stress constraints. The first problem solved was a 3D fillet on

a shaft under axial stress, while the second problem is the optimization of several shape

variables of a connecting rod.

Kita and Tanie, 1997, used BEM along with genetic algorithms to find the shape

of a 2D beam under uniform pressure. The authors adopted minimum mass objective

function and maximum stress restrictions. Although this kind of algorithm avoids sen-

sitivity calculation, it resulted in a high computational cost: The beam example took

100 iterations to converge, each considering 50 analyses. The gradient-based algorithm

used in Li and Qian, 2011, appears to be more efficient than the one used by Kita and

Tanie, 1997, with reduced iterations and fewer design variables than the equivalent ge-

netic populations. Nevertheless, no work in the literature directly compared these two

methodologies under similar conditions.

Rus and Gallego, 2005, employed shape sensitivity on inverse elastodynamic prob-

lems to find the position of defects in non-destructive testing. Later, Rus and Gallego,

2007, investigated the semi-analytic shape sensitivity performance.

The BEM has been successfully applied in LS methods for structural optimization

based on shape sensitivity analysis on plane problems [Ullah and Trevelyan, 2016] and

also in 3D ones [Ullah et al., 2015].

Lian et al., 2016, use the regularized isogeometric BEM for shape optimization

of plane problems. The advantage of this regularized BIE, is that it yields the same

singularity for sensitivity as in the original problem.

Ostanin et al., 2017, proposed a shape and topology optimization procedure based

on a scalable implementation of the kernel independent fast multipole method. That work

is practically an extension to three dimensions of çthe hard-kill material removal method

from Marczak, 2008, using cubic voxels.

Sfantos and Aliabadi, 2006, one of the few works considering contact sensitivity,
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performed ID of the boundary integral equations. The authors solved a cylinder-block

contact problem, in which they compared the sensitivity results with FD, and finds that

ID is more reliable and more precise than direct FD.

One of the few works considering anisotropy influence on the optimal shape,

Tafreshi, 2005, performed shape optimization of composite structures under plane-stress

conditions. The author minimized the elastic compliance under stress, volume, and di-

mensional constraints. Tafreshi, 2006, performed shape sensitivity and optimized the

positioning of holes and cutouts on plane composite structures. Tafreshi, 2009, estimated

shape sensitivity of composites under contact conditions using ID.

The FD scheme is a well-known method for approximating derivatives and is ap-

plied for numerous reasons, mainly for its simplicity. One can get the shape derivatives

simply by solving the problem a second time with a small perturbation in the design

variable. In optimization problems, direct FD can be computationally more expensive

due to the number of design variables and iterations, and choosing the appropriate step

size can be time-consuming. Therefore, the semi-analytic method is often preferred.

To avoid the strongly- and hyper-singular integration of the fundamental solutions

derivatives, Saigal et al., 1989, use the semi-analytical method, employing FD to obtain the

required partial derivatives of the BEM matrices. The approach uses the same triangular

factorization from the original system solution, which can save some computational time.

Aithal et al., 1991, evaluated shape sensitivities for 3D problems using multiple regions

and semi-analytic method, based on FD. Although the semi-analytical method depends

on the correct step size selection, the authors found the ID only slightly faster and more

accurate.

Recently, the complex step (CS) method is being increasingly employed as an au-

tomatic differentiation tool [Martins et al., 2003; Mundstock and Marczak, 2009], and an

alternative to FD. The CS method was accidentally discovered by Lyness and Moler, 1967,

which employed the Cauchy-Riemann equations to obtain numerical derivatives of func-

tions using complex variables. Many years later, Squire and Trapp, 1998, demonstrated

that if one evaluates a function with an imaginary increment, the resulting imaginary part

approximates its derivative. In comparison with FD, one avoids computing the function

two times. As this method does not involve a difference, there is no cancellation error,

rendering a numerically exact derivative, once the step size gets small enough, which is
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a huge benefit, in comparison with FD, as the method is much more reliable. Martins

et al., 2001, for instance, showed the application of the CS on an aero-structural solver,

in which the CS method provides excellent results for any step size chosen, while the best

converged FD error is orders of magnitude worse.

The first BEM application of the CS method was done by Gao et al., 2002, to

compute the internal stress on a non-linear formulation, which would otherwise require the

domain integration of the traction fundamental solution derivative (hyper-singular). The

non-linear formulation added even more complexity to the internal stress computation,

which was also avoided using the CS method.

On inverse analysis, which is an optimization problem, Gao and He, 2005, also used

the CS method for shape sensitivity. That work treats plane heat conduction problems

for the identification of internal features with fixed boundary values. A low number of

iterations were needed to find the solutions, which shows the performance of this method

in comparison with others listed in this review.

Mundstock and Marczak, 2009, applied the CS method into a plane BEM imple-

mentation to evaluate shape sensitivities in elastic isotropic problems. The CS was used

to obtain sensitivity of the beam bending and of a thick tube under internal pressure

with respect to design variables in analytic form to provide a comparison case. Then, the

authors solved these two problems with the CS-BEM implementation. The results using

CS-BEM were more accurate than both ID and the MADV from Burczyński et al., 1997.

Although most approaches listed so far employed ID and MADV, they are trouble-

some and one has to deal with higher singularity integrals (or to regularize them), these

methods were the popular choice for sensitivity analysis with BEM. In this context, the

CS method is a powerful tool which enables one to obtain numerous sensitivities without

dealing with hypersingular integration, and is less prone to mathematical and numerical

errors found on the ID or the FD, be it direct or semi-analytical.

To the best of the authors’ knowledge, there is no 3D BEM using the CS method —

either isotropic or anisotropic, nor contact, or any combination of these problems. There-

fore, this work fills an interesting and promising research field, which is the investigation

of the CS method quality and performance in these problems. One can also apply the

CS method in a semi-analytic fashion for higher performance on optimization algorithms,

and combine it with other acceleration approaches.
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1.3 Objectives

In the current literature, there are only a handful of works dealing with three-

dimensional contact with anisotropic BEM formulation. Contact shape sensitivity was

studied only for plane problems, which is an easier problem in the context of the BEM

formulation. None of them, to the best of author’s knowledge, evaluates sensitivities on

3D anisotropic elasticity.

The main objective of this work is to develop a BEM based numerical tool for

the shape sensitivity analysis in three-dimensional contact problems involving anisotropic

materials.

The main idea behind the methodology is to use the CS method to provide the

shape sensitivity automatically. The main building block for this sensitivity analysis

framework is a 3D BEM considering anisotropic elasticity. As it is well-known, funda-

mental solutions for this problem are the recurrent subject of research. To be able to apply

the CS method, we employed a real-valued fundamental solution based on a Fourier series

approximation. This strategy also provides a more efficient BEM computational imple-

mentation, as the same function is valid for any material configuration. Also, this 3D

fundamental solution is faster than the integral and the Stroh’s formalism.

The specific objectives to be accomplished in this work are the implementation of:

• 3D anisotropic fundamental solution based on Fourier series, which is real-valued,

allowing the application of the CS method.

• The CS method.

• Perfectly bonded contact (subregion);

• Frictional contact coupling and a Non-linear solution strategy;

We perform the validation of the proposed methodologies through the solution of

problems with known analytic solutions, as well as problems previously solved in other

works from the literature.

1.4 Contributions

First and foremost, one contribution of this work is to improve the Fourier series

approach for 3D fundamental solutions for general anisotropic elasticity, extending it for
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MEE materials. Also, taking advantage of the Barnett-Lothe tensor period, we redefine

the Fourier series in a manner that halves the terms needed and its computational cost.

These solutions, based on the non-degenerate factorization of the Stroh’s eigen-

values, enable a seamless usage of anisotropic properties, without the problems involved

with previous degenerate formulations.

Also, the Fourier series approximation of the Green’s function derivatives is much

more straightforward than their direct computation, contributing to the easiness of im-

plementation. The Green’s function computation methodology can be used in the inte-

gration of the Fourier coefficients, meaning that other researches, which already have a

slower method implemented, can benefit from our findings.

The second part of this work provides an anisotropic 3D BEM for elastic materials,

based on the Fourier series approximated Green’s function, which one can readily extend

to MEE materials. For that purpose, there are only a few practical modifications to the

code (e.g., treatment of boundary conditions) preventing us from analyzing fully coupled

MEE materials with BEM.

The third part of this work, an additional contribution, is to apply the CS method

to evaluate contact shape sensitivities in anisotropic materials. The single analysis of 3D

shape sensitivity considering anisotropic materials with the BEM is another contribution

of this work. The analysis of 3D shape sensitivity considering anisotropic materials,

performed at the end of Chapter 4 is another contribution of this work, as it is the first

time 3D anisotropic BEM performs this task.

The sensitivity evaluation opens a new field of investigation, which allows us to

take advantage of existing shape optimization implementations to study the optimal shape

of contacting structures with anisotropic materials using the BEM. Nevertheless, one can

study the optimal shape of so-called smart structures by taking advantage of the MEE

solutions we developed alongside this work.

1.5 Work organization

This work is structured in 7 chapters.

On Chapter 2 the Green’s functions are derived for elastic and MEE materials

(including piezo electric (PE) or piezo magnetic (PM)). Numerical results are presented

for these materials along with an anisotropy index study on the Fourier series precision.
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Chapter 3 presents the BIE and its discretization with the BEM.

On Chapter 4 we present the CS method, its integration with the BEM, and

perform a convergence analysis of the method for a 3D elasticity problem.

Chapter 5 describes the contact formulation and its numerical treatment for BEM

formulation. Also, it shows the non-linear system solution method.

On Chapter 6 we present numerical results on example problems, comparing with

analytical and numerical solutions. Sensitivity results using the CS-BEM in comparison

with analytical Hertz solution derivative or finite differentiation.

Chapter 7 closes this work with discussion and conclusions on the results and

performance of our proposed methodologies. Also, we include considerations concerning

the continuity of this work.
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2 GREEN’S FUNCTION FOR GENERAL ANISOTROPIC ELASTIC-

ITY, AND MAGNETO-ELECTRO-ELASTICITY

This chapter is divided into the following topics:

• Section 2.1, basic elasticity equations are presented, providing a theoretical founda-

tion to the following part where Kelvin’s solution is shown, i.e., the isotropic Green’s

function.

• In Section 2.2, we present the classes of symmetries encountered in the elastic con-

stitutive tensor.

• Section 2.3, Green’s function for elastic anisotropy, presents the theoretical founda-

tion and some existing solutions for computing the Green’s function in anisotropic

elasticity.

• Section 2.4 presents the formulation of the coupled MEE problem necessary to obtain

the MEE Green’s function, which is accomplished by a formulation similar to the

elastic one.

Furthermore, this section presents a new formulation for MEE materials in which

the degeneracies appearing from close to or repeated Stroh’s eigenvalues are avoided,

based on simple factorization. This approach, developed alongside this work, is the

basis for a new and general procedure for the computation of Green’s functions using

a fast non-degenerate Fourier series framework, proposed in Section 2.5. Finally,

the non-degenerate MEE Green function smoothness in a near-degenerate case is

demonstrated, including also previous degenerate solution to provide a comparison

case.

• Section 2.5, we propose an enhanced Fourier Series approach for numerical com-

putation of Green’s function and its derivatives, for Elastic, PM/PE, and MEE

Anisotropic materials. We improve a previous formulation reducing by half the

terms needed for the function evaluation by taking advantage of the periodic nature

of Green’s function.

• In Section 2.6, numerical results are presented for the proposed Fourier series so-

lution and compared with previous solutions from the literature. The coefficient
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integration is studied, analyzing the numerical integration of the Fourier coefficients

for the following types of materials: Elastic with cubic symmetry, Piezoelectric

with transversely isotropic symmetry, uncoupled transversely isotropic MEE mate-

rial (PE+ME), and finally a fully coupled anisotropic MEE material. Furthermore,

we present the solution convergence through plotting the error as a function of the

number of terms added in the solution for these materials. This analysis also in-

cludes the error considering the equivalent to the previous solutions from literature

to show the efficiency gains in the convergence of this new solution. Finally, a para-

metric study is performed to analyze the influence of the material anisotropy on the

Fourier series approximation error.

2.1 Isotropic Elastic Fundamental Solutions

Basic Linear Elasticity One of the main objectives of elasticity studies in engineering

are the internal forces resulting from the loads present on structures. The equilibrium

equations governing the static elasticity theory derive from the analysis of the stresses

acting at a point inside of a continuous body. Let us represent the stress state at this

point by an infinitely small cube, as illustrated in Figure 2.1.

x,ux

y,uy

z,uz

σ11 σ12

σ13

σ21 σ22

σ23

σ31 σ32

σ33

Figure 2.1 – Definition of stress on the infinitesimal cube.

Notice that components of equal magnitude and contrary directions equilibrate the
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ones depicted in Figure 2.1. This way, the Cauchy stress tensor is defined as

σ =




σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33


 . (2.1)

In order to respect the equilibrium of moments around all the coordinate system axes the

following conditions must be met

σ21 = σ12, σ31 = σ13, σ32 = σ23. (2.2)

The static equilibrium of forces in the directions x1, x2 and x3 results in the following

equilibrium equations

∂σ11

∂x1

+
∂σ12

∂x2

+
∂σ13

∂x3

+ b1 = 0,

∂σ21

∂x1

+
∂σ22

∂x2

+
∂σ23

∂x3

+ b2 = 0, in Ω,

∂σ31

∂x1

+
∂σ32

∂x2

+
∂σ33

∂x3

+ b3 = 0,

(2.3)

where bi are the body forces acting in the domain. Equation 2.3 is the general static

elasticity equilibrium equations. These equations can be represented in a more compact

mode,

σkj,j + bk = 0, in Ω, (2.4)

where comma denotes differentiation, and repeated indices imply summation.

The infinitesimal strain tensor or linear deformations are calculated as a function

of the displacements as

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (2.5)

The stress-strain or constitutive relation for an isotropic material is defined by

σij = λδijεkk + 2µεij, (2.6)

where εkk is the trace of the infinitesimal strain tensor, δij is the Kronecker delta (or

identity matrix). The Lamé constants λ and µ relate with the longitudinal elastic modulus
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E, and Poisson Coefficient ν, through the following relations,

µ =
E

2 (1 + ν)
, λ =

Eν

(1 + ν) (1− 2ν)
. (2.7)

Isotropic Fundamental Solutions

According to Brebbia et al., 2012, a well-known form to obtain the displacement,

Ulk, and traction, Tlk, fundamental solutions begins by writing the elasticity equilibrium

equations in terms of displacements. Replacing the isotropic stress-strain relation Equa-

tion 2.6, on Equation 2.4, and then in Equation 2.5, which relates displacements and

strains, the Navier’s equation is obtained
(

1

1− 2ν

)
uj,jk + uk,jj +

1

µ
bk = 0 inΩ. (2.8)

Kelvin’s solution for displacements is obtained from Equation 2.8 by applying a

Dirac delta δ(x− x′) at the source point x′ on direction el, so that

bl = δ(x− x′)el, (2.9)

and representing the displacements in terms of the Galerkin vector G,

uj = Gj,mm −
1

2(1− ν)
Gm,jm. (2.10)

Therefore, replacing Equations 2.9 and 2.10 on Equation 2.8, results in

Gl,mmjj −
1

µ
δ(x− x′)el = 0, (2.11)

or,

∇2(∇2Gl)−
1

µ
δ(x− x′)el = 0, (2.12)

which could be also written as

∇2(Fl)−
1

µ
δ(x− x′)el = 0, (2.13)

where

Fl = ∇2Gl. (2.14)
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The solution of Equation 2.13 for three-dimensional problems is

Fl =
1

4πrµ
el, (2.15)

where

r = ‖x− x′‖ (2.16)

is the distance between point x′, where the Dirac delta is being applied, and the field

point x, the observation point, or field point. Replacing Equation 2.15 on Equation 2.13

generates

∇2Gl =
1

4πµr
el. (2.17)

The solution for Equation 2.17 is

Gl = Gel, (2.18)

where

G =
1

8πµ
r. (2.19)

Taking each load independently, one can define Glk, the k-th component of the

Galerkin vector at a point x, where an unit load is applied on direction el at x′,

Glk = Gδlk. (2.20)

Analogously, Ulk represents the displacement at x on direction ek, when a unit load is

applied at x′ on direction el,

uk = Ulkel. (2.21)

In agreement with Equation 2.10, the displacements could be written as

Ulk = Glk,mm −
1

2(1− ν)
Glm,km. (2.22)

Replacing Equations 2.20 and 2.21 in Equation 2.22, one finally obtains

Ulk =
1

16πµ(1− ν)r
((3− 4ν) δlk + r,lr,k) , (2.23)

which is the Kelvin’s solution for the displacement at point x in the direction ek, resulting

from a unit load at point x′ in the direction el.
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Figure 2.2 – (a) Graphical illustration of the fundamental solution point system and (b)

example considering force at direction x1, and the solution components U1l for this case.

The traction vector at the surface Γ (Figure 2.2) can be written as

pk = Tlkel, (2.24)

taking the fundamental solution for a traction on the direction k when a unit load is

applied on point x′ at the direction l

Tlk =
−1

8π(1− ν)r2

{
∂r

∂n
[(1− 2ν)δlk + 3r,lr,k]− (1− 2ν)(r,lnk − r,knl)

}
, (2.25)

where nl is the component on the direction el of the outward normal vector of surface

Γ at the point x. ∂r/∂n is the derivative of r relative to the outward normal vector n

[Brebbia et al., 2012].

2.2 Elastic stiffness tensor symmetries

Let σij be the Cauchy stress tensor, and εij the linear small strain tensor, and let

the generalized Hooke’s law be

σij = cijklεkl, (2.26)

where cijkl is the fourth-order stiffness tensor.

The Voigt notation, or reduced notation, as described by Chadwick et al., 2001, is

11→ 1 22→ 2 11→ 3 23→ 4 13→ 5 12→ 6, (2.27)

thus the fourth order stiffness tensor is reduced to a [6 × 6] matrix, e.g., c1123 = c14,

c3112 = c56. In that fashion, the stress and strain tensors can also be written as vectors,
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i.e.,

σi = cijεj. (2.28)

Letm be the number of independent elastic constants on the elastic tensor. One can

classify elastic materials by the number of crystallographic symmetry planes. According to

Chadwick et al., 2001, this classification can be reduced to eight basic elastic symmetries:

(i) The isotropic, being the simplest one, has infinite symmetry planes and, therefore,

only two independent elastic constants. Its structure is:

C =




c11 c12 c12 0 0 0

c11 c12 0 0 0

c11 0 0 0

⊗ 0 0

⊗ 0

⊗




, ⊗ =
(c11 − c12)

2
, m = 2, (2.29)

According to Head, 1979, the isotropic symmetry is not found naturally in monolithic

crystalline structures, and the simplest crystal is the Hexagonal, followed by the

Cubic crystal.

(ii) The hexagonal crystal has infinite planes of symmetry. It is also known as the

transversely isotropic material, although this is a consequence of having an axis of

symmetry, rather than a direct property as in the isotropic case, and due to this axis

of symmetry, it has five (5) independent elastic constants. A transversely isotropic

material with symmetry axis at x3, behaves isotropically at the plane x1x2, i.e., the

following stiffness tensor arises,

C =




c11 c12 c13 0 0 0

c11 c13 0 0 0

c33 0 0 0

c44 0 0

c44 0

(c11−c12)
2




, m = 5, (2.30)

where c11, c12, c13, c33, and c44 are the only independent elastic constants.

(iii) The cubic crystal, differently to the hexagonal one, has a finite number of symme-
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try planes (nine) but has only three (3) independent elastic constants. The lesser

amount of planes causes the cubic to be worse than the hexagonal (for obtaining

the Green’s function), although it appears to be less complicated for having less in-

dependent constants. Considering the cubic material with its principal axes aligned

with the coordinate system, it has the following stiffness tensor,

C =




c11 c12 c12 0 0 0

c11 c12 0 0 0

c11 0 0 0

c44 0 0

c44 0

c44




, m = 5, (2.31)

where c11, c12, and c44 are the only independent elastic constants, and defining

A = 2c44/(c11− c12), is the Zener‘s anisotropic index which, for A 6= 1, the material

is not isotropic.

(iv) Next in the anisotropy level is the Tetragonal, which has five (5) planes of symmetry

and six (6) independent elastic constants. This material has a stiffness tensor similar

to the transversely isotropic one, but with the shear modulus being independent to

the other constants (similarly to the cubic crystal).

(v) The orthotropic (also known as Rhombic) material has three orthogonal planes of

symmetry (the coordinate planes θ = 0, θ = π/2 and φ = 0) and has 9 independent

elastic constants. Laminated fiber-reinforced composites present this symmetry at

the macro scale, [Lempriere, 1968; Ayorinde and Gibson, 1993; Frederiksen, 1997].

Its elastic tensor for this symmetry has the following configuration

C =




c11 c12 c13 0 0 0

c22 c23 0 0 0

c33 0 0 0

c44 0 0

c55 0

c66




, m = 9. (2.32)

(vi) The first to present coupling between the shear and the normal constants — the
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Trigonal has only three planes of symmetry (at θ = 0 and θ = ±π/3). Although

it has only six (6) independent elastic constants, the stiffness matrix is more pop-

ulated than the Transversely isotropic because some constants are repeated. The

in-plane shear modulus depends on the normal stiffness components as in trans-

versely isotropic materials, e.g., c44 = (c11 − c12)/2, i.e.,

C =




c11 c12 c13 c14 0 0

c11 c13 −c14 0 0

c33 0 0 0

c44 0 0

c44 c14

(c11−c12)
2




, m = 6, (2.33)

where c11, c12, c13, c33, c44 and c34 are the essential elastic constants. Quartz is an

example of such material configuration [see Heyliger et al., 2003].

(vii) The last material configuration which does not possess 21 unique elastic constants

is the Monoclinic. It has only one symmetry plane, which, when aligned with the

coordinate axis, e.g, x1, produces coupling between its shear module, c56 6= 0, and

coupling between the shear and longitudinal modules from all three directions, i.e.,

c41 6= c42 6= c43 6= 0. This situation results in 13 independent elastic constants,

which, considering the symmetry plane is x2x3 at x1 = 0, Ting, 1996,

C =




c11 c12 c13 c14 0 0

c22 c23 c24 0 0

c33 c34 0 0

c44 0 0

c55 c56

c66




, m = 13. (2.34)

(viii) The triclinic crystal has no symmetry planes and all 21 independent elastic con-

stants.
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2.3 Green’s function for General Anisotropic Elasticity

The fundamental solutions brought in Section 2.1, are the basis for the BEM

precision, and for many of the mathematical barriers which are yet objective of advanced

research. One can select these functions matching the problem under consideration, and,

in the case of 3D linear elasticity, it corresponds to the infinite space Green’s function

for displacements (and its derivatives). That function is the particular solution of the

governing differential equations for the displacement resultant at an observation point x,

for a point load (Dirac delta) at a source point x′.

One of the assumptions which simplifies the solution of the Green’s function is

that the domain under consideration has constant and homogeneous elastic properties

throughout the space. Although it is a dual point function, due to such assumption, the

source point x′ can be considered as the origin of the coordinate system without loss of

generality, and U = f(x,x′) becomes U = f(x) .

In the procedure presented in Section 2.1, which results in Equation 2.23, the

isotropic stress-strain law (Equation 2.6) was directly applied in the equilibrium equations

resulting in the Navier’s equation of equilibrium, which is written explicitly in terms of the

displacements. That procedure resulted in a simpler set of partial differential equations

to be solved. The formulations for anisotropic elasticity provide the Navier’s equation

in a general form, without any material assumption. A solution for such a problem is

more difficult (and cumbersome) to obtain than Kelvin’s. Lifshitz and Rozentsveig, 1947,

demonstrated that it is possible to obtain this solution explicitly in terms of the roots of a

sixth-order characteristic equation for the general anisotropic case. Those roots were later

called the Stroh’s eigenvalues, named after A.N. Stroh, which published many essential

works in the field, such as Stroh, 1958, Stroh, 1962. In those works, the author devised a

procedure that would be later called the formalism of Stroh. The virtue of this approach

is that, for plane problems, any solution can be written as a sum of arbitrary functions.

When solving for the three-dimensional Green’s function, one has to perform a

one-dimensional integration of some sort, which has many forms of being surpassed: The

simplest one is the integral formalism, which performs the contour integral at the oblique

plane to the position vector. This form is the one presented by Barnett, 1972, employing a

Fourier transform method to solve the anisotropic Navier’s equation. This was performed

to clarify its extension to alternative methods for calculating Green’s function derivatives.
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In Lifshitz and Rozentsveig, 1947, the authors perform the integration at the

oblique plane through residue calculus. This approach leads to a finite sum over the

poles of the function, which are shown to be the roots of a sixth-order polynomial in

terms of the position vector and the material constants. As it is known for many years

since Head, 1979, the roots of the generalized sixth-order polynomial, which arises on

general anisotropic elasticity, are not solvable in closed form.

Although in some specific cases the cubic symmetry is solvable, in the general case

the author states "for general directions and elastic constants, is impossible to express

the roots of the sextic as a formula of finite length containing only arithmetic operations,

radicals, rational numbers and the symbols denoting the elastic constants and the direction

in the crystal."[Head, 1979]. Although it is possible to obtain these solutions explicitly

for the general case, the process always has to rely on numerical schemes to evaluate the

Stroh eigenvalues or the roots of the sixth.

Another crystal symmetry mentioned by Head, 1979, are the ones in which the

characteristic equation reduces to a third-degree polynomial in p2. In this case, the

Green’s function can be obtained explicitly in terms of the position and the material

constants. That is also true for points at the symmetry plane of the monoclinic material

[Ting and Lee, 1997]. For the transversely isotropic, which is a particular case of the

monoclinic, this is true for any plane which contains the axis of symmetry. This property

is demonstrated by Ting and Lee, 1997, for the monoclinic material and extended for a

transversely isotropic material. The solution is obtained first for a point at the x2 = 0

plane and then generalized using rotation matrices for points where x2 6= 0, obtaining

then a closed form solution for any point x. This approach is the one used in Távara

et al., 2008, for instance.

As is briefly demonstrated in this chapter, there are many forms to obtain and

present Green’s function for the general anisotropic case. Xie et al., 2016, compared three

of the most common Green’s function formulations for three-dimensional elasticity, among

them, their own previously proposed solution. In this work, it is possible to observe the

high computational cost of these functions. Nevertheless, the authors do not present

any comparison on the evaluation of the first-order derivative, necessary in all the BEM

variants.

Another method commonly found in the literature to obtain Green’s functions with
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simplicity is the Radon transform. In Wang and Achenbach, 1995, this transform is used

to obtain the Green’s function for the elastodynamic problem, considering anisotropic

elasticity. As the authors assemble the solution in a convolution scheme, the explicit

solution still possesses the time integration as expected. Wang, 1997, presented a similar

solution for elastostatics integrating with residue calculus.

Although Ting, 1996, presented a formalism to obtain fundamental solutions through

the Lekhnitskii formalism, which starts with the equilibrated stress functions followed by

compatibility equations, this chapters limits itself to the presentation of the Stroh’s formal-

ism. This theorem begins with the compatible displacements followed by the equilibrium

equations [Hwu, 2010].

2.3.1 The sextic Stroh’s formalism in two dimensions

Although the Stroh’s formalism was not entirely devised by himself, as it bases in

the work of Eshelby et al., 1953, it set a common ground for many other works [Ting, 1996].

The works which laid the foundation for this formalism were Stroh, 1958, Stroh, 1962.

We present the following sections according to Ting, 1996, and the references therein.

As already stated, the Stroh’s formalism in two dimensions starts from the equi-

librium equations 2.4, in terms of the displacements. Let define the generalized Hooke’s

law Equation 2.26, in terms of the displacements as

σij = cijkl
1

2
(uk,l + ul,k) . (2.35)

Replacing Equation 2.35 in Equation 2.4, results in the equilibrium equations of

Navier,

cijkluk,li = 0. (2.36)

Considering two-dimensional deformations, in which ui depends on x1 and x2 only,

Equation 2.36 is an homogeneous second-order differential equation consisting of two

independent variables. A general solution for ui can be written, without loss of generality,

as

ui = aif(z), (2.37)

where

z = x1 + p x2, (2.38)
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and f(z) is an arbitrary function of z, whether p and ai are unknown constants to be

determined [Ting, 1996].

Differentiating Equation 2.37 with respect to xs gives

uk,s = (δs1 + pδs2)akf
′(z), (2.39)

in which prime denotes differentiation with respect to the argument z and δsi is the

Kronecker delta. Differentiating Equation 2.39 with respect to xj, the differential equation

will be satisfied with non-trivial solutions if

cijkl(δj1 + pδj2)(δl1 + pδl2)ak = 0 (2.40)

or
{
ci1k1 + p(ci1k2 + ci2k1) + p2ci2k2

}
ak = 0. (2.41)

Equation 2.41 can be written in terms of some well-known identities, Q, R, T, defined in

two-dimensional problem as

Qik = ci1k1, Rik = ci1k2, Tik = ci2k2, (2.42)

which results in the classic matrix notation,

{
Q + p(R + RT ) + p2T

}
a = 0, (2.43)

which for a non-trivial solution of a, one must have

∣∣Q + p(R + RT ) + p2T
∣∣ = 0, (2.44)

which gives six roots for the eigenvalue p [Ting, 1996].

The stress formulation is an important relation obtained from the Stroh’s formal-

ism. Applying Equation 2.39 in the stress-strain law Equation 2.35 gives

σi1 = (Qik + pRik)akf
′(z),

σi2 = (Rki + pTik)akf
′(z).

(2.45)

Equation 2.45 can be rewritten as

σi1 =−p bi f ′(z), (2.46)

σi2 = bi f
′(z), (2.47)
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where, vectors a and b are related by

b = (RT + pT)a = −1

p
(Q + pR)a, (2.48)

which follows from Equation 2.43. It is possible to assemble these two equations in the

following form 
 −Q 0

−RT I




a

b


 = p


R I

T 0




a

b


 , (2.49)

being I the identity matrix. According to Ting, 1996, Q and T are symmetric and positive

definite, therefore, one can pre-multiply both sides of Equation 2.49, by

0 T−1

I −RT−1


 , (2.50)

so the former system, Equation 2.49, can be reduced to the following standard eigenrela-

tion,

N


a

b


 = p


a

b


 (2.51)

where,

N =


N1 N2

N3 NT
1


 , (2.52)

and

N1 = −T−1RT , N2 = T−1, N3 = RT−1RT −Q. (2.53)

The [6 × 6] matrix N is the fundamental elasticity matrix, and it is used to obtain the

Stroh’s eigenvalues.

The following stress function is introduced to obtain stress and displacement,

ϕS
i = bif(z), (2.54)

such that one can write the stress tensor from Equation 2.46 as

σi1 = ϕS
i,2 , σi2 = ϕS

i,1 . (2.55)

The general stress function solution ϕS is obtained by superposing six solutions in the

form of Equation 2.54 associated with the six eigenvalues pα, (α = [1, 6]) [Ting, 1996].
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These solutions for displacement and stress are expressed in the following form,

u =
3∑

α=1

{aαfα(zα) + āαfα+3(z̄α)} , (2.56)

ϕS =
3∑

α=1

{
bαfα(zα) + b̄αfα+3(z̄α)

}
, (2.57)

where ·̄ stands for complex conjugate, vectors aα and bα are the Stroh eigenvectors, and

zα = x1 + pαx2, and Equations 2.56 and 2.57 are the sextic formalism of Stroh.

Notice that from Equations 2.48 and 2.49, the following matrices arise, composed

by the eigenvectors a and b,

A = [a1, a2, a3], (2.58)

B = [b1,b2,b3], (2.59)

which, through some algebraic manipulation of previous relations, is possible to write the

so-called Barnett-Lothe tensors, S, H, L,

S = 2iBBT , (2.60)

H = 2iAAT , (2.61)

L = i
(
ABT − I

)
. (2.62)

It is worth mentioning that H is the second Barnett-Lothe tensor, as is shown later on,

it is the modulatory part of Green’s function.

One should notice that the columns of A and B are linearly independent as in

Equation 2.58, they are formed by the Stroh’s eigenvectors, thus their product must be

purely imaginary [Hwu, 2010].

Although Equation 2.61 would be useful to compute the (second) Barnett-Lothe

tensor H, it requires the computation of the eigenvectors A (and B), which have higher

computational cost than the alternatives presented in the literature based on numerical

integration or which require only the eigenvalues.

2.3.2 Stroh’s eigenrelation for an oblique plane

Although the Stroh’s formalism was initially devised in two dimensions, it can be

generalized to three-dimensional space if one considers an oblique plane normal to the
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x

m
n∗
ϕ

x1
x2

x3

n

Figure 2.3 – The oblique plane and the right-handed triad [n,m,x] , the n∗ vector, and
ψ, its angle with n.

position vector in this space, instead of the x1, x2 plane in Equation 2.41. The precursor

of this extension is the work of Barnett and Lothe, 1975. Let us define the oblique plane

by a right-handed triad [n,m,k], where [n,m] are tangent vectors and k is the outward

normal vector, as illustrated in Figure 2.3. If m and n are set as the new x1 and x2 axes,

tensors Q, R, T also can be redefined at this new 3D framework,

Qik = cijksnjns, Rik = cijksnjms, Tik = cijksmjms. (2.63)

One can easily see that they reduce to their 2D versions when n and m coincide with x1

and x2. In order to provide some physical meaning to these tensors, Ting, 1996, points out

that Qik is the acoustic tensor for waves propagating in the direction of n. Analogously,

this also holds for the pair Tik and m. Tensor Rik does not relate to any physical meaning

in the literature.

The standard Stroh’s eigenrelation, Equation 2.52 remains valid in the same fash-

ion, and the newly introduced 3D notation does not change it by any means with the

consideration of Equation 2.63.

2.3.3 Elastic Green’s function for the infinite space

The fundamental solution applied as weight function in the BEM formulation is

the Green’s function for the infinite space (and its first spatial derivative). According to

Ting, 1996, it can be expressed in terms of the three Barnett-Lothe tensors S, H, L, at

the oblique plane. The main difference to the two-dimensional deformations considered

previously is that the 3D equilibrium equations are written such that the displacements



36

and deformations depend on all xi, (i = [1, 3]). If Navier’s equilibrium equations are

written considering a concentrated force f is considered at the origin x = 0, the right-

hand side of Equation 2.36 including this force is

cijksuk,sj = −δ(x1)δ(x2)δ(x3)fi, (2.64)

where δ(x) is the Dirac delta function. The solution of Equation 2.64 proposed by Lifshitz

and Rozentsveig, 1947 is performed through a Fourier transform with respect to x1, x2,

x3, which is

cijksyjysũk,sj = fi (2.65)

where yi are the transform parameters and

ũk =

∫∫∫
uk(x1, x2, x3)e(iy·x)dx1dx2dx3, (2.66)

while vector y in the integrand is

yT = [y1, y2, y3]. (2.67)

Solving ũk from Equation 2.65, and performing the inverse transforms, leads to

u =
1

2π3

∫∫∫
Q−1 f e−(iy·x)dy1dy2dy3 (2.68)

where

Qik(y) = cijksyjys. (2.69)

A recurrent reference for the reduction of the integral in Equation 2.68 is the work of Lif-

shitz and Rozentsveig, 1947, which has shown that it is reducible to

u =
1

8π2r

∫

S

Q−1(y)fds, (2.70)

where r = |x| and the integral is performed around the unit circle S, with |y| = 1 on the

oblique plane normal to x [Ting, 1996].

To further reduce the integral in Equation 2.70, let define a unit vector n∗ on the

oblique plane,

n∗ = n cosψ + m sinψ, (2.71)

where ψ is an arbitrary parameter, m and n are any mutually orthogonal unit vectors on
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an oblique plane whose normal is x (Figure 2.3). Hence, Equation 2.69 is rewritten as

Qik(ψ) = cikjs(nj cosψ +mj sinψ)(ns cosψ +ms sinψ), (2.72)

which reduces to Equation 2.63, when ψ = 0. Also, Qik(ψ) is periodic in ψ with period

π, as is possible to confirm in Equation 2.72.

Writing Equation 2.70 as u = U(x)f , and applying Equation 2.72 in U(x), results

in

U(x) =
1

4π2r

∫ π/2

−π/2
Q−1(ψ)dψ, (2.73)

where the integration is performed only in half the unit circle, as Qik(ψ) is periodic in ψ

with period π [Ting and Lee, 1997].

Equations 2.70 and 2.73 represent the Green’s function for the displacements u

resulting from a point load f . Although this solution is simple to implement, it is of

limited practical usage in BEM due to the line integral, which can be cumbersome and

has to be numerically calculated.

Also, notice that it requires the inversion of the acoustic tensor Q at each inde-

pendent position vector. Nevertheless, Equation 2.73 is a straightforward manner for

numerically evaluating the three-dimensional Green’s function.

To avoid the integration of Equation 2.73, since Qik, Rik, and Tik, are independent

of ψ, it is possible to rewrite Equation 2.72, as

Q(ψ) = Q cos2 ψ + (R + RT ) cosψ sinψ + T sin2 ψ = cos
1
2 Γ(p), (2.74)

where p = tanψ, and the Christoffel tensor Γij(p) is defined as

Γ(p) = Q + p(R + RT ) + p2T. (2.75)

Notice that, as is known from the Stroh’s formalism, the determinant of Γij(p) is null,

|Γ(p)| = 0, (2.76)

which leads to the sixth-order equation in p, i.e., Equations 2.44 and 2.51.

Equation 2.73 can be written in terms of the second Barnett-Lothe tensor as

U(x) =
1

4πr
H(ê), (2.77)
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where,

H(ê) =
1

π

∫ π/2

−π/2
Q−1(ψ)dψ. (2.78)

If Equation 2.74 and the identity p = tanψ are applied in Equation 2.78, it can be

rewritten as

H(ê) =
1

π

∫ ∞

−∞
Γ−1(p)dp. (2.79)

To avoid a matrix inversion Γ̂(p), the adjoint of Γ(p), also mentioned in the literature as

the co-factor matrix, is considered and is defined as

Γ(p)Γ̂(p) =
∣∣∣Γ̂(p)

∣∣∣ I, (2.80)

applying Equation 2.80 in Equation 2.79 one rewrites it as

H(ê) =
1

π

∫ ∞

−∞

Γ̂ij(p)

|Γ(p)|dp. (2.81)

Let pv (v = 1, 2, 3) be the roots of the positive imaginary part. Using Cauchy residue

theory, one can replace the integral by a contour one over the upper half of the complex

plane p (See e.g. Sveshnikov and Tikhonov, 1971, Chapter 5), obtaining

H(ê) = 2i
3∑

v=1

Γ̂ij(pv)

|Γ(pv)|′
, (2.82)

where |Γij(pv)|′ = d(|Γij(pv)|)/dp. Equation 2.82 is mathematically equal to the one

obtained by Lifshitz and Rozentsveig, 1947. With Equation 2.82 presented, it clears

the need of the identity in Equation 2.80: It enables one to apply the Cauchy residue

theory, transforming the integral in a simple sum of the residues. The integral over p

from −∞ to ∞ can be replaced by the sum of the function residues at the poles pv.

It is worthwhile to mention that, the function must be complex analytic in the upper

half-plane (in the sense of a holomorphic function) to eliminate this integral.

Is possible to write |Γ(pv)|′ explicitly in terms of the Stroh eigenvalues from Equa-

tion 2.75 as

|Γ(pv)| = |T| f(p), (2.83)

f(p) = (p− p1)(p− p̄1)(p− p2)(p− p̄2)(p− p3)(p− p̄3), (2.84)

so Equation 2.82 resumes to

H(ê) =
2i

|T|
3∑

v=1

Γ̂(pv)

f ′(p)
, (2.85)



39

where f ′(p) = df(p)/dp, which is exemplified by Ting and Lee, 1997 with f ′(p1) being

f ′(p1) = (p− p̄1)(p1 − p2)(p1 − p̄2)(p1 − p3)(p1 − p̄3), (2.86)

and expressions for f ′(p2) and f ′(p3) also can easily be obtained. Equation 2.85 is not

valid for degenerate cases (repeated eigenvalues). Moreover, it does not show that H(ê) is

real as expected. In the next section, an alternative expression for this solution, proposed

by Ting and Lee, 1997, is presented.

2.3.4 Ting and Lee’s polynomial decomposition

An alternative expression for Equation 2.85 was proposed by Ting and Lee, 1997,

which is valid for non-degenerate cases and also has a clearly real-valued result. For that

purpose it must be defined that the eigenvalues pv are arbitrary complex variables defined

as

pv = αv + iβv, βv > 0(v = 1, 2, 3). (2.87)

The formulation proposed by Ting is based on the fact that the co-factor matrix Γ̂(p) is

a fourth degree polynomial in p. It can be written in the following manner

Γ̂(p) =
4∑

n=0

pnΓ̂(n), (2.88)

where the real matrices Γ̂(n) (n = 0, 1, 2, 3, 4) are independent of p. Following Ting and

Lee, 1997, Equation 2.85 can be written as

H(ê) =
2i

|T|
4∑

n=0

q(n)Γ̂(n), (2.89)

where

q(n) =

{
pn1

β1(p1 − p2)(p1 − p̄2)(p1 − p3)(p1 − p̄3)
+ . . .

}
. (2.90)

By means of Equation 2.90 is not clear if Equation 2.89 is valid for degenerate cases.

As can be seen in Equation 2.75, Γ̂ depends on the material properties and the oblique

vectors m, n. The final expression for q(n) is found in Ting and Lee, 1997, while the

ones for each term of the co-factor matrix Γ̂(n) are found in Shiah et al., 2012, which are

included here for completeness

Γ̂
(n)
ij = Γ̃

(n)
(i+1)(j+1)(i+2)(j+2) − Γ̃

(n)
(i+1)(j+2)(i+2)(j+1), (i, j = 1, 2, 3) (2.91)
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where

Γ̃(4)
pqrs = TpqTrs,

Γ̃(3)
pqrs = VpqTrs + TpqVrs,

Γ̃(2)
pqrs = TpqQrs +QpqTrs,+VpqVrs,

Γ̃(1)
pqrs = VpqQrs +QpqVrs,

Γ̃(0)
pqrs = QpqQrs,

where matrices Q, R, T , are the acoustic tensors previously defined in Equation 2.63, and

Vpq = Rpq +Rqp.

2.3.5 Multiple pole residue approach from Buroni et al., 2011

The solution proposed by Buroni et al., 2011 deals with material degeneracy by

the application of different formulations for each combination of the Stroh’s eigenvalues.

It is also valid for cases where these values are different but too close in magnitude to each

other which causes near-degeneracy. The most extreme case of degeneracy is the isotropic

symmetry which all the eigenvalues are constant and only imaginary, p1 = p2 = p3 = i

[Ting and Lee, 1997]. The solution generates 3 cases:

(i) Three different eigenvalues p1 6= p2 6= p3: For this case Equation 2.85 is used

since this case is not degenerate. This representation is also cheaper computationally

than Equation 2.89. The final version presented by Buroni and Sáez, 2010, has a

more compact form than the one presented by Ting,

Hjk =
1

|T|
3∑

α=1

Γ̂jk(pα)

βα
∏3

ξ=1
ξ 6=α

(pα − pξ)(pα − p̄ξ)
, (2.92)

where the symbol
∏n

a=1(pa) represents a product with indices varying from a =

1 to a = n. The denominator in Equation 2.92 is mathematically the same as

Equation 2.84.

(ii) Two repeated eigenvalues p1 = p2 6= p3 For the case when two eigenvalues are equal

p1 = p2 = p0, and a third one is different, p3 6= p0, the Barnett-Lothe tensor is
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evaluated as follows

Hjk(ê) =
1

|T|

[
2i

−4β2
0(p0 − p3)(p0 − p̄3)

{
Γ̂′jk(p0)− Γ̂jk(p0)

(
1

p0 − p3

+
1

p0 − p̄3

+
1

iβ0

)}
Γ̂jk(p3)

β3(p3 − p0)2(p3 − p̄0)2

]
. (2.93)

(iii) Finally, when the three eigenvalues are equal, p1 = p2 = p3 = p0, the formulation

used is

Hjk(ê) =
3Γ̂jk(p0)− β0

(
3iΓ̂′jk(p0) + β0Γ̂′′jk(p0)

)

4 |T| β5
0

. (2.94)

Notice that, throughout this chapter, we do not present the free-space Green’s

function first- or second-order derivatives. For instance, Ting and Lee, 1997, proposes

a finite differentiation scheme, which may have some penalty on the precision of the

derivative computation. Buroni et al., 2011, presents explicit formulations for the first-

order derivatives of the Green’s function.

2.4 Green’s function for general anisotropic Magneto-electro-elasticity

According to Buroni and Sáez, 2010, the study and application of Magneto-Electro-

Elastic (MEE) composite materials have been receiving enormous efforts, due to their

enhanced ability to convert energy among the mechanical, electric, and magnetic fields.

In an extensive review performed by Nan et al., 2008, it is shown that the magneto-electric

effect is more pronounced in composites layered by combinations of piezomagnetic (PM)

and piezoelectric (PE) phases together. These composites can produce electromagnetic

coupling, which are several orders of magnitude higher than the single-phase materials

readily found in nature.

2.4.1 Basic equations of linear magneto-electro-elasticity

Let xi be a Cartesian coordinate system in three-dimensions, i = 1 . . . 3, the gov-

erning equilibrium equations for the Elastic, Electric and Magnetic problems are written
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as

σij,j + fi = 0, (2.95)

Di,i = f e = 0, (2.96)

Bi,i = fm = 0, (2.97)

where σij is the Cauchy stress tensor, Di is the electric displacement vector, and Bi is the

magnetic induction vector. fi are the body forces vector, f e is the electric charge density,

and fm is the electric current density. The infinitesimal strain tensor εij, the electric field

Ei, and the magnetic field Hi are defined as:

εij =
1

2
(ui,j + uj,i) (2.98)

Ei = −ϕ,i (2.99)

Hi = −ϑ,i (2.100)

where ui denotes the components of the elastic displacement field, ϕ and ϑ are the electric

and magnetic potentials. Equations 2.95 to 2.100 are coupled through a linear constitutive

law according to Buroni and Sáez, 2010 and Soh et al., 2005,

σij = Cijklεkl − elijEl − qlijHl, (2.101)

Di = eiklεkl − εilEl − λilHl, (2.102)

Bi = qiklεkl − λilEl − µilHl, (2.103)

where Cijkl, εil and µil are the elastic stiffness, dielectric permittivity and magnetic perme-

ability tensors, respectively, which represent the uncoupled part, i.e., the individual phe-

nomena, whilst e, q, and λ are piezoelectric, piezomagnetic and magneto-electric coupling

tensors, which account for the interaction mechanism between these different potentials.

The coefficient tensors present the following symmetries

Cijkl = Cjikl = Cijlk = Cklij, ekij = ekji, qkij = qkji,

εkl = εlk, λkl = λlk, µkl = µlk,
(2.104)

and the elastic, dielectric and magnetic tensors, must be positive definite, i.e., as in

elasticity the strain energy is always positive, as well as the respective energies for the
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electric and magnetic fluxes

Cijklεijεkl > 0, εijEiEj > 0 and µijHiHj > 0,

∀εij, Ei, Hi ∈ R; and εij = εji 6= 0, Ei 6= 0, Hi 6= 0.
(2.105)

Equation 2.105 is known as the strong convexity condition [Ting, 1996]. The potentials

in Equations 2.98 to 2.100 could be combined in an extended potential fashion such as

developed by Barnett and Lothe, 1975, for PE materials, and is commonly found in the

MEE literature [Alshits and Lothe, 1992; Buroni and Sáez, 2010; Buroni et al., 2019]. The

extended potential field vector is written as

uJ =





uj J ≤ 3,

ϕ J = 4,

ϑ J = 5.

(2.106)

By defining an extended MEE stiffness matrix with the following components [Alshits and

Lothe, 1992],

CiJKm =





Cijkm J,K ≤ 3,

emij J ≤ 3,K = 4,

qmij J ≤ 3,K = 5,

eikm J = 4,K ≤ 3,

−λim J = 4,K = 5; J = 5,K = 4,

−εim J,K = 4,

qikm J = 5,K ≤ 3,

−µim J = 5,K = 5,

(2.107)

where Cijkm are components of the elastic stiffness tensor, at constant electric and mag-

netic fields, εim is the dielectric permittivity tensor at constant strains and magnetic fields,

and µim is the magnetic permeability at constant stress and electric displacements. εim is

the PE coupling coefficients at constant magnetic field, qijk is the PM coupling at constant

electric fields and λim is the ME coupling coefficients at constant strains and electric fields.

This definition is also found in Buroni and Sáez, 2010. The influence of thermal effects is

not contemplated, i.e., these coefficients are considered under isothermal conditions.

The extended MEE stiffness matrix has only the symmetry CiJKm = CmKJi. As

pointed out by Fan, 2009, for piezoelectricity, these matrix representations are not tensors,

so one has to be careful when changing coordinates systems.
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Taking advantage of the extended coefficient matrix, Equations 2.101 to 2.103 can

be recast in a single extended stress tensor, which combines the Cauchy stress, electric

displacement and magnetic induction, as

σiJ =





σij J ≤ 3,

Di J = 4,

Bi J = 5.

(2.108)

With Equation 2.108 it is possible to recast Equations 2.101 to 2.103, in an extended

stress-strain law, in terms of the extended potential vector derivative,

σiJ = CiJMl uM,l . (2.109)

With the introduced matrix representation, the elliptic differential equations of equilib-

rium for the elastic, electric, and magnetic problems in terms of the extended displace-

ments can be recast similarly to the Navier’s equation for elasticity as

CiJKmuK,mi + fJ = 0, (2.110)

where fJ is the extended body force vector, defined as

fJ =





fj J ≤ 3

−f e J = 4

−fm J = 5,

, (2.111)

being fi, f e, and fm the three components of body forces, the electric charge density and

the electric current density, respectively, and comma denotes differentiation. Notice that

uncoupled problems, i.e., purely elastic, electric and/or magnetic, can be considered by

setting the corresponding coefficient eijk, qijk, or λil to zero.

2.4.2 Three-dimensional Green’s function for anisotropic MEE solids

Let consider a homogeneous and infinite medium in the three-dimensional space

Re, and let δ(x) be the Dirac delta function centered at the origin of a fixed Cartesian

coordinate system xi and δJK the five-dimensional Kronecker delta. The Green function

is a second-order tensor which satisfies the Navier’s extended equilibrium equations

CiJKmUKP,mi(x)− δJP δ(x) = 0, (2.112)
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where the generalized force corresponds to a point load at the origin fJ = δJP δ(x). The

physical description of UJK(x) [Buroni and Sáez, 2010], is the extended potentials at the

field point x, due to the application of an extended force fJ at the source point (which in

this case is the origin), i.e.,

• the elastic displacement at x in the xK direction, K ≤ 3,

• the electric potential at x, K = 4,

• the magnetic potential at x, K = 5,

resultant from the application of

• a mechanical force at x′ in xJ direction, J ≤ 3;

• a point electric charge at x′, J = 4;

• a point electric current at x′, J = 5.

Extended fundamental solution for tractions As mentioned in Section 2.1 the

isotropic fundamental solution for traction Equation 2.25 is always written in closed form,

directly from the Kelvin’s solution and it represents the direction j of the generalized

traction vector on a surface with normal ni, for a generalized point force in direction k.

It is the result from the application of the Cauchy formula, i.e.,

TKJ = (σ∗iJ)Kni, (2.113)

where (σ∗iJ)K represents a fundamental solution for the extended stress tensor Equa-

tion 2.108 at the field point x when an extended point force is applied at the source point

in direction xK . To write this tensor in terms of the displacements, one has to recur to

the stress strain law, i.e.,

σiJ = CiJMl uM,l , (2.114)

which, in terms of the fundamental solution is written as

(σ∗iJ)K = CiJMl(ε
∗
lM)K , (2.115)

where,

(ε∗mL)K =
1

2
(UKM,l + UKL,m), (2.116)
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is the fundamental Strain tensor at the observation point y when a point load is applied

in the source point x on direction xk. Finally, one write the fundamental solution for

traction as a combination of stress-strain law Equation 2.109 and Cauchy theorem, as a

function of the displacement Green’s function derivative,

TKJ = CiJMlUMK,lni, (2.117)

where UMK,l denotes the derivative of UMK with respect to direction l. Notice that due to

the tensor’s symmetries, the extended strain tensor is simplified to Umk,l in this equation,

and there is no need to use Equation 2.116.

Note on implementation Notice that the index k of the derivative is the one which

is carried over to the tensor as this direction is the point force application. This index is

essential in the context of BEM due to the lack of symmetry of the fundamental solution

for traction. In that sense, it should be mentioned that the choice of this index position is

not standardized and not always adopted among the literature (see Table 2.1). It should

be emphasized that the extended notation during this passage can mean a point force in

direction K = [1, 3], a point charge, K = 4, or a point current, K = 5.

Table 2.1 – Index referring to the source and field points for the Green tensor commonly

found in BEM literature.

Source point is the first direction Source point is the second direction

Brebbia et al., 2012 Katsikadelis and Kokkinos, 1993
Beer et al., 2008 Banerjee and Butterfield, 1981

2.4.3 MEE Green’s function from Buroni and Sáez, 2010

The first explicit formula for MEE Green’s function is due to Pan and Tonon, 2000,

which was derived using a methodology found in their previous work for PE materials:

Pan and Yuan, 2000a. Both works are based on the formulation used by Wang, 1997, to

obtain the elastic Green’s function, the main difference to the more commonly referenced

one Ting and Lee, 1997, is that the solution of the partial differential equation is performed

with a Radon transform. Although a different approach is employed in the derivation,

the final expression for the Green’s function presented by Pan and Tonon, 2000, has
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the same form of Equation 2.92, with the difference being the number of the Stroh’s

eigenvalues (which is 10), as it results from the extended MEE fundamental matrix NMEE,

thus, being valid only for non-degenerate cases. Pan and Tonon, suggested introducing a

perturbation in the elastic constants to avoid repeated eigenvalues, and claim the solution

will not lose precision by such trick. Another argument is found in Shiah et al., 2012,

which advocates perturbing the elastic constants to avoid repeated eigenvalues: "with

mechanical properties of materials typically given with only up to 3 or 4 significant figures

in accuracy, the percentage errors (. . . ) are clearly more than acceptable for engineering

analysis". Although this is true in the context of the Green’s function alone, it cannot

be directly translated to BEM code without a sensitivity analysis, compromising the

reliability of the final solution. The integration process in BEM is already accuracy

compromised by the use of less than desirable Gauss integration points due to Green’s

function complexity and singularities.

In Buroni and Sáez, 2010, an alternative formulation for MEE materials is found

which mitigates the numerical instabilities caused by the proximity of the Stroh’s eigen-

values. The initial process for obtaining the Green’s function is firstly carried out via the

Radon transform, as in Wang and Achenbach, 1995, but the integral representation is then

further simplified using the same process as in Ting and Lee, 1997, based on the Christof-

fel tensor, the modulation function of the Green function, H, the second Barnett-Lothe

tensor, is obtained by

HJK(ê) =
1

π

∫ ∞

−∞

Γ̂JK(p)

|Γ(p)| dp. (2.118)

Equation 2.118 has exactly the same format as Equation 2.81, where the extended Christof-

fel tensor for the MEE problem is

ΓJK(p) = QJK + p(RJK +RKJ) + p2TJK , (2.119)

where the tensors QJK , RJK , TJK are computed at the oblique plane from the extended

MEE stiffness matrix, CiJKl, and ni,mi vectors,

QJK = CiJKlninl, Rik = CiJKlniml, Tik = CiJKlmiml. (2.120)

Following the formulation from Buroni and Sáez, 2010, the kernel in Equation 2.118,

is a single-valued holomorphic function in the upper complex half-plane except at five com-

plex poles with positive imaginary part and their conjugates that corresponds to the roots
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of the tenth-order polynomial equation

|Γ(p)| = 0. (2.121)

This determinant in Equation 2.121 can be factorized as

|Γ(p)| = |T|
5∏

ξ=1

(p− pξ)(p− p̄ξ), (2.122)

where pξ are known as the Stroh’s eigenvalues and the bar over pξ denotes complex

conjugate and T as defined in Equation 2.120. Therefore, assuming that all Stroh’s

eigenvalues are different, the integration in Equation 2.118 can be done by the Cauchy’s

residue theory to yield

HJK =
2i

|T|
5∑

α=1

Γ̂JK(pα)

(pα − p̄α)
5∏
ξ=1
ξ 6=α

(pα − pξ)(pα − p̄ξ)
. (2.123)

Equation 2.123 is similar to its elastic counterpart, Equation 2.82, and is the same as

presented by Pan, 2002. As can be seen in the numerator of Equation 2.123, it is not

numerically stable when the eigenvalues assume values close to each other.

For points where repeated eigenvalues are found, an alternative representation,

such as the ones presented in Equations 2.93 and 2.94, is proposed by Buroni and Sáez,

2010, also based in residue calculus, e.g.: Sveshnikov and Tikhonov, 1971. Let a function

f(p), and let p0 be a pole of order m of f . The residue of f(p) is given by

Res(p0) =
1

(m− 1)!
lim
p→p0

dm−1

dpm−1
[(p− p0)mf(p)], (2.124)

which applied on Equation 2.123, results in [Buroni and Sáez, 2010]

HJK(ê) =
2i

|T|
N∑

α=1

1

(mα − 1)!
×


 dmα−1

dpmα−1





Γ̂JK(p)

(p− p̄α)mα
∏N

ξ=1
ξ 6=α

[(p− pξ)(p− p̄ξ)]mξ






 .

(2.125)

The main difficulty in evaluating Equation 2.125, is that the high possibility of

repeated eigenvalues and is uncertain when each case will happen, so the implementation

to be general and automatized must include many conditions to avoid the occurrence of

degeneracy. Also, there are many combinations of repeated eigenvalues to be included in

these conditions. Nevertheless, it is important to emphasize that this methodology is still
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more efficient than the numerical integration of Equation 2.118.

2.4.4 Non-degenerate displacement MEE Green’s function

A non-degenerate displacement Green’s function can be obtained using the same

idea of Ting and Lee, 1997, to derive an explicit function in the same fashion as Equa-

tion 2.89, i.e., parting from Equation 2.123. Recall that, per Equation 2.119, the extended

MEE Christoffel tensor ΓJK is polynomial in p. Furthermore, the adjoint matrix, Γ̂JK(p),

defined in Equation 2.80 as being the tensor for which the following relation applies,

Γ(p)Γ̂(p) = |Γ(p)| I, is a polynomial of degree eight in p, written as

Γ̂JK(p) =
8∑

n=0

pnΓ̂
(n)
JK , J,K = {1, 5} (2.126)

where Γ̂
(n)
JK are constant real matrices depending only on the material properties CiJKl

and the position vector ê.

By this decomposition it is possible to write the extended MEE Barnett-Lothe

tensor HJK(ê) similarly to Equation 2.89, adjusting the sum for the polynomial order of

the adjoint Christoffel tensor,

H(ê) =
2 i

|T|
8∑

n=0

qnΓ̂
(n), (2.127)

where qn are constants depending only on the Stroh’s eigenvalues, and are written as

qn =
5∑

α=1

2 i pnα

(pα − p̄α)
5∏
ξ=1
ξ 6=α

(pα − pξ)(pα − p̄ξ)
. (2.128)

In order to completely remove the indeterminate condition caused when pα − pξ = 0 in

Equation 2.128, a careful factorization must be carried out, such that a common denom-

inator for all qn be made equal to
∏5

α=1

∏5
ξ=1(pα − p̄ξ), i.e.,

qNumn∏5
α=1

∏5
ξ=1(pα − p̄ξ)

=
5∑

α=1

2 i pnα

(pα − p̄α)
5∏
ξ=1
ξ 6=α

(pα − pξ)(pα − p̄ξ)
, (2.129)

where qNumn is obtained by factorization. The denominator is never null because the

subtractions are performed between conjugated complex numbers — even when there are
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repeated eigenvalues and the real part becomes zero, the imaginary part is never null.

The resulting expression for qNumn the numerator of qn can be obtained straightforwardly

using symbolic mathematical software, but are quite large to be included in this work, as

is implied by the number of possible combinations of terms in Equation 2.129.

The final expression for the non-degenerate MEE Barnett-Lothe tensor is recast

for completeness:

HJK(ê) =
2 i

|T|∏5
α=1

∏5
ξ=1(pα − p̄ξ)

8∑

n=0

qNumn Γ̂(n), (2.130)

To illustrate this non-degenerate solution in a near-degenerate case, let us consider

a transversely isotropic piezoelectric material, with elastic and electric properties found

Appendix I at Table I.1. For this material configuration when the position vector r =

x− x′ coincides with x3 axis, all the four Stroh’s eigenvalues related to the piezoelectric

potentials become equal, {pj = 0 + 1i | j = [1, 4]}. Figure 2.4 shows the degenerate

solution (Equation 2.123) is unstable, even when further away from the x3 axis, while

the non-degenerate Green’s function is smooth and well-defined in all the domain. Also,

the degenerate solution is not defined when r coincides with the x3 axis for this material

configuration.
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Figure 2.4 – Degenerate and non-degenerate approach for the Green functions close to

the x3 axis. Piezoelectric Material A.
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In Table 2.2, results for the non-degenerate Green’s function for MEE materials at

x = (1, 1,−1) are shown for Material B. Equation 2.92 was used to compute the solution,

which should yield the same value. A numerical difference appears between the proposed

solution and the reference one, that could be attributed to the high number of sums

involved in the computation of qNumn , Equation 2.129, and could be easily overcome by

the application of a Kahan’s sum algorithm (see Goldberg, 1991, for instance).

Table 2.2 – Green’s function UJK for magneto-electro-elastic Material B at

x = (1, 1,−1).

(JK) Buroni and Sáez, 2010 present work (non-degenerate) relative difference

11 7.7141369757490015× 10−4 7.7141366651463308× 10−4 4.0264× 10−8

12 1.2027080088980113× 10−4 1.2027080690932257× 10−4 5.0050× 10−8

13 −1.2945920760425760× 10−4 −1.2945919822994514× 10−4 7.2411× 10−8

14 −1.0347227658113671× 10−4 −1.0347226896648796× 10−4 7.3591× 10−8

15 4.2667071176276332× 10−6 4.2667067164579118× 10−6 9.4023× 10−8

22 7.7141369757490015× 10−4 7.7141366651463308× 10−4 4.0264× 10−8

23 −1.2945920760425762× 10−4 −1.2945919822994529× 10−4 7.2411× 10−8

24 −1.0347227658113787× 10−4 −1.0347226896648809× 10−4 7.3591× 10−8

25 4.2667071176276350× 10−6 4.2667067164579153× 10−6 9.4023× 10−8

33 4.8476833195420852× 10−4 4.8476831665570996× 10−4 3.1558× 10−8

34 5.0073977011499986× 10−4 5.0073975331344647× 10−4 3.3553× 10−8

35 2.4195754528575155× 10−5 2.4195754183322036× 10−5 1.4269× 10−8

44 −3.4041791147399341× 10−3 −3.4041790013154500× 10−3 3.3319× 10−8

45 2.9749048777373694× 10−5 2.9749048155802629× 10−5 2.0894× 10−8

55 −4.1918947944612555× 10−6 −4.1918946641014401× 10−6 3.1098× 10−8

avg 5.1688× 10−8

As is pointed out in Buroni et al., 2019, an interesting work by Xie et al., 2018,

has proposed an alternative unified formula for the fundamental solution and its first-

derivative, which considers only piezoelectric anisotropic materials, but a similar formu-

lation could be used for MEE materials, similarly as the one presented in this work. In

that work, after an algebraic rearrangement and the usage of recursive relations, the in-

tegral coefficients (equivalent to qn before integration) are calculated by Cauchy residue

theorem. The resulting expressions in explicit-form seem to be more compact than the

ones presented here, however, more labor-intensive to implement. As occurs in the exten-

sion from elasticity to piezoelectricity, the extension to MEE materials demands an even

more cumbersome algebra. In any case, the underlying principle that allows removing the

mathematical degeneracy is the factorization of the denominator in Equation 2.128, since

this comes from the mathematical structure and not from physical arguments.

Provided these properties, one can propose many alternative factorization schemes

to promote a faster numerical algorithm. However, to ensure an efficient integration
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scheme in BEMmethodologies, we propose an approximation approach in the next section.

2.5 Fourier Series representation of the Green’s function and its derivatives

for Elastic, Electric, Magnetic and multifield MEE materials

The nondegenerate solution Equation 2.130 is employed to obtain the series co-

efficients for a given material. The Green’s function is then approximated using those

coefficients, which are also used to approximate the first- (and second) order derivatives.

With a general non-degenerate solution able to calculate the displacement Green’s

function, it is now possible to create a general framework allowing its application in BEM,

with the aid of the double Fourier series for its approximation.

By this approach, the end user is allowed to virtually apply any material symmetry

or configuration, without the need to worry about the problems associated with degen-

eracies or regarding specific knowledge of Green’s function, as the base function which

generates the coefficients is trouble-free.

Therefore, the resulting BEM code can be significantly generalized, with a single

routine capable of evaluating the fundamental solutions for any of the three phenomena

or material depending only on the previously calculated Fourier coefficients. Moreover,

their computation has significantly less cost than BEM’s assembly and solution routines

for a reasonably sized problem. If a reasonable integration rule is used to compute the

series coefficients, it takes comparable effort to integrate a few boundary elements, should

take a neglectable fraction of the total analysis time. For the magneto electro elastic

(MEE) problem, in comparison with the Stroh Formalism approach, i,e., Equation 2.123,

one avoids a 10th-order eigenvalue problem for each integration point.

Also, it is worth to emphasize that the computation of the first and second deriva-

tives through the Fourier Series is much simpler with the Fourier approximation than with

the explicit approach. It is dependent on the same constants as the original function, as

will be shown in this section. Consequently, speedup can be gained from the Fourier series

representation — The computation of the fundamental solution for traction is orders of

magnitude less costly than the explicit solution.

Another feature of the series approach is that the user can define the accuracy on

the solution approximation through the number of terms selected, allowing to prioritize

performance, which can be useful during preliminary analysis stages. From the algorithm
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point of view, it has the advantage of being composed of large amounts of parallel work

and very few sequential steps, which can benefit from modern computational architectures

such as graphics processing units commonly found in engineering workstations to manage

computer aided design (CAD) workloads.

In this section the formulation from Shiah et al., 2012, Tan et al., 2013, is extended

to MEE materials. An efficiency improvement to the previous approaches on the Fourier

series is proposed, based on the Green’s function period in the spherical coordinate system.

As already mentioned at Sections 2.3 and 2.4, the displacement Green’s function

UJK(x), J,K = [1, 5] is the product of a singular term f(|x|−1) (which depends only on

the modulus of x, i.e., the radial distance r) with a modulation function H(ê), which

is the second Barnett-Lothe tensor [Ting, 1996], that depends only on the vector ê, the

direction of x. Such tensor can be fully represented at the spherical coordinate system,

i.e., H(ê) = H(ê(θ, φ)), so

U(x) = U(r, θ, φ) =
1

4 π r
H(θ, φ). (2.131)

To clarify the many existent notations for a spherical coordinate system in the literature,

the vector ê is expressed in terms of the following spherical coordinates θ and φ as

ê = (sinφ cos θ, sinφ sinφ, cosφ), (2.132)

where φ is chosen to be the ê∠ e3 angle , and θ is the x12 ∠ e1 angle, where x12 = (x1, x2) is

the projection of x on the plane e1, e2. Therefore, those angles are defined in the following

intervals, (−π ≤ θ < π, 0 ≤ φ < π), and the inverse transformation is brought here for

completeness [Shiah et al., 2012],

θ = tan−1(x2/x1), −π ≤θ < π, (2.133)

φ = cos−1(x3/r), 0 ≤φ < π. (2.134)

It is important to point out that from the numerical implementation standpoint, the

function tan−1 must be evaluated using a four-quadrant inverse tangent to determine

the position of θ relative to the x coordinate system (otherwise it will not satisfy Equa-

tion 2.133).

In Shiah et al., 2012, the tensor Hjk(θ, φ) is assumed to be 2π periodic in both

(θ, φ), although φ is defined as φ = [0, π]. It admits a double Fourier series representation
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Figure 2.5 – The spherical coordinate system adopted in this work.

which is firstly presented in terms of the complex exponential as

Hjk(θ, φ) =
∞∑

m=−∞

∞∑

n=−∞
λ

(m,n)
jk ei(mθ+nφ), (2.135)

being the Fourier expansion coefficients given by

λ
(m,n)
jk =

1

4π2

∫ π

−π

∫ π

−π
HJK(θ, φ)e−i(mθ+nφ)dθdφ. (2.136)

Notice that the double Fourier series representation (2.135) for the displacement solution

Hjk(θ, φ) converges absolutely and uniformly since ∂2Hjk
∂θ∂φ

exists and is continuous.

Then, one can approximateHjk(θ, φ) by truncating the infinite series Equation 2.135

in a sufficiently large number of terms α to yield results as accurate as required, so

Hjk(θ, φ) =
α∑

m=−α

α∑

n=−α
λ

(m,n)
jk ei(mθ+nφ). (2.137)

Although Tan et al., 2013 presents a simplified and real-valued version of these

approximations, it is previously given attention to a simple analysis of the Barnett-Lothe

tensor periodicity, which will result in an efficiency increase and a reduction in the com-

putational effort to compute the function and its coefficients.

2.5.1 Periodicity analysis and series improvement

Due to the characteristics of Equation 2.73, the second Barnett-Lothe tensor, the

modulation function HJK(x) depends on the direction of x but not on its modulus, so
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HJK(x) = HJK(ê). Also, it is known in context of the Stroh formalism Ting, 1996, as

being one of the three extended Barnett-Lothe tensors, which is symmetric, HJK = HKJ ,

and HJK(ê) = HJK(−ê). Hence, the Green’s function U(x) is also symmetric and the

following properties

UJK(x) = UJK(−x), (2.138)

the first-order derivative,

UJK,l(x) = −UJK,l(−x), (2.139)

and the second-order derivative,

UJK,lm(x) = UJK,lm(−x), (2.140)

are respectively satisfied. Another consequence of Equation 2.73, is that HJK is periodic

in θ and φ, i.e.,

H(θ, φ) = H(θ + Lθ, φ) = H(θ, φ+ Lφ). (2.141)

Let θ′ = θ+Lθ, φ′ = φ+Lφ and (θ′, φ′) < 2π. Using properties Equation 2.132 in

Equation 2.138, where θ′ and φ′ are the corresponding spherical coordinates at −ê, the

following system of equations arise,

cos θ sinφ = − cos θ′ sinφ′, (2.142)

sin θ sinφ = − sin θ′ sinφ′, (2.143)

cosφ = − cosφ′ (2.144)

which, by the last statement, Equation 2.144 results in

φ′ = φ+ π. (2.145)

Applying Equation 2.145 in the right-hand side of Equations 2.142 and 2.143 results in

cos θ sin(φ) = − cos θ′ sin(φ+ π), (2.146)

sin θ sin(φ) = − sin θ′ sin(φ+ π), (2.147)

which, by the property sin(φ) = − sin(φ+ π), is the same as writing

cos θ = cos θ′, (2.148)

sin θ = sin θ′, (2.149)
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which is only satisfied if θ′ = θ + 2π, resulting in the following period for application in

the Fourier Series.

H(θ, φ) = H(θ + 2π, φ) = H(θ, φ+ π), (2.150)

which allows one to write the Fourier series provided by Shiah et al., 2012, in a more

efficient manner with respect to the variable φ.

To demonstrate the behavior described in Equation 2.150, one component of the

tensor, H44(θ, φ), is plotted for the ranges defined in Equation 2.150, considering the

properties of a fully anisotropic and coupled material C. The plots for each one of the

15 remaining components of the full tensor are also included in Appendix B (Figures B.1

to B.4).
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Figure 2.6 – The Barnett-Lothe tensor, H44 for the Material C - MEE, in spherical

coordinates.

The Barnett-Lothe tensor Hjk(θ, φ) should present period L = π, due to the prop-

erty H(ê) = H(−ê). It is clear that if the transformation Equations 2.133 and 2.134 is

employed, the tensor presents a periodicity of π in θ, in the plane (x1, x2), φ = π/2, i.e.,

H44(θ,
π

2
) = H44(θ + π,

π

2
), (2.151)
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but not outside of this plane, due to the definition of φ in Equation 2.134. This fact can

be seen in Figure 2.6, also in the figures included in the Appendix B, as in the following

example,

H44(θ, φ) = H44(θ + π, φ). (2.152)

Unfortunately, even though the function is fully defined in the semi-sphere θ = [0, π],

φ = [0, π], no linear transformation of coordinates can maintain the spherical symmetry,

as the functions becomes anti-symmetric in θ, for which the tensor exhibits a period L = π

in both φ and θ, as expected.

2.5.2 Review of the Fourier series considering the new period

The double Fourier series for a periodic function such as H(θ, φ) with periods equal

to Lθ and Lφ, respectively, is written as

Hjk(θ, φ) =

m,n=∞∑

m,n=−∞
λmnjk ei(mθ/Lθ+mφ/Lφ) (2.153)

where the constant coefficients λmnjk , are defined through the following integral

λmnjk =
1

LφLθ

∫

Ωφ

∫

Ωθ

Hjk(θ, φ)e−i(mθπ/Lθ+mφπ/Lφ)dθdφ, (2.154)

where Ωφ and Ωθ are the respective domains of definition of these functions, which for the

Green’s function, one may refer to Equations 2.133 and 2.134. The generalized integral

can be rewritten for a case where Lφ = π, defining L′φ = Lφ/ρ, such that

λmnjk =
ρ

4π2

∫ 2π
ρ

0

∫ π

−π
Hjk(θ, φ)e−i(mθ+ρnφ)dθdφ. (2.155)

Variable ρ indicate L = 2π in θ when ρ = 1 and L = π when ρ = 2. Writing Equation 2.155

using the trigonometric form of the complex exponential, one has

λ
(m,n)
jk =

ρ

4π2

∫ 2π
ρ

0

∫ π

−π
Hjk(θ, φ) [cos(mθ + ρnφ)− i sin(mθ + ρnφ)] dθdφ, (2.156)

which may be referred as

λ
(m,n)
jk = R(m,n) + iI(m,n). (2.157)
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Due to trigonometric properties

cos(a+ b) = cos(a) cos(b)− sin(a) sin(b) (2.158)

− sin(a+ b) = − sin(a) cos(b)− cos(a) sin(b), (2.159)

is possible to expand Equation 2.156, resulting in

λR1
(m,n) =

ρκmκn
4π2

∫ 2π
ρ

0

∫ π

−π
Hjk(θ, φ) cos(mθ) cos(ρnφ)dθdφ, (2.160)

λR2
(m,n) = −ρκmκn

4π2

∫ 2π
ρ

0

∫ π

−π
Hjk(θ, φ) sin(mθ) sin(ρnφ)dθdφ, (2.161)

λI1
(m,n) = −ρκmκn

4π2

∫ 2π
ρ

0

∫ π

−π
Hjk(θ, φ) cos(mθ) sin(ρnφ)dθdφ, (2.162)

λI2
(m,n) = −ρκmκn

4π2

∫ 2π
ρ

0

∫ π

−π
Hjk(θ, φ) sin(mθ) cos(ρnφ)dθdφ, (2.163)

where a scaling factor κl is introduced, whose purpose will be addressed further on. The

aforementioned coefficient matrices are unique in the sense that they all hold orthogonality

to each other as expected.

Using relations Equations 2.158 and 2.159 in Equation 2.153, and taking advantage

of symmetry with respect to positive and negative values of (m,n) of Equations 2.160

to 2.163, i.e., λI2
(m,n) = λI2

(−m,n) = λI2
(m,−n), it is possible to write Equation 2.153 in

the following form

H =
α∑

m,n=0

[
Λ(m,n)(θ, φ)

]
, (2.164)

where matrix Λ(m,n)(θ, φ) is evaluated as

Λ(m,n)(θ, φ) =
_

Γ
(m,n)

jk (θ) cos ρnφ−
^

Γ
(m,n)

jk (θ) sin ρnφ, (2.165)

and the terms dependent only on θ are written as

_

Γ
(m,n)

jk (θ) = λR2
(m,n) cosmθ − λI1

(m,n) sinmθ, (2.166)
^

Γ
(m,n)

jk (θ) = λR1
(m,n) sinmθ + λI2

(m,n) cosmθ. (2.167)

As the complete passage from Equation 2.154 to Equation 2.164 consists of algebraic

manipulation, it is included in Appendix A for reference. Notice that when used to

approximate the actual function, the coefficients multiply different trigonometric functions

then the ones used to obtain them — this is due to the negative imaginary term which
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appears in Equation 2.155, causing a rotation at the complex plane. With coefficient

matrices written in the above format is much clear why one only needs the positive

indices in the reproduction of the Fourier series. As only the positive m and n are being

used, one has to double the coefficients with (m,n) 6= 0, therefore, the scaling factor κl,

introduced in Equations 2.160 to 2.163, assumes the follwing values

κl =





1 l = 0,

2 l 6= 0.
(2.168)

Notice that when the constants m or n is zero, only λR1 6= 0. To maintain a

compact form of Equation 2.165, they are not excluded from the sum in the formulation

presented. As is known from the Fourier series properties these coefficients must decrease

consistently as the series terms m,n increase — the Barnett-Lothe tensor is infinitely

differentiable (analytic) at all points of its domain. The work multiplying and adding

these null terms can be avoided using numerical schemes which also avoid the spurious

non-null values arising from the numerical integration, which can be several orders of

magnitude smaller than the maximum coefficients. A user-defined threshold can control

the series precision by using only the most significant elements of the coefficient matrices

in Equations 2.160 to 2.163, further demonstrated in Section 2.6.

For clarity, the final formula for the Green’s function approximation at an obser-

vation point x is

U(x) = U(r, θ, φ) =
1

4 π r

∑

m,n=0...α

[
Λ(m,n)(θ, φ)

]
. (2.169)

First order derivative of the Green’s function

The first-order derivative can also be expressed as a singular part by a modulation

function which only depends on ê as

Ujk,l(x) =
1

4πr2
Ũjkl(ê) (2.170)

being the modulation function given by

Ũjkl(ê) = −êlHjk +
ml

sinφ

∂Hjk

∂θ
+ nl

∂Hjk

∂φ
(2.171)



60

where êl, nl andml are the components of the right-hand triad mentioned in Equation 2.63

and in Figure 2.3 which are defined as

ê = (sinφ cos θ, sinφ sin θ, cosφ) (2.172)

n = (cosφ cos θ, cosφ sin θ,− sinφ), (2.173)

m = (− sin θ, cos θ, 0) (2.174)

Performing the derivatives appearing in Equation 2.171, results in the following

Ũjkl(θ, φ) =− êl

α∑

m,n=0

[
Λ(m,n)(θ, φ)

]
+

− ml

sinφ

α∑

m,n=0

m
[
Γ̃

(m,n)
jk (θ) cos ρnφ− Γ̂

(m,n)
jk (θ) sin ρnφ

]
+

− nl

α∑

m,n=0

ρn
[_
Γ

(m,n)
jk (θ) sin ρnφ−

^

Γ
(m,n)
jk (θ) cos ρnφ

]
,

(2.175)

where, from the derivative with respect to θ in Equation 2.171, the following terms arise

Γ̃
(m,n)
jk (θ) =

[
λR2

(m,n) sinmθ + λI1
(m,n) cosmθ

]
,

Γ̂
(m,n)
jk (θ) =

[
λR1

(m,n) cosmθ − λI2
(m,n) sinmθ

]
.

(2.176)

Second-order derivative of the Green’s function

The Green’s function second-order derivative can be written in terms of Equa-

tion 2.170 using chain rule as

Ujk,ml(x) =
∂Ujk,m
∂r

∂r

∂xl
+
∂Ujk,m
∂θ

∂θ

∂xl
+
∂Ujk,m
∂φ

∂φ

∂xl
. (2.177)

After carrying out this derivation, the result can also be separated as the product of a

singular part and a modulation function,

Ujk,lm(x) =
1

2πr3
Ũjklm. (2.178)

,
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The second-order derivative of the modulation function Ũjklm is computed as

Ũjklm(θ, φ) =− Ω
(1)
lm

α∑

m,n=0

[
Λ̃

(m,n)
jk (θ, φ)

]
+

− Ω
(2)
lm

α∑

m,n=0

m
[
Γ̃

(m,n)
jk (θ) cos ρnφ− Γ̂

(m,n)
jk (θ) sin ρnφ

]
+

− Ω
(3)
lm

α∑

m,n=0

ρn
[_
Γ

(m,n)
jk (θ) sin ρnφ−

^

Γ
(m,n)
jk (θ) cos ρnφ

]
+

+ Ω
(4)
lm

α∑

m,n=0

mρn
[
Γ̃

(m,n)
jk (θ) sin ρnφ− Γ̂

(m,n)
jk (θ) cos ρnφ

]
+

+ Ω
(5)
lm

α∑

m,n=0

m2Λ̃
(m,n)
jk (θ, φ)+

+ Ω
(6)
lm

α∑

m,n=0

(ρn)2Λ̃
(m,n)
jk (θ, φ),

(2.179)

where Ω
([1...6])
ml are symmetric matrices which result from the spatial derivatives appearing

in Equation 2.177 listed in Table 2.3. Without loss of generality, the sums range is

considered as m = [0, α] and n = [0, α], even when is clearly seen that many summands

will be null. By this approach it is possible to be clarified which of the terms can be

reused or rearranged numerically, without the need to explicitly type the non-zero terms.

Table 2.3 – Partial derivatives from the spherical coordinate system used in the

computation of the Green’s function second derivative.

{i, j} Ω1
{i,j} Ω2

{i,j} Ω3
{i,j}

1, 1 1.5(1− cos 2φ) cos2 θ − 1 − sin 2θ(1 + 1/ sin2 φ) 2 cos2 θ sin 2φ− sin2 θ cotφ
1, 2 1.5 sin 2θ sin2 φ cos 2θ(1 + 1/ sin2 φ) sin 2θ(0.5 cotφ+ sin 2φ)
1, 3 1.5 cos θ sin 2φ − sin θ cotφ 2 cos θ cos 2φ
2, 2 1.5(1− cos 2φ) sin2 θ − 1 sin 2θ(1 + 1/ sin2 φ) 2 sin2 θ sin 2φ− cos2 θ cotφ
2, 3 1.5 sin θ sin 2φ cos θ cotφ 2 sin θ sin 2φ
3, 3 1.5 cos 2φ+ 0.5 0 −2 sin 2φ

{i, j} Ω4
{i,j} Ω5

{i,j} Ω6
{i,j}

1, 1 − sin 2θ cotφ − sin2 θ/ sin2 φ − cos2 θ cos2 φ
1, 2 cos 2θ cotφ 0.5 sin 2θ/ sin2 φ −0.5 sin 2θ cos2 φ
1, 3 sin θ 0 0.5 cos θ sin 2φ
2, 2 sin 2θ cotφ − cos2 θ/ sin2 φ − sin2 θ cos2 φ
2, 3 − cos θ 0 0.5 sin θ sin 2φ
3, 3 0 0 − sin2 φ
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Coordinate transformation for avoidance of the indetermination near the x3

axis

Although the Fourier series is free of singularities, its derivative, from which re-

sults the fundamental solution for traction in BEM, Equation 2.117, the second term of

Equation 2.175 is indeterminate as φ → 0, due to the division by sinφ. To circumvent

this problem, Shiah et al., 2012, suggests adding a perturbation to φ and set to zero the

other angles of the derivative, which cancels out this term.

Although one can accept this solution in some cases, there exist the possibility that

an entire line of integration points to be aligned with the x3 axis during the computation

BEM integrals — this can cause the resulting integral to be incorrect. That solution can

also cause performance constraints in the underlying BEM implementation, which one

should avoid at all costs.

Another manner to deal with this problem is to use a rotation matrix, as suggested

in Tan et al., 2013, for the computation of the second derivative of the Green’s function,

hence rotating the coordinate system (xi), (i = 1, 2, 3) on the x2 axis by an angle of π/2

represented by the following proper orthogonal transformation matrix

Ω
(2)|π

2 =




0 0 −1

0 1 0

1 0 0


 . (2.180)

The first- and second-order derivatives of the Green’s function are calculated at this

rotated coordinate vector (ê∗(3)), as Ũ∗ABc and Ũ∗ABcd, then rotated to the original coordinate

axis through relations

ŨIKj(ê(3)) = Ω
(2)|π

2
AI Ω

(2)|π
2

BK Ω
(2)|π

2
cj Ũ∗ABc(ê

∗
(3)) (2.181)

and

ŨIKjl(ê(3)) = Ω
(2)|π

2
AI Ω

(2)|π
2

BK Ω
(2)|π

2
cj Ω

(2)|π
2

dl Ũ∗ABcd(ê
∗
(3)). (2.182)

As this rotation is not necessarily a material symmetry operation nor it is a re-

flection, a new set of coefficients (Equation 2.156) must also be evaluated at the newly
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rotated coordinate system. The rotated stiffness tensors are written as

C∗ijkm = Ω
(2)|π

2
ia Ω

(2)|π
2

jb Ω
(2)|π

2
kc Ω

(2)|π
2

md Cabcd,

e∗ijk = Ω
(2)|π

2
ia Ω

(2)|π
2

jb Ω
(2)|π

2
kc eabc,

q∗ijk = Ω
(2)|π

2
ia Ω

(2)|π
2

jb Ω
(2)|π

2
kc qabc,

ε∗ij = Ω
(2)|π

2
ia Ω

(2)|π
2

jb εij ,

λ∗ij = Ω
(2)|π

2
ia Ω

(2)|π
2

jb λab,

µ∗ij = Ω
(2)|π

2
ia Ω

(2)|π
2

jb µab.

(2.183)

Efficient integration of Fourier Series coefficients of the Barnett-Lothe tensor

The integration of the Fourier coefficients, Equations 2.160 to 2.163, are of the

kind ∫ 2π
ρ

0

∫ 2π

0

f(ê(θ, φ))dθdφ, (2.184)

in fact if f(ê) is constant, the integral results in the surface area of the sphere times the

function value. Applying the Gaussian quadrature to compute this integral results in

1

4

∑

k1

∑

k2

f(θk1 , φk2)wk1wk2 , (2.185)

where θk1 , φk2 are the Gauss abscissas in both directions k1, k2, i.e., θk = πpk φk = 1
2
πpk,

scaled by the integration domain, and 1
4
is the corresponding Jacobian. pk is the vector

containing the Gauss integration points.

One assumes that all coefficients are computed using the same quadrature rule;

Therefore, function f can be evaluated only one time for each Gauss abscissa, then,

multiplied by the weights vector which is organized in the following fashion

wK =
1

4

[
w1w1 w1w2 . . . w1wk2 w2w1 . . . w2wk2 . . . wk1wk2

]T
. (2.186)

The matrix having function f may contain 6 (Elastic), 10 (PE or ME) or 15 (MEE)

components of the Barnett-Lothe tensor evaluated at each one of the K = [1, k1k2] Gauss

abscissas. Therefore, one can premultiply it by the weights vector resulting in

Hw
Kv = HKvwK (no implicit sum), (2.187)

where v stands for the Voigt vector representation of the symmetric tensor HJK , J,K =
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[1, ndof ]. The cosine and sine for all Gauss points can be also stated in matrix form, such

as
cθKm = cos(mθK) sθKm = sin(mθK)

cφKn = cos(ρnφK) sφKn = sin(ρnφK)
(2.188)

The numerical integration of the coefficients can be then performed by the following

sum over theK Gauss point (implied over the repeated index in the matrix multiplication)

λR1(vmn) = Hw
Kvc

θ
KmcφKn (2.189)

λR2(vmn) = Hw
Kvs

θ
KmsφKn (2.190)

λI1(vmn) = Hw
Kvc

θ
KmsφKn (2.191)

λI2(vmn) = Hw
Kvs

θ
KmcφKn (2.192)

After this computation, the terms can be properly scaled by the constants appear-

ing in Equations 2.160 to 2.163, i.e.,

λ(·)(vmn) =
ρκmκn

4π2
λ(·)(vmn), (no implicit sum). (2.193)

It is necessary to point out that, as K, m and n, the cosine and sine matrices

should be computed preferably inside a loop for each Gauss point to avoid their storage,

otherwise, the arrays of size [K×m] and [K×n] may not fit in memory. As the high-order

terms of the series must decrease in magnitude (or converge to zero) due to properties

of Green’s function, using the same quadrature for the computation of all terms can be

beneficial as it ensures greater precision on the low-order terms. At the same time, it also

ensures that the high-order terms are not under-sampled, i.e., a low-order polynomial, e.g.,

a 10 point Gaussian quadrature cannot approximate the quick variation of the high-order

terms (e.g., cos(15φ)). This effect is verified in the next section.

2.6 Results for the Fourier series coefficients and solution evaluation

In this section, the various aspects of the fundamental solution represented using

the Fourier Series are explored and verified. One has to evaluate a considerable number

of materials, due to the dependence of the approximation method on the properties and

the numerous symmetries of the materials being represented. The most commonly found

applications in engineering are isotropic at the macro-scale (poly-crystalline materials),

transversely isotropic or orthotropic (fiber reinforced plastic composites) and layered ge-
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ological materials. Also, since the 1980 decade, Nickel alloys solidified as a monolithic

crystal with cubic symmetry are being used in the first stage blades of jet engines to avoid

creep at near-melting temperatures. As there are many elastic materials to consider, in

the author’s experience, the most difficult of these materials regarding convergence of

integration and the solution reproduction, was the cubic symmetry. The number of non-

zero coefficients after the integration was high, and the convergence was the slowest. A

selection of MEE and PE materials was also done, and they are listed as follows.

This analysis was carried out for the following materials:

• Cubic elastic material (Nickel) with principal planes aligned with the coordinate

system, found in Table 4.1 (Figure 2.7a);

• Piezoelectric material PZT4 (Figure 2.7b);

• Piezoelectric + Piezomagnetic material, without Magneto-Electric coupling (Fig-

ure 2.7c). It is a transversely isotropic material with the elastic and piezoelectric

properties of BaTiO3 and the piezomagnetic coefficients of CoFe2O4, but no elec-

tromagnetic coupling, due to Pan, 2002, which were taken from the work of Huang

and Kuo, 1997;

• Fully coupled Maneto-Electro-Elastic composite, namely BaTiO3—CoFe2O4, using

a volume fraction v = 0.50, whose properties are due to Buroni and Sáez, 2010

(Figure 2.7d).

The first aspect covered is the integration convergence of the Fourier series coeffi-

cients Equations 2.160 to 2.163, presented in Figure 2.7 and Figure 2.8. Since analytical

values for these terms are not possible to be explicitly obtained for the materials analyzed,

let us propose the following mean error rule

e
(K,α)
int

[
λK(m,n)
uv

]
=

ndof∑
u,v=1

[
α∑

m,n=−α

∣∣∣λK(m,n)
uv − λref (m,n)

uv

∣∣∣
]

(2α)2(ndof2) max
(∣∣∣λref (m,n)

uv

∣∣∣
) (2.194)

where λR (m,n)
uv is a reference coefficient matrix evaluated with a high number of Gauss

abscissas, and λK(m,n)
uv is the matrix being evaluated with an order K rule.

Although both figures present mainly the same information, in Figure 2.7 is pos-

sible to analyze how a specific set of coefficients respond to the increase in the number of
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Figure 2.7 – Mean relative difference on the coefficient integration, Equation 2.194, as a

function of the integration rule K = {4, 8, 16, 32, 64, 128}, for a fixed cofficient matrix

size, m = n = α, with α = [1, 30].

integration points. In Figure 2.8 is possible to verify the correspondence to each integra-

tion rule to the increase in the number of terms. This second plotting method is useful to

establish the maximum number of terms a quadrature rule can integrate with reasonable

accuracy for a given material.

As could be noticed in the presented plots, Gaussian quadrature rules increasing

from K = 4 to K = 128 in each direction were selected for this analysis. The range of
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Figure 2.8 – Mean relative difference on the coefficient integration, Equation 2.194, as a

function of the number of coefficients, m = n = α, with α = [1, 30], for a set of fixed

integration rules K = {4, 8, 16, 32, 64}.

terms considered for the coefficient matrices was α = [1, 30].

Convergence of the Fourier Green’s function and its derivatives

In Figure 2.9a, the Fourier series solution using the already converged coefficients

was evaluated against the function used to compute the coefficients Equations 2.160

to 2.163. The error norm eS1 is evaluated over the surface of a unit sphere using the
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following scheme

eS1 [Uij] =

∥∥Uij − U ref
ij

∥∥
S1∥∥U ref

ij

∥∥
S1

, (2.195)

where, ‖·‖S1
=
∫
S1
| · |dS and S1 is a unit sphere. The convergence of the Fourier series

solution is presented in Figure 2.9a. For this example Equation 2.195 was evaluated using

n = 16 quadrature rule.

As was pointed out earlier in this work, the Barnett-Lothe tensor is an analytic

and holomorphic function, i.e., it presents no discontinuities or abrupt changes and it

is smooth throughout its entire domain; It is a periodic function, which implies it is

also smooth and continuous at the boundaries. As the terms of the Fourier series of this

function are integrated, the progressively increasing number of wave numbers will result in

decaying values for an increase in the coefficient order. The result is that a finite number of

terms should be necessary for its reproduction considering finite precision (floating point).

Although this holds for any material configuration, it is only possible to be demonstrated

with closed-form solutions, as those can be analytically integrated, revealing which terms

of the series are not null.

As an analytical solution to compare the Green function from Buroni et al., 2019,

is available, it is possible to analyze the convergence of the Fourier series effectively.

Nevertheless, instead of probing the error of the Fourier series at a single point, the relative

error is evaluated at the sphere surface domain. This relative error is then numerically

integrated, a useful measure once this function is never evaluated at a single point, instead

it is integrated throughout the elements on the assembly of the BEM equation system.

A K = 128 rule in each direction was considered for this example to ensure the

high-order coefficients were correctly integrated. For all practical purposes, a 64 point

rule is sufficient for integrating up to 20 terms with an accurate reproduction of the base

function.

Tables Tables 2.4 to 2.6 sample the proposed Fourier series approximation for the

Green’s function and its derivatives at the point x = [1, 1,−1].

2.6.1 Influence of equivalent anisotropy index

The possibility and existence of a wide range of material symmetries as well as

numerous levels of anisotropy requires one to investigate the influence of the anisotropic
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(b) PE material A: PZT-4
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(c) PE+PM material B : PZT4 - CoFe2O4
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(d) MEE material C : BaTiO3-CoFe2O4

Figure 2.9 – Error integral over the unit sphere eS1 for the MEE Green’s function and its

derivatives considering Shiah et al., 2012, formulation, ρ = 1 (dashed lines) and the

present work formulation, ρ = 2 (continuous lines).

index on the accuracy of the Fourier series Green’s function for these materials. Also,

as pointed out by Gaul et al., 2013: "The piezoelectric effect does not appear in all

crystals, but only in those that lack a centre of symmetry. As a consequence, piezoelectric

materials are always anisotropic." MEE materials with efficient magneto-electric coupling
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Table 2.4 – Green’s function UJK for MEE Material C.

{jk} Buroni and Sáez, 2010 present work (non-degenerate) present work (Fourier ρ = 2 )

11 8,7225398002742391× 10−4 8,7225391529708176× 10−4 8,7225391143385966× 10−4

12 6,4154620180000892× 10−5 6,4154633546640012× 10−5 6,4154635388780994× 10−5

13 3,1446825949164037× 10−4 3,1446823384049725× 10−4 3,1446823020702950× 10−4

14 −1,2680519416303164× 10−3 −1,2680518422761380× 10−3 −1,2680518331308015× 10−3

15 −5,1231568254934725× 10−7 −5,1231566218975244× 10−7 −5,1231566172255558× 10−7

22 7,6090426614139801× 10−4 7,6090421241993020× 10−4 7,6090420962374212× 10−4

23 4,9374127465890965× 10−5 4,9374116000788879× 10−5 4,9374114832466072× 10−5

24 4,5315107542192896× 10−4 4,5315103712122884× 10−4 4,5315103438906013× 10−4

25 2,8343787079494569× 10−7 2,8343785605411864× 10−7 2,8343785543437576× 10−7

33 1,0440331060742933× 10−3 1,0440330705104972× 10−3 1,0440330649497012× 10−3

34 −1,8426611715379502× 10−3 −1,8426611016083994× 10−3 −1,8426610912217531× 10−3

35 −6,5916283018091271× 10−7 −6,5916280287229014× 10−7 −6,5916280074504749× 10−7

44 1,2157849166703620× 10−2 1,2157848479829412× 10−2 1,2157848421365205× 10−2

45 1,8466901349619211× 10−6 1,8466900615535804× 10−6 1,8466900594546791× 10−6

55 2,5182299673182738× 10−7 2,5182298256559097× 10−7 2,5182298226958415× 10−7

Table 2.5 – Derivative of Green’s function UJK,3 for MEE Material C.

{jk, l} Finite differences Buroni and Sáez, 2010 present work

11, 3 −3,675 418 036 705 983× 10−13 −3,675 418 038 147 529× 10−13 −3,675 415 184 885 964 0× 10−13

12, 3 −1,022 473 809 428 751× 10−13 −1,022 473 811 350 401× 10−13 −1,022 471 681 140 282 5× 10−13

13, 3 −1,130 914 219 850 401× 10−14 −1,130 914 522 684 852× 10−14 −1,130 916 308 353 429 9× 10−14

14, 3 3,207 066 889 615 237× 10−4 3,207 067 004 117 469× 10−4 3,207 074 366 896 354 2× 10−4

15, 3 2,240 137 639 332 812× 10−7 2,240 137 681 772 090× 10−7 2,240 348 281 547 726 9× 10−7

22, 3 −3,482 702 552 773 726× 10−13 −3,482 702 562 831 942× 10−13 −3,482 711 709 887 898 8× 10−13

23, 3 2,457 210 719 924 869× 10−15 2,457 208 785 075 626× 10−15 2,457 898 647 735 611 1× 10−15

24, 3 −1,386 199 675 011 690× 10−4 −1,386 199 583 437 589× 10−4 −1,386 224 660 320 099 8× 10−4

25, 3 −1,123 708 543 004 768× 10−7 −1,123 708 508 292 927× 10−7 −1,123 638 542 164 919 5× 10−7

33, 3 −8,404 303 395 022 170× 10−14 −8,404 303 328 191 928× 10−14 −8,404 340 451 696 422 0× 10−14

34, 3 1,966 253 560 794 704× 10−4 1,966 253 482 908 411× 10−4 1,966 268 142 258 674 7× 10−4

35, 3 1,850 871 822 783 363× 10−7 1,850 871 866 296 891× 10−7 1,850 690 508 534 595 3× 10−7

44, 3 −3,346 553 299 576 044× 106 −3,346 553 312 754 738× 106 −3,346 559 638 224 575 9× 106

45, 3 −7,696 119 549 791 547× 102 −7,696 119 653 866 651× 102 −7,696 075 707 465 677 6× 102

55, 3 −1,323 349 050 039 724× 102 −1,323 349 045 127 773× 102 −1,323 334 126 068 789 6× 102

Table 2.6 – Second derivative of Green’s function UJK,ls for the MEE Material C.

{jk, ls} Finite differences (Buroni and Sáez, 2010) present work

11, 11 −2.1980595058120835× 10−4 −2.1978899449576415× 10−4

12, 11 1.9687625791783847× 10−4 1.9687288627287911× 10−4

13, 11 2.0689019605574925× 10−4 2.0687790498394083× 10−4

14, 11 1.2939342436055212× 10−4 1.2939411002126129× 10−4

15, 11 4.9919418072938075× 10−4 4.9919589319171225× 10−4

22, 11 2.8999238991037073× 10−5 2.9007574036204438× 10−5

23, 11 −1.5980459863788832× 10−4 −1.5980472435096293× 10−4

24, 11 8.2646416647196368× 10−5 8.2646486728975450× 10−5

25, 11 4.9176303315383834× 10−5 4.9176515955750446× 10−5

33, 11 −2.1532552044162658× 10−4 −2.1532570098457580× 10−4

34, 11 8.4475529653002539× 10−5 8.4475777310801128× 10−5

35, 11 7.0842975461045929× 10−5 7.0842038016214879× 10−5

44, 11 −2.4896882218204035× 10−4 −2.4896293517520753× 10−4

45, 11 2.0394690732235263× 10−4 2.0394549294444864× 10−4

55, 11 1.2754151363068311× 10−4 1.2753740393729069× 10−4

are usually produced by layering different phases of PE and ME materials.

This configuration inherently presents levels of anisotropy, be it on their elastic,
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magnetic, electric, or at the coupling between these fields [Espinosa-Almeyda et al., 2011].

As an anisotropy index for MEE materials is yet to be defined and as the Zener

and Siegel, 1949, anisotropy index is valid for Cubic materials, let us use the Universal

anisotropic index from Ranganathan and Ostoja-Starzewski, 2008, which also provides an

equivalent anisotropy index that enabling direct comparison with the Zener index. For

cubic materials, Zener and Siegel, 1949, introduced a measure to quantify the anisotropy,

known as the Zener anisotropic index, is defined by

A =
2C44

C11 − C12

. (2.196)

For more general materials, another anisotropy index exist, such as Chung and Buessem,

1967, Ledbetter and Migliori, 2006, and others. The Universal anisotropy index, is due

to Ranganathan and Ostoja-Starzewski, 2008, and is

AU = 5(
Gv

Gr

) + (
Kv

Kr

)− 6 (2.197)

where Gv and Kv are the Voigt average shear and bulk modulus, and Gr and Kr are the

Reuss average shear and bulk modulus. Voigt and Reuss defined these modules as

9KV = (C11 + C22 + C33) + 2 (C12 + C23 + C31) ,

15GV = (C11 + C22 + C33)− (C12 + C23 + C31) + 3 (C44 + C55 + C66) ,

1/KR = (s11 + s22 + s33) + 2 (s12 + s23 + s31) ,

15/GR = 4 (s11 + s22 + s33)− 4 (s12 + s23 + s31) + 3 (s44 + s55 + s66) .

Where sij = C−1
ij . To enable direct comparison with Zener’s, the authors proposed an

equivalent anisotropic index,

Aeq =

(
1 +

5

12
AU
)

+

√(
1 +

5

12
AU
)2

− 1. (2.198)

Through the use of these concepts we propose a rule for the variation of material B, in

which Aeq could vary from an isotropic to highly anisotropic.

In the particular case of piezoelectric and MEEmaterials, to the best of the author’s

knowledge, there is not available in the literature an anisotropy index for these materials.

Although it seems to be useful to formulate an extended anisotropic index for MEE

materials, it is out of the scope of this work, and therefore, simple rules which cause
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anisotropy of both the electric and the magnetic constants are defined. The coupling

constants are not altered being maintained the same as the reference material B.

As it was observed previously, the derivatives of this function seems to maintain a

fixed precision offset relative to the function, characteristic to the approximation, so the

anisotropy effect is studied only on the displacement Green’s function.

To obtain the properties of an isotropic material, Aeq = 1, C1111 and C2233 are

maintained as in material B, and a new stiffness tensor, CiJKl, is obtained modifying the

following set of properties,

C̃3333 = C̃2222 = C1111,

C̃1122 = C̃1133 = C2233,

C̃2323 = (C1111 − C1122)/2,

C̃1212 = C̃1313 = C2323,

µ̃33 = µ̃22 = µ11, ε̃33 = ε̃22 = ε11.

(2.199)

To obtain Aeq 6= 1, the following rule is devised for the update of material B

stiffness tensor, CiJKl
C̃2323 = AdC2323,

C̃1313 = AdC1313,

C̃1212 = Ad(C1111 − C1122)/2,

(2.200)

where Ad is the desired anisotropy index. With Aeq obtained, the dielectric and magnetic

properties are modified accordingly,

µ̃33 = Aeqµ11, ε̃33 = Aeqε11, (2.201)

The input values used in Equation 2.200 are brought in Table 2.7. The resultant Aeq from

the devised rules are close to the desired ones Ad. Notice that the measure of anisotropy

Aeq is performed only on the elastic part of the extended MEE tensor.

Table 2.7 – Resulting Aeq for the elastic part of the extended MEE stiffness tensor, for

Ad used as input variable.

Ad 1,000 1,467 2,154 3,162 4,641 6,812 10,00

Aeq 1,000 1,471 2,157 3,165 4,645 6,817 10,00
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Figure 2.10 depicts the results for this analysis. Although the isotropic config-

uration presents a lower error, the precision is not directly dependent on the level of

anisotropy. As the number of terms is increased above α = 16, it is found that the

highest differences occurr for the configurations with Aeq = 2,157 and 3,165.

0 2 4 6 8 10 12

10−10
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e S
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α = 6 α = 10 α = 16

Figure 2.10 – Integral of the relative error over the unit sphere (es1(Uij)), on the

approximation of the Green’s function for anisotropic indices varying from 1 (isotropic)

to 10 (highly anisotropic).
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3 BOUNDARY INTEGRAL EQUATIONS AND THE BOUNDARY EL-

EMENT METHOD

This chapter presents the integral equations which the boundary element method

(BEM) derives from, as shown by Brebbia et al., 2012, and also in Beer et al., 2008.

3.1 Boundary integral equations

One can attribute the BEM as a computational technique to Jawson, 1963 and

Symm, 1963. These works used its original designation as Boundary Integral Equation

Method. Rizzo, 1967, applied the method for plane elasticity, and in Cruse, 1969, is

presented the first relevant work with BEM for three-dimensional elasticity.

The BEM is based on the integral representation of the Maxwell-Betti theorem,

which can be obtained through the application of weighted residuals in the elasticity

equilibrium equations, [Brebbia et al., 2012], i.e.,
∫

Ω

(σkj,j + bk)u
∗
kdΩ = 0 , (3.1)

where the integral Equation 3.1 is the residue, and u∗k is known as trial or weight function.

Integrating by parts the first term of Equation 3.1 and grouping the domain integrals to

the left-hand side of the equality one obtains

−
∫

Ω

σkju
∗
k,jdΩ +

∫

Ω

bku
∗
kdΩ = −

∫

Γ

pku
∗
kdΓ. (3.2)

Integrating by parts again the first term of Equation 3.2 results in
∫

Ω

σ∗kj,jukdΩ +

∫

Ω

bku
∗
kdΩ = −

∫

Γ

pku
∗
kdΓ +

∫

Γ

p∗kukdΓ, (3.3)

which corresponds to the Maxwell-Betti reciprocal theorem1 [Brebbia et al., 2012].

Equation 3.1 must satisfy the following boundary conditions

uk = ūk in Γ1,

pk = p̄k in Γ2,
(3.4)

1This theorem enforces linear reciprocity between stress and strains. On the other hand, its strong-
form is robust as it states that the work of the internal forces is equal to the work of external forces. In
that sense, one writes the boundary integral equations (BIE) in terms of the total energy of the system.
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where (̄·) represents known values of displacement and traction at the boundary. Sepa-

rating the boundary Γ in the regions where the boundary conditions are set, Γ1 and Γ2,

results in
∫

Ω

σ∗kj,jukdΩ +

∫

Ω

bku
∗
kdΩ = −

∫

Γ1

pku
∗
kdΓ−

∫

Γ2

p̄ku
∗
kdΓ +

∫

Γ1

ūkp
∗
kdΓ +

∫

Γ2

ukp
∗
kdΓ. (3.5)

Integrating by parts the first term on the left-hand side (LHS) of Equation 3.5 two

more times, one obtains the following relation
∫

Ω

(σkj,j + bk)u
∗
kdΩ =

∫

Γ2

(pk − p̄k)u∗kdΓ +

∫

Γ1

(ūk − uk)p∗kdΓ. (3.6)

Equation 3.6 is a generalized theorem which can also be used as a starting point to obtain

the BIE, equivalent to Equation 3.1. According to Brebbia et al., 2012, (pk − p̄k) and

(ūk − uk) are also residuals being orthogonalized by the weighting functions.

One can return to Equation 3.5 by having this relations established, and proceed

from it applying as weighting functions the fundamental solutions for a point force (Dirac

delta) bl = δiel, along the direction of the unitary vector el. The first domain integral on

the LHS of Equation 3.5 simplifies to
∫

Ω

σ∗lj,juldΩ = −
∫

Ω

δiuleldΩ = −uilel, (3.7)

where uil represents the l component of the displacement at the load application point i.

Equation 3.5 can be written to represent the three components of displacement at i,

if one writes the starred displacements and tractions as u∗l = Ulk el, and p∗l = Tlk el. With

respect to Chapter 2, Ulk and Tlk are the Green’s function for displacement, Equation 2.73,

and the fundamental solution for traction, Equation 2.117. Writing each direction el

independently results in

uil +

∫

Γ1

TlkūkdΓ +

∫

Γ2

TlkukdΓ =

∫

Γ1

UlkpkdΓ +

∫

Γ2

Ulkp̄kdΓ +

∫

Ω

UlkbkdΩ, (3.8)

which can be written in a more compact form without splitting the unknowns and the

boundary conditions as

uil =

∫

Γ

UlkpkdΓ−
∫

Γ

TlkukdΓ +

∫

Ω

UlkbkdΩ. (3.9)
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Equation 3.9 is the well-known Somigliana Identity and is valid for any force ap-

plied at a point x′ inside the domain Ω. Through this identity, it is possible to obtain

displacements at any internal point as a function of the boundary values, the domain

forces, and the fundamental solutions.

Evaluating Equation 3.9 when point i is at the boundary causes a singularity

which needs to be separately analyzed. Considering a hemisphere of radius ε around

the singularity, on a surface Γε, as in Figure 3.1, the limit is taken in all integrals in

Equation 3.9, remaining the following non-null term [Brebbia et al., 2012]
∫

Γ

TlkukdΓ = lim
ε→0

{ ∫

Γ−Γε

TlkukdΓ

}
+ lim

ε→0

{∫

Γε

TlkukdΓ

}
, (3.10)

in which the second term on the right-hand side (RHS) of Equation 3.10 can be written

as

lim
ε→0

{∫

Γε

TlkukdΓ

}
= uik lim

ε→0

{∫

Γε

TlkdΓ

}
. (3.11)

Integral Equation 3.11 does not vanish when ε→ 0 but produces a free term. At smooth

boundary points, one finds

lim
ε→0

{∫

Γε

TlkdΓ

}
= −1

2
δlk, (3.12)

and all other integrals in Equation 3.9 vanishes. Therefore, Equation 3.10 can be written

in the limit as

−
∫

Γ

TlkukdΓ− 1

2
δlku

i
k = −

∫

Γ

TlkukdΓ− 1

2
uil, (3.13)

where −
∫

(·) denotes the Cauchy Principal Value of the integral
∫

(·).
Naming the free term 1

2
δlk = clk, resulting from the limit, Equation 3.13, the

resulting identity for boundary points is

cilku
i
k +−
∫

Γ

TlkukdΓ =

∫

Γ

UlkpkdΓ +

∫

Ω

UlkbkdΩ. (3.14)

Formulations for free terms clk, for nodes not contained on a smooth surface, can be found

in Mantic, 1993.
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Figure 3.1 – Limit evaluated by Equation 3.10.

3.2 Numerical implementation

This section describes the transformation from the continuous integral formulation

to the discrete one (splitting the boundary Γ into parametric elements), which can be

solved by an algebraic formulation. By the consideration of discontinuous elements, one

treats the geometric and boundary value problem (BVP) variables differently. This well-

known approach is possible due to the collocation nature of the BEM procedure, i.e., each

source node generates a set of equations obtained by collocation at all field nodes.

The geometry is discretized using quadrilateral elements, allowing one to use stan-

dard mesh generation routines, the same as the ones used in FEM — The geometry comes

from a 3D surface-only mesh. To simplify the implementation, the collocation nodes, are

automatically generated during the mesh loading process and are positioned at a fixed

offset to the geometric nodes. In some particular cases, it is essential to have nodes in

corners; Those are possible to be obtained using a null offset in some elements when

necessary.

This type of element simplifies the matrix assembly process due to: (i) the free-

term, is constant and equals to 1
2
; (ii) there is no need to perform the nodal superposition,

thereby, it is possible to use non-conforming meshes (there is no necessity of nodal coinci-

dence between neighboring elements throughout the mesh, e.g., see Rüberg and Schanz,

2009).
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3.2.1 Geometry interpolation

Let us consider rectangular elements with a normalized local coordinate system

(ξ1, ξ2) varying from [−1, 1] (Figure 3.2).

(b)

4 3

21
(-1,-1) (1,-1)

(1,1)(-1,1)

(a)

Figure 3.2 – Rectangular Element at: (a) General coordinates and (b) local coordinates.

Let ξ be a point with local coordinates ξ = (ξ1, ξ2), on an element j. One calculates

the Cartesian coordinates vector, x, for this point through the following relation

x =
nnj∑

n=1

φjn(ξ1, ξ2)xjn, (3.15)

where nn is the number of nodes of the element j, φn is the n-th interpolation function

value of the element at (ξ1, ξ2). xjn is the coordinate of the n-th node of that element.

This sum is resumed in matrix notation as

x = xj[3×nn]Φ[nn×1], (3.16)

where Φ is the interpolation functions vector at ξ = (ξ1, ξ2), and xj is the matrix con-

taining the coordinates x for each geometric node of element j, with size [3× nn] .

The interpolation functions for the linear element are described by the following

equation

φn =
1

2
(1 + ξn1 ξ1)

1

2
(1 + ξn2 ξ2), (3.17)

where ξnd are the n-th node position as in Figure 3.2 (e.g.: ξ3
1 = −1, ξ3

2 = 1). Adding

intermediate nodes at the elements edges, between the existent ones, one gets the well
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known quadratic serendipity element.

φ1 =
1

4
(1− ξ1)(1− ξ2)(−ξ1 − ξ2 − 1), φ5 =

1

2
(1− ξ2

1)(1− ξ2),

φ2 =
1

4
(1 + ξ1)(1− ξ2)(ξ1 − ξ2 − 1), φ6 =

1

2
(1 + ξ1)(1− ξ2

2),

φ3 =
1

4
(1 + ξ1)(1 + ξ2)(ξ1 + ξ2 − 1), φ7 =

1

2
(1− ξ2

1)(1 + ξ2),

φ4 =
1

4
(1− ξ1)(1 + ξ2)(−ξ1 + ξ2 − 1), φ8 =

1

2
(1− ξ1)(1− ξ2

2).

(3.18)

An internal middle node known as the bubble node may also be added. However, its

advantages are not so significant in the BEM as reported in finite element method (FEM).

The local coordinates of the quadratic element and the ones shared with the linear one

are listed in Table 3.1.

Table 3.1 – Local coordinates of the linear element (nodes 1-4) and quadratic (nodes

1-8).

n ξ1 ξ2

1 -1.0 -1.0
2 1.0 -1.0
3 1.0 1.0
4 -1.0 1.0
5 0.0 -1.0
6 1.0 0.0
7 0.0 1.0
8 -1.0 0.0

3.2.2 Discretization of unknowns and loads

The discontinuous elements offer extra flexibility in BEM, and can always be sim-

plified to the continuous version when the offset is null. The first use of this element type

is from the works of Patterson and Sheikh, 1981, 1984. The collocation nodes are offset

from the geometric nodes towards the center of the element as in Figure 3.3.

The functions for those elements can be obtained multiplying the continuous ones

by transformation matrices, however, is also possible to parametrize them as a function
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Figure 3.3 – Discontinuous elements (a) Linear and (b) Quadratic.

of the offset, as shown in Beer et al., 2008. The resulting linear functions are then

φ̄1 =
1

c
(d1 − ξ1)(d3 − ξ2), φ̄2 =

1

c
(d2 + ξ1)(d3 − ξ2),

φ̄3 =
1

c
(d2 + ξ1)(d4 + ξ2), φ̄4 =

1

c
(d1 − ξ1)(d4 + ξ2),

c = (d1 + d2)(d3 + d4),

(3.19)

where d1, . . . , d4 are the distances from the element center to the nodes, as shown on

Figure 3.3. The resulting quadratic functions can be written as

φ̄1 =
1

c
(d1 − ξ1)(d3 − ξ2)(−1− ξ1

d2

− ξ2

d4

),

φ̄2 =
1

c
(d2 + ξ1)(d3 − ξ2)(−1− ξ1

d1

− ξ2

d4

),

φ̄3 =
1

c
(d2 + ξ1)(d4 + ξ2)(−1− ξ1

d1

− ξ2

d3

),

φ̄4 =
1

c
(d1 − ξ1)(d4 + ξ2)(−1− ξ1

d2

− ξ2

d3

),

φ̄5 =
(d1 − ξ1)(d2 − ξ1)(d3 − ξ2)

d1d2(d3 + d4)
,

φ̄6 =
(d2 − ξ1)(d3 + ξ1)(d4 − ξ2)

d3d4(d1 + d2)
,

φ̄7 =
(d1 − ξ1)(d2 − ξ1)(d4 + ξ2)

d1d2(d3 + d4)
,

φ̄8 =
(d1 − ξ1)(d3 − ξ2)(d4 − ξ2)

d3d4(d1 + d2)
.

(3.20)

Returning to continuous shape functions is straightforward and only needs that the dis-

tances di are all set as 1.
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To simplify the computational code it is defined that those distances are equal for

all the physical nodes of the same element and the outer distance, called offset, is used

instead of the inner one, d

d = d1 ≡ d2 ≡ d3 ≡ d4, (3.21)

offset = (1− d). (3.22)

One can interpolate displacement u and traction t at element j as a function of

its nodal values uj , pj, trough

u = Φ̄uj, (3.23a)

p = Φ̄pj, (3.23b)

where the vectors u and p are the displacement and traction at an arbitrary boundary Γ

point and are written as

u =
{
u1 u2 u3

}T
, (3.24a)

p =
{
p1 p2 p3

}T
, (3.24b)

and the nodal displacement and traction matrices for the element j take the following

form

uj =




u1
1 u2

1 unnos1

u1
2 u2

2 · · · unnos2

u1
3 u2

3 unnos3


 , (3.25)

pj =




p1
1 p2

1 pnnos1

p1
2 p2

2 · · · pnnos2

p1
3 p2

3 pnnos3


 . (3.26)

The Φ̄ and Φ matrices store the interpolation functions of the element physical and

geometrical partition, for each of the element node. They take the form

Φ̄ =
{
ϕ̄1 ϕ̄2 · · · ϕ̄nnos

}T
, (3.27a)

Φ =
{
ϕ1 ϕ2 · · · ϕnnos

}T
, (3.27b)
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where ϕ̄j e ϕj, are defined in index notation as

ϕ̄jab = φ̄jδab, (3.28a)

ϕjab = φjδab, (3.28b)

where δab is the Kronecker delta, and φ̄j and φj are the interpolation function correspond-

ing to the j-th element node.

3.2.2.1 Coordinate transformation

Due to the global-local coordinate system transformation, the Jacobian must be

calculated, which in the 3D case, Beer et al., 2008, define as being the real area of an

unitary segment at the local coordinate system. Firstly, one must define the element

directional vectors v1 and v2 as

v1i =
∂ξ1

∂xi
, v2i =

∂ξ2

∂xi
. (3.29)

With those vectors, the normal vector to the element surface can be obtained by

cross product

v3 = v1 × v2, (3.30)

and finally the Jacobian is defined through the following norm

J = ‖v3‖ . (3.31)

3.2.3 Discretization of the integral equations

As already stated on the start of Section 3.2, the continuous integral formulation

must be discretized to allow an algebraic computational solution, process which leads to

the method known as BEM. Equation 3.14 is rewritten in matrix notation as

ciui +−
∫

Γ

TuidΓ =

∫

Γ

UpidΓ +

∫

Ω

UbidΩ, (3.32)
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where ci = 1
2
I, according to Brebbia et al., 2012, and the fundamental solutions are

expressed in the following form

U =




U11 U12 U13

U21 U22 U23

U31 U32 U33


, T =




T11 T12 T13

T21 T22 T23

T31 T32 T33


. (3.33)

Applying the element discretization including the interpolation functions, i.e.,

Equation 3.27 in Equation 3.32, the former boundary integrals become a sum over each

element integral which, considering the i-th source node, results in

ciui +
nel∑

j=1

{∫

Γj

TΦdΓ

}
uj =

NE∑

j=1

{∫

Γj

UΦdΓ

}
pj +

M∑

s=1

{∫

Ωs

UbdΩ

}
, (3.34)

where nel denotes the total number of boundary elements, Γj is the element’s j surface,

and uj and pj are the nodal displacement and traction for the j-th element. Finally,

the local coordinates are applied in the integration so dΓx = JdΓξ and dΩx = JΩdΩξ.

Therefore, Equation 3.34 is rewritten as

ciui +
NE∑

1

{∫

Γξ

TΦJdΓξ

}
uj =

NE∑

1

{∫

Γξ

UΦJdΓξ

}
pj +

M∑

s=1

{∫

Ωξ

UbJΩdΩξ

}
. (3.35)

Instead of referring to each element, it is more interesting to assemble it as function

of the collocation nodes j = {1,NN} in the following manner

ciui +
NN∑

j=1

Ĥijuj =
NN∑

j=1

Gijpj +
M∑

s=1

f is, (3.36)

where

Ĥij = ∫
Γξ

Tφ̄n(j) J dΓξ (3.37a)

Gij = ∫
Γξ

Uφ̄n(j) J dΓξ (3.37b)

f is = ∫
Ωξ

UbJΩdΩξ. (3.37c)

The discontinuous function φ̄n(j) Index n(j) denotes for which local node n of the field
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element the global index j corresponds to. So, calling

Hij =





Ĥij, if i 6= j,

Ĥij + ci, if i = j,

(3.38)

simplifies Equation 3.36 in:

NN∑

j=1

Hijuj =
NN∑

j=1

Gijpj +
M∑

s=1

f is. (3.39)

Notice that, in this notation, matrices H and G for a source node i, and field node j,

has the same form as the fundamental solutions Section 3.2.3, sH = sG = [3, 3], while the

body force vector f i for a source node i has size sf = [3].

Assembling the sub matrices for all the source nodes i, forms the BEM system of

linear equations (SLE) for boundary

Hu = Gp + f . (3.40)

3.2.4 System Solution

In the general case, the SLE Equation 3.40 contains mixed unknowns and boundary

conditions in both vectors u and p, so one has to rearrange it to form a standard SLE.

Multiplying the boundary conditions, t̄j and ūj, by the corresponding columns of the

coefficient matrices, G and H and adding the resultant domain forces vector f , one forms

the following RHS vector b, whose components can be written in index notation as

bi = Gilp̄l −Hikūk + fi. (3.41)

where indices l and k corresponds to nodal directions where traction and displacement is

imposed, respectively, and l ∪ k = {1,NN}, l ∩ u = ∅.
In the same fashion, one can compose the solution vector x with the remaining

unknowns of the problem, assembling the coefficient matrix A with the corresponding

columns of G and H as

Aijxj ≡ Hilul −Gikpk, (3.42)

where ul and pl denotes the unknown boundary displacement and traction, respectively.

The indices l and k have direct correspondence to the ones in Equation 3.41, which finally
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forms the SLE

Ax = b. (3.43)

3.2.5 Numerical Integration of G and H matrices

In the assembly of G and H matrices, the non-singular integrals (not written in

the Cauchy principal value (CPV) sense) are evaluated using standard Gauss quadrature.

Equations 3.37a and 3.37b simplifies to

Gij =

K1∑

k1=1

K2∑

k2=1

U(pi, qjk(ξ))φn(j)(ξ) J(qjk(ξ))wk1wk2 (3.44a)

Hij =

K1∑

k1=1

K2∑

k2=1

T(pi, qjk(ξ))φn(j)(ξ) J(qjk(ξ))wk1wk2 (3.44b)

where k = (k1, k2), K1 and K2 are the number of abscissas of the quadrature for each

direction of the element coordinate system ξ = (ξ1, ξ2). The local coordinates ξ are

defined by the Gauss quadrature for each abscissae pair k1, k2.

pi is the source point i, and qk(ξ) is the k-th integration point along the corre-

sponding element (field point), and wk1 and wk2 are vectors containing the quadrature

weights corresponding to each direction.

The discontinuous interpolation function φn(j) corresponds to the n-th local element

node, the j-th collocation node, i.e., one of the linear functions Equation 3.20, or the

quadratic Equation 3.19.

To correctly approximate the integrals, one must select an adequate number of

abscissas: The fundamental solutions may lead to several quasi-singularities arising from

the element closeness, due to the asymptotic behavior of O(1/r) and O(1/r2), element

distortion, among others reported in the literature. According to Eberwien et al., 2005, the

non-singular integration can be performed with controlled accuracy and more efficiently

by following the rules listed in Table 3.2.

To maintain the routines simplicity we compute the G submatrices using the same

integration rules as needed for the H, i.e., using the second column rules of Table 3.2.

Because they are calculated for the same coordinates, with this approach, we can reuse

the Barnett-Lothe tensor in the first-order derivative as observed in Section 2.5.2, Equa-

tion 2.171.

Due to the incorporation of the anisotropic fundamental solutions, it is not only
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Table 3.2 – Maximum normalized distance r/L for a 0.1% error bound integrating

f(r) = 1/r and f(r) = 1/r2 over a 1-dimensional element due to Eberwien et al., 2005.

f(r)
r−1 r−2

n r/L

3 1.40257 4.10299
4 0.79263 1.67767
6 0.39947 1.01772
8 0.33302 0.54183
10 0.25652 0.34371
12 0.19612 0.24490
14 0.17697 0.21964
16 0.16789 0.19524

difficult but also not in the scope of this work to develop asymptotic expansions allowing

their direct integration, as it was performed previously by the authors in Ubessi, 2014. The

authors expect to develop these direct integration procedures as needed in the continuation

of this work. Thereby, the remaining CPV integrals which arise when source and field

nodes coincide are evaluated trough the concept of rigid-body displacement, as in [Brebbia

et al., 2012]. Thus, one can obtain the diagonal terms of the H matrix indirectly as

Hii = −
NN∑

j=1 (j 6=i)
Hij − I∞, (3.45)

where I∞ corresponds to the negative azimuthal integral [Beer et al., 2008], which depends

on the kind of boundary under consideration, i.e.,

I∞ =





0 for internal/finite problems (bounded domain),

−1
2
I for semi-infinite problems (truncated half-space),

−I for infinite problems (unbounded domain).

(3.46)

It is worth mentioning that these values were presented by Beer et al., 2008, considering

the isotropic fundamental solution for tractions, Equation 2.25. One may assume these

values are still valid for anisotropic elasticity. In any case, it is recommended to compute

the azimuthal integral for the corresponding anisotropic material, as it is needed only

once,

I∞ =

∫

SR

T(P,Q) dS, (3.47)
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where SR is the surface of a semi-infinite or infinite sphere. Beer et al., 2008 has shown

this integral is independent of the radius, thus, the sphere can be considered to be unitary.

The diagonal terms of the matrix G can be computed by Gaussian quadrature,

with the aid of the third-degree polynomial transformation from Telles and Oliveira, 1994.

For the cases when i and j belong to the same element but i 6= j, the integrals of matrices

Hij and Gij are not singular, as the fundamental solution singularity Tjk = O(r−2) cancels

out with the interpolation function φ̄ ≡ 0 at the point j [Beer et al., 2008]. Therefore,

they are also computed using the Telles and Oliveira, 1994 transformation, as they are

weakly singular at most.
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4 SHAPE SENSITIVITY

In this chapter we present the theoretical background for the complex step (CS)

method and its applications in shape sensitivity. The CS method is introduced from the

finite differentiation (FD) standpoint. We also present a convergence analysis for a simple

trigonometric function which demonstrates the FD schemes and the CS method behavior

for a wide range of increment sizes.

The boundary integral equations are rewritten introducing the CS to illustrate

the relation between the standard boundary element method (BEM) and the boundary

element method with complex step (CS-BEM) formulation. As an application example

to validate the CS-BEM approach, we evaluate the error convergence of displacement and

its shape derivative for a classical case of a cantilever beam under bending load.

4.1 Theoretical foundation and finite differentiation

Let us define f ′(x) as the derivative of the function f(x) through the concept of

differentiation, introduced by Isaac Newton (1642–1727) and Gottfried Leibniz (1646–

1716),

f ′(x) = lim
∆x→0

f(x+ ∆x)− f(x)

∆x
. (4.1)

Similarly to Equation 4.1, it is possible to get f ′(x) from the Taylor series of f(x),

f(x) = f(a) +
f ′(x)

1!
(x− a) +

f ′′(x)

2!
(x− a)2 + . . . , (4.2)

by setting a = x+ ∆x and reordering Equation 4.2, it resembles Equation 4.1,

f ′(x) =
f(x+ ∆x)− f(x)

∆x
+O(∆x). (4.3)

Equation 4.3 is the well-known Finite Differentiation (FD) expression for the first-order

derivative. The approximation error residue O(∆x) corresponds to neglected terms which

are in the order of ∆x. Notice that this is the forward finite differentiation. The backward

finite differentiation can also be written analogously by choosing a = x − ∆x. More

significant in many numerical applications is the central finite differetiation, which is

obtained performing the increment in both directions, i.e.,

f ′(x) =
f(x+ ∆x)− f(x−∆x)

2∆x
+O(∆x2). (4.4)



89

Notice that this scheme presents a lower error bound, within the order of ∆x2.

From the comparison of Equations 4.1 and 4.3 one observes that the limit on

∆x → 0 imposes the accuracy on the finite differentiation technique, i.e., the approxi-

mation accuracy depends on how close to zero one can set ∆x. The remainder in Equa-

tions 4.3 and 4.4 is obtained through the truncation of the Taylor series, and it is called

the truncation error. In the FD scheme, this error is always present, and one can only

attenuate it to some extent. Truncation determines the approximation accuracy of a FD

scheme. The single-step schemes, i.e., the forward and backward FD schemes, are first-

order accurate, while the central FD scheme Equation 4.4 is of second-order accuracy.

According to Abreu et al., 2013, one can obtain fourth-order accuracy by performing one

more layer of increments, like in the central approach.

An error of computational nature appears in the quest for the lowest possible

increment: Cancellation error. This error arises from the subtraction operation of nearby

values, [see Goldberg, 1991], and is inherent to floating-point arithmetic. As it depends on

the relation of the numerator in Equations 4.1 and 4.3, and on the number of significant

digits available at the floating-point implementation, it is difficult to predict, and, in

many cases, requires an empiric approach. The general starting point found in many

bibliographies is ∆x ≈ √ε, where ε = (β/2)β−p is the machine epsilon, the lowest possible

difference between two consecutive floating point real numbers. The IEEE-754 standard

requires for binary representatoin β = 2 and p = 24 for single precision results in εS =

2−24 = 5.960464478× 10−8 and ∆xS ≈
√

2−24 = 2,4× 10−4; For double precision, p = 53,

results in εD = 2−53 = 1.110223025× 10−16 and ∆xS ≈
√

2−53 = 1× 10−8.

The combination of these two error types narrows the usable range of ∆x which

the resulting error is low. Moreover, other sources of imprecision which can significantly

reduce this range may arise in general algorithms, such as error accumulation, limiting

the precision of the FD scheme. A common alternative for this problem usually is to use

central FD, due to its second-order accuracy. On the other hand, it needs two function

incrementations (twice as the forward or backward approaches).

4.2 The complex step method

Lyness and Moler, 1967, used complex variables to compute derivatives of functions

through the Cauchy-Riemann theorem. Based on these ideas, Squire and Trapp, 1998,
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proposed the complex-step (CS) method and it is well-known for its simplicity to obtain

numerically exact derivatives for any real-valued function. Let us define i ≡
√
−1|i ∈ C,

and ∆x to be a real number. One can formulate the CS method exactly as done previously

in Equation 4.2, i.e., using a Taylor series expansion of f(x+ i∆x),

f(x+ i∆x) = f(x) + i∆x f ′(x) +
(i∆x)2

2!
f ′′(x) +

(i∆x)2

3!
f ′′′(x) + . . .

=
∞∑

n=0

(i∆x)n

n!
fn(x).

(4.5)

Reordering Equation 4.5 to isolate if ′(x) to the left-hand side and taking the imaginary

part in both sides, results in

f ′(x) =
Im [f(x+ i∆x)]

∆x
+O(∆x2), (4.6)

which is the expression for the derivative found by Squire and Trapp, 1998. Notice

that, when is taken the imaginary part in both sides of Equation 4.2, the first term,

f(x) vanishes as Im[f(x)] ≡ 0. Thus, this is a requirement for the method application:

Im[f(x)] ≡ 0, in other words, f(x) : R→ R.

Equation 4.6 means only one function evaluation is needed. As the step size ∆x

can be lower than εD, the term O(h2) tends to vanish, which results in a numerically

exact derivative.

Figure 4.1 shows the convergence of the aforementioned methods for the func-

tion sin(x)/x for x = π/2, a function appearing in the Fourier kernels, Equations 2.164

and 2.175. Notice that although the usable range is indeed wider for the central FD, it is

only due to its second-order accuracy. For smaller step sizes, it presents the same error

as the forward FD, which means that a wrongly chosen increment size can lead to the

same accuracy as the cheaper forward FD scheme. Notice also that for ∆x .
√
εD the

CS scheme becomes numerically exact, as expected, and stable down to ∆x ≈ 1× 10−308,

the minimum representable in double precision floating-point.

4.3 Boundary integral equations considering the complex step method

Let us present the boundary integral equations (BIE) considering the effect of an

imaginary increment to demonstrate the simplicity and advantages of this approach. For

that purpose, let us perform the perturbation ∆x at the imaginary part of some design
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Figure 4.1 – Convergence of f ′(x) for the function f(x) = sin(x)/x at x = π/2 for the

methods in question.

variable γ, which defines the boundary Γ coordinates. One can write the CS version of

the displacement BIE as

Cu +−
∫

Γ

T(x + i∆x) u dΓ =

∫

Γ

U(x + i∆x) t dΓ +

∫

Ω

U(x + i∆x) b dΩ, (4.7)

where f(x + i∆x) implies source and field points to be complex. Notice that there is no

difference between Equation 4.7 and Equation 3.14, its real-valued counterpart. Matrices

T and U are the traction and displacement fundamental solutions, addressed in Chapter 2.

−
∫

(·)dΓ denotes the Cauchy Principal Value of integral
∫

(·)dΓ.

After the element discretization of Γ, Equation 4.7 for a source point i is divided

into the following sums for each element,

Ciui +
N∑

e=1

H̃
ie
ue =

N∑

e=1

Giepe, (4.8)

where the matrices H̃e
i and Ge

i are are obtained for each element e through

H̃
ie

= −
∫

Γe
T(x + i∆x) φ̄ dΓe , Gie =

∫

Γe
U(x + i∆x) φ̄ dΓe . (4.9)

Equation 4.8 and Equation 3.36 are also equivalent. Assembly of Equation 4.8 through
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the collocation process over all the nodes result in

H(x + i∆x)u = G(x + i∆x)p. (4.10)

Notice that vectors u and p may contain unknowns or boundary conditions. The system

of linear equations Az = b is assembled by switching the columns of H and G, as in

Equation 3.43. Multiplying the boundary conditions as is shown in the right-hand side

(RHS) of Equation 3.42 forms the RHS vector b. Both A and b are complex, hence, so

is the system of linear equations (SLE) solution vector z.

The real part of the solution vector z corresponds to the usual unknowns, displace-

ment and traction, at the boundary element collocation nodes,

u = Re[zu], and, p = Re[zp], (4.11)

The displacement and traction sensitivities with respect to the design variable γ are

obtained by
∂u

∂γ
=

Im [zu]

∆γ
,

∂p

∂γ
=

Im [zp]

∆γ
. (4.12)

In order to reassure the CS method simplicity, it is worth mentioning the above passages

apply to both CS-BEM and the conventional BEM, the only differences being the complex

variables, due to the complex step performed in the design variable γ. Employing this

framework, one obtains both the solution and its sensitivity to γ in a single pass of the

BEM routine.

4.4 Shape sensitivity of 3D anisotropic structure

Let us consider a cantilever beam with a tip-load to demonstrate the CS method

in a shape sensitivity analysis case. In Figure 4.2 it is shown the problem configuration,

whereas the material properties considered for the beam are listed in Table 4.1. The

initial mesh used in this analysis has 64 quadratic elements, as shown in Figure 4.3. All

the subsequent refinements were performed through the reduction of the element size,

while the element aspect ratio is kept constant. This approach leads to the total number

of elements being a quadratic function of nelemn = nelem0 n
2, where n is the number of

elements/m2. The degrees of freedom (DOF) number is equal to DOF = 3 · nnos · nelem,

as the discontinuous elements DOF are all independent. The initial mesh depicted in
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Figure 4.2 have nelem0 = 6,4× 101 elements whereas the most refined one had nelem5 =

1,600× 103, resulting in a range from 1.536 to 38.400 DOF, using quadratic elements.

h=2m

L=10m b=1m

tz = 0.5N/m2

x
z z

y

Figure 4.2 – Cantilever beam problem.

Figure 4.3 – Initial coarser mesh for the beam bending case including boundary

conditions.

The Euler-Bernoulli theory for displacement was selected to evaluate the conver-

gence of the methodology. The resulting solution for the force P = tz h b, which is also

dependent on parameter h, is

y(x) = −2(tzhb)x
2(3L− x)

(Ebh3)
. (4.13)

The sensitivity to the parameter h is obtained differentiating Equation 4.13 with respect

to h,
∂y(x)

∂h
=

4tzx
2(3L− x)

Ebh3
. (4.14)
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The complex increment size used in those analyses was ∆h = 1× 10−66. For this

analysis, the routine used includes the increment at the imaginary part of the mesh nodes

in z dimension, proportionally to its coordinates in this direction. The resulting position

for a node n is x̂n = [xn yn zn]T + i[0 0 ∆h/zn]T . Moreover, the CS is carried out

to the collocation nodes, as the integration procedure it generates them from the mesh

nodes.

Table 4.1 – Elastic constitutive properties considered in the examples.

Material Elastic stiffness properties

Steel Alloy Young Modulus ESt 2,00× 102 GPa
Poisson Ratio νSt 0.3

Nickel Crystal (FCC [100]) C11 252 GPa
C12 152 GPa
C44 123 GPa

103 104 105
10−3

10−2

10−1

DOF

e b
ea
m

Re(uz) - Kelvin
Re(uz) - Ni Crystal m = 20

Im(uz)/∆h Kelvin
Im(uz)/∆h Ni Crystal m = 20

Figure 4.4 – Relative error for the beam tip displacement Re(uz) relative to the analytic

solution, Equation 4.13, and for the shape derivative Im(uz)/∆h, with respect to the

beam height, ∂uz/∂h, Equation 4.14.
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5 ELASTIC CONTACT AND NUMERICAL TREATMENT

This chapter presents the formulation to solve frictional contact with BEM. It

starts with the continuum description of the unilateral Coulomb contact law along with

its kinematics. We present the augmented Lagrangian of the problem, followed by the

contact variables discretization, non-linear system assembly, and solution method.

The main advantage of the penalty method in finite element method (FEM) is that

they treat the contact problem using only the displacements, i.e., the penalty factor acts

as a zero initial length spring linking the contact nodes. The contact stress is not part

of the equations in this method, being proportional to the gap. According to [Bussetta

et al., 2012], the problem is that it introduces a residual penetration (and tangential

displacement), which cannot be avoided by increasing the penalization as this causes

oscillation and prevents convergence. On the other hand, reducing the penalization can

cause the solution to have no physical meaning.

Generally, the augmented Lagrangian is avoided in FEM due to the Lagrange

multipliers, which are additional variables to the problem. In the boundary element

method (BEM), this fact does not apply: As multipliers denote the contact tractions, and

as surface tractions are already primal variables, this method closely relates to the BEM.

Differently to the penalty methods, due to the augmentation, it exactly fulfills the non-

penetration and friction constraints, with finite penalty values, which also results in better

conditioning [Simo and Laursen, 1992; Mijar and Arora, 2004]. On the other hand, this

duality of BEM variables allows one to implement incremental-iterative methods, which

solve the contact problem using incremental-loading and iteratively testing the contact

pairs. These methods can be related to the Uzawa’s scheme, as a class of predictor-

corrector algorithms.

The selection of the augmented Lagrangian is due to the following properties:

(i) Finite penalization, fulfilling the contact restrictions accurately; (ii) Avoids trial and

error process of the incremental-iterative approach; (iii) The solution can be done by both

Newton method or the Uzawa scheme, as shown in Rodríguez-Tembleque and Abascal,

2013. The formulation described in this chapter is due to Rodríguez-Tembleque et al.,

2011, and references therein.

As demonstrated in Chapter 4, the complex step (CS) method does not require
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any special consideration apart from the ones relative to complex variable specific imple-

mentation. The addition of a relatively small imaginary increment is straightforward and

does not interfere in the contact problem solution. For that reason, the variables within

this chapter are considered to be real-valued. Moreover, it is worth mentioning that finite

differentiation is likely to affect the contact state due to the use of larger increments (to

avoid numerical cancellation), which can yield incorrect shape sensitivity values.

5.1 The elastic contact problem

Consider the following boundary value problem comprising two elastic bodies, with

domains Ω1 and Ω2, and boundaries Γ = Γp̄ ∪Γū ∪Γc and Γp̄ ∩Γū ∩Γc = 0 (disjoint set);

where Γp̄, Γū, Γc correspond to the boundary portion with prescribed tractions, displaca-

ments, and the possible contact region, as illustrated in Figure 5.1. Prescribed tractions, p̄,

or displacements, ū, are specified along the boundaries, and the complementary variables,

u and p, are the unknowns.

The contact boundary Γc have conditions which depend on the contact state,

mainly defined by the gap g between the two regions. Let us consider the case of unilat-

eral non-adhesive contact1, where the bodies can separate, i.e., if the gap is positive, the

surfaces are free to move, and the tractions are null. On the other hand, if this distance

is zero, the compatibility ensures the non-penetration conditions: normal tractions can

only be positive; Tangential traction is dependent on a Coulomb friction law.

5.2 Contact variables and discretization

The BEM formulation considered herein assumes small strains and displacements.

Moreover, a node-to-node contact scheme is adopted. The nodes are positioned in a

conforming scheme, as done in Rodríguez-Tembleque et al., 2011, forming pairs, i.e.,

placing the secondary nodes (Ω2) as close as possible to the primary nodes (Ω1), or at

least matching the displacement path performed by the contact node pair. Therefore,

consider the contact variables relate the reference point P 1 and referenced point P 2, at

each contact boundary. These points form a pair, I ≡ {P 1, P 2}, as depicted in Figure 5.1.
1According to [Talon and Curnier, 2003], the inclusion of adhesive effects such as described by Johnson

et al., 1971, using the augmented Lagrangian approach is straightforward.
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Figure 5.1 – Solids under consideration and its boundary conditions.

The gap g for any pair of points in this problem is obtained through the following relation

g = BT (x2 − x1) + BT (u2 − u1), (5.1)

where x1 and x2 are coordinates on boundaries 1 and 2 respectively, while u1 and u2 are

the displacements of these points, both referring to a global coordinate system. B is the

rotation matrix responsible for transferring the variables to the local coordinate system

with origin at x1, i.e.,

B =
[
t1 t2 n

]
, (5.2)

where n is the outward normal vector, while t1 and t2 are the tangential vectors, at x1.

Therefore, the gap can be decomposed in its tangential and normal components

g =
[
gt1 gt2 gn

]T
. (5.3)

In the same manner, one can write the contact traction in terms of their tangential

and normal components,

t =
[
tTt tn

]T
. (5.4)

where the tangential contact traction is tt = [tt1 tt2 ]
T .
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5.3 Kinematics at the contact region

The kinematic laws establish the possible behavior at the region between two bodies

which may come into contact, which is called the possible contact region. Let us further

address the laws that describe each condition.

5.3.1 Unilateral contact law

The unilateral contact law avoids the interpenetration between bodies [Rodríguez-

Tembleque et al., 2011]. It states the following rules:

• No interpenetration of the regions of domain Ωα and boundary Γα (α = 1, 2) :

Ω1 ∩ Ω2 = ∅. The surface of each body may be divided in contact (Γαc ), imposed

tractions (Γαt̄ ) and imposed displacements (Γαū) regions, so that

Γα = Γαc ∪ Γαt̄ ∪ Γαū and Γαc ∩ Γαt̄ ∩ Γαū = ∅. (5.5)

• The solids can be separated, i.e.: there is no cohesion on the contact, then for each

pair I ≡ {P 1, P 2} ∈ Γc : gn ≥ 0 and tn ≤ 0, complying with Newton’s third law.

• Variables gn and tn are complementary, i.e.: gntn = 0.

5.3.2 Friction law

The friction law is defined according to a Coulomb model for tangential tractions

pt and tangential slip velocity, ġt. For each pair I ≡ {P 1, P 2} ∈ Γc, the friction law is

expressed as

• The tangential contact tractions respect the coulomb friction law:

‖tt‖ ≤ µ |tn| , (5.6)

where |tn| is the absolute normal traction and µ is the friction coefficient.

• The tangential slip velocity and traction follows the maximum energy dissipation

principle, ġt = −λtt, where λ ≥ 0, i.e., a real positive number.
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• The remainder of Equation 5.6 (‖tt‖−µ |tn|) and the tangential slip velocity module

(ġt) are complementary,

ġt(‖tt‖ − µ |tn|) = 0. (5.7)

There is no tangential slip velocity if the tangential traction norm does not exceed

the normal traction magnitude. On the other hand, if the tangential slip velocity is

positive, the tangential traction norm must equals the coefficient of friction times the

magnitude of the normal traction.

5.3.3 Summarized unilateral and frictional contact conditions

Grouping the unilateral and frictional laws for any point at the boundary, results

in the contact laws for the gap and traction,




tn = 0; gn ≥ 0; tt = 0; Separated,

tn ≤ 0; gn = 0; ‖tt‖ = µ |tn| ; ġt · ṫt = −‖ġt‖
∥∥ṫt
∥∥ ; Contact - Slip,

tn ≤ 0; gn = 0; ġt = 0; Contact - Stick.

(5.8)

The time rate appearing in Equation 5.8 is approximated as in Rodríguez-Tembleque

and Abascal, 2010. A finite differentiation (FD) scheme approximates the ġt at time τk

as follows

ġt '
∆gt
∆τ

(5.9)

with

∆gt = gt(τk)− gt(τk−1) (5.10)

and

∆τ = τk − τk−1. (5.11)

5.4 Augmented Lagrangian of the contact problem

Although there are numerous approaches in the literature to solve contact problems

with BEM, the method to impose the contact restrictions in this work is the same as in

Rodríguez-Tembleque et al., 2011, where it is applied an augmented Lagrangian method,

more specifically, is the penalty-duality, or mixed-method due to Alart and Curnier, 1991.

More recently, Mijar and Arora, 2004, proposed a new augmented Lagrangian

formulation for contact problems based on a more general variation of the method from
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the optimization literature. The main difference, or advantage, is that the augmentation

penalty is modified along the solution process, enabling the user not to depend on the

empirical choice of parameters. The problem inherent to this method is that it doubles

the cost of each Newton iteration, as it finds the contact problem solution and the penalty

parameter optimization.

In Equation 5.8, it can be seen that the contact restrictions are a group of equal-

ities and inequalities which results in a constrained optimization problem. Different to

the penalty method, the augmented Lagrangian transforms the constrained optimization

problem in a sequence of unconstrained ones. This results in the exact satisfaction of the

contact restrictions with finite penalization, which results in better conditioning for the

nonlinear system of equations (NSE) [Mijar and Arora, 2004].

The augmented Lagrangian formulation from Alart and Curnier, 1991, enforces the

frictional contact law using projection operators, i.e., functions which project the contact

variables into the admissible solution region [Rodríguez-Tembleque et al., 2011]. As the

contact constraints being applied act in different directions, one in the normal other in the

tangential, these are firstly separately formulated, and next they are combined to form

the complete problem constraint.

5.4.1 Normal projection function

The non-penetration condition law states that the normal gap gn must be no less

than zero and that the normal traction tn is never positive (no cohesion or adhesion), and

so this two variables are complementary, i.e., one of the two must be always null, which

summarizes as

tn ≤ 0 , gn ≥ 0, tngn = 0. (5.12)

To regularize these conditions, the mixed variable t∗n, denoted as augmented normal trac-

tion, is defined as

t∗n = tn + rngn, (5.13)

where rn is a positive penalization parameter (r ∈ R+).

The above inequalities are eliminated using a projection function such as

PR−(·) : R→ R−, (5.14)
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which projects variable x in R, the admissible region of the contact normal tractions. It

is written as

PR−(x) = min(x, 0). (5.15)

On rewrites the normal contact restriction as

tn − PR−(t∗n) = 0. (5.16)

5.4.2 Tangential operator

To express the tangential restriction, the augmented tangential traction is defined

as

t∗t = tt − rtġt, (5.17)

where the tangential penalization parameter rt ∈ R+ can differ from the normal one,

rn [Rodríguez-Tembleque et al., 2011]. Introducing the contact tangential projection

function, PCg(·) : R2 → R2, is written as

PCg(x) =





x if ‖x‖ < |µtn| ,

|µtn| et if ‖x‖ > |µtn| ,
(5.18)

where et = x/ ‖x‖. The tangential projection function PCg(x) ensures that the variable

x ∈ R2 to stay inside the Coulomb disk Cg with radius g = |µtn|. Considering a plane

defined by the tangential tractions, tt1 ⊥ tt2 , Cg represents their admissible region for a

given normal traction tn. Therefore, the tangential contact restriction can then be written

as

tt − PCg(t
∗
t ) = 0. (5.19)

5.4.3 Normal-Tangential operator

To write the relationship between the normal and tangential tractions, one defines

the normal-tangential projection function, PCf as

PCf (t
∗) =


PCg(t

∗
t )

PR−(t∗n)


 , (5.20)
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where the region Cf is the augmented friction cone, with radius
∣∣µPR−(t∗n)

∣∣ and inclination

defined by the coefficient of friction. According to Rodríguez-Tembleque et al., 2011, the

constraints of the combined normal-tangential contact problem are

t− PCf (t
∗) = 0. (5.21)

5.5 Contact problem discretization

One of the advantages of BEM in contact problems is that the contact traction

is already part of the unknowns, therefore, we start to formulate the system of linear

equations (SLE) considering a multiple-region system (perfectly bonded interface). In a

second part, we exchange the compatibility conditions with the contact laws, resulting in

the final NSE.

Let Γc
1 and Γc

2 be the regions where the bodies are bonded, and let Γnc
1 and Γnc

2 the

remaining non-contact regions. One writes the displacement compatibility and the third

Newton law at Γc
1 and Γc

2, as

uΓc
1 = uΓc

2 , (5.22)

pΓc
1 = −pΓc

2 . (5.23)

One can directly write Equation 3.40 for each of these two regions, also including

Equations 5.22 and 5.23, which results in:

HΓt
1uΓt

1 −GΓnc
1 pΓnc

1 + HΓc
1uΓc

1 −GΓc
1pΓc

1 = ḠΓnc
1 p̄Γnc

1 − H̄Γnc
1 ūΓnc

1 ,

HΓnc
2 uΓnc

2 −GΓnc
2 pΓnc

2 + HΓc
2uΓc

1 + GΓc
2pΓc

1 = ḠΓp
2 p̄Γp

2 − H̄Γu
2 ūΓu

2 .
(5.24)

Equation 5.24 represents a problem where the contact region is purely bonded, i.e., a two

region problem.

To introduce contact conditions into the former subregion equations (Equation 5.24),

turning the permanently bonded state into a sliding or frictional contact, one introduces

two additional sets of equations: the gap-displacement relations, Equation 5.1, and the

contact restrictions in the augmented form (Equation 5.21).

To write the first set, one defines relations between the gap and the displacements

on the contact regions. The kinematic relations between the position and displacements
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between the node pairs are written as

k = Cgkgo + (C̃
2
)TuΓ2c − (C̃

1
)TuΓ1c, (5.25)

where k is the gap vector, which accounts for all the contact pairs I =
[
1, . . . , NC

]
, being

NC the number of contact pairs. The vector kgo is the sum of the initial gap and rigid

body displacements vectors. The matrices (Cα), (C̃
α
), α = [1, 2] and Cg are defined by

Cα =
∑Nα

i=1

∑Nf

j=1 (i,j)≡I
(Lαi )TBjLfj , (5.26)

C̃
α

=
∑Nf

i=1

∑Nf

j=1 (i,j)≡I
(Lαi )TBjLfj , (5.27)

Cg =
∑Nf

i=1

∑Nf

j=1 (i,j)≡I
(Lfi )TLfj , (5.28)

where Nα is the number of nodes of body α, while NC is the number of contact pairs, and

the Boolean assembly matrices Lαi , extracts the displacements ui of the corresponding

node from body α in the contact pair i, from the solution vector xα,

uαi = Lαi xα, (5.29)

Lfi , extracts the tractions λαi from the multipliers vector Λ, i.e.,

λi = Lfi Λ (5.30)

and are written in the following manner: Let I be the matrix which stores the contact

node pairs, with dimensions SI = [NC × 2], let i = [1, . . . , NC], let j = [1, . . . , Nα], then,

Lαi [3× 3Nα] is assembled as

Lαi =





I[3×3] if Iiα = j

0 otherwise.
(5.31)

Let k = [1, . . . , nc], and l = [1, . . . , nnodesα], then, Lf[ndofsα×ndofsc] is defined as

Lfj =





I[3×3] if Ifj = l

0 otherwise.
(5.32)

The second set of equations relates the global tractions pΓn
c and the contact trac-

tions vector Λ. The usual global tractions pΓαc can be extracted from the reference nodes
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coordinate system by the following relations

pΓ1c = C̃
1
Λ, (5.33)

pΓ2c = −C̃
2
Λ. (5.34)

One can assemble the contact SLE similarly to Equation 5.24, using Equations 5.33

and 5.34 and Equation 5.25 as the traction and displacement compatibility conditions,

resulting in
AΓnc

1 xΓnc
1 + HΓc1uΓc1 −GΓc1 C̃

1
Λ = bΓ1 ,

AΓnc
2 xΓnc

2 + HΓc2uΓc2 + GΓc2 C̃
2
Λ = bΓ2 ,

(C̃
1
)TuΓc1 − (C̃

2
)TuΓc2 + Cgk = Cgkgo.

(5.35)

5.5.1 Detailed assembly of the contact restrictions

As Rodríguez-Tembleque et al., 2008, the discrete contact restrictions can be ex-

pressed by writing Equation 5.21 for a single contact pair

λ− PCf (λ
∗) = 0, (5.36)

which substituting λ∗ = λ+ rk ,where r is the penalty parameters vector, returns

λ− PCf (λ+ rk) = 0, (5.37)

for the normal direction one writes the restriction as

λn −min(λn
∗, 0) = 0, (5.38)

which on the free case, where (λ∗n)I ≥ 0, returns

λn = 0, (5.39)

and by the coulomb friction law, λt ≤ µλn results in

λt = 0. (5.40)

Writing the restrictions for the case of contact, for the tangential direction, one

needs to write the restrictions separately for stick and slip. On the normal direction, one

has (λ∗n)I < 0, so the restriction equation for a node pair I in the normal direction, for
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both stick and slip cases, is written as

λn −min(λn − rnkn , 0) = 0, (5.41)

which results in

− rnkn = 0. (5.42)

Notice that this result demonstrates that the normal penalty parameter rn does not

influence the normal contact coupling stiffness.

On the stick case, where (λ∗t )
I < µ |λn|, the tangential restriction results in

λt − PCf (λt + rtkt) = 0, (5.43)

which substituing PCf (X) = X, the first case of Equation 5.18, results in

rtkt = 0. (5.44)

Notice that in the tangential direction the penalty parameter also poses no influence in

stiffness, as it would in the case of direct penalty methods.

On the slip case (λ∗t )
I ≥ |µλn|, therefore the second case of Equation 5.18 implies

that PCf (λ
∗
t ) = |µtn| (e∗t ). so the tangential restrictions are written as

λt1 + µe∗t1λn = 0, (5.45)

λt2 + µe∗t2λn = 0, (5.46)

where

e∗t =
λ∗t
‖λ∗t‖

. (5.47)

Summarizing all the contact constraints on a single equation system results in

Pλ λ+ Pg k = 0, (5.48)

where Pλ and Pg are assembled according to the contact state of each node pair I.

5.5.2 Nonlinear equation system

Grouping the terms of Equation 5.35, the gap kinematic relations, Equation 5.25,

the contact restrictions, Equation 5.48, the NSE resultant from the contact problem,

R(z)− f = 0, is
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AΓnc
1 HΓc

1 0 0 −GΓc
1C̃

1
0

0 0 AΓnc
2 HΓc

2 GΓc
2C̃

2
0

0 (C̃
1
)T 0 −(C̃

2
)T 0 Cg

0 0 0 0 Pλ Pg








xΓnc
1

uΓc1

xΓnc
2

uΓc2

Λ

k





−





bΓ1

bΓ2

kgo

0





= 0 (5.49)

where xΓnc
α are the usual BEM non-contact region unknowns (displacements and tractions)

vector for each region α, and uΓc
α are the contact nodes displacements for each region α.

The vectors Λ and k, are the contact tractions and the gap vectors, respectively, which are

the normal and tangential contact tractions and gap for the reference node, at the local

coordinate system, defined by Equation 5.2. These are assembled in the sequence of the

contact pairs. One obtains the secondary nodes traction using Equations 5.33 and 5.34.

The right-hand side (RHS) vector f vector is composed by the RHS vectors b1

and b2 (formed by the boundary conditions and its corresponding BEM matrices, i.e.,

bα = Ḡαp̄α − H̄αūα) and Cgkgo which is the initial gap for each pair. The null lines at

the end of the vector correspond to the projection matrices, i.e., the RHS of Equation 5.48.

At R, AΓnc
α comes from Equation 5.35 and refer to the independent unknowns

(mixed tractions and displacements) for region α. HΓc
α refers to the displacement un-

knowns of the possible contact region. The transformation matrices C̃
α
was defined on

Equation 5.33, and appears transposed because it is performing a transformation from

the global to local coordinate system, as in Equation 5.25.

The matrices GΓc
α correspond to the contact region of each body α. In this case,

C̃
α
performs a local to global transformation on the contact tractions Λ.

The gap assembly operator is defined as Cg = I, and kgo is the initial separation

or gap vector, from which the rigid body displacements are not yet excluded.

The projection matrices Pλ and Pg, which comes from Equation 5.48, are assem-

bled for each node pair I and depend on the augmented contact variables λ∗I :
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• Free: λ∗n I > 0

(Pλ)I =




1 0 0

0 1 0

0 0 1



I

, (Pg)I =




0 0 0

0 0 0

0 0 0



I

. (5.50)

• Stick: λ∗n I < 0 and ‖λ∗t I‖<µ |λ∗n I |

(Pλ)I =




0 0 0

0 0 0

0 0 0



I

, (Pg)I =




rt 0 0

0 rt 0

0 0 −rn



I

. (5.51)

• Slip: λ∗n I < 0 and ‖λ∗t I‖>µ |λ∗n I |

(Pλ)I =




1 0 µω∗t1

0 1 µω∗t2

0 0 0



I

, (Pg)I =




0 0 0

0 0 0

0 0 −rn



I

, (5.52)

where (ω∗t )I = (λ∗t/ ‖λ∗t‖)I , the slip direction for the pair I.

5.6 Nonlinear system solution: Generalized Newton Method

The contact NSE, Equation 5.49 is not differentiable, but only B-differentiable1

Rodríguez-Tembleque and Abascal, 2010, and assumes the following form:

Θ(z) = R(z)− f = 0 (5.53)

The solution method adopted in this work is the same as in Rodríguez-Tembleque et al.,

2011, the generalized Newton method with line search (GNMls) due to Pang, 1990 and

Alart and Curnier, 1991. According to Alart and Curnier, 1991, it is an effective extension

of the traditional Newton Method for B-differentiable functions. It can be summarized

on the following steps:

GNMls Let z(o) be an arbitrary initial vector and q, β, σ and ε be positive scalars:

q > 0, β ∈ (0, 1), σ ∈ (0, 1/2) and 0 < ε� 1.
1A B-differentiable function is a special kind of function which is not Frechet-differentiable, but is

continuous and has a generalized Jacobian at some points x [Alart and Curnier, 1991; Alart and Lebon,
1998].
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1. Find the search direction for iteration n:

Given a vector z(n), the nth solution vector, with Θ(z(n)) 6= 0, the direction ∆z(n)

is obtained solving

Θ(z(n)) + BΘ
(
z(n),∆z(n)

)
= 0, (5.54)

where BΘ
(
z(n),∆z(n)

)
is the B-derivative of the function.

2. Line search:

Let α(n) = βm
(n)
q, m(n) is obtained as the first non negative integer which returns

Ψ
(
z(n) + α(n)∆z(n)

)
≤
(
1− 2σα(n)

)
Ψ(z(n)), (5.55)

where

Ψ(z(n)) =
1

2

∥∥∥Θ(z(n))
∥∥∥

2

(5.56)

is an error function in which the minimum is located at (z(n) + α(n)∆z(n)).

3. Set new solution:

z(n+1) = z(n) + α(n)∆z(n) (5.57)

4. Check for solution convergence:

• If Ψ(z(n)) ≤ ε1: → z(n+1) is the solution.

• Otherwise, n+ 1→ n and return to 1;

5.6.1 Search direction: Directional derivatives

The system of equations Θ(z(n)) can be separated on its linear and nonlinear parts,

Θ(z(n)) = ΘLD(z(n)) + ΘNLD(z(n)), (5.58)

where ΘLD(z(n)) is the part of the system which has linear directional derivative, at all

points, and ΘNLD(z(n)) is the part of the system which has non-linear derivative at some

points. The B-derivative BΘ(z(n),∆z(n)) can also be separated in the same manner, as

BΘ(z(n),∆z(n)) =
(
∇ΘLD(z(n)) + ∂ΘNLD(z(n))

)
∆z(n), (5.59)
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where ∇ΘLD(z(n)) is the linear part of the Jacobian matrix,

∇ΘLD(z(n)) =




AΓ1 0 A1
pC̃

1 0

0 AΓ2 −A2
pC̃

2 0

C1T −C2T
0 Cg

0 0 0 0



, (5.60)

and ∂ΘNLD(z(n)))∆z(n) is the non-linear part of this function. Strömberg, 1997 suggested

a linear approximation for this derivative:

∂ΘNLD(z(n)) =




0 0 0 0

0 0 0 0

0 0 0 0

0 0 Jλ Jg




(n)

, (5.61)

where the matrices J
(n)
λ and J(n)

g are written for each contact pair, as the matrices Pλ

and Pg, and will depend on the state of the contact augmented variables, i.e., the contact

state of each pair

• Separated: λ∗n I > 0

(Jλ)I =




1 0 0

0 1 0

0 0 1



I

, (Jg)I =




0 0 0

0 0 0

0 0 0



I

. (5.62)

• Stick: λ∗n I < 0 and ‖λ∗t I‖<µ |λ∗n I |

(Jλ)I =




0 0 0

0 0 0

0 0 0



I

, (Jg)I =




rt 0 0

0 rt 0

0 0 −rn



I

. (5.63)

• Slip: λ∗n I < 0 and ‖λ∗t I‖>µ |λ∗n I |

(J
(n)
λ )I =




Ψ11 Ψ12 µω∗t1

Ψ21 Ψ22 µω∗t2

0 0 0




(n)

I

, (J(n)
g )I =




−rtΨ̃11 −rtΨ̃12 0

−rtΨ̃21 −rtΨ̃22 0

0 0 −rn




(n)

I

, (5.64)
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where,

Ψ = (1 + χ)I− ζL, Ψ̃ = Ψ− I, (5.65)

and

L = (Λ
∗(n)
t )I ⊗ (Λ

∗(n)
t )I , (5.66)

and

χ =
µ(Λ∗(n)

n )I∥∥∥(Λ
∗(n)
t )I

∥∥∥
, ζ =

µ(Λ∗(n)
n )I∥∥∥(Λ
∗(n)
t )I

∥∥∥
3 . (5.67)

5.6.2 Linearized Derivatives

According to Rodríguez-Tembleque and Abascal, 2010, it is possible to simplify

the contact NSE, assuming that the nonlinear part of the directional derivatives (J
(n)
λ )I

and (J
(n)
g )I , i.e., Equation 5.64, can be approximated by its linear counterparts (Pλ)I and

(Pg)I , Equation 5.52. What this assumption means physically is that the slip direction is

constant at the Newton iterations and only changes from the initial solution if one divides

the boundary conditions, or load application, in various steps.

This simplifies the GNMls Item 1 procedure, which resumes to the solution of

Θ(z(n)) + R(n)∆z(n) = 0, (5.68)

which is the same as solving the SLE for ∆z(n)

R(n)(z(n) + ∆z(n))− f = 0. (5.69)
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6 RESULTS

This chapter presents application examples of the methodology shown so far. Prob-

lems involving contact shape sensitivity are solved, benchmarks as well as new results

which are part of the contribution of this work.

The methodology presented so far is tested through the solution of classical contact

problems which have analytical solutions available, allowing an extensive validation of the

program in many use-case scenarios. Most cases need the incremental load application to

maintain small strains and due to the nonlinearity when the contact area is not constant

through the loading.

The problems analyzed are meant to reproduce classic contact solutions such as

the Hertz one. Various simplifications are found in numerical contact literature to obtain

results closer to analytic solutions. In many works, one of the bodies is considered rigid.

Another assumption found in the BEM literature is the consideration of a half-space (semi-

infinite) for one region. This assumption leads to a faster solution, and a closer geometry

to that one assumed in the closed-form solution. Besides the advantages of the previous

assumptions, those representations are numerically simpler to solve, i.e., the half-space

needs fewer elements around the region of interest. Moreover, considering a rigid body

is closer to prescribing displacements, than to an elastic contact condition, as one knows

the contact region displacements a priori. Therefore, the problems analyzed in this work

should be viewed not only as benchmarks but also as a more difficult use-case scenario to

the contact algorithm. A proportionally small region of the boundary is transferring the

load, limiting the contact stress into a few elements.

6.1 Sphere compressed by flat regions

The first problem analyzed is of a sphere being pressed by two elastic regions, with

prescribed displacements at the outer faces, Figure 6.1a. Figure 6.1b depicts the mesh

used for the sphere and cube, which has 462 and 330 quadratic elements, respectively,

totaling 19008 degrees of freedom (DOF). The problem was modeled considering three

symmetry planes.

Prescribed displacements u0z were applied on the upper face of the cube while

leaving the other directions free. On all elements at the xy, zx and zy plane a symmetry
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Figure 6.1 – Problem configuration (a) and mesh used (b) on the example.

boundary condition was applied, restricting the displacements only to the outward normal

direction and freeing it at their tangential directions. The offset used on the discontinuous

elements (Equation 3.22) was a = 15%. In Table 6.1 we list all material and geometrical

properties considered in this example. The friction coefficient was set to µ = 0 in this pre-

liminary case, to compare with the solution from Johnson, 1987, which does not consider

frictional effects on its formulation.

Table 6.1 – Sphere on Plane contact problem parameters.

E 1,0× 104 Pa Young’s Modulus
ν 0.3 Poisson’s Ratio
k0 5× 10−2 m Initial separation
rs 1.0 m Sphere radius
L 1.0 m Cube length
ū0z 1,8× 10−3 m Displacement applied at the top of the cube

p0 146.3281 Pa Contact pressure expected at the center of the contact region
a 4,183 300× 10−2 m Contact area radius

The initial parameters used on the generalized Newton method with line search

(GNMls) were: β = 0.95 and r = 0.80. Notice that in this problem the tangential

penalization has no influence as this is a frictionless case. In an attempt to speed up

the solution time, we used the generalized minimum residual (GMRES) iterative solver

with an adaptive tolerance scheme. The initial tolerance was 1× 10−4, and the following

solutions tolerances were set to be always 1× 10−1 times the last GNMls iteration residual

Ψ obtained. Figure 6.2 depicts the residual Ψ, the GMRES tolerance and residual, as well
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as the α for each iteration. As can be seen in the diagram, although the solver could not

converge to the desired tolerance on the final iterations, the final GNMls residual Ψ was

lower than the desired value. This effect is due to the α factor on the line search, which

for being lesser than 1, always carry over a small part of the last iteration to the next one.

In our experience, the GMRES has not accelerated the computation time, due to the lack

of a proper preconditioner, it was much slower than the direct solver from Davis, 2004.
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Figure 6.2 – Newton method convergence: Solution residual for each iteration (Ψ(z(n))),

relative iterative solver residual (resGMRES), and α obtained on line search.

In Section 6.1, we plot the resulting displacements on the contact region as a func-

tion of the radius from the center of the sphere, and the Hertz solution for displacements,

both normalized with the prescribed displacements ū0z. As the mesh nodes were disposed

on a rectangular grid, so the results are scattered along their relative radius r =
√
x2
i + y2

i .

In Figure 6.4, the obtained normal tractions on the contact region are plotted in the

same manner as the displacements, and normalized with the maximum contact pressure

p0 estimated by the closed-form solution. As can be seen in the plots, the displacements

and tractions agree with the analytic solution.
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Figure 6.3 – Displacement along the possible contact region selected for the problem.
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Figure 6.4 – Traction along the possible contact region selected for the problem.

6.2 Sensitivity to material properties - frictional contact between two isotropic

spheres

The complex step (CS) verification problem analyzed in this section consists of two

spherical bodies in contact (Figure 6.5a), allowing for a direct comparison with the clas-

sical Hertz solution. Although the boundary element method (BEM) allows one to model

only the contact region considering half-spaces, in this section both solids are entirely

considered. Also they are considered with elastic stiffness (many times, in the literature,
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one of the bodies is assumed rigid). As in the last problem, we have simplified the mesh

by taking advantage of the symmetries (Figure 6.5b). This discretization (considering the

complete sphere) allows for the evaluation of the implemented algorithm when a small

region of the solid is transferring all the load, resulting in significant stress concentration

at a few nodes.

r1

r2

ko

ū0z or t̄0z

(a) (b)

Figure 6.5 – (a) Problem description and (b) mesh used on the Hertzian contact

example.

The mesh used for each sphere has 264 quadrilateral elements, as illustrated in

Figure 6.5b for quadratic elements. The mesh has a large element size ratio to reduce

the overall number of DOF without compromising the solution accuracy. The linear and

quadratic elements resulted in 6936 and 14400 DOF, respectively. The kinematic relations

and the contact restrictions account for 9 percent of those.

The prescribed displacements ūz were applied in the upper face of the half sphere.

We used an offset of 12.5% in all the elements, and in Table 6.2 are listed all material

and geometrical properties for this problem. To the best of the authors’ knowledge, there

is no closed-form solution in the literature for this problem when µ 6= 0. In order to provide

a reference solution for the results, the geometrical and material properties selected were

the same as in Rodríguez-Tembleque and Abascal, 2010, including the friction coefficient

µ = 0.1. Table 6.2 also lists the maximum contact pressure p0 and the radius of the
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contact circle predicted for the prescribed displacements ūz, from Johnson, 1987.

Table 6.2 – Sphere on Sphere contact problem parameters and results from the hertz

solution.

E1 = E2 1,0× 104 Pa Young’s Modulus
ν1 0.3 - Sphere 1 Poisson Ratio
ν2 0.4 - Sphere 2 Poisson Ratio
µ 0.1 - Coulomb friction coefficient

r1, r2 1.0 m Sphere radius
k0 1× 10−1 m Initial separation

ū0z − k0 8× 10−4 m Prescribed displacements on the top sphere

p0 145.5131 Pa Maximum contact pressure (Equation 6.2)
a 0.020 m Radius of the contact area

A single load step was used to set the boundary conditions, and the initial param-

eters for the GNMls were q = 1.0, β = 0.90, rt = rn = 0.70. The residue Ψ(n) and the

scaling parameter α(n) during the GNMls iterations are shown in Figure 6.6. The result-

ing residue during the first few iterations remains almost constant, but, as the algorithm

finds an optimal direction, it decreases with logarithmic rate.
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Figure 6.6 – GNMls convergence: Residue (Ψ) and scaling parameter (α) obtained by

the line search procedure for each iteration n.

The displacements along the contact area are plotted in Figure 6.7, as a function

of the coordinates x. These results are from a line of collocation nodes close to the plane

of symmetry xz. Both numerical and analytical displacements were normalized with
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the prescribed displacements ūz. In this particular example, the quadratic element (Q8)

showed a more significant difference to the Hertz solution for the displacements than the

linear one (Q4). The tangential slip obtained for both elements is also depicted in the

figure. It is normalized with respect to the maximum slip of the quadratic element. In

this case, it is possible to verify the transition from stick to slip states is different in the

two cases, due to the lesser nodes in the linear mesh.
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Figure 6.7 – Normalized displacements and tangential slip.

Figure 6.8 shows the normal contact tractions λn normalized with the maximum

analytic pressure p0.

The normal displacements and tractions agree well with the reference solution.

To verify the fulfillment of the Coulomb friction law, we divide tangential traction norm

by the friction coefficient. At approximately 75% of the contact radius, the tangential

traction reaches the maximum value predicted by the Coulomb law, precisely where the

nodes initiate the slip state. Although the maximum normal traction does not present

a pronounced difference between the linear and quadratic elements, in the tangential

direction, it is possible to see a larger difference between the two. The quadratic elements

also predicted a larger slip region. At this transition region, the normal tractions are in

much better agreement with the reference solution, which indicates a better approximation

by the quadratic element.
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Figure 6.8 – Normalized tractions on the contact region. †Rodríguez-Tembleque and

Abascal, 2010.

This effect is also noticed in the results of Rodríguez-Tembleque and Abascal, 2010,

as the number of nodes is even more reduced in their mesh. The tangential tractions should

have vanished at the symmetry line x = 0, but they are producing a residual value. In

other numerical experiments, we have found out that if entire meshes are used without

the aid of symmetry, correct values are obtained.

6.2.1 Sensitivity to the material properties

The initial analysis for any finite differentiation (FD) scheme should be a verifica-

tion of step size. However, to show the step size independence of the CS method, we test

sizes from 1× 10−15 to 1× 10−300.

The CS was added to the top sphere Young modulus E∗1 = E1 + i∆E1, and the

maximum contact pressure sensitivity was analyzed. The comparison was carried out

against the analytical solution, obtained by deriving the Hertz equation for the maximum

contact pressure with respect to E1.

Due to the position of the collocation points in discontinuous elements, there is no

node exactly at x = 0, so the analytical solution was evaluated at the closest point to the
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symmetry plane.

The normal pressure distribution along the contact region is given by Johnson,

1987,

p(r) = p0

(
1− r2

a2

)
, (6.1)

where po is the maximum pressure and r is the distance from the center of the sphere. po

is related to the material and geometrical properties by the equation

p0 =
2

π
E∗
√

(u0/R∗), (6.2)

where u0 is the prescribed displacement, R∗ = (1/R1 + 1/R2)−1 and E∗ is the equivalent

elastic modulus of the pair:

E∗ = ((1− ν2
1)/E1 + (1− ν2

2)/E2)−1. (6.3)

Considering ν1 = ν2 = ν, the result for the derivative of the maximum pressure is

∂po
∂E1

= −(2/π)
√

(uo/R) (ν1
2 − 1)

E1
2
(
ν12−1
E1

+ ν22−1
E2

)2 . (6.4)

The pressure sensitivity is therefore

∂p

∂E1

=
∂po
∂E1

(
1− r2

a2

)
. (6.5)

which, for a radius r = 6.3× 10−4m, Equation 6.5 results in a sensitivity of 7,56× 10−3.

Table 6.3 shows the difference obtained by the present approach to the analytical solution

for different increment sizes. As can be seen, the relative difference is larger than the

variation of the results obtained by the complex step method, which shows the stability

of the method for any step size chosen.

Figure 6.9 illustrates the distribution of normal and tangential tractions sensitivi-

ties to the Young modulus E1 over the contact area. The normal contact sensitivity agrees

with the analytic solution along the entire contact area.

We do not divided the tangential traction sensitivity by the friction coefficient,

differently from Figure 6.8. Therefore, the tangential traction presents a relatively high

sensitivity in comparison with the normal component.



120

Log(∆E1) difference to analytical solution relative difference

−15 1,736 641 581 748 989 83× 10−4 1,6× 10−2

−25 1,736 641 581 752 129 68× 10−4 1,6× 10−2

−35 1,736 641 581 754 003 18× 10−4 1,6× 10−2

−50 1,736 641 581 749 284 74× 10−4 1,6× 10−2

−75 1,736 641 581 750 672 51× 10−4 1,6× 10−2

−100 1,736 641 581 748 105 12× 10−4 1,6× 10−2

−150 1,736 641 581 753 465 42× 10−4 1,6× 10−2

−200 1,736 641 581 746 006 11× 10−4 1,6× 10−2

−250 1,736 641 581 746 734 69× 10−4 1,6× 10−2

−300 1,736 641 580 409 436 36× 10−4 1,6× 10−2

Table 6.3 – Difference of the numerical solution to the analytic values of Equation 6.5 –

element Q8.
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Figure 6.9 – Sensitivity of the normal and tangential contact tractions to the variation

of E(1).

6.3 Contact shape sensitivity in anisotropic structures

The example analyzed in this section consists of a flat specimen being indented by

a parabolic cylinder with curvature described by z = x2 as depicted in Figure 6.10a. We

list the problem dimensions and data in Table 6.4. The material properties for the flat
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specimen are considered those of the Nickel crystal at [100] orientation (Table 6.4).

r2

p̄z

L1

L3

x

yz

L2

(a)
(b)

Figure 6.10 – (a) Problem description and (b) mesh used on the flat specimen / cylinder

contact example.

The mesh used for the flat region and cylinder has 292 quadratic 8-node elements

each and are shown in Figure 6.10b. The contact region semi-width measures 60mm and

has five elements. The offset used on the discontinuous elements was a = 12.5%. This

discretization results in 7584 DOF, being 576 related to the gap equations and the contact

restrictions.

Prescribed tractions t̄z on the upper face of the half-cylinder were applied. To

ensure plane strain conditions on the x2 direction symmetry boundary conditions were

applied. This configuration allows for a comparison with the analytical solution from

Hwu and Fan, 1998. This solution is also found in Batra and Jiang, 2008. The friction

coefficient used in this example was µ = 0.10.

The boundary conditions were applied on a single load step and the initial param-

eters used on the line search were q = 1.10, β = 0.90, and σ = 0.20. The penalization

used on the augmented variables was rn = rt = 0.70.

In Figure 6.11, we show the normal component of the contact tractions λn nor-

malized with the maximum Hertz pressure p0, as well as the norm of tangential tractions

divided by the friction coefficient, ‖λt‖/(p0µ). These values come from a line of points

close to the plane of symmetry xz, with constant y. The normal tractions and the ana-
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Table 6.4 – Sphere on Sphere contact problem parameters and results from the hertz

solution.

r1 500 mm Cylinder radius at x = 0

L1 1000 mm Flat specimen width
L2 180 mm Flat specimen and cylinder depth
L3 400 mm
µ 0.10 Coulomb friction

t̄z 1,6× 10−4 Pa Pressure applied on the top sphere
p0 8,04× 10−2 Pa Maximum hertz contact pressure [Hwu and Fan, 1998]
a 50 mm Contact area semi-width

lytical solution has an excellent agreement.

As the materials in this problem have similar stiffness and Poisson ratio, there

are subdued tangential tractions, and almost no slippage occurs at the contact region.

This effect is also found in the Nickel-Steel combination. Although the normalization is

different, the normal tractions present no noticeable difference. On the other hand, the

tangential tractions present noticeable differences in distribution for different materials.
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Figure 6.11 – Normal and tangential traction over the possible contact region.

The complex step was appended to the radial position of the nodes, i.e., ĥ =

X/R ·∆, where ∆ = 1e− 30. The normal contact traction sensitivity was analyzed. The

comparison for the normal traction is done with the analytical solution found in Tafreshi,
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2009, which one can obtain by differentiating the pressure solution with respect to the

cylinder radius R, resulting in:

∂p(x)

∂R
=

1

p(x)

(
π x2 −R S1 Y

π R3 S1
2

)
, (6.6)

where,

p(x) =
2Y

πa

√
1− x2

a2
, a =

√
2Y S1R

π
, (6.7)

Y is the total force applied at the cylinder. The material stiffness S1 for the cubic

symmetry, considering plane strain, can be obtained by:

S1 = −Re
{
b22

2i

[
1

µ1

− 1

µ̄1

+
1

µ2

− 1

µ̄2

]}
, b22 =

1− ν2

E
, (6.8)

and µ1, µ2 and its complex conjugates µ̄1, µ̄2, are the characteristic equation complex

roots (see, e.g., Chen, 1969, Tafreshi, 2009). Figure 6.12 shows the numerical contact

traction shape sensitivity results. The derivative for the normal components agrees with

the analytic solution.
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Figure 6.12 – Sensitivity of the contact traction to variation of the cylinder radius R.

Close to the edge of contact is possible to observe a singularity which is well repro-

duced by the numerical solution. Notice also that the tangential and normal sensitivities

approach zero close to the same point. Is also possible to notice the tangential sensitiv-
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ities are higher in the stick region, where these tractions can increase their values to a

much higher value, whether this is not possible in the slip regions, where their values are

already being limited by the Coulomb friction. Notice also that their values has different

signs, which means they decrease their magnitude on the slip region, while increasing in

the stick part.

6.3.1 Subsurface shear stress and shape sensitivity

Using the same problem configuration of Figure 6.10, we study contact stress be-

havior in known machine component design problems, resembling tooth contact in gear

transmissions or contact paths in ball bearings. Stresses obtained along the symmetry

plane of the flat specimen for isotropic and rotated cubic materials (Nickel crystal aligned

with the x, y, z axes - and then rotated from 5◦ to 45◦ around the y axis.) are plotted in

Figure 6.13.

These results show that the depths at which the maximum shear stresses occur are

not the same for the different angles of rotation of cubic materials, and their peaks may

vary as much as 15%. When the rotated cubic material is analyzed, the maximum shear

stress happened much closer to the surface than the other two materials. This effect is

particularly important for modern machine component design for the reduction of this

order of stress in a fatigue dependent problem may drastically change the component life.

The present methodology has potential to explore the optimization of material orientation

such that this difference becomes higher, or to investigate how the depth of maximum

shear stress can be increased to mitigate the chances of cracks growing towards the contact

surface. These results are in good agreement with the ones found in another analytical

study from Chen, 1969 for the copper cubic crystal.

Due to its nature, maximum normal stresses always happen on the contact surface

and are compressive type [Johnson, 1987].Contact stresses evidently play an important

role in the failure of brittle materials, as well as in the friction and wear characterization

of the components. However, one important aspect of regarding the fatigue life of ductile

materials subjected to contact conditions is the occurrence of the maximum shear stress

below the contact surface. Figure 6.14 shows the plots of the maximum shear stress

(τ) normalized by the contact stress (p0) along the depth of the semi-infinite solid (z/a)

pressed by the cylinder.
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Figure 6.13 – Distribution of maximum shear stress normalized with the maximum

contact pressure τmax/p0 at the x, z plane, below the contact area on the flat specimen.

Material rotation in degrees around the y-axis.

Figure 6.15 shows the resultant shape derivative at the same lateral position as Fig-

ure 6.14. This represents ∂τ1/∂R, the maximum shear stress τ1 sensitivity to the variation

of the indenter radius R. As the design variable which was already incremented for the

previous shape derivative example, obtained from the same computational results from

the ones which generated Figures 6.11 and 6.12, i.e., only one analysis was performed for
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Figure 6.14 – Maximum shear stress along the depth of the flat specimen.
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Figure 6.15 – Shape sensitivity to the indenter radius, for the maximum shear stress τ1

throughout the depth z of the flat specimen, at the x position where it is maximum.

each material configuration. This study shows that the maximum shear stress sensitivity

on the indenter shape shows variations for different rotations of the cubic material. More

importantly, none of them behave equal or close to the isotropic material, emphasizing

the differences between these materials and their application.
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6.4 Indentation of a half-space with an orthotropic coating

In the industry, one very often finds problems involving thin layered materials.

Their analysis can be troublesome with the FEM, due to the possible high aspect ratio

found in these problems, which means that the size of the problem can build up expo-

nentially [Hou et al., 2018]. Although common sense is that the BEM is interesting for

problems where the volume is considerably greater than the surface area, the opposite

also holds. In thin domains the BEM is also an interesting method; Usually, a 3D FEM

discretization of the problem needs a high number of elements along the thickness to

converge. The only drawbacks appearing at thin regions in the context of the 3D BEM

formulation resides at the integration. Especially if the element size is beyond an order

of magnitude larger than the thickness, this indeed triggers near-singularities in some

integrals. This theme was subject of extensive research in this field. Quadrature to cancel

near-singularities are found in Hayami and Matsumoto, 1994. Special formulations which

allow near zero thickness also were also studied, e.g., Liu, 1998, Liu, 2000, Luo et al.,

2000, and Zhang et al., 2011.

To provide another comparison case, which can evaluate many aspects of the pro-

posed framework, let us consider a half-space coated by a thin layer, indented by a rigid

spherical tip, Figure 6.16a. The mesh for this setting is found in Figure 6.16b. This mesh

configuration, using 4× 4 elements along the possible contact area, and 2 elements along

the outer direction, resulted in 1,152× 103, 2.688, and 7,68× 102 DOF for the substrate,

coating, and indenter regions, respectively. After the contact assembly with additional

equations resulted in 5.376 unknowns.

Table 6.5 lists the geometric properties for this example problem. Firstly, we can

assess the performance of a considerably thin layer under contact conditions. Also, in

this same case, we can evaluate the correctness of the half-space consideration under the

BEM framework.

In this analysis we consider both half space and coating anisotropic with properties

listed in Table 6.6. The spherical indenter is isotropic with elastic stiffness Eind = 107E
(c)
3 ,

i.e., several orders of magnitude stiffer than the coating.

Although the indenter material is unrealistic, this example serves as an application

example and for validation purposes. In this problem, we need to employ both contact and

subregion formulations, i.e., the indenter-coating interface is modeled using the contact
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Figure 6.16 – (a) Setting for the coating indentation. (b) BEM Mesh used in this

problem.

system, Equation 5.49 and the compatibility between coating and half-space is enforced

as described in Equation 5.35.

This problem has been thoroughly studied in many works in the literature, but the

solution is not straightforward, and many alternatives exist to overcome the singularities

existent. Very recently, Hou et al., 2018, proposed a closed form solution for the special

case of a transversely isotropic coated material, which could have been used as reference,

but the authors did not provide sufficient data to translate the non-dimensional plots in

their work, which makes impossible to reproduce the results therein. The comparison case

is provided by the work Bagault et al., 2013. Figure 6.17, depicts a FEM mesh used by

Bagault, 2013, to validate this problem.

Figure 6.18 shows the results for the normal traction at the indentation area.

Unfortunately, the reference does not present the traction acting at the interface, which is
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Table 6.5 – Geometric properties of the coating problem.

Coating thickness [µm] hc 1.5
Indenter tip radius [µm] Ri = 10hc 15

Mesh contact area size (Hertz) [µm] aM 0.5
Mesh specimen [µm] L = 10ac 6.675
Anisotropic contact area radius ac 0.89aH
Indentation depth [µm] dH 0.0132

Reference contact area radius (Hertz) [µm] aH 0.5
Reference max. contact pressure [MPa] p0 2,7983× 10−3

Reference indentation force [N] Pz 1,4652× 10−3

Coulomb friction coefficient µ 0.00

Table 6.6 – Orthotropic material properties used in the coating problem.

Coating Substrate

E1 = E2 120 GPa 60 GPa
E3 240 GPa 120 GPa

ν23 = ν32E3/E2 0.3 0.3
ν13 = ν31E3/E1 0.3 0.3
ν12 = ν21E2/E1 0.3 0.3

G1 = G2 = G3 46GPa 23.25GPa

of utmost importance for this example. The total solution times for our coating problem

was around 240 seconds for the boundary element method with complex step (CS-BEM)

approach. The total solution time with the FD scheme took 300 seconds. Also, notice

that the times reported in Bagault et al., 2013, are relatively high to obtain one converged

solution (more than 6 hours for the layered anisotropic model). For a semi-analytic

solution, which is more restrictive, and demands considerable programming effort, as

opposed to the general numerical model presented here, which can represent very complex

geometries; shows that the BEM can be a fast and essential alternative to these methods.

As the intent of our methodology is to provide a shape sensitivity tool, which

can be used not only in optimization procedures, we propose to evaluate the interfacial

tractions shape sensitivity to the coating thickness variation.

In this case the parameter sensitivity chosen was the coating thickness, more specif-

ically, the distance to the outer surface of the interface. This parameter is important as
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Figure 6.17 – Finite element mesh found in literature dealing with same problem

[Source: Bagault, 2013].

wear can occur in the coating, and this can lead to debonding or tear of the coating. This

parameter serve as an application example for problems involving coated structures under

contact, which usually suffer from friction and wear, it is not uncommon to have a large

variation of the coating thickness through the lifespan of industrial components. Such

analysis can serve as an end-of-life assessment as well as a failure predictive one, provided

it is used in combination with well-known failure criteria. The CS and FD increments the

coating in the negative z axis direction, simulating an increase in the coating thickness.

Figure 6.20 shows the sensitivities of the interfacial tractions to the variation of

the coating thickness. It is possible to observe that both methodologies provide visually

the same result. In general, an increase in thickness results in a reduction of the normal

traction at the interface, as is seen in the plot. For the case of tangential traction, which

depend directly on the relative stiffness of the materials and on the thickness of the

coating, there is no way to empirically determine the result for this problem, it is only

possible to interpret the resulting sensitivity. At the center region, below the contact

zone, the sensitivity is null, and it increases to a maximum value at around 1.0 and 1.5

times the contact area. In contrast with Figure 6.19, the tangential traction sensitivity

has a similar behavior to the traction itself, but with opposite sign, which means that

they are being reduced with the increase in the coating thickness. This traction is one
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Figure 6.18 – Normal contact traction at the surface of the coating z = 0.
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Figure 6.19 – Normal and tangential traction at the interface between the coating and

substrate, i.e., z = −h.

of the components of the shear stress tensor, which typically increases below the contact

surface, and reach a maximum value at some distance from it. The negative sensitivity

indicates that the maximum shear stress is located above the interface.
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Figure 6.20 – Shape sensitivities for the interface tractions at z = −h.

6.5 Sensitivity analysis of a Dovetail type contact assembly

In the case of turbo-jet and turbo-fan type engines, it is necessary to use nickel-

based superalloys with a solidification technique which provides a monolithic crystal,

excluding the inter-granular slip at high temperatures [Langston, 2015]. This character-

istic effectively reduces creep phenomena, increasing the fatigue life of the components,

and is the reason for the use of single-crystal blades. On the other hand, as we showed

later, it is known that the stress in cubic materials is highly dependent on the indentation

direction in relation to the crystallographic planes. Therefore, we propose to perform a

shape sensitivity study on a dovetail joint commonly found in turbine blades, providing

an industrial application example for the proposed methodology, which has contact and

anisotropic material. Notice that, although the single crystal blades commonly employ

a different geometric connection style, the problem geometry used is the one depicted in

Figure 6.21, the same as found in the works of Papanikos et al., 1998 and of Vale et al.,

2012, which provide a comparison case. We analyze contact stress distribution and the

design sensitivity of isotropic and anisotropic materials under the same geometry.

Rotor and blade thickness in direction y is 10mm, while the rotor section angle
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Figure 6.21 – (a) Rotor and Blade geometry and interest points at contact patch

(dimensions in mm), and (b) Quadratic element mesh for the problem.

is of 30 degrees, as the number of blades is 12. To ensure the rotational symmetry we

apply a displacement restriction at the normal direction of the element coordinate axis,

using a rotation matrix similarly to the ones employed in the contact traction matrices.

The rotor and blade y displacement was constrained to provide enough constraints in

this direction. To simplify this study, we apply a concentrated force at the blade center

of mass, avoiding domain mesh generation. The employed formulation for concentrated

domain forces is due to Beer et al., 2008. This force was calculated considering the blade

volume v = 5663mm3, its center of mass position x = [0, 0, 12.86] plus the distance to

the rotor center of rotation xblade = [0, 0, 141.4], which results in x = [0, 0, 154.26]. The

angular speed is equal to 1000rpm.

The material densities are ρTi—6Al—4V = 4429kg/m3, ρNi = 8900kg/m3. The elastic

properties for the isotropic analysis is the same as found in Papanikos et al., 1998, whose

elastic constants are E = 114 GPa, ν = 0.33. In the case of cubic Nickel stiffness

tensor, the non-zero elastic constants in Voigt notation are C11 = C22 = C33 = 252 GPa,

C23 = C13 = C12 = 152 GPa, C44 = C55 = C66 = 123 GPa.
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Figure 6.22 depicts the equivalent Von Mises stress along the contact line {a,b}
at the blade edge. The considered contact length is r = ‖x− a‖, the distance from the

start of the plane contact region, i.e., from the end of the top rounding radius in the

direction of the blade bottom. Results from Vale et al., 2012 are included as a validation

standpoint for this problem configuration. In this figure, it is possible to observe an

excellent agreement of the BEM results with the reference ones in most of the contact

patch.

Also, notice that although the cubic Ni presents similar results, the stress rises

toward point b, and is 24% higher near this point.
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Figure 6.22 – Von Mises Stress along the dovetail conatct interface, line {a,b}.

Shape sensitivity was analyzed in a design velocity approach, i.e., a continuous

function which modifies the boundary position along the width (x direction), starting at

the blade height h = 16.6mm which is the height of point a relative to the bottom of the

blade. The following velocity function was devised,

v(x, z) = − x
w

(
z0 − z
h

)3

∆w (6.9)

where x and z are the position of the mesh nodes being incremented, w = 13.05mm is

the blade semi-width, z0 = 16.6mm, and ∆w is the step size. Figure 6.23a depicts the
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resulting mesh increment scheme.

Figure 6.23b compares the shape sensitivity obtained with CS method and by FD

of the Von-Mises stress along the contact patch. It also shows the sensitivity results for

the isotropic blade case, in which one can observe that the cubic blade material is nearly

three times more sensitive to the shape modification velocity function employed.

(a)

0 2 4 6 8 10 12

0

5 · 10−2

0,1

0,15

Contact length r = ‖b− a‖

D
es
ig
n
se
ns
it
iv
it
y
∂
σ
∂
v

Ti—6Al—4V - CS
Cubic Ni - CS
Cubic Ni - FD

(b)

Figure 6.23 – (a) Relative increment along the blade shape performed by the design

variation function, Equation 6.9. (b) Sensitivity to the Design variation function,

Equation 6.9.

Finally, in order to show the reliability of the CS method, we perform a convergence

test similar to Figure 6.9, depicted in Figure 6.24, whose values are listed in Table 6.7. For

a ∆w around 1× 10−3 the CS results stabilizes and maintains the same value. The FD

scheme does not result in the same sensitivity for any of the step sizes tested, which shows

the method suffers drastically from a mix of truncation and cancellation error. A similar

convergence behavior has been found by Martins et al., 2001, on a different application

example comparing these two methodologies.
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Table 6.7 – Sensitivity at r = 11.77mm for FD and CS.

∆w Real increment Complex Increment

100 0,240 195 6 0,288 047 4
10−1 0,140 336 8 0,122 226 5
10−2 0,119 859 7 0,155 260 0
10−3 0,113 702 6 0,155 239 7
10−5 0,125 716 9 0,155 241 5
10−6 0,175 360 9 0,155 241 5
10−7 −0,064 407 2 0,155 241 5
10−8 2,523 026 5 0,155 241 5
10−9 5,572 664 6 0,155 241 5
10−10 30,166 487 1 0,155 241 5
10−11 −1835,777 174 7 0,155 241 5
10−15 — 0,155 241 5
10−30 — 0,155 241 5
10−60 — 0,155 241 5
10−130 — 0,155 241 5
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7 CONCLUSION AND DISCUSSION

This work has presented the following topics, namely contributions, in which we

achieve the main objectives of this work successfully:

1. A general Fourier series representation of the Green’s function for Magneto Electro

Elastic materials, based on a newly developed non-degenerate MEE Green’s func-

tion as a collaboration of this work. This representation is general as it can also

represent the Piezo Electric, Piezo Magnetic, or the purely Elastic, Electric or Mag-

netic cases, because it is directly based on the Fourier series coefficients, and uses a

non-degenerate Green’s function, which works for any anisotropic symmetry.

2. A numerical shape sensitivity framework for elastic anisotropic materials, based on

an anisotropic BEM formulation and the complex step (CS) method, also capable

of analyzing contact shape sensitivity on these problems. The application of the

CS method is only possible due to the real-valued Green’s function presented in the

first topic.

Relative to the first topic, one can perform the following closure comments:

• The presented results for the non-degenerate anisotropic magneto electro elastic

(MEE) Green’s function allow us to conclude that the proposed approach is stable

and free of degeneracies, providing an excellent framework for the computation of

Fourier coefficients.

• The newly proposed Fourier series approach takes full advantage of the intrinsic char-

acteristics of the Green’s function and needs fewer terms to obtain the same relative

error when compared with the original reference, providing a two-fold reduction.

This reduction provides a faster algorithm with an optimum convergence rate for

the Green’s function and its derivatives on boundary element method (BEM).

• It was presented an analysis of the Fourier series coefficients integration, not seen

before in the literature. The previously cited number of Gauss quadratures in pre-

vious works was found not sufficiently converged in the present study, which raises

a question about the influence of the numerical integration of the high order terms

in the solution convergence, which is discussed in the next topic.
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• In the solution convergence analysis presented, it was noticed that if the high order

terms are not correctly integrated, their later use in the solution can degrade the

solution quality. Also, it was noticed that the Fourier series is limited in precision,

which can be directly related to the difficulty in the integration of higher-order

terms. Nonetheless, the results found indicate that the Fourier series can represent

the solutions with errors in the same order as found between the degenerate and

non-degenerate solution. These errors are also many orders less than the accuracy

in material stiffness provided by experimental data, which should be taken into

consideration whenever possible.

• The convergence presented for the Green’s function and its derivatives provides more

insight on the approximation of these functions by the present approach. This anal-

ysis has never been performed in the literature, and therefore, provides quantitative

data for future application of this methodology.

• A study regarding the anisotropic index was also carried out, to verify if the variation

of this material characteristic can negatively influence the approximation of the

Green’s function. In that sense, we found no direct influence, and the least accurate

case found at intermediate values of the anisotropic index range.

In the second part of this work, the conclusions can be summarized into the fol-

lowing topics:

• In Chapter 4, the shape sensitivity analysis using the CS was validated through a

cantilever beam bending problem, which has an analytical solution. A convergence

study was performed for this purpose, considering isotropic and anisotropic elastic

materials, in this case, a cubic configuration. As was already mentioned, the cubic

symmetry has no closed-form Green’s function for a Zener index different from 1.

This problem is useful to assess anisotropy influence the final BEM solution, in

which similar behavior was found for this problem.

• Our Green’s function implementation based on Fourier series yields accurate enough

results with less computational cost than the Stroh’s formalism approach from

Buroni et al., 2011, which, allied with our proposed improvements, has provided

an efficient BEM implementation for the analysis of anisotropic elasticity. These
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performance improvements should be more significant for the case of piezo electric

(PE), piezo magnetic (PM), and MEE materials, in which our approach will avoid

even larger eigenvalue problem solutions.

• In Chapter 6, we solved Hertzian and Non-Hertzian contact problems, and both

material and shape sensitivities were analyzed. The anisotropic material sensitivities

are not possible to be directly evaluated the using the CS method, because the

Green’s functions are dependent on complex algebra, so we evaluated an example

considering isotropic material, whose results were in excellent agreement with the

analytical solution. For that matter, the authors have developed a framework that

should result in a forthcoming article.

• In the cylinder-flat case, we showed that the subsurface shear stress sensitivity for

anisotropic materials is extremely dependent on the indentation direction relative

to the crystallographic planes, and analyzed the position at which maximum values

occur as well as its variation. As this problem solution exists, we were able to

validate the results on the contact area, in which the CS-BEM approach agreed

with the analytical solution not only for sensitivity but also for the contact traction,

which is also a key aspect in its further application on optimization problems.

• The anisotropic coating case provides another application example for which analyt-

ical solutions are still emerging with limitations. This case also shows considerably

less meshing effort with the BEM. Even the semi-analytical method reported in the

literature is of limited use, and its implementation is of high complication. In this

case, shape sensitivity was evaluated at the interface of the coating, where debond-

ing can occur in severe conditions. The sensitivity results for the CS method were

in good agreement with finite differentiation (FD).

• In the last case analyzed, the dovetail connection, we showed one of the BEM

advantages, which is the capability of reproducing stress concentrations and discon-

tinuities, without resorting to extreme mesh refinement. Although the boundary

conditions applied are not the same, the results agreed with the literature in an

equivalent loading scenario. After this validation example, a configuration using

monolithic cubic crystal was considered for the blade, and the resulting stress dis-

tribution for this anisotropic material was found considerably different from the
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isotropic configuration. This study reveals an important contribution and contin-

uation path for this work. In the case of sensitivity, the results are even more

different, with the maximum value being than three times higher than that found

on the isotropic material. Also, the results shown for the CS and FD convergence

showed that FD cannot achieve the same sensitivity values — this points out the CS

method is indeed an excellent analysis tool, and their advantages fully compensate

its computational cost.

We also conclude in this work that indeed, the CS method is an extremely robust

and accurate numerical method to approximate sensitivities in conjunction with the BEM.

Its application in contact problems has been validated in several examples, which also

provided excellent results.

The CS-BEM approach developed in this work is a robust method for contact shape

optimization and other related problems requiring the analysis of sensitivities within the

contact region with high accuracy and reliability.

7.1 Continuation of this work

The accomplishment of this work provide sensitivity analysis procedures with a

variety of engineering applications, such as shape optimization. Also, this serves as a base

program for further developments as a general numerical analysis tool.

The so-called analytic methods (implicit differentiation (ID) and material derivative-

adjoint variable (MADV)), also have not been employed for sensitivity analysis on 3D

contact involving anisotropic materials with the BEM. Therefore, this kind of analysis

has never been performed. In that sense, the semi-analytic and analytic methods leave a

field of research to the continuation of this work.

The continuation of this work has many other possible applications and improve-

ments, related to the Green’s function and development of BEM software, and on engi-

neering application.

• Final implementation and validation of the BEM code for the MEE case, and per-

form shape and material sensitivity analysis also for these problems.

• Implementation of internal results for displacement and stress, as well as their sen-

sitivities to change in geometry.
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• Development of a semi-analytic sensitivity scheme based on the CS for fast opti-

mization procedures.

• Implementation of domain forces to reproduce the centrifugal load conditions more

correctly.

• Shape optimization of the dovetail connection for isotropic and cubic configurations.

• Study of fretting fatigue-related problems, including optimization, using the current

implementation.

• Inclusion of adhesion law on the contact algorithm such as Talon and Curnier, 2003.

• Inclusion of large displacements, large deformations, and hyper-elastic material be-

havior.

7.2 Publications related to this work

During the development of this work, the following articles were published in Jour-

nals:

Ubessi, C. J. B. and Marczak, R. J. On the solution of 3D frictional contact

problems with Boundary Element Method and discontinuous elements using a Gener-

alized Newton Method with line search, Revista Interdisciplinar de Pesquisa em

Engenharia-RIPE, vol. 2(7), p. 186–198, 2017

Ubessi, C. J. B. and Marczak, R. J. Sensitivity analysis of 3D frictional contact

with BEM using complex-step differentiation, Latin American Journal of Solids and

Structures, vol. 15(10), 2018

Buroni, F. C., Ubessi, C. J. B., Hattori, G., Saez, A., and Marczak, R. J. A

fast and non-degenerate scheme for the evaluation of the 3D fundamental solution and its

derivatives for fully anisotropic magneto-electro-elastic materials, Engineering Analysis

with Boundary Elements, vol. 105, p. 94–103, 2019
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APPENDIX A – Derivation of real-valued Fourier series terms

Hjk =
a∑

m,n=−a
λm,nij ei(mθ+nφ) (A.1)

= λm,nij (cos(mθ + nφ) + i sin(mθ + nφ)) (A.2)

= (Rm,n
ij + iIm,nij )(cos(mθ + nφ) + i sin(mθ + nφ)) (A.3)

(A.4)

It is known that the tensor is real valued, so the imaginary part must vanish,

Hjk = Re(

Rm,n
ij cos(mθ + nφ)

+i


I

m,n
ij cos(mθ + nφ)

Rm,n
ij sin(mθ + nφ)




+i2Im,nij sin(mθ + nφ)

) (A.5)

= (Rm,n
ij cos(mθ + nφ)− Im,nij sin(mθ + nφ)) (A.6)

=

R(m,n) cos(mθ) cos(nφ)−
R(m,n) sin(mθ) sin(nφ)−
I(m,n) cos(mθ) sin(nφ)−
I(m,n) sin(mθ) cos(nφ)

(A.7)

By λm,n = λ̄−m,−n, and sin(n) = − sin(−n), also, cos(m) = cos(−m), is possible to write

as

Hjk =
α∑

m=0




2(R(m,n) + R(m,−n) ) cos(mθ) cos(nφ)−
2(R(m,n) −R(m,−n) ) sin(mθ) sin(nφ)−
2(I(m,n) − I(m,−n)) cos(mθ) sin(nφ)−
2(I(m,n) + I(m,−n)) sin(mθ) cos(nφ)




(A.8)

By similarity, it is demonstrated by the use of Equations 2.158 and 2.159, the
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following equivalence is obtained on the constants for m,n 6= 0,

4λR1
(m,n) = R(m,n) + R(m,−n) (A.9)

4λR2
(m,n) = R(m,n) −R(m,−n) (A.10)

4λI1
(m,n) = I(m,n) − I(m,−n) (A.11)

4λI2
(m,n) = I(m,n) + I(m,−n) (A.12)

which is sintethically the same as presented in Shiah et al., 2013, apart from the new

period in φ.

In order to provide a equivalence with the Shiah et al., 2013 formulation, the

following relations are brought

R̃(m,n) = 0.5λR1
(m,n) (A.13)

R̂(m,n) = 0.5λR2
(m,n) (A.14)

Î(m,n) = 0.5λI1
(m,n) (A.15)

Ĩ(m,n) = 0.5λI2
(m,n) (A.16)
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APPENDIX B – Period graphs for the Barnett-Lothe tensor for the remaining com-

ponents of Material C - MEE
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Figure B.1 – The Barnett-Lothe tensor, Hij, i, j = [1, ..., 5], for the Material C - MEE,

in spherical coordinates.
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Figure B.2 – The Barnett-Lothe tensor, Hij, i, j = [1, ..., 5], for the Material C - MEE,

in spherical coordinates.
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Figure B.3 – The Barnett-Lothe tensor, Hij, i, j = [1, ..., 5], for the Material C - MEE,

in spherical coordinates.



163

1.94

1.94

1.94

1.94

1.94

1.94

1.97

1.97

1.97

1.97

1.97

1.97

2.01

2.01

2.01

2.01

2.01

2.01

2.04

2.04

2.04

2.04

2.04

2.04

2.08

2.08

2.08

2.08

2.08

2.08

2.12

2.12

2.12

2.12

2.15

2.15

2.15

2.15

2.19

2.19

2.19

2.19

2.23

2.2
3

2.23

2.23

2.23

H44 (×107)

θ

−π −3
5
π − 3

10
π 0 3

10
π 3

5
π π

φ

−π

−3
5
π

− 3
10
π

0

3
10
π

3
5
π

π

0.22

0
.2
2

0.22

0
.2
2

0.22

0.22

0.241

0.241

0.241

0.241

0.241

0.241

0.263

0.263

0.263

0.263

0.263

0.263

0.284

0.284

0.284

0.284

0.284

0.284

0.305

0.305

0.305

0.305

0.305

0.305

0.327

0.327

0.327

0.327

0.327

0.327

0.348

0.348

0.348

0.348

0.37

0.37

0.37

0.3
7

0.391

0.3
91

0
.3
9
1

0.3
91

H45 (×104)

θ

−π −3
5
π − 3

10
π 0 3

10
π 3

5
π π

φ

−π

−3
5
π

− 3
10
π

0

3
10
π

3
5
π

π

0.3
31

0.3
31

0.331

0.331

0.
35
4

0.354

0.
35
4

0.35
4

0.354

0.
37
6

0.376

0.
37
6

0.376

0.
39
9

0.399

0.
39
9

0.399

0.
42
2

0.422

0.
42
2

0.422

0.
44
4

0.444

0.
44
4

0.444

0.
46
7 0.467

0.
46
7 0.467

0.
49

0.49

0.
49

0.49

0.
51
3

0.5
13

0.
51
3

0.5
13

0.513
0.513

H55 (×103)

θ

−π −3
5
π − 3

10
π 0 3

10
π 3

5
π π

φ

−π

−3
5
π

− 3
10
π

0

3
10
π

3
5
π

π

−1
.3
2

−1.3
2

−1.32

−1.32
−1.32

−1.32

−1.2
7

−1.2
7

−1.2
7

−1.2
7

−1
.2
1

−1
.2
1

−1
.2
1

−1
.2
1

−1
.1
6

−1
.1
6

−1
.1
6

−1
.1
6

−1.1
1

−1.1
1

−1.1
1

−1.1
1

−
1
.1
1

−1
.1
1

−1.0
6

−1
.06

−1.0
6

−1
.0
6

−1
.0
6

−1.0
6

−1.0
1

−1
.0
1

−1.0
1

−1
.0
1

−
1
.0
1

−
1
.0
1

−0.9
57

−0
.9
57 −0

.9
57

−0.9
57

−0
.9
57 −0

.9
57

−0.9
57

−0.9
57

−0.95
7

−0.957

−
0
.9
0
6

−0
.9
06

−
0
.9
0
6

−0
.9
06

−0.90
6

−
0
.9
0
6

H35 (×10−6)

θ

−π −3
5
π − 3

10
π 0 3

10
π 3

5
π π

φ

−π

−3
5
π

− 3
10
π

0

3
10
π

3
5
π

π

Figure B.4 – The Barnett-Lothe tensor, Hij, i, j = [1, ..., 5], for the Material C - MEE,

in spherical coordinates.
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ANNEX I – Elastic, Piezoeletric and MEE constants for the example materials

Table I.1 – Piezoeletric properties for Material A

Elastic Constants
[
109 N

m2

]
c1111 139
c3333 115
c1122 77.8
c1133 74.3
c2323 25.6

Piezoeletric Constants
[
C
m2

] e113 12.7
e333 15.1
e322 -5.1

Dielectric permeability coefficients
[
10−9 C

Vm

] ε11 6.461
ε33 5.62

Table I.2 – Piezoeletric properties for Material B

Elastic constants
[
109 N

m2

]
c1111 166
c3333 77
c1122 78
c1133 162
c2323 43

Piezoeletric Constants
[
C
m2

] e113 11.6
e333 18.6
e322 -4.4

Piezomagnetic Constants
[
N
Am

] q113 550
q333 699.7
q322 580.3

Magneto-electric coefficients
[
N s
Am

] λ11 0
λ33 0

Dielectric permeability coefficients
[
10−9 C

Vm

] ε11 11.2
ε33 12.6

Magnetic permeability coefficients
[
10−6Ns2

C2

] µ11 5
µ33 10



165

Table I.3 – Magneto-electro-elastic constants for Material C (BaTiO3 CoFe2O4)

Elastic Constants
[
109 N

m2

]

c1111 220.12 c1212 46.651 c1323 -0.217
c1112 2.090 c1213 0.552 c2223 1.516
c1113 -2.196 c1222 0.991 c2233 126.24
c1122 124.285 c1223 -0.968 c2333 0.401
c1123 -0.853 c1233 -1.317 c3333 215.586
c1133 125.807 c1333 -0.505 c2323 45.753
c2222 218.338 c1322 1.115 c1313 46.258

Piezoeletric Constants
[
C
m2

]

e111 9.374 e211 1.241 e311 -2.354
e112 -4.666 e212 4.857 e312 -0.504
e113 8.847 e213 -0.821 e313 5.379
e122 -1.767 e222 -5.721 e322 -1.395
e123 -0.820 e223 7.441 e323 -4.346
e133 -0.643 e233 0.519 e333 13.214

Piezomagnetic Constants
[
N
Am

]

q111 358.82 q211 -99.692 q311 189.018
q112 -61.593 q212 44.217 q312 11.224
q113 116.775 q213 26.881 q313 37.090
q122 130.939 q222 -200.163 q322 135.735
q123 26.878 q223 67.743 q323 -29.976
q133 94.107 q233 -76.044 q333 291.03

Magneto-electric coefficients
[
10−9 N s

Am

] λ11 -0.688 λ13 -0.784 λ23 0.634
λ12 0.413 λ22 -1.022 λ33 -1.890

Dielectric permeability coefficients
[
10−9 C

Vm

] ε11 -5.817 ε13 -0.203 ε23 0.165
ε12 0.107 ε22 -5.905 ε33 -6.129

Magnetic permeability coefficients
[
10−6Ns2

C2

] µ11 -243.62 µ13 61.326 µ23 -49.543
µ12 -32.341 µ22 -217.516 µ33 -149.639
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