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Mobile-to-clogging transition in a Fermi-like model of counterflowing particles
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In this paper we propose a generalized model for the motion of a two-species self-driven objects ranging from a
scenario of a completely random environment of particles of negligible excluded volume to a more deterministic
regime of rigid objects in an environment. Each cell of the system has a maximum occupation level called oy .
Both species move in opposite directions. The probability of any given particle to move to a neighboring cell
depends on the occupation of this cell according to a Fermi-Dirac-like distribution, considering a parameter «
that controls the system randomness. We show that for a certain o« = «, the system abruptly transits from a
mobile scenario to a clogged state, which is characterized by condensates. We numerically describe the details
of this transition by coupled partial differential equations (PDE) and Monte Carlo (MC) simulations that are in

good agreement.
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I. INTRODUCTION

The theoretical motion of particles in inhomogeneous me-
dia with local impurities can be observed in many contexts in
Physics and in a large number of applications such as capture
and decapture of electrons in micro, nano, and meso devices
[1-3], the erratic, but also directed, motion of molecules in
chromatographic columns [4], and many others. However,
other situations that consider particles interaction can be
explored, and we will particularly focus on the one that takes
into account two different species of particles moving against
each other.

The patterns arising from counterflowing stream of parti-
cles can be studied considering a wide range of apparently
very different systems such as pedestrian dynamics [5], and
charged colloids motion [6,7], which suggest more similarities
between the micro and macro systems that we can anticipate
in this kind of modeling. For this reason the straight formation
of lanes, distillation, originated from the complex emergent
process of self-propelled and/or field-directed objects and
particles have raised a lot of interesting questions in the
context of statistical mechanics and the physics of stochastic
process modelled by Monte Carlo (MC) simulations or partial
differential equations (PDE) [8,9].

Similarly, more fundamental situations related to systems
that collapse due to clogging effects, related to the typical
phenomena of concentration of objects, or their condensation
patterns, under counterflowing streams, lead to a fundamen-
tal question: How the environmental randomness compares
to the size of objects for the occurrence of clogging and
jamming phenomena? To understand this interesting problem
that relates the micro with the macro scales, in this work
we consider a general modeling of streams of counterflowing
objects interpolating two very distinct situations:

(1) Situation (i): Objects of negligible sizes move in ran-
dom environment and their excluded volume is not a relevant
parameter. In this case the system is entirely random: the
particle performs a biased random walk in which it makes
a step to the next cell with probability 1/2 or remains at
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the original cell with the same probability. It works as if the
randomness of the motion is due to the resistance offered by
the environment and not from the interaction among objects.
This randomness is then not affected by the particle size.

(2) Situation (ii): The second extreme situation considers
hard objects where the excluded volume plays a role. It works
as if rigid bodies interact only with each other. In this situation
the system is essentially deterministic and one object does not
move to a cell that does not have enough space to allocate it.

In this work we explore the transition between these two
distinct scenarios, by changing an external parameter denoted
by . We are able to map continuously from situation (i) (¢ =
0) to situation (ii) (¢ — 00) and the interesting point is how it
is performed.

For that, we propose a simple model of two species of
objects, denoted by A and B, moving in opposite directions
in a ring divided by cells, which have the same maximum
occupation denoted by o, that depends on the stochasticity
parameter «. To describe «, which controls in which degree
the maximal occupation o, can be violated, we use an
adapted Fermi-Dirac distribution that governs the particle
transition between the cells.

It is worth to emphasize that our model can represent a
lot of different systems, among them, for example, oppositely
charged colloids in counterflowing streams. In this context,
the application of a strong electric field along the longitudinal
direction of the ring, would make species A drift, let us say,
in a counterclockwise fashion while species B would drift in
the opposite direction or we can picture objects entering and
leaving both extremities of a thin tape (tube) at a constant rate
(periodic boundary conditions), or as a last mention, the model
proposed can also mimic typical situations of pedestrians
walking in subway corridors under some peculiar conditions.

With our adapted Fermi-Dirac distribution we are able
to describe the complex dynamics of particles clogging in
counterflowing that here is studied in both: PDE and MC
simulations. Our results indicate the existence of a transition
from a mobile phase (fluid) to clogged (condensate) phase,
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by monitoring the evolution of the particle concentration
patterns.

In Sec. II we present the details of the model. Our main
results are presented in Sec. III. Finally we summarize our
results in Sec. IV and we present our main conclusions.

II. THE MODEL

We consider in this paper a two-species model of particles
which drift in counterflow in an annular system composed by
L cells, each one with the same limiting factor oy, regarding
the distinct situations (i) and (ii) described in the previous
section. For the sake of simplicity, we pictorially illustrate our
idea in Fig. 1.

Considering that the concentration of particles (of whatever
species) in the following cell affects the locomotion of the
particles in the current cell, the concentration of target objects,
according to our prescription can be written by the recurrence
relation: A,,, = pf}'l':ll?mAm,l,n,l + pU A -1, where Ajx
is the density of particles of species A of the cell j at time k and
by construction p;’j;nl) + p;’[’;‘ll = 1, since here pl ) denotes
the probability of particle in cell i(position x = ig) to transit to
cell j (position x = je) att = nt, where T means the required
time to perform such transition and ¢ is the step length.

Combining the equations, one has the following equations:

Am,n _Amn 1= P,(Z 11) Am 1,n—1 _pi:llm:)_]Am,nfl-

Taking into account that the occupation depends on a
maximum level of occupation, it is interesting to use the
analogy of the Fermi level in the context of conductor and
semiconductor models, and that here it has a similar role
changing the temperature by a factor . If the desired cell
has a number of objects above the maximum level, then the
probability of occupation behaves according to Fermi-Dirac
occupation function:

(n)

pPi; = (1+ exp[a(ajn O—max)])71’

where 0, = A;, + Bj, denotes the total number of objects
at the cell j, at the time n, which is the sum of the number
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FIG. 1. Section of particles under counterflowing in a ring topol-
ogy. The two extreme regimes are illustrated: @ — 0, showing that
objects are independent of each other but interact with the stochastic
environment, and ¢ — 0o where interacting rigid bodies with high
momenta ignore the randomness of the environment. Intermedi-
ate values of o correspond to some situation between these two
extremities.

of objects of target species and the number of the objects of
opposite species Bj ,. The choice of Fermi-Dirac function to
model the stochastic process of cell occupation is very natural
at this point: If the concentration of arrival cell A;, + B;,
is greater than op,x, then the transition is hampered; oth-
erwise, the transition is facilitated. How much is hampered
or facilitated depends only on o« which is not exactly the
inverse of temperature, but the matching between the Fermi-
Dirac distribution and our desired mapping is surprisingly
meaningful. The objects can occupy the cell even when A; , +
Bj, > 0ma. The only case this does not occur is when

o — 00, since pE".) =1ifo;,=A;,+ B, < Omax pf”j)

1/2if 6, = Omax, and p(”]? = 0 when 0, > 0y This case
(corresponding to situation (ii) previously considered) means
that no more than oy, + 1 objects per cell are allowed. We
consider that hard core objects interact and the environment
has no influence on their motion.

When o — 0, which corresponds to a low field regime, one
has p(”) = 1/2 meaning that the objects do not interact with
each other, only with environment. In this case (corresponding
to situation (i)), we can imagine that an infinity number of
objects (although not likely) are allowed per cell, since the
motion does not depend on oy« Since the interaction among
the particles is not considered in this limit, the objects are
drifting in the environment.

It is important to notice that our model prescribes other
alternative interpretations. One of them can imagine « as a
kind of field that drives the objects oppositely charged as
considered, for example, in the interesting stochastic lattice
gas studied by Schmittmann et al. [10]. In our modeling, we
can imagine that for low «, the environment is important
since the momenta of objects are low. On the other hand
when o is large, the objects have high momenta and the
environment effects are not important to change the velocities
of these objects. In this case the interaction of objects have an
important role.

Thus, one has for the objects A, the recurrence relation
Ann =Amn—1+ Gm_1,-1 — Amn—1, and similarly for the ob-
jects B, the relation B, ,, = By n—1 + bt1.n—1 — bypn—1 with
mn = A/l + e()t(Am+l,11+Bm+],n_0max)] and by, = B, /[1 +
ea(Amfl,nJFBm*],n7Umax)].

One can solve the recurrence relation as we do in this paper,
but we also analyze the corresponding differential equation.
By considering the situation A4, +Buti10 X Ap—1a +
By_1.4 X Amn + Bm.n, we are led to a system of two coupled
equations:

0A(B)(x,1) A(B)(x,1)
ot =—()¢ |:1 (A, D+BxN— a)] M

where C = lim; ., % It is important to notice that when
o — 0, we have uncoupled equations. In this situation,
the solutions are expected to satisfy 4% = —C24&D ang

335’; £ — CaBgc ) For C =1, for example, under perlodlc
boundary conditions, A(x =L,t) =A(x =0,t) and B(x =
L,t) = B(x = 0,t), itis easy to verify that the only possibility
is A(x,t) =1 and B(x,t) = 1, with the initial conditions
A(x,t =0)=1and B(x,t =0) = 1.

In the discrete formulation, this means p = 1/2, which
corresponds to a ballistic behavior of objects since if one
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considers A(x, t = 0) = Lé, 0 and B(x,t = 0) = Ly 1, we ex-
pect the solutions of recurrence relations, in the first round
in the ring, to be given by A,,, ~ L("7 11)2 " and B, , ~

L(Lfmf 27", once to execute m success (it means to be

in the position x = m7) the particles have to execute n > m
experiments according to a negative binomial [11]. Here we
are making the number of cells exactly the length of the tube
(orsimplye =t =1).

However, after several rounds, we must expect that A, ,,
B,,, — 1. But what happens when « increases and the in-
teractions between particles start to become important? We
also expect that A,, ,, B,,, — 1, which means that particles
are transiting without clogging in the channel?

To analyze this point we also consider performing Monte
Carlo (MC) simulations to support the numerical integration
of the recurrence equations. In these MC simulations, we con-
sider synchronous updating (every particle is verified if it goes
to the next cell or stays stopped at the same cell). In this case
there is no possibility of the same particle to be tested. The
initial configuration considered in such simulations supposes
that all particles are randomly (uniformly) distributed among
the cells.

Moreover, MC simulations make possible to analyze the
clogging dynamics in such kind of systems by considering an
interesting order parameter that measures a kind of current of
objects over the annular tube, here called as mobility, which
is defined for N particles at time 7 as

1 N
5 2 &, ©))
i=1

where &;(¢) is a binary variable associated to particle i, which
assumes 0 if the particle stays stopped at time ¢ and 1 if
this same particle goes to the next cell at this same time.
This quantity cannot be calculated by solution of recurrent
relations, but when we perform MC simulations it is easily
obtained since we work exactly on the particles, differently
from recurrence relations. Some authors call this amount
simply as current.

First, let us to better explore the variation of o. We solve
the recurrence relations starting with initial conditions A,, o =
1 and B,,o =1, but with only one site m = L/2, empty,
i.e., Arpo0=Brpo =0. Differently from MC simulations
we need an initial defect to promote the time evolution of
the system when we numerically integrate the recurrence
relations. So we expect that for low «, A, , — 1 (in our
particular case, A,,, — (GBI 1, for L large). On the other
hand, i.e., for higher values of «, the question is: for which
values of « the system breaks down in a clogging situation?

In next section we present the main results of this work.

M(t) =

III. RESULTS

Let us initially consider the simplest case o, = 1, and
let us start by observing the density of particles A and B in
both methods: MC simulations and by numerical integrations
of recurrence relations (REC). A summary of our main results
can be seen in Fig. 2. Figure 2(a) shows that for « = 0.3 the
system is freely flowing since for averaging both species over

@] a=03 r=10"| (| a=03 ¢=10’
[—MCA Tmn 1.00.
61 ——MCB 1 run
4l MCA 100rgns | 0.99] %
N 100 rufn
52’ |l NMR/‘ N 0.98|
RQ | I wmwwv i,
0 30 60 9 120

a=11=10
‘: (C) 14

16
[ fue
[
81 “ _I\—.—A 7
e
0 1l 4| 0

0 30 60 90 120

O la=4 =10

0 30 60 90 120 xo 30 60 90 120

FIG. 2. Exploring the dynamics for different values of o, meth-
ods (MC and REC), and number of time steps.

a large number of runs (N, = 100) we have A(x) ~ B(x) ~
1. It is important to observe that for Ny, = 1 the fluctuations
overcome the expected behavior.

The numerical solution was also obtained via two indepen-
dent methods: numerical solution of PDE according to Eq. (1)
and REC solutions, which simply integrate the previous re-
currence relations used to deduce the PDE of the problem,
for the same value of «, which have no obligation to agree,
but we expect that them to have at least the same qualitative
behavior. The results are shown in Fig. 2(b). We can observe
that although to obtain the PDE we have changed the index
in the recurrence relation, the methods show curves around
A(x) = B(x) = 1 for intermediate time, = 10. Moreover,
in the same plot, for 1 = 10° steps, the straight gray line
represents all plots obtained from PDE and REC solutions
that are coincident, which indicates an exact agreement with
A(x) = B(x) = 1. From now on, we will use only REC in
this paper, since PDE only presents some slightly differences
in relation to the first one and it can be considered a good
representation of the model via partial differential equations.
Other mathematical properties of PDE in these counterflowing
problems deserve future exploration.

How about when « increases? For example for « = 1, both
MC and REC indicate some points of clogging characterized
by high density of particles 14 < A ~ B < 16 according to
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FIG. 3. Density of particles A by REC solutions for t = 10°
iterations (steady state). Clearly the systems is mobile for « = 0.4
and jammed for @ = 0.8 (formation of condensates). We can observe
a “strange” behavior in the vicinity of transition (0.5 < o < 0.7).

Figs. 2(c) and 2(d) showing that both methods bring such
situation. It is interesting, since when we have o = 4 the
jamming occurs with many situations of “bottlenecks” but
now it occurs with lower magnitude 3 < A ~ B < 4 exactly
as shown in Figs. 2(e) and 2(f). So we raise the question, about
the existence of 0 < o, < oo for which the system transits
from mobile to clogged situation in the case o, = 1.

Here it is important to mention that differently from other
works our results look at transition dependence on the ran-
domness of system (o). Other works do not consider param-
eter o, and in pedestrian dynamics the authors work with the
transition of some parameter as average system velocity or
probability of clogging versus the density of pedestrian (see
for example interesting works: respectively, Refs. [12] and
(13D).

First, by considering the vicinity of transition, we look
the density of A for five different values of « considering
the stationary situation ¢t = 10° iterations (see Fig. 3). For
example we have a mobile system for « = 0.4 and a system
completely jammed for « = 0.8 (two pronounced peaks) but
for intermediate values of o (0.5, 0.6, and 0.7) the REC
solutions show that system seems to be in a metastable sit-
uation, where A ~ 1, but slightly numerical differences are
able to deform the solution leading to strange shapes until to
arrive the clogged situation o = 0.8 starting from the mobile
situation o = 0.4.

Thus, it goes into action, the mobility defined by Eq. (2),
and with this concept we can better understand what indeed is
happening with the system. Here we look at time evolution of
the mobility considering a large number of time steps (fyax =
10° MC steps) in order of our stop criterion to fail (what does
not happen). Basically the mobility arrives a steady state Mo,
(stationary mobility). We use a criterion to analyze when the
system reaches this stationary mobility. First, we observe the
system visually, which corresponds to a qualitative previous
analysis. Secondly, we take a slope of the stationary mobility
by lags of 10°MC steps. When the slope is lesser than (in
absolute value) n we consider that system has reached the
stationarity. We use n = 107, and we check these cases with
our previous visual analysis. After these considerations, we
analyze the behavior of M(¢) for fixed values of density as
function of « taking the stationary value for each value.

We performed simulations for several values of systems L.
Figures 4(a) and 4(b) show, respectively, the time evolution
of mobility for L =8 and L = 256. Here we average the
mobility over considerable number of runs: Ny, = L~'10°
runs. We can observe that plots are really different. So it is
interesting to check the stationary mobility for different size
systems as function of o which is observed in Fig. 4(c). We
can check that system is deeply sensitive on the size system,
but for L > 128, no numerical differences were observed and
Fig. 4(d) shows the results for L = 256 considering different
densities from p = 0.062 up to 1. Coming back to Fig. 4(c), it
is important to mention an anomalous recovering of mobility
for large values of «, but such distortion only occurs for really
small systems, which is not relevant.

These results show an abrupt transition between a mobile
phase (my > 0) to a clogging phase (mq, = 0). This transi-
tion is preceded by an initial slip of mobility. This occurs
because when the interaction of the environment with objects
decreases, i.e., o enlarges, the objects gain an initial increase
of the mobility, given their high momenta. But as « enlarges
even more, the interaction among the objects really increases,
until it finally destroys the mobility. In this case the motion
is random only when cell occupation assumes exactly the
value op,x. The high momenta of the objects that ignore the
environment is an important constraint to make the system
reaches the clogging situation due to the strong interaction
effects among the objects. It is interesting to observe that the
abrupt transition to a clogging phase occurs with a high peak
of density immediately followed by a large number of smaller
peaks of bottlenecks, as suggested by Figs. 2 and 3.

This analysis concerned op.x = 1. So the question is,
should we observe anomalous effects for oy, > 1, which in
our systems means to consider small objects or simply, more
“particles” occupying the same “orbital” ? In this case can
we observe a clogging transition for a o(" and a recovering of
mobility of the system foraa® > «1? Yes, it occurs. So we
analyze simulations of mobility considering now o, > 1. In
this case it is important to make a distinction, density and oc-
cupation. We define density by p = % where N is the number
of particles and L the system size, or simply the number of
cells. Occupation is a different concept, which here is defined
as 0= GHLL Thus, we prepared two experiments, so that in
one of them, we change on,x keeping the density constant,
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FIG. 4. (a) Time evolution of mobility for L = 8. (b) Time evolution of mobility for L = 256. (c) Finite size scaling of stationary mobility
as function of «. (d) Stationary mobility as function of « for fixed densities. An abrupt transition from mobile state to clogging state for « = «,,
can be observed which depends on density. The inset plot (in log-log scale) shows the dependence of «, as function of p.

and in another simulation, we change o, keeping constant
the occupation. And two surprising results are observed.
Figure 5 shows two distinct situations where we variate
Oomax- First keeping the density constant at p =1 and in a
second case, keeping the occupation constant at o = 1. In

1.2
M o]
o0
0.6
0.3

FIG. 5. Stationary mobility in two situations: p =1 and 0 =1,
for different values of maximal ocupation: o, = 1, 2, ..., 6.

the first case we can observe a recovering of mobility for
Omax = 3 and oy, = 4 and for o, > 4 the system does not
present a formation of condensates for no value of «, i.e., we
can transit from a situation of objects interacting randomly
with the environment to a situation where the objects strongly
interact among them without the influence of the environment,
and no bottleneck is observed since the object size in relation
to cell size allows such situation. However, in the anomalous
cases omax = 3 and o = 4, the clogging occurs as in the
case omax = 1, but the mobility is recovered (anomalously)
for higher values of «, given that the absence of randomness
from the environment combined with intermediate relation
between the object size and cell size. Here, differently from
anomalies for very small systems, we believe that such point
could also be due to an artefact of the synchronous MC sim-
ulations, which should be fixed by performing asynchronous
MC simulations which deserves part of our future attention.

However, by keeping o = 1, we did not wait a change in the
critical value o, since we enlarge o, as well as we enlarge
the number of objects to maintain o constant. This nonlinear
response is characteristic of the Fermi-Dirac distribution of
the cells for the transition probability. Such effects deserve
more future investigation.
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IV. SUMMARIES, CONCLUSIONS, AND DISCUSSIONS

In this work we show a different model that works with
a parameter « that controls the randomness of the system by
changing how the objects interact with the environment and
among themselves. We observe a transition between a mobile
phase and clogged phase in a o, which depends on occupation
of objects.

It is important to mention that such phenomena have some
similarities with analogous models. For example, Helbing
et al. [14], considering a simple model of particles driven in
opposite directions and interacting via a repulsive potential,
have found a transition to a crystallized state from a fluid
state by increasing the amount of fluctuations of the system.
The existence of condensates, here observed as function of
o, also was analyzed in another interesting and beautiful way
by Majundar et al. [15], considering the shape of equilibrium
mass distribution that change as the global mass density

change. However, the authors have studied such a model only
considering a single species, which suggests that such a model
can be changed to cover our results.

By concluding, we believe that our model deserves more
future explorations to better understand the mobile-clogging
transition in such systems of counterflowing streams of parti-
cles via both analytical and computational methods.
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