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In the present work, we investigate a gas-liquid transition in a two-component Gaussian core model,
where particles of the same species repel and those of different species attract. Unlike a similar
transition in a one-component system with particles having attractive interactions at long separations
and repulsive interactions at short separations, a transition in the two-component system is not driven
solely by interactions but by a specific feature of the interactions, the correlations. This leads to
extremely low critical temperature, as correlations are dominant in the strong-coupling limit. By
carrying out various approximations based on standard liquid-state methods, we show that a gas-
liquid transition of the two-component system poses a challenging theoretical problem. Published by
AIP Publishing. https://doi.org/10.1063/1.5006947

I. INTRODUCTION

A two-component fluid with interactions

uij(r) =



u(r), if i = j,

−u(r), if i , j,
(1)

where the indices designate the two components, is best
exemplified by electrolytes. Both in experiments and ideal-
ized representations, such as primitive models1–5 or pene-
trable ions,6–13 electrolytes undergo a gas-liquid transition.
A similar transition is expected for any two-component fluid
as long as interactions obey Eq. (1), and it can be understood
by adopting an effective one-component description, where
particles of one species experience mediated attractive inter-
actions due to averaged contributions of the second species.
The attractions eventually lead to phase transition.

A theoretical challenge posed by the models conform-
ing to Eq. (1) is that they can only be described by a theo-
retical framework containing correlations,14 and therefore, a
straightforward application of mean-field techniques is of no
use. The simplest theory of correlations is the random phase
approximation (RPA), which is equivalent to a one-loop expan-
sion around the mean-field solution (or the saddle-point).15,16

Corrections due to the strong-coupling limit effects can be
incorporated into the RPA framework by an explicit incor-
poration of Bjerrum pairs, which are dimers formed between
particles of opposite species.1,2,6,17,18 For the primitive model,
this procedure correctly shifts the critical point of a gas-
liquid transition to higher densities. On the other hand, for
penetrable ions, the same procedure leads to no satisfactory
results.6

Motivated by this theoretical difficulty of treating fluids
with the binary interactions of the form presented in Eq. (1),
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the present article considers a fluid of Gaussian particles, the
so-called Gaussian core model (GCM). Like penetrable ions,
Gaussian particles are penetrable, but unlike penetrable ions,
Gaussian interactions are short-ranged. A one-component
GCM fluid has been studied extensively in the past by numer-
ous groups.20–26 The two-component version of the GCM
model, but for repulsive-only interactions, was investigated
in Ref. 27. The two-component GCM fluid with interactions
satisfying Eq. (1) was briefly introduced in Ref. 15 as a testing
ground for the generalized-RPA approximation.

This work is organized as follows. In Sec. II, we introduce
the GCM model. In Sec. III, we present the simulation results,
focusing on the location of the critical point and the structure
of a fluid with special view to dimer formation. In Sec. IV, we
analyze the GCM model using a number of approximations.
Finally, in Sec. V, we conclude the work.

II. THE GAUSSIAN CORE MODEL

Particles in the GCM model interact via the Gaussian
potential, u(r) = εe−r2/σ2

, and for the two-component system
considered in the present work, the interactions are

uij(r) =



εe−r2/σ2
, if i = j,

−εe−r2/σ2
, if i , j,

(2)

where the indices i, j = 1, 2 designate different species, ε is
the depth of the potential, and σ is the particle diameter. In the
following, we use the physical quantities reduced by σ, ε, and
the Boltzmann constant kB. The reduced length is r∗ = r/σ, and
the reduced density is ρ∗ = ρσ3. Then, the reduced temperature
is T ∗ = kBT /ε, the reduced pressure is P∗ = Pσ3/(kBT ), and the
strength of the Gaussian potential in relation to thermal energy
is ε∗ = 1/T ∗ = ε/(kBT ).

Simulation results in the present work are from the stan-
dard canonical Monte Carlo (MC) simulations (N, V, T ).
Because the pair potentials of the GCM fluid are bounded,
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there is no constraint for the displacement length of attempted
moves, which could be very long. In our simulations, we set
this length to ensure that the acceptance ratio is larger than 50%
and less than 80%. All simulations are performed in a cubic
box with periodic boundary conditions in all three directions.
The total number of particles in the box is N1 + N2 = 1000,
and the bulk densities ρ1 and ρ2 are controlled by the box size
L. As N1 = N2 = N /2, the density of each species is ρ1 = ρ2

= ρ/2.

III. SIMULATION RESULTS
A. Pressure isotherms and the critical point

The presence and location of the critical point of
a gas-liquid phase transition is determined from pres-
sure isotherms, where we know that the critical tempera-
ture isotherm includes a stationary inflection point,

(
∂P
∂ρ

)
T

=

(
∂2P
∂ρ2

)
T
= 0. Figure 1 displays a number of isotherms

generated by simulations. A gradual emergence of a plateau
in the shape of an isotherm with decreasing temperature
indicates the approaching critical temperature. The crit-
ical point is estimated to be roughly at T ∗c ≈ 0.03 and
ρ∗c ≈ 0.6.

Such a low critical temperature is a signature of a
phase transition that is driven by correlations. Other sys-
tems with the binary interactions of the form presented in
Eq. (1) exhibit a similar behavior. For example, the crit-
ical temperature of penetrable ions is T ∗c ≈ 0.028 and that
of the restrictive primitive model is T ∗c ≈ 0.07.1 By con-
trast, the critical temperature of an analogous gas-liquid
phase transition of a one-component Lennard-Jones fluid
is T ∗c ≈ 1.1,19 which roughly corresponds to an equivalence
between the thermal energy and the potential energy at
minimum.

We note that normally a critical point depends on a size of
a simulation box L.11 For the critical temperature, this depen-
dence is expressed as T c(L) = T c + L�a, where T c is the critical
temperature in the thermodynamic limit, and the value of a for
the Ising model is∼2.44. In the present work, we are interested
in general properties of a fluid prior to the onset of a phase tran-
sition, and a rough estimate of the critical point is sufficient for
our purposes. To check finite size effects, we generate a number
of isotherms for N = 2000 particles, but we find no change in the
results.

FIG. 1. Pressure isotherms for the two-component GCM fluid generated by
MC simulations. The dashed line designates an ideal-gas pressure for N /2
dimers, P∗ = ρ∗/2.

B. Correlation functions

A unique feature of a two-component system with the
binary interactions of the form presented in Eq. (1) is the
formation of dimers between particles of opposite species,
known as Bjerrum pairs in the context of electrolytes. At low
temperature and density, these pairs dominate the fluid struc-
ture and, because of their stability, can be regarded as a third
component. It is not clear, however, what effect, if any, the
pairs may have on a phase-transition and whether a success-
ful theory of a phase-transition is required to incorporate pair
formation.

To examine this question, in this section, we consider
a number of correlation functions. The two relevant corre-
lations are as follows: correlations between particles of the
same species, h11(r), and correlations between particles of
different species, h12(r). In Fig. 2, we plot these functions
for different densities slightly above the critical temperature,
T ∗ & T ∗c ≈ 0.03.

First, we consider the function h12(r). For the lowest den-
sity, the correlation function is dominated by a sharp peak at
r = 0 and the absence of oscillations, indicating the absence
of the secondary structures. This suggests that the particles
exist as pairs and the system can be regarded as an ideal-gas
of N /2 dimers. This is confirmed by an incipient agreement in
Fig. 1 between the pressure isotherms generated by simulations
and the linear behavior P∗ = ρ∗/2. Dimers disintegrate with
increasing density, which is seen as h12(r) develops a usual
oscillatory structure.

FIG. 2. Pair correlation functions, h11(r) and h12(r), for the two-component
GCM fluid for T∗ = 0.033 & T∗c for three densities ρ∗ = 0.05, 0.6, and 2.
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We examine next the function h11(r). Because the bare
interactions between particles of the same species are repul-
sive, h11(r) is expected to feature a correlation hole, a region
of negative correlations around r = 0. This expectation is sat-
isfied for densities ρ∗ = 0.6 and ρ∗ = 2. But for ρ∗ = 0.05,
the correlation hole vanishes and is substituted by a region
of positive correlations, indicating effective attractions. Since
from h12(r) we know that dimers dominate a fluid structure at
ρ∗ = 0.05, the effective attractions imply attractions between
dimers. This, in turn, explains a gradual deviation of pressure
isotherms from the ideal-gas behavior P∗ = ρ∗/2, suggesting a
corrected low density ansatz P∗ = ρ∗/2 + B2ρ

∗2.
The above discussion suggests that it may be interesting to

adopt an effective one-component description by integrating
out the degrees of freedom of the second component, anal-
ogous to the concept of depletion interactions.28–30 At low
density, effective interactions can be obtained by inverting a
pair correlation function, βueff = �logh11(r), shown in Fig. 3
for ρ∗ = 0.05 and T ∗ = 0.033. The resulting effective poten-
tial is everywhere negative with a minimum at r∗ ≈ 0.5. We
attempt next to carry out a simulation for a one-component
system for ρ∗ = 0.025 and interactions ueff(r). We find this
system thermodynamically unstable, with all particles col-
lapsing into a single cluster with infinite overlaps. To make
the description more realistic and prevent such a collapse,
one would need to include three-body and perhaps higher-
body effective interactions. This, however, greatly complicates
the required computations and, in effect, makes the effective
one-component approach unfeasible.

C. Pairs

Another way of looking at a fluid structure, and, espe-
cially, formation of dimers, is by analyzing the quantity

Cij = ρi

∫ ∞
0

dr 4πr2hij(r), (3)

where ρihij(r) is a density perturbation of a species “i” around
a fixed fluid particle of a species “j” (we recall that ρi = ρ/2).

The data points obtained from simulations for a low den-
sity ρ∗ = 0.05 are plotted in Fig. 4 as a function of ε∗ = 1/T ∗,
prior to the onset of a phase transition. To better understand
the quantity C12 in Fig. 4(a), it is helpful to keep in mind the
shape of a correlation function h12(r) for the same density in
Fig. 2(a). The emergence of quasi-stable pairs corresponds to
C12 ≈ 1. Initially C12 increases linearly, and at ε∗ = 10 (or

FIG. 3. Mediated interactions between particles of the same species defined as
βueff(r) =�logh11(r), for density ρ∗ = 0.05 and temperature T∗ = 0.033 & T∗c .

FIG. 4. The quantity Cij = ρi ∫
∞

0 dr 4πr2hij(r) as a function of ε∗ = 1/T∗

for ρ∗ = 0.05, prior to the onset of phase transition. The data points are from
simulations.

T ∗ = 0.1), all particles are paired. However, instead of sat-
urating at 1, C12 continues to increase as a consequence of
mediated attractive interactions, indicating that pairs are not
ideal-gas particles.

Next, we interpret the data points for C11 in Fig. 4(b).
In the case of weak interactions, C11 is negative, reflecting
the presence of a correlation hole in h11(r). These negative
correlations begin to disappear around ε∗ ≈2 and then at ε∗ ≈6,
the quantity C11 changes sign and becomes positive, indicating
the onset of effective attractive interactions.

In analogy to Coulomb particles, we consider next the
quantity

Cd = ρi

∫ ∞
0

dr 4πr2
[
hii(r) − hij(r)

]
≥ −1, (4)

where Cd designates a “charge” that a fixed fluid particle
attracts. By contrast, for a Coulomb system Cd = �1, as a con-
sequence of long-range interactions, and implies the perfect
screening. This exact condition is referred to as the (zero-order)
Stillinger-Lovett sum rule.31–33 On the other hand, the GCM
two-component fluid achieves perfect screening gradually as
T ∗ → 0 or ρ∗ →∞.

The plots of Fig. 5 are fitted to simple functional forms.
A fast exponential decay in Fig. 5(a) agrees with the notion
that dimers dominate the fluid structure at low densities for
T ∗ < 0.1. Cd as a function of ρ∗ and for T ∗ = 1 in Fig. 5(b),
on the other hand, can be fit to an algebraic decay obtained
from the RPA, which is a weak-coupling theory, and does not
capture the formation of dimers.

FIG. 5. The quantity Cd = ρi ∫
∞

0 dr 4πr2 {hii(r) − hij(r)
}
, designating the

total “charge” a fixed particle attracts, (a) as a function of ε∗ for ρ∗ = 0.05 and
(b) as a function of ρ∗ for ε∗ = 1. Cd is bounded from below by �1. The fits

to the data points for respective plots are Cd = e−ε
∗/ε∗0 − 1, with ε∗0 ≈ 4.3,

and Cd =
π3/2ε∗ρ∗

1+π3/2ε∗ρ∗
(obtained from the RPA).
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IV. THEORETICAL ANALYSIS
A. Random phase approximation

The free energy density for the two-component system
with interactions in Eq. (1) has two main contributions,

f = fid + fc, (5)

where the ideal-gas contribution is

fid = kBT ρ

(
log

ρΛ3

2
− 1

)
(6)

(Λ is the de Broglie wavelength) and the expression for the cor-
relation free energy density can be obtained from the adiabatic
connection,15,16 wherein the pair interaction λu(r) is gradually
turned on by changing λ from 0 → 1. The resulting expres-
sion for the present two-component homogeneous system
is

fc = πρ
2
∫ ∞

0
dr r2u(r)

∫ 1

0
dλ hλd (r), (7)

where hλd (r) = hλ11(r) − hλ12(r) and the superscript λ indicates
the correlation function for particles with interactions λu(r).

The correlation function in Eq. (7) is obtained from the
Ornstein-Zernike (OZ) equation,

hλij(r) = −βcλij(r) − β
2∑

k=1

ρk

∫
dr′ hλkj(r

′)cλik(|r′ − r|), (8)

where within the RPA the direct correlation function is approx-
imated as cλ,rpa

ij (r) = −λ βuij(r). This in turn implies that

hλ,rpa
11 (r) = −hλ,rpa

12 (r) = hrpa
λ (r), where the function hrpa

λ (r)
is obtained from the modified OZ equation,

hrpa
λ (r) + βλu(r) = −βλρ

∫
dr′ hrpa

λ (r ′)u(|r′ − r|), (9)

leading to the approximate correlation free energy,

βf rpa
c = −

ρ

2

∫ 1

0
dλ

hrpa
λ (0) + λ βu(0)

λ
. (10)

To obtain analytical results, Eq. (9) is Fourier transformed,

ĥrpa
λ (k) = −

βλû(k)
1 + βλρû(k)

. (11)

After the Fourier inversion, the correlation free energy
becomes

βf rpa
c =

1

4π2

∫ ∞
0

dk k2
(

log
[
1 + ρβû(k)

]
− ρβû(k)

)
, (12)

which after substitution û(k) = σ3π3/2e−k2σ2/4 evaluates to

βf rpa
c = −

ε∗ρ

2

{
1 +

Li5/2[−ε∗η]

ε∗η

}
, (13)

where η = (σ
√
π)3ρ, and Lim(x) =

∑∞
n=1

xn

nm is a polyloga-
rithm.

To locate the critical point, we study pressure isotherms.
The expression of pressure is obtained from either the

FIG. 6. (a) Pressure isotherm at a critical temperature, T∗c ≈ 0.1, from the
RPA. The red point at ρ∗c ≈ 0.06 designates the critical density. (b) Phase
diagram within the RPA. The spinodal lines are indicated with the dashed
line, and the coexistence region is indicated with the solid line.

thermodynamic definition P = − ∂F
∂V = ρ

∂f
∂ρ − f or the virial

equation

βP
ρ
= 1 −

πρ

3

∫ ∞
0

dr r3 ∂ βu(r)
∂r

hd(r), (14)

where, within the RPA, hrpa
d (r) = 2hrpa(r) and hrpa(r) satisfies

Eq. (9) for λ = 1. The resulting formula is

βPrpa

ρ
= 1 +

ε∗

2

[
Li5/2(−ε∗η) − Li3/2(−ε∗η)

ε∗η

]
. (15)

The critical point is found at T ∗c ≈ 0.1 (or ε∗c ≈ 9.85)
and ρ∗c ≈ 0.06; see Fig. 6(a). The entire phase diagram of the
coexistence region is shown in Fig. 6(b). The spinodal lines
(designating a metastable region) correspond to the local con-

dition ∂2f
∂ρ2 = 0, while the coexistence region is constructed by

the global consideration of the free energy, using the Maxwell
construction.

The RPA critical temperature is considerably higher than
that obtained from simulations, while the critical density is
considerably lower. To understand some of the causes of this
disparity, we look into the fluid structure and the behavior of
pairs. The quantity Cd defined in Eq. (4) within the RPA is

Crpa
d = ρĥrpa(0) = −

ε∗η

1 + ε∗η
, (16)

where we recall that η = (σ
√
π)3ρ. As this algebraic behavior

agrees with the high temperature results in Fig. 5(b), it fails
to agree at low temperatures, or the strong-coupling limit, and
low density in Fig. 5(a), where an exponential decay of Cd to
�1 indicates the formation of dimers (Fig. 7).

FIG. 7. The same as in Fig. 5 but now along with the RPA prediction given
in Eq. (16).
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The absence of dimers within the RPA can, furthermore,
be attested by the structure of correlations shown in Fig. 8
for T ∗c ≈ 0.1. First, the correlations always exhibit oscillatory
structure. Second, since within the RPA h11(r) = �h12(r), the
function h11(r) always exhibits a correlation hole so that the
mediated attractive interactions between particles of the same
species never arise. This is seen by examining the quantity
C11, within the RPA given by

Crpa
11 = −

1
2

ε∗η

1 + ε∗η
, (17)

which is dominated by negative correlations for any set of
parameters.

1. RPA in general dimensions

In this section, we briefly consider the dimension-
dependence of the critical point. As seen from the simulation
results in Fig. 9, the critical temperature and density decrease
with reduced dimensionality, as d = 4→ 3→ 2, and in d = 1,
there is no phase transition.

The Fourier transformed Gaussian pair potential for a
general dimension is βû(k) = (σ

√
π)dεe−k2σ2/4, and the

correlational free energy becomes

βf rpa
c =

1

(4π)d/2Γ(d/2)

×

∫ ∞
0

dk kd−1
(

log
[
1 + ρβû(k)

]
− ρβû(k)

)
,

which evaluates to

βf rpa
c = −

ερ

2

{
1 +

Lid/2+1[−εη]

εη

}
, (18)

where η = (σ
√
π)d ρ. Using the thermodynamic definition,

βP = ρ + ρ
∂βfc
∂ρ − βfc, and the pressure is given as

βP = ρ +
ερ

2

{
Lid/2+1(−εη) − Lid/2(−εη)

εη

}
. (19)

Critical temperatures from pressure isotherms are plotted
in Fig. 10 as a function of d, together with the data points
obtained from simulations. We discover that the RPA fails
even in capturing a general trend: as dimensionality increases,
the RPA critical temperature decreases. This shows general
inadequacy of the RPA for describing the strong-coupling
limit of two-component systems with interactions of the form

FIG. 8. Pair correlation functions predicted by the RPA slightly above the
critical temperature at T∗c ≈ 0.1 for densities ρ∗ = 0.01, 0.06, and 0.3.

FIG. 9. Pressure isotherms for the two-component GCM fluid in various
dimensions, d = 2, 3, 4, slightly above the critical temperature. The data
points are from the MC simulation for N = 1000 particles.

presented in Eq. (1). In Secs. IV B and IV C, we consider other
possible approaches.

B. Correlation functions from the mean-field
approximation

In the next attempt to treat theoretically the present sys-
tem, we define a correlation function in terms of a density

FIG. 10. Critical temperature as a function of dimensionality d for the RPA
compared with the data points from MC simulations.



024904-6 D. Frydel and Y. Levin J. Chem. Phys. 148, 024904 (2018)

perturbation. A fixed fluid particle of the type “1” at the coor-
dinate origin generates density perturbations that, within the
mean-field approximation, are given by

ρ1(r) =
ρ

2
e−βu(r)e−βw(r), (20)

ρ2(r) =
ρ

2
eβu(r)eβw(r), (21)

where

w(r) =
∫

dr′ u(r, r′)
[
ρ1(r ′) − ρ2(r ′)

]
(22)

is the mean-potential due to an average distribution of all
particles in the system. Using the formal definitions ρ1(r)
=

ρ
2 [h11(r) + 1] and ρ2(r) = ρ

2 [h12(r) + 1], the above equations
transform into

h11(r) = e−βu(r)e−
ρ
2 ∫ dr′ βu(r′,r)[h11(r′)−h12(r′)] − 1, (23)

h12(r) = eβu(r)e
ρ
2 ∫ dr′ βu(r′,r)[h11(r′)−h12(r′)] − 1. (24)

Finally, subtracting the two equations, we get a single relation

hd(r) = −2 sinh
[
βu(r) +

ρ

2

∫
dr′ βu(r − r′)hd(r ′)

]
. (25)

Once the function hd(r) is obtained from the above self-
consistent relation, the pressure can be calculated from the
virial equation

βP
ρ
= 1 −

πρ

3

∫ ∞
0

dr r3 ∂ βu(r)
∂r

hd(r). (26)

In Fig. 11, we plot the resulting critical temperature
isotherm at T ∗c ≈ 0.08. This is slightly lower than that obtained
from the RPA (T ∗c ≈ 0.1 in Fig. 6), yet not sufficiently close
to the exact result (T ∗c ≈ 0.03 in Fig. 1). The critical den-
sity within the present approximation is also slightly shifted,
from ρ∗c ≈ 0.06 within the RPA to ρ∗c ≈ 0.07. In Fig. 12,
we plot the quantities Cij, in analogy to Fig. 5. The results
show some improvement over the RPA, but still there is no
indication of pair formation, as C11 < 0 and C12 < 1 for all
parameters.

C. Correlation functions from the GRPA approximation

As in Sec. IV B, we define correlation functions as a per-
turbation of a uniform fluid caused by a fixed particle. In this
section, however, we go beyond the mean-field level of descrip-
tion and use the generalized-RPA (GRPA), which is the RPA
generalized to inhomogeneous fluids.15

FIG. 11. Pressure isotherm at the critical temperature T∗c ≈ 0.08, obtained
from Eqs. (25) and (26).

FIG. 12. The quantity Cij = ρi ∫
∞

0 dr 4πr2hij(r) as a function of ε∗ for
ρ∗ = 0.05.

Within the GRPA, the density perturbations caused by a
fluid particle of the type “1” fixed at the coordinate origin are
given by

ρ1(r) =
ρ

2
e−βu(r)e−βw(r)e

1
2 [H(r,r)−Hb(0)], (27)

ρ2(r) =
ρ

2
eβu(r)eβw(r)e

1
2 [H(r,r)−Hb(0)], (28)

with w(r) defined in Eq. (22). The main difference between
these expressions and those in Eqs. (20) and (21) is the presence
of a correlation term H(r, r) obtained from

H(r, r′) = −βu(r) − ρ
∫

dr′′
[
hs(r

′′) + 1
]
βu(r, r′′)H(r′′, r′),

(29)

which corresponds to the inhomogeneous Ornstein-Zernike
equation with the direct correlation function approximated as
c(r, r′) = �βu(r, r′), and where hs(r) = [h11(r) + h12(r)]/2.
The quantity Hb(0) is the value of H(r, r) far away from a
perturbation, where ρi(r) = ρ

2 . Using the formal definitions
ρ1(r) = ρ

2 [h11(r)+1] and ρ2(r) = ρ
2 [h12(r)+1], the correlation
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FIG. 13. Pressure isotherm at a critical temperature T∗c = 0.06 from the
GRPA.

FIG. 14. The quantity Cij = ρi ∫
∞

0 dr 4πr2hij(r) as a function of ε∗ for ρ∗

= 0.05.

FIG. 15. Pair correlation functions from the GRPA, for T∗ = 0.06 and ρ∗

= 0.05.

functions become

h11(r) = e−βu(r)− ρ2 ∫ dr′ βu(r−r′)hd (r′)e
1
2 [H(r,r)−Hb(0)] (30)

and

h12(r) = eβu(r)+ ρ
2 ∫ dr′ βu(r−r′)hd (r′)e

1
2 [H(r,r)−Hb(0)]. (31)

Once the correlation functions are calculated, we use Eq. (26)
to calculate the pressure and to find the critical temperature
isotherm.

The predicted critical temperature is T ∗c ≈ 0.06, and
the critical temperature isotherm is plotted in Fig. 13, where
the critical density is ρ∗c ≈ 0.1. This, so far, is the best
estimate, and at the same time, it is not accurate enough
to be regarded as an accurate theory of the strong-coupling
limit.

We look next into the quantities Cij shown in Fig. 14. A
significant feature of the plots is the prediction of C11 > 0, and
C12 > 1 for ε∗ & 8, indicating mediated attraction between
particles of the same species and, therefore, the presence of
dimers. The existence of dimers is further confirmed by the
shape of the correlation function shown in Fig. 15 for low

density and the temperature slightly above T ∗c . A sharp peak
at r = 0 for h12(r) indicates strong association between par-
ticles of the same species, and the absence of the correlation
hole and the presence of positive correlations in h11(r) pro-
vide additional evidence for the existence of dimers within the
GRPA.

V. CONCLUSION

A unique feature of the two-component system with the
binary interactions of the form presented in Eq. (1) is the
special role of correlations, which goes beyond a merely cor-
rectional role, and provides a mechanism for a gas-liquid
phase-transition and the formation of dimers. Yet because cor-
relations are dominant only in the strong-coupling limit, phase
transition and the formation of dimers occur at very low tem-
peratures. This, in consequence, makes theoretical analysis of
these phenomena a challenging problem.

The simplest theory of correlations, the RPA, predicts the
critical temperature at a significantly higher temperature than
that obtained from simulations, and it fails to account for dimer
formation. The most successful approximation attempted in
this work is the GRPA. This approximation captures pair for-
mation and yields the critical temperature that is closer to the
simulation results, yet not close enough to be considered an
accurate theory.

In consequence, a theoretical challenge of treating the
two-component fluid with interactions in Eq. (1) remains open.
An interesting direction to be considered is to study a relevant
lattice-gas model, as was done for the one-component GCM
fluid in Ref. 34.

Finally, based on our results, we do not find evidence
that the existence of dimers plays a role in a phase transition
mechanism. Pairs are prevalent at a low density, let us say
ρ∗ < 0.1. The critical density, on the other hand, is at roughly
ρ∗c ≈ 0.6. At such a high density, we no longer find any evi-
dence for the existence of dimers, and so the link between pairs
and the phase-transition is dubious. We regard the formation
of dimers and the occurrence of the phase transition as two
different manifestations of the strong-coupling limit. To pro-
vide support for this conjecture, we carried out simulations for
permanent dimers (two Gaussian particles of different species
connected by a spring). Such a contrived system exhibited no
phase-transition. We conclude, therefore, that the interactions
between particles at intermediate and high densities are con-
siderably more complex than those provided by the simple
reduction to dimers.

The prediction of dimers, however, can provide a useful
test of a performance of an approximation. An approxima-
tion that predicts dimers can be assumed as appropriate for
the strong-coupling limit and potentially suitable for accurate
estimate of the critical point.
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