
Alternating Model Trees

Eibe Frank
Department of Computer

Science
University of Waikato

Hamilton, New Zealand
eibe@cs.waikato.ac.nz

Michael Mayo
Department of Computer

Science
University of Waikato

Hamilton, New Zealand
mmayo@cs.waikato.ac.nz

Stefan Kramer
Institute of Computer Science

University of Mainz
Mainz, Germany

kramer@informatik.uni-
mainz.de

ABSTRACT
Model tree induction is a popular method for tackling re-
gression problems requiring interpretable models. Model
trees are decision trees with multiple linear regression mod-
els at the leaf nodes. In this paper, we propose a method
for growing alternating model trees, a form of option tree
for regression problems. The motivation is that alternating
decision trees achieve high accuracy in classification prob-
lems because they represent an ensemble classifier as a single
tree structure. As in alternating decision trees for classifi-
cation, our alternating model trees for regression contain
splitter and prediction nodes, but we use simple linear re-
gression functions as opposed to constant predictors at the
prediction nodes. Moreover, additive regression using for-
ward stagewise modeling is applied to grow the tree rather
than a boosting algorithm. The size of the tree is determined
using cross-validation. Our empirical results show that alter-
nating model trees achieve significantly lower squared error
than standard model trees on several regression datasets.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms, Experimentation, Performance

Keywords
Regression, alternating model trees

1. INTRODUCTION
Alternating decision trees [5] provide the predictive power

of decision tree ensembles in a single tree structure. They are
a variant of option trees [3, 9], i.e., decision trees augmented
with option nodes, and grown using boosting. Existing ap-
proaches for growing alternating decision trees focus on clas-
sification problems. In this paper, we investigate alternating

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’15 April 13-17, 2015, Salamanca, Spain.
Copyright 2015 ACM 978-1-4503-3196-8/15/04...$15.00.
http://dx.doi.org/10.1145/2695664.2695848

model trees for regression, inspired by work on model trees
for regression [15] and work on growing alternating decision
trees for multi-class classification [8].

Model trees for regression are decision trees with linear
regression models at the leaf nodes. They were originally
proposed by Quinlan [15]. An open-source implementation,
called M5′, was presented in [18] and has proven to be suc-
cessful in many practical applications, e.g., [16, 2, 14, 4, 13,
17]. An example model tree grown using M5′ is shown in
Figure 1. The inclusion of linear regression models rather
than constant predictors at the leaf nodes is essential: stan-
dard regression trees with constant predictors produce much
less accurate predictions than model trees [15].

M5 trees are grown using the standard top-down approach
for growing decision trees. Once an unpruned tree has been
grown, multiple linear regression models are placed at each
node of the tree. Following this, the tree is pruned, poten-
tially replacing large subtrees by a single linear regression
model. Finally, the linear regression models along the path
from the root node of the tree to each leaf node are combined
into a single linear regression model at the leaf node using a
“smoothing” process that produces a linear combination of
linear regression models. For further details, see [15, 18].

The learning algorithm for alternating model trees we
present in this paper grows trees using additive regression.
In [8], alternating decision trees for multi-class classification
are grown using additive logistic regression, a statistical vari-
ant of boosting. The process we apply in this paper is very
similar, applying forward stagewise additive modeling for
minimization of squared error rather than maximization of
multinomial likelihood. The key difference of our method is
that we use (simple) linear regression models instead of con-
stant predictors in the tree so that we can obtain competitive
predictive performance on regression problems. Moreover,
to reduce computational complexity and data fragmenta-
tion, splits on numeric attributes at splitter nodes are re-
stricted to the median value of each attribute rather than
arbitrary points identified by a split selection criterion.

2. ALTERNATING MODEL TREES
We assume that we have a training dataset D with n in-

stances consisting of m real-valued attributes and a real-
valued target attribute. The learning algorithm is provided
with n instances (~xi, yi), with 1 ≤ i ≤ n, where ~xi is a vector
of attribute values and yi is the associated target value. The
task is to learn a model such that, given a new ~x, this model
can be used to predict the corresponding value y. In this
paper, we assume that the goal is to minimize the squared

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/29362291?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

�����

��������������������
�������������������
�������������������
�������������������
��������������������

������������
������

�����

����

����

����

�������

���������������������
����������������������
���������������������
����������������������
�����������������������
�����������������������

���������������
�����

������

����

�������

���������������������
����������������������
����������������������
����������������������
�����������������������
�����������������������

���������������
�����

������

���������������
����������������������
����������������������
����������������������
�����������������������
�����������������������

���������������
����

������

���������������
����������������������
����������������������
����������������������
�����������������������
�����������������������

���������������
����

�����

Figure 1: M5′ model tree for machine-cpu data

error of the model between the predicted and actual target
values. Furthermore, we assume that the data is indepen-
dently and identically distributed.

2.1 Forward Stagewise Additive Modeling
Our method for learning additive model trees applies the

basic algorithm for additive regression using forward stage-
wise additive modeling [6]. The strategy is to iteratively
correct the predictions of an additive model Fj(~x) by taking
the residual errors it makes on the training data—the differ-
ences between the actual and predicted target values—and
applying a base learner that learns to predict those residuals.
The model fj+1(~x) output by the base learner is then ap-
pended to the additive model and the residuals are updated
for the next iteration.

More precisely, we fit a model consisting of k base models,

Fk(~x) =

k∑
j=1

fj(~x) (1)

in a forward stagewise manner so that the squared error

n∑
i=1

(Fk(~xi) − yi)
2 (2)

over the n training examples (~xi, yi) is minimized.

Input: D : training data, BL : base learner, I : number of
iterations to perform, λ : shrinkage parameter
∈ (0, 1]

Output: L : list containing ensemble predictor
L := empty list
L.add(1

n

∑
(~x,y)∈D y)

foreach (~x, y) ∈ D do
(~x, y) := (~x, y − L.first().prediction(~x))

end
while |L| ≤ I do

L.add(BL.buildModel(D))
foreach (~x, y) ∈ D do

(~x, y) := (~x, y − λ× L.last().prediction(~x))
end

end
return L

Algorithm 1: Additive regression using forward stagewise
additive modeling

In a particular iteration k, we fit a base model fk(~x) (e.g.,
a regression stump) to the residuals y − Fk−1(~x) remaining
from the k − 1 previous iterations. We fit these residuals
by minimizing the squared error between them and the base
model’s predictions fk(~x).

In this manner, we ensure that the squared error of the
additive model is minimized, assuming the existing part of
the model Fk−1(~x) can no longer be modified:

n∑
i=1

((yi − Fk−1(~xi)) − fk(~xi))
2

=

n∑
i=1

(yi − (Fk−1(~xi) + fk(~xi)))
2 =

n∑
i=1

(yi − Fk(~xi))
2

This is thus a greedy algorithm to fit an additive regression
model by minimizing squared error.

Pseudo code for the algorithm is shown in Algorithm 1.
It has three arguments: the base regression learner to use,
the number of iterations to perform, and the value of the
shrinkage parameter used to control overfitting. The algo-
rithm first calculates the mean target value and makes this
predictor the first element of the additive model. Subtract-
ing the mean establishes the initial set of residuals. In each
iteration of additive regression, the base regression scheme is
applied to learn to predict the residuals. Subsequently, the
predicted residuals are subtracted from the actual residuals
to establish the new set of residuals for the next iteration.
This is repeated for the given number of iterations.

The shrinkage parameter is a value in (0, 1]. (A value
of 1 means that no shrinkage is performed.) In the algo-
rithm, the predictions of the base learner are multiplied by
the shrinkage value when the residuals are calculated. When
the shrinkage value is reduced by the user, the predictions
of each base model are dampened before being included in
the additive model. Because the mean predictor is the first
element in the model, and is not affected by the shrinkage
parameter, the predictions of the additive model are there-
fore shrunk towards the mean. This makes it possible to
perform regularization of the model.

The prediction step is shown in Algorithm 2. It is straight-
forward: the predictions of all base models are simply mul-
tiplied by the shrinkage value and added to the mean target
value from the training data. This is then the final predic-
tion of the additive model.

Input: ~x : the instance to make a prediction for, L : list of
regressors

Output: y : the prediction
y = L.first().prediction(~x)
foreach M ∈ L do

if M 6= L.first() then
y = y + λ×M.prediction(~x)

end

end
return y

Algorithm 2: Generating a prediction using the additive
regression model

���

������� ������� ������

����

�������

�����

��������

�������

������

������

�����

�������

�������

������

�������

�����

��������

������

�������

�����

��������

������

������

�����

�������

Figure 2: Alternating decision tree with five splitter
nodes grown from pima-indians diabetes data

2.2 Constructing Alternating Model Trees
An alternating decision tree consists of two types of nodes:

splitter nodes and prediction nodes [5]. In the classification
case, it is grown by adding one splitter node and two predic-
tion nodes in each iteration of the boosting algorithm that
generates the tree. A splitter node is the same as an internal
node in a standard decision tree and divides the data based
on a chosen attribute-value test. Prediction nodes contain
numeric scores that are used to make a prediction. When an
instance is to be classified, it is routed down all applicable
paths in the tree and the numeric scores of all visited pre-
diction nodes are summed to yield the final prediction. For
example, in the two-class classification case, the sum may
be positive, in which case the positive class is predicted;
otherwise, the negative class is predicted.

Figure 2 shows an alternating decision tree grown using
the algorithm from [5], for the two-class pima-indians dia-
betes data available from the UCI repository of datasets [1].
Five boosting iterations where performed to grow this tree
so that five splitter nodes are included. The root node has
three prediction nodes attached to it. When a prediction is
to be made, all three options need to be considered.

Consider an instance that has the following values for the
attributes used in the tree: plas = 130,mass = 27.1 and
age = 30. The score for this instance involves five prediction
nodes and would be −0.311+0.541+0.148+0.226−0.302 =
0.302 > 0. Hence, tested positive would be the class pre-
dicted for this instance.

An alternating decision tree is an option tree because each

prediction node can have multiple splitter nodes as succes-
sors (or none, in which case it is a leaf node). In each boost-
ing iteration, a prediction node in the current version of the
alternating tree is identified, and a splitter node, with two
new prediction nodes attached to it, is added to it as a suc-
cessor. The particular prediction node chosen for this and
the split applied at the splitter node are selected such that
the loss function of the boosting algorithm is minimized.

We can view an alternating decision tree as a collection of
if-then rules, where each path in the tree corresponds to a
rule. In each iteration of the boosting algorithm, a particular
rule is chosen for extension by an additional attribute-value
test (implemented by the splitter node), and two extended
versions of the rule are added to the rule set. Thus, we can
view the process of growing an alternating decision tree as
an application of boosting with a base learner that grows
restricted if-then rules: the two new rules added in a par-
ticular iteration consist of a prefix that already exists in the
tree, one new test is added to both rules, and the new rules
include appropriately chosen values on the right-hand side.

We can easily adapt this method for growing an alternat-
ing decision tree so that it can be applied to regression prob-
lems. Given the algorithm for generating an additive model
for regression discussed above, we can grow an alternating
decision tree for regression by applying an appropriate base
learner. In each iteration of additive regression, we add one
splitter node and two prediction nodes to the tree. The pa-
rameters of these nodes and their location in the alternating
tree are chosen so that squared error is minimized.

However, because we want to grow alternating model trees,
we do not simply add constant values at the prediction
nodes, but rather apply simple linear regression functions.1

A splitter node is constructed by considering splits on all
available attributes in the data, splitting on the median at-
tribute value for the corresponding data that reaches the
node to be split, and fitting two simple linear regression
models to the subsets created by the split. The two at-
tributes for the simple linear regression models are chosen
so that squared error is minimized.

Of all available splits, one for each attribute and existing
prediction node, the split that minimizes the squared error
of the alternating tree is chosen, and the corresponding two
linear regression models are placed at the two new prediction
nodes that are attached to the new splitter node. Note that
the two simple linear regression models for the two subsets
of data generated by the median-based split can be based
on different attributes. For each subset, all attributes are
considered, and that particular attribute is chosen whose
simple linear regression model minimizes squared error.

Figure 3 shows an example model tree for the machine-cpu
data. Five iterations of additive regression where performed
so the tree contains five splitter nodes and 11 prediction
nodes, including the root node which simply predicts the
mean target value from the training data. The lowest level
of the tree has two splitter nodes that are attached to the
same prediction node. Hence, if an instance reaches this
prediction node, both successors need to be visited and a
prediction obtained from both of them. The numbers in

1In contrast to a multiple linear regression model as used in
M5, a simple linear regression model is a regression model
based on a single, appropriately chosen, predictor attribute.
Simple linear regression models are also used in the model
tree inducers presented in [10, 11].

�������������

����

�������������������������

����������

�������������������������

���������

����

������������������������

����������

������������������������

���������

����

��������������������������

��������

�������������������������

�������

���� �����

������������������������

�����������

������������������������

����������

�������������������������

��������

������������������������

�������

Figure 3: Alternating model tree for machine-cpu data

brackets show the number of training instances that reach a
particular prediction node. With continuous data, they are
equal for the two successors of a prediction node, because the
median value is used for splitting, but this data has discrete
values and hence the splits are not balanced.

Algorithm 3 has the pseudo code for growing the alternat-
ing model tree. It employs three types of objects:

• SplitterNode objects that contain a reference to their
parent prediction node; the score—reduction in squared
error—they achieve; the parameters for the split (at-
tribute index and value of split point); and references
to the two successor prediction nodes.

• PredictionNode objects that contain a reference to the
regression model employed; the data associated with
the node; and a list of successors, holding references to
splitter nodes that are its successors.

• SLR objects that perform simple linear regression based
on the data for a given attribute and the target; they
also contain the sum of squared errors (SSE) achieved
and are able to yield a prediction for a new instance.

The algorithm maintains a list of prediction nodes that
initially only contains the predictor of the mean. The target
values are also centered, just as in Algorithm 1. Then, a
given user-specified number of iterations is performed, and
in each iteration, a new SplitterNode is added to a selected
prediction node. To select this node, the algorithm iter-
ates through all PredictionNode objects already in the list.
For each prediction node, the current sum of squared er-
rors (i.e. sum of squared residuals/target values) associated

with the data pertaining to this node is established first, so
that the reduction of squared error that is achieved by a
split attached to this node can be computed later. Then, all
attributes are evaluated for a median-based split: for each
split, the data is divided into two subsets and the best linear
model (lowest SSE) is found for each subset. If the current
split yields a larger reduction in SSE than the previous best
one, the information for the splitter node is updated.

Once the best SplitterNode has been constructed, it is
attached to its parent node, and its two attached prediction
nodes are added to the global list of prediction nodes so that
they become available for selection in the next iteration of
the algorithm. After this, the residuals/target values are up-
dated for the two subsets of data associated with the split.
Note that we assume that only one copy of each instance
(~x, y) in D is maintained in memory, and that this copy is
modified when the residuals are updated, i.e., we use mu-
table tuples. Hence, the effect of the update is global and
affects the data to be considered in the next iteration at all
applicable prediction nodes in the tree. Hence, the process
is consistent with the algorithm for additive regression.

Algorithm 4 shows the pseudo code for making predic-
tions using the tree. It is given the root node of the tree
and maintains a queue of prediction nodes to include in the
prediction. The root node is the first element in the queue.
As it predicts the mean target value from the training data,
no shrinkage is applied to its prediction. If the queue is not
empty, the first prediction node is popped off the queue and
its prediction is added to the running sum. Then, all split-
ter nodes that are successors of the current prediction node
are evaluated, and the appropriate successor of each splitter

Input: D : training data, I : number of iterations to
perform

Output: R : The root node of the model tree
L := empty list
L.add(PredictionNode(model = 1

n

∑
(~x,y)∈D y,

data = D, successors = empty list))
foreach (~x, y) ∈ D do /* initialize residuals */

(~x, y) := (~x, y − L.first().model.prediction(~x))
end
while |L| ≤ I do /* for given number of iterations */

S := SplitterNode(parent =, score = −∞,
attribute =, splitPoint =, left =, right =)

foreach P ∈ L do /* for each prediction node */

SSE :=
∑

(~x,y)∈P.data y
2

/* consider each attribute for splitting */
foreach j, 1 ≤ j ≤ m do

D1 := {(~x, y) ∈ P.data : xj ≤
median({xj : (~x, y) ∈ P.data})}

D2 := {(~x, y) ∈ P.data : xj >
median({xj : (~x, y) ∈ P.data})}

/* consider SLR models for left subset */
M1 := SLR({(x1, y) : (~x, y) ∈ D1})
foreach k, 2 ≤ k ≤ m do

/* better model found? */
if SLR({(xk, y) : (~x, y) ∈ D1}).SSE <

M1.SSE then
M1 := SLR({(xk, y) : (~x, y) ∈ D1})

end
end
/* consider SLR models for right subset */
M2 := SLR({(x1, y) : (~x, y) ∈ D2})
foreach k, 2 ≤ k ≤ m do

/* better model found? */
if SLR({(xk, y) : (~x, y) ∈ D2}).SSE <

M2.SSE then
M2 := SLR({(xk, y) : (~x, y) ∈ D2})

end

end
/* has a better split been found? */
if SSE − (M1.SSE +M2.SSE) ≥ S.score then

S.parent := P
S.score := SSE − (M1.SSE +M2.SSE)
S.attribute := j
S.splitPoint :=

median({xj : (~x, y) ∈ P.data})
S.left := PredictionNode(model =

M1, data = D1, successors = empty list)
S.right := PredictionNode(model =

M2, data = D2, successors = empty list)
end

end
end
S.parent.successors.add(S)
L.add(S.left)
L.add(S.right)
/* update residuals globally */
foreach (~x, y) ∈ S.left.data do

(~x, y) := (~x, y − λ× S.left.model.prediction(~x))
end
foreach (~x, y) ∈ S.right.data do

(~x, y) := (~x, y − λ× S.right.model.prediction(~x))
end

end
return L.first()

Algorithm 3: Growing an alternating model tree

Input: ~x : the instance to make a prediction for, R : root
node of alternating model tree

Output: y : the prediction
Q.add(R)
y = R.model.predicton(~x)
while Q 6= empty queue do

P = Q.pop()
if R 6= P then

y = y + λ× P.model.predicton(~x)
end
foreach S ∈ P.successors do

if xS.attribute ≤ S.splitPoint then
Q.add(S.left)

else
Q.add(S.right)

end

end

end
return y

Algorithm 4: Generating a prediction using the alternat-
ing model tree

node is added to the queue of prediction nodes. Once the
queue becomes empty, the final sum is returned.

3. CHOOSING A TREE SIZE
The algorithm as stated requires the user to specify the

number of iterations to perform. Choosing an appropriate
tree size is clearly important to obtain low squared error on
new data. In practice, it is common to use cross-validation
to choose the number of iterations for boosting-like algo-
rithms. This can be done efficiently because it is unneces-
sary to grow the entire additive model from scratch when
evaluating a particular number of iterations. For a k-fold
cross-validation, k alternating decision trees can be main-
tained simultaneously in memory. Once the current set of
trees of size I have been evaluated, an additional execution
of the main loop in Algorithm 3 can be performed for each
of the trees to get the trees corresponding to size I + 1.

Rather than stopping iterations immediately when the
cross-validated squared error no longer decreases, we con-
tinue performing iterations unless no better minimum can
be found in the next 50 iterations from the current mini-
mum squared error. This is to prevent premature stopping
due to variance in the cross-validation estimates.

This algorithm is well-suited for modern multi-core ma-
chines because cross-validation can be easily parallelized.
The constant multiplier in runtime imposed by cross-validation
is thus less problematic. Note that, for a given number of
iterations I, the runtime of Algorithm 3 is O(I2m2n) in the
worst case. The worst case occurs when all splitter nodes
are attached to the root node of the tree and only minimal
splitting of the data occurs. This also yields the worst case
for the prediction step in Algorithm 4, in which all splitter
nodes need to be evaluated, so its complexity is O(I).

4. EXPERIMENTAL RESULTS
In this section, we present empirical results obtained on

Luis Torgo’s collection of benchmark datasets for regres-
sion2, considering root mean squared error and tree size.
They vary in size from less than 100 instances to more than

2http://www.dcc.fc.up.pt/~ltorgo/Regression/
DataSets.html

http://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html
http://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html

Dataset M5′ AMT AMT AMT
(λ=1) (λ=0.5) (λ=0.1)

2dplanes 22.7±0.4 23.4±0.6 ◦ 23.1±0.4 ◦ 23.0±0.4 ◦
abalone 66.0±2.9 67.6±2.5 ◦ 67.9±2.9 ◦ 67.7±2.4 ◦
ailerons 39.7±1.0 39.7±1.2 38.9±1.1 • 38.5±1.1 •
autoMpg 34.9±6.2 36.3±6.2 37.0±8.5 35.0±6.1
auto-price 37.8±10.2 42.3±17.0 36.9±14.5 34.3±11.8
bank32nh 67.4±2.2 67.9±2.4 67.6±2.3 67.4±2.3
bank8FM 20.0±0.7 19.9±0.7 19.5±0.7 • 19.5±0.7 •
cal-housing 48.5±2.8 42.8±1.7 • 42.7±2.3 • 42.2±2.3 •
cpu-act 14.8±2.0 13.3±1.4 • 13.6±5.0 12.7±1.5 •
cpu-small 17.3±1.8 15.8±1.4 • 15.7±4.4 15.1±1.3 •
delta-ailerons 54.3±2.0 54.0±2.1 53.7±2.1 54.3±3.4
delta-elevators 60.0±1.4 59.8±1.4 59.8±1.4 60.0±1.7
diabetes-numeric 91.7±41.5 106.2±54.2 93.7±50.5 95.8±40.4
elevators 32.3±1.2 32.2±2.4 31.8±1.9 31.7±1.5
fried 27.8±0.5 20.2±0.3 • 20.2±0.3 • 20.2±0.3 •
house-16H 68.2±4.5 70.8±13.8 67.4±5.9 66.5±7.0
house-8L 60.0±4.2 60.1±3.2 59.3±3.2 59.4±3.5
housing 40.8±11.3 60.4±45.9 57.9±37.8 52.6±31.4
kin8nm 60.8±2.2 44.4±1.5 • 41.4±1.3 • 40.7±5.1 •
machine-cpu 39.4±17.6 46.9±21.4 36.5±18.2 31.8±15.7
mv 1.3±0.1 0.1±0.0 • 0.6±3.7 0.1±0.0 •
pol 15.6±1.8 23.1±5.4 ◦ 19.2±5.6 15.7±1.3
puma32H 27.1±0.9 67.2±18.0 ◦ 44.5±25.1 ◦ 24.5±12.37
puma8NH 56.9±1.5 56.7±1.5 57.0±1.5 57.3±1.5
pyrim 67.0±27.6 100.0±35.0 ◦ 82.6±29.3 73.3±29.5
servo 35.9±14.7 33.0±18.4 32.2±16.8 30.5±16.7
stock 14.3±2.9 15.6±3.3 13.3±2.1 12.2±1.7 •
triazines 87.1±15.4 98.8±18.7 90.0±19.5 84.7±14.4
wisconsin 98.5±9.7 100.2±6.7 97.3±5.6 98.0±5.3

•, ◦ statistically significant improvement or degradation wrt M5′

Table 1: Root relative squared error on benchmark datasets, estimated using 10×10-fold cross-validation

40,000 instances. The number of predictor attributes varies
between two and 60.

We implemented our algorithm for learning alternating
trees in Java using the WEKA framework [7]. Just as in
M5′ in WEKA, our implementation converts nominal at-
tributes into binary numeric attributes using the supervised
NominalToBinary filter and replaces missing values by the
attribute’s corresponding mean value. Our experiments were
performed using Oracle’s Java 1.7.0 51 for Linux, on com-
puters with four-core Intel Core i7-2600 CPUs and 16GB of
RAM. To choose an appropriate tree size, we implemented
an IterativeClassifierOptimizer, which chooses the num-
ber of iterations for growing the tree efficiently using the
method described in the preceding section. We used 10-fold
cross-validation to choose the number of iterations, paral-
lelized using five threads.

Table 1 shows root relative squared error, obtained with
the WEKA Experimenter [7] and 10×10-fold cross-validation.
Standard deviations for the 100 results are also shown. Note
that this involved running the basic alternating model tree
algorithm 1,000 times: for each split of the outer 10×10-fold
cross-validation, the inner cross-validation implemented by
IterativeClassifierOptimizer was run separately on the
training data for that split. This was to avoid parameter
tuning (i.e. selection of tree size) based on the test data,
thus biasing results. The table shows root relative squared
error, which is root mean squared error of the scheme being
evaluated divided by the root mean squared error obtained
when predicting the mean target value from the training
data. It has been scaled by multiplying it with 100. Values
smaller than 100 indicate an improvement on the mean.

The left-most column shows estimated error for the model

tree learner M5′, as implemented in WEKA. The other three
columns are for alternating model trees, run with three dif-
ferent values for the shrinkage parameter: 1 (no shrinkage),
0.5, and 0.1. To establish statistical significance of observed
differences in estimated error, we used the paired corrected
resampled t-test [12] at the 0.05 significance level. A hollow
circle indicates a statistically significant degradation with
respect to M5′. A filled circle indicates an improvement.

We can see that error estimates are comparable in general.
However, there are several datasets where alternating model
trees perform significantly better than M5′ model trees, and
a few where they perform significantly worse. In particular,
alternating model trees perform significantly worse on the
puma32H data when using λ = 1 or 0.5. Decreasing shrink-
age improves error in general, in particular on the puma32H
data, indicating that there is a problem with overfitting on
this data. Inspection of the trees grown on various datasets
shows that when λ = 1, the trees grow deep very quickly,
resulting in data fragmentation and increasing the potential
for overfitting. As λ is reduced, the trees become shallower.

Table 2 shows average tree size, as measured by the num-
ber of splitter/decision nodes. The results show that de-
creasing the shrinkage parameter increases the size of the
trees, i.e. cross-validation-based model selection as imple-
mented using IterativeClassifierOptimizer performs more
iterations. Note that, just as in M5′ trees, the linear regres-
sion models occurring along a path in an alternating model
tree can be consolidated into a single multiple linear regres-
sion model stored at the leaf node associated with this path,
because the sum of a set of simple linear regression models

Dataset M5′ AMT AMT AMT
(λ=1) (λ=0.5) (λ=0.1)

2dplanes 1.0±0.0 151.9±58.3 225.2±44.4 844.7±124.5
abalone 7.6±3.2 8.2±2.1 18.1±3.4 103.1±25.2
ailerons 5.4±1.7 33.5±7.7 78.4±17.9 467.1±113.7
autoMpg 2.9±1.5 5.4±2.2 11.3±6.3 93.4±38.6
auto-price 6.7±2.3 6.2±4.7 14.5±10.1 81.2±34.2
bank32nh 3.6±3.5 16.8±3.5 35.1±5.8 260.8±53.7
bank8FM 29.8±6.7 45.1±6.8 81.0±10.9 444.5±63.47
cal-housing 205.8±28.7 172.6±31.0 264.7±49.8 927.7±222.5
cpu-act 47.6±14.2 62.0±12.9 115.5±24.6 462.1±135.2
cpu-small 50.1±14.7 63.1±12.3 119.2±21.4 495.7±148.9
delta-ailerons 23.6±7.2 17.7±4.1 28.5±6.1 159.8±42.3
delta-elevators 6.2±2.4 12.1±2.6 26.2±4.6 133.7±24.5
diabetes-numeric 0.7±1.0 2.3±1.3 3.6±1.5 18.0±8.9
elevators 33.5±8.6 129.1±27.6 257.9±38.8 1153.5±200.5
fried 508.5±38.3 57.5±6.7 121.6±6.6 673.2±40.5
house-16H 181.1±48.1 37.8±11.6 48.6±15.4 208.6±74.3
house-8L 126.1±28.0 33.5±7.2 58.5±14.9 247.3±93.1
housing 12.0±5.3 4.3±6.6 13.0±18.6 73.4±72.6
kin8nm 108.7±18.0 263.4±36.1 527.4±61.1 2927.8±377.7
machine-cpu 2.7±1.5 5.3±5.9 12.8±7.1 74.1±32.8
mv 9.1±0.3 363.6±119.9 523.6±286.5 2232.3±866.7
pol 169.5±19.6 89.6±24.9 196.4±62.5 1047.6±330.9
puma32H 103.9±21.8 86.0±27.2 145.3±39.8 998.3±305.24
puma8NH 27.0±4.5 16.3±1.4 29.5±2.8 198.4±32.8
pyrim 1.3±1.0 3.4±6.1 7.5±6.7 51.4±37.3
servo 5.1±1.6 13.6±16.5 36.1±117.3 176.6±166.4
stock 43.7±7.5 49.2±12.5 86.4±18.3 441.9±93.4
triazines 2.7±1.3 5.7±4.2 12.3±7.9 79.9±47.9
wisconsin 2.2±2.9 0.8±0.7 1.6±1.0 12.1±8.8

Table 2: Average number of splitter nodes, estimated using 10×10-fold cross-validation

Dataset Outer CV Inner CV Outer CV Inner CV
(λ=1) (λ=0.5)

2dplanes 1.0291±0.0227 1.0325±0.0116 1.0154±0.0136 1.0165±0.0050
abalone 2.1765±0.1322 2.1760±0.0175 2.1860±0.1489 2.1883±0.0223
ailerons 0.0002±0.0000 0.0002±0.0000 0.0002±0.0000 0.0002±0.0000
autoMpg 2.8265±0.4974 2.9106±0.1146 2.8838±0.7388 2.8713±0.1031
auto-price 2345.9±947.96 2375.7±206.05 2095.4±934.33 2102.4±197.13
bank32nh 0.0826±0.0035 0.0827±0.0005 0.0822±0.0034 0.0823±0.0005
bank8FM 0.0303±0.0010 0.0304±0.0002 0.0296±0.0009 0.0297±0.0002
cal-housing 49426.±2117.7 49654.±441.43 49207.±2648.1 49052.±404.43
cpu-act 2.4352±0.2096 2.4376±0.0617 2.5078±1.0848 2.3680±0.0454
cpu-small 2.8872±0.1708 2.8882±0.0717 2.8713±0.7162 2.8271±0.0475
delta-ailerons 0.0002±0.0000 0.0002±0.0000 0.0002±0.0000 0.0002±0.0000
delta-elevators 0.0014±0.0000 0.0014±0.0000 0.0014±0.0000 0.0014±0.0000
diabetes-numeric 0.6591±0.2513 0.6092±0.0575 0.5936±0.2268 0.5876±0.0358
elevators 0.0022±0.0001 0.0022±0.0000 0.0021±0.0001 0.0021±0.0000
fried 1.0105±0.0118 1.0117±0.0021 1.0086±0.0110 1.0093±0.0014
house-16H 37361.±7601.3 35647.±545.93 35609.±3811.1 35180.±590.30
house-8L 31724.±2056.8 31486.±350.37 31277.±1990.9 31170.±367.68
housing 5.5683±4.6668 4.3045±0.3692 5.2818±3.4914 4.6027±0.5248
kin8nm 0.1170±0.0034 0.1182±0.0011 0.1091±0.0031 0.1109±0.0009
machine-cpu 63.466±29.309 65.233±9.6004 49.436±26.409 53.887±7.8728
mv 0.0064±0.0019 0.0065±0.0008 0.0615±0.3890 0.0235±0.0055
pol 9.6527±2.2639 9.3432±0.4544 8.0089±2.3251 7.6774±0.3870
puma32H 0.0204±0.0055 0.0213±0.0022 0.0135±0.0076 0.0155±0.0037
puma8NH 3.1872±0.0844 3.1876±0.0114 3.2019±0.0828 3.2029±0.0105
pyrim 0.1261±0.0748 0.1208±0.0159 0.1046±0.0679 0.1109±0.0160
servo 0.4964±0.3067 0.5413±0.1118 0.4875±0.2905 0.5298±0.0978
stock 1.0138±0.2016 1.0119±0.0645 0.8645±0.1234 0.8878±0.0460
triazines 0.1503±0.0401 0.1449±0.0088 0.1370±0.0379 0.1348±0.0083
wisconsin 34.482±4.1926 34.045±0.8672 33.486±4.0019 33.388±0.6931

Table 3: Root mean squared error obtained using outer 10×10-fold cross-validation, for AMT (λ = 1 and
λ = 0.5), vs. average root mean squared error of the same model in inner 10-fold cross-validation

is a multiple linear regression model.3

It is also interesting to compare the cross-validation esti-
mates obtained using inner cross-validation on the training
data, encountered when selecting the “best” number of it-
erations to perform, with those established from the outer
10×10-fold cross-validation used to obtain an unbiased er-
ror estimate. Table 3 shows this for λ = 1 and λ = 0.5,
based on root mean squared error rather than root rela-
tive squared error. Note that the estimates from the inner
cross-validation runs are averages over the 10×10-fold outer
cross-validation runs, one for each train/test split occurring
in the outer cross-validation. Thus, they are averages ob-
tained from 1,000 train/test splits of the full data. As can
be seen, the estimates are quite close: the average estimate
obtained using inner cross-validation is always well within
one standard deviation of the estimate from the outer cross-
validation. This means that when building an alternating
model tree with IterativeClassifierOptimizer in practice,
the cross-validation estimate associated with the number of
iteration it chooses can be used as an indicator of perfor-
mance on new data. This is helpful because no separate,
outer evaluation process is necessary to get an indication of
error on fresh data.

5. CONCLUSIONS
Model trees have proven to be a useful technique in prac-

tical regression problems. In this paper, we present alternat-
ing model trees grown using forward stagewise additive mod-
eling and show that they achieve significantly lower squared
error than M5′ model trees on several regression problems.

In contrast to alternating decision trees for classification,
our alternating model trees have prediction nodes contain-
ing simple linear regression models.To reduce computational
complexity and data fragmentation when constructing split-
ter nodes, splits are taken to be the median value of an ap-
propriately chosen attribute. Moreover, shrinkage is used to
combat overfitting.

The size of the tree depends on the number of iterations
of forward stagewise additive modeling that are performed.
In our experiments, we have chosen this parameter using
internal cross-validation. Our results indicate that the per-
formance estimate obtained in this manner is close to the
actual performance for all datasets considered in our ex-
periments. Therefore, no external cross-validation run is
required in order to establish an estimate of expected per-
formance on fresh data.

References
[1] K. Bache and M. Lichman. UCI machine learning repos-

itory, 2013.

[2] B. Bhattacharya and D. P. Solomatine. Neural networks
and M5 model trees in modelling water level-discharge
relationship. Neurocomputing, 63:381–396, 2005.

[3] W. Buntine. Learning classification trees. Statistics and
Computing, 2(2):63–73, 1992.

[4] A. Etemad-Shahidi and J. Mahjoobi. Comparison be-
tween M5 model tree and neural networks for prediction
of significant wave height in Lake Superior. Ocean En-
gineering, 36(15):1175–1181, 2009.

3But not the least-squares multiple linear regression model.

[5] Y. Freund and L. Mason. The alternating decision tree
learning algorithm. In Proc 16th International Conf on
Machine Learning, pages 124–133, San Francisco, CA,
USA, 1999. Morgan Kaufmann Publishers Inc.

[6] J. Friedman, T. Hastie, and R. Tibshirani. Additive
logistic regression: a statistical view of boosting. The
Annals of Statistics, 28(2):337–407, 04 2000.

[7] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reute-
mann, and I. H. Witten. The WEKA data mining soft-
ware: an update. SIGKDD Explorations, 11(1):10–18,
2009.

[8] G. Holmes, B. Pfahringer, R. Kirkby, E. Frank, and
M. Hall. Multiclass alternating decision trees. In Proc
13th European Conf on Machine Learning, Helsinki,
Finland, pages 161–172. Springer, 2002.

[9] R. Kohavi and C. Kunz. Option decision trees with
majority votes. In Proc 14th International Conf on
Machine Learning, pages 161–169, San Francisco, CA,
USA, 1997. Morgan Kaufmann Publishers Inc.

[10] D. Lubinsky. Tree structured interpretable regression.
In D. Fisher and H.-J. Lenz, editors, Learning from
Data, volume 112 of Lecture Notes in Statistics, pages
387–398. Springer New York, 1996.

[11] D. Malerba, F. Esposito, M. Ceci, and A. Appice. Top-
down induction of model trees with regression and split-
ting nodes. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 26(5):612–625, 2004.

[12] C. Nadeau and Y. Bengio. Inference for the generaliza-
tion error. Machine Learning, 52(3):239–281, 2003.

[13] E. Ould-Ahmed-Vall, J. Woodlee, C. Yount, K. A.
Doshi, and S. Abraham. Using model trees for computer
architecture performance analysis of software applica-
tions. In IEEE International Symposium on Perfor-
mance Analysis of Systems & Software, 2007. ISPASS
2007., pages 116–125. IEEE, 2007.

[14] M. Pal and S. Deswal. M5 model tree based modelling
of reference evapotranspiration. Hydrological Processes,
23(10):1437–1443, 2009.

[15] J. R. Quinlan. Learning with continuous classes. In
Proc 5th Australian Joint Conf on Artificial Intelli-
gence, pages 343–348, Singapore, 1992. World Scien-
tific.

[16] D. P. Solomatine and K. N. Dulal. Model trees as an
alternative to neural networks in rainfall-runoff mod-
elling. Hydrological Sciences Journal, 48(3):399–411,
2003.

[17] M. Taghi Sattari, M. Pal, H. Apaydin, and F. Ozturk.
M5 model tree application in daily river flow forecasting
in Sohu Stream, Turkey. Water Resources, 40(3):233–
242, 2013.

[18] Y. Wang and I. H. Witten. Inducing model trees for
continuous classes. In Proc 9th European Conf on Ma-
chine Learning Poster Papers, pages 128–137, 1997.

	Introduction
	Alternating Model Trees
	Forward Stagewise Additive Modeling
	Constructing Alternating Model Trees

	Choosing a Tree Size
	Experimental Results
	Conclusions

