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ABSTRACT

This  work  proposes  a  formalization  of  domain  ontologies  based  in  category  theory  as  a

framework for the study and representation of conceptual models. Category theory is a branch

of  mathematics  that  studies  the  structure  in  systems  of  composable  relations.  Domain

ontologies  are  conceptual  models  that  enable  the  reuse  of  domain  knowledge  and  the

execution  of  inferential  processes  over  said  knowledge.  In  order  to  achieve  such  goals,

concepts must be modeled intensionally. The established set-theoretic foundations of current

conceptual models are incompatible with the intended intensionality of ontological models.

Category theory, on the other hand, does not default to extensionality in the same way set

theory  does,  and  offers,  therefore,  a  better-suited  mathematical  foundation.  Additionally,

category  theory’s  focus  on  relations  matches  the  primary  attention  of  construction  and

representation  of  ontologies,  which  is  turned  towards  the  relations  between  the  domain

concepts.  The  present  work  builds  upon  these  motivations  and  formalizes  ontologies  as

categories  of  concepts  and conceptual  relations.  We subsequently  analyze  the  categorical

constructions present in ontologies, and the consequences of this formalization for categories

of ontologies.

Keywords: Ontology. Category theory. Conceptual modeling.



Uma proposta de formalização de ontologias baseada em teoria das categorias

RESUMO

O presente trabalho propõe uma formalização de ontologias de domínio baseada em teoria das

categorias como um arcabouço para o estudo e representação de modelos conceituais. A teoria

das categorias  é  uma área da matemática  que estuda a estrutura presente em sistemas de

relações componíveis. Ontologias de domínio são modelos conceituais que permitem o reuso

de conhecimento de domínio e a execução de processos de inferência sobre tal conhecimento.

Para  atingir  tais  objetivos,  os  conceitos  devem  ser  modelados  de  forma  intensional.  As

fundamentações dos modelos conceituais baseadas em teoria dos conjuntos atualmente aceitas

são incompatíveis com a pretendida intensionalidade de modelos ontológicos. A teoria das

categorias, por outro lado, não está comprometida com extensionalidade da mesma forma que

a teoria dos conjuntos e, portanto, mostra-se uma fundamentação matemática mais adequada.

Ainda, o fato de que a teoria das categorias tem seu foco principalmente em relações melhor

se relaciona à atenção primária presente na construção e representação de ontologias, que é

orientada às relações entre os conceitos do domínio. Este trabalho parte destas motivações e

formaliza ontologias como categorias de conceitos e relações conceituais. Subsequentemente

são analisadas as construções categoriais presentes em ontologias e as consequências desta

formalização para categorias de ontologias.

Palavras-chave: Ontologia. Teoria das categorias. Modelagem conceitual.
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1 INTRODUCTION

Ontologies have been used in computer science as both aid and subject for inference in

the  field  of  artificial  intelligence,  and  as  disambiguation  mechanisms  to  enable  semantic

interoperability between information systems. As such, ontology engineering aims to elicit the

knowledge on a given domain and model said knowledge in a precise manner, in order to

share it among several different persons and systems and to apply it in diverse circumstances

that  are  sometimes  unpredictable.  To  achieve  this  goal,  the  domain  concepts  and  their

relations must be defined formally and independently from any single world state.

There  are  two  opposed  approaches  to  define  concepts,  that  is,  extensional  and

intensional.  Extensional definitions list everything that is comprised by the concept, while

intensional definitions give its underlying meaning  (CARNAP, 1988). Since ontologies are

supposed to represent knowledge that is independent from any specific state of affairs and in a

way that  resembles  human  thinking,  we consider  that  intensional  definitions  are  a  better

option for modeling.

However, the established foundations of ontology engineering have their bases on set

theory. Set theory has, among its foundations, the principle of extensionality, which states that

for any two sets x and y,  z∀ z  (z x ∈x ↔ z y) → x = y∈x , that is, two sets are equal (i.e., the same)

if they contain exactly the same elements. Consequently, if an enterprise system models its

employees  as a  set,  for example,  and any new employee is  hired,  the model  needs to  be

changed to account for the substitution of the underlying set.

So far, the solution to this issue has been to define the model over a set of possible

worlds, which indexes every possible configuration of the domain. Thus, a function maps

concepts to their respective instances in each possible domain configuration. This approach is

still based on sets, and therefore still relies on extensional definitions. Additionally, it does not

reflect how we model ontologies in reality. We don’t build ontologies by assigning to each

term a set  of  its  instances  indexed by possible  worlds.  Instead,  we build  them upon the

properties and relations of concepts, which express their meanings.

This work presents an alternative formalization of ontologies that do not rely upon

sets, but is instead defined in terms of categories. Categories are mathematical constructions

where the structure formed by composable relations between objects may be studied. This

focus on relations mirrors the process of ontology engineering more closely than any possible

set-theoretic approach.



Additionally,  category  theory  provides  a  multi-layered  framework upon which  the

relations between disparate ontologies may also be scrutinized.  This property is extremely

useful for distributed contexts such as the Semantic Web, where applications may need to

access,  operate  and  make  inferences  over  the  knowledge  content  spread  over  multiple

ontologies that requires an integrated access or view. Hence, category theory also provides a

sound formal framework for the study of ontology mappings, alignments, and merges.

In chapter 2, we introduce the concepts related to ontologies and ontology engineering.

Chapter  3  outlines  category  theory  and its  constructions,  along  with  some examples  and

diagrams.  We review similar previous works on the formalization of ontologies as categories

and related works on the study of operations defined in categories of ontologies in chapter 4.

Chapter  5  describes  the  proposed  framework,  first  using  category-theoric  foundations  to

define several notions commonly found in ontology engineering. Subsequently, we formalize

ontologies as categories and we peer into their constructions, before delineating a category of

ontologies and their relations. Finally, we discuss the associated categorical concepts and how

the proposed framework preserves the meanings attributed to them in earlier works. Chapter 6

presents a brief overview along with some concluding remarks.
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2 ONTOLOGY

The term “ontology” has a threefold meaning. When written with a capital O, it refers

to the philosophical discipline that studies the nature of reality and dates back to Aristotle.

With the initial  in lowercase but still  in a philosophical sense, an ontology is a particular

system of categories that accounts for a certain vision of the world. The third meaning, which

prevails in Computer Science, refers to a computational artifact that models the structure of a

certain part of reality (GUARINO; OBERLE; STAAB, 2009).

Ontology as a computational artifact was defined by Studer, Benjamins and Fensel

(1998) as  “a  formal,  explicit  specification  of  a  shared  conceptualization”.  “Formal”  here

means that it should be machine-readable. “Explicit” reflects that the concepts and constraints

on their use must be defined explicitly. “Shared” means that the knowledge contained in an

ontology is consensual among a group of people and not private to some individual. Finally,

“conceptualization” refers to an abstract model of a portion of reality. This last concept is the

one  most  closely  related  to  the  philosophical  definition  of  ontologies,  and  is  defined  by

Guarino (1998) as a triple C = (D, W, R) consisting of a universe of discourse D, a set W of

possible worlds and a set R of conceptual relations on the domain space <D,W>.

This work does not focus on the representational  aspects of ontologies,  and hence

refers  to  “ontology” in  its  philosophical  sense,  which  is  language  independent.  Thus,  we

differentiate the ontology from its (possibly multiple) implementations in diverse ontology

modeling languages.

2.1 UNIVERSALS AND PARTICULARS

A core  distinction  to  be  made  among  the  kinds  of  entities  present  in  ontological

modeling is the one between universals and particulars. Particulars, also called individuals,

are entities that exist in reality (or in some counterfactual reality), while universals (which are

sometimes called types, sorts, classes or concepts) are generalizations of other entities that

encompass common properties and may be manifested in multiple different entities.

Each universal provides a principle of application that guides the judgment on whether

it is realized in a specific entity. Those entities that manifest a certain universal are said to

instantiate it. Therefore, we define particulars as the entities that cannot have instances, and

universals  as  the  ones  that  can. For  example,  a  person  called  John  is  a  particular  that



instantiates the universal  Human. Usually, we consider instances as particulars. Models that

follow this assumption are called two-level models, since they account for exactly two levels

of abstraction,  one of particulars and one of universals. However, in multi-level modeling

universals may have universals as instances  (ALMEIDA; FONSECA; CARVALHO, 2017).

Following the previous example, we may say that the universal Human is an instance of the

universal Species.

It is important to notice that this distinction between universals and particulars is not

limited  to  monadic  entities  (that  is,  entities  that  exist  by themselves),  but  also applies  to

relational  entities.  Thus,  there  are  universal  relations,  which  may  have  instances,  and

particular relations, which may not. For example, the universal relation enrolled at that holds

between the universals  Student  and  Educational Institution, is instantiated by the particular

relation that holds between a particular student  John and a particular educational institution

UFRGS. Figure 2.1 shows the concepts and relations that we have discussed in this section,

with universals in bold text and dashed lines dividing the different abstraction levels.

Figure 2.1 – Sample ontology
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Source: the author.

Due to the intended intensionality of ontological models, ontologies usually do not

contain monadic particulars,  but particular  relations  that  hold between universals,  such as

specialization relations (discussed in subsection 5.2), are almost always present.
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2.2 ONTOLOGICAL METAPROPERTIES

Ontological engineering in computer science has as foundational basis the work in the

philosophical  discipline  of  Ontology.  This  philosophical  support  guides  the  modeling  of

ontologies  towards coherent  descriptions  of the world.  One example of such intersections

between  the  ontological  studies  in  philosophy and in  computer  science  is  the  OntoClean

framework (GUARINO; WELTY, 2009). This framework directs the modeling of ontologies

through  the  analysis  of  four  metaproperties,  i.e.,  properties  of  properties.  The  authors  of

Ontoclean define properties as the meanings (or intensions) of expressions that correspond to

unary predicates in first order logic, such as being a human. The metaproperties are those of

rigidity, identity, unity and dependence.

A property is essential for an entity if it must be true for that entity in any possible

state  of  the  world.  Said  property  is  additionally  rigid  if  it  is  essential  to  all  its  possible

instances.  That  is,  instances  of  rigid  properties  cannot  cease  to  be  instances  of  those

properties. The property of being a human, for example, is essential for all humans, while the

property  of  being a  student is  not  essential  for  students. Further,  rigid  properties  cannot

specialize non-rigid properties, since such specialization would lead to contradictions.

The metaproperty of identity refers to how we recognize a specific instance of some

property. Properties may provide or carry identity criteria that guide the identification of its

instances. These criteria are those that allow us to recognize the same person in childhood, as

an adult, and in old age, even through the changes performed by time. Every particular must

instantiate at least one universal that provides an identity criterion for it.

Properties may also carry unity criteria that allow us to differentiate what is part of

some entity from what is not. If a property specializes some other property that carries a unity

criterion, it must also carry the same criterion. For example, the unity criteria of Amount of

Water tells  us that its  instances are homeomerous,  that is,  their  parts are also amounts of

water. The parts of an Ocean, however, are defined geographically. Thus, Ocean and Amount

of Water cannot specialize each other, since they carry incompatible unity criteria.

Finally, if for all instances of some property there must exist an instance of a second

property that is neither part or constituent of the first, then we say it is externally dependent. A

Student, for example, can only exist as such as long as there exists an Educational Institution

at which he or she is enrolled. Properties that are not externally dependent cannot specialize

properties that are.



2.3 INFERENCE

Inference  is  the  manipulation  of  knowledge  to  produce  new  information.  The

knowledge  contained  in  ontologies  provides  a  basis  for  the  automatic  execution  of  such

manipulations.  One  type  of  inferential  process  is  that  of  logical  entailment.  A  piece  of

information entails a certain proposition if it includes implicitly the truth of said proposition.

For example, given that John is a Student and that every Student is enrolled at an Educational

Institution, an ontology-based system may infer that  John is enrolled at some  Educational

Institution, even without the knowledge of which institution fills that role.

Other inference processes include the finding of the least common subsumer of a set of

concepts,  that is,  their  most specific  common generalization,  and of the  greatest  common

subsumee,  i.e.,  the  most  general  common  specialization  (BORGIDA,  1995).  Given  the

meaning of concepts Child and Man, a reasoner may find that their least common subsumer is

the  concept  Person,  since  it  contains  precisely  all  properties  that  are  shared  by  the  two

concepts. Similarly, the greatest common subsumee of the same concepts is the concept Boy,

given that it contains all properties from each concept.

We shall present category-theoretic formalizations of these processes throughout the

remaining of the work. Particularly, we describe entailment along with several examples in

subsection 5.3.1, the least common subsumer in subsection 5.5.2 and the greatest common

subsumee in subsection  5.5.3.  Other  reasoning tasks,  which are not  subject  of  this  work,

include  satisfiability  checks,  i.e.,  to  test  if  a  concept  can  be  instantiated  without  a  logic

contradiction, subsumption checks, that is, given two concepts, test if one is a specialization

of the other, and equivalence checks.
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3 CATEGORY THEORY

Category  theory  is  a  branch  of  mathematics  that  studies  the  structure  present  in

systems  via  abstractions  of  mappings  and  relations  between  mathematical  objects.  These

abstractions  take  the  form of  morphisms,  the  basic  primitives  upon which  we define  the

constructions in category theory.

By focusing on morphisms rather  than  on the objects  they  relate,  category  theory

provides general constructions that are common to several mathematical domains, including

set theory, topology, algebras and vector spaces.

Adámek et al. (1990) define a category as a quadruple C = (O, hom, id, ◦), consisting

of:

• a class O whose members are C-objects,

• for each pair (A,B) of C-objects, a set hom(A,B), whose members are C-morphisms

from A to B,

• for each C-object A, a morphism idA:A→A, called the C-identity on A, and

• a composition law ◦ associating each pair of C-morphisms f:A→B and g:B→C to a

C-morphism g ◦ f:A→C, called the composite of f and g.

Such that composition is associative, that is, for any three morphisms f:A→B, g:B→C

and h:C→d, h ◦ (f ◦ g) = (h ◦ f) ◦ g, C-identities are neutral with respect to composition, i.e.,

for any morphism f:A→B, idB ◦ f = f = f ◦ idA, and the sets hom(A,B) are pairwise disjoint.

Some  examples  of  categories  include  the  category  Set of  sets  with  functions  as

morphisms,  the  category  Rel,  which  also  has  sets  as  objects  but  whose  morphisms  are

mathematical relations, and the category Prop of logical propositions with formal proofs, i.e.,

derivation of propositions, as morphisms.

3.1 DUALITY

The concept of duality plays an important role in category theory by allowing both

definitions and proofs to be simplified, since every statement about a category can be easily

translated  to  its  logical  equivalent concerning  the  dual  for  that  category.  A dual  for  any
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category-theoretic  construction  is  obtained  by  reversing  the  domain  and  codomain  of  its

morphisms while mantaining the objects. Therefore, given a category C = (O, hom, id, ◦), its

dual is a category Cop  = (O, homop, id, ◦op), where homop(A,B) = hom(B,A) and f ◦op g = g ◦ f.

Some categories are self-dual, i.e., C = Cop. An example of a self-dual category is the category

Rel as previously defined.

3.2 MONO-, EPI- AND ISOMORPHISMS

A monomorphism (or monic morphism) is a morphism f:B→C such that for any two

morphisms  g:A→B  and  g’:A→B,  f ◦ g  =  f ◦ g’ only  if  g  =  g’.  The  dual  concept  to

monomorphism is that of epimorphism (or epic morphism), i.e., a morphism f:B→C such that

for any two morphisms h:C→D and h’:C→D, h ◦ f = h’ ◦ f only if h = h’. Figure 2.1 depicts

the related diagrams, along with the diagram for isomorphisms.

Figure 3.1 – Monomorphisms, epimorphisms and isomorphisms

B
g

A
g’

C
f

B C
f h

D
h’

B C
f

f -1

Monomorphism Epimorphism Isomorphism

Source: the author.

An isomorphism is a morphism f:B→C such that there exists a morphism f  -1:C→B

with f ◦ f -1 = idB and f -1 ◦ f = idC. Every isomorphism is both monic and epic, but not every

morphism  that  is  both  monic  and  epic  is  an  isomorphism. In  the  category  Set,

monomorphisms correspond to injective functions, epimorphisms to surjective functions and

isomorphisms to bijective functions but this does not generalize to any category.

3.3 FUNCTORS AND NATURAL TRANSFORMATIONS

Equivalently to how different mathematical structures may be formalized as objects in

a  category  and  studied  along  with  their  respective  morphisms,  it  is  possible  to  define  a



17

category Cat with small categories1 as objects. The morphisms in Cat are mappings between

categories  called functors.  Functors preserve composition and indentities,  i.e.,  any functor

F:A→B maps each A-morphism f:x→y to a B-morphism F(f):F(x)→F(y) in such a way that

for any two composable A-morphisms f and g, F(f ◦ g) = F(f) ◦ F(g) and for each A-object x,

F(idx)=idF(x).

A morphism f:X→Y is said to be cartesian regarding a functor F:A→B if, for each A-

morphism g:Z→Y and each B-morphism i:F(Z)→F(X) such that F(f) ◦ i = F(g), there exists a

unique A-morphism h:Z→X with f ◦ h = g and F(h) = i. We show the related diagrams on the

left side of figure 3.2. A fibration is a functor F:A→B for which every morphism is cartesian.

Dually, f:X→Y is op-cartesian regarding F:A→B if for any k:X→Z and any j:F(Y)→F(Z) such

that j ◦ F(f) = F(k), there exists a unique morphism l:Y→Z with l ◦ f = k and F(l) = j. Figure

3.2 depicts the diagram for an op-cartesian morphism on the right side. A functor is an op-

fibration if every morphism is op-cartesian in regards to it.

Figure 3.2 – Cartesian and op-cartesian morphisms

X Y
f

Z g = f ◦ hh

F

F(X) F(Y)
F(f)

F(Z)
F(g) = F(f) ◦ i i = F(h)

X Y
f

Z
l

k = l ◦ f

F

F(X) F(Y)
F(f)

F(Z)
j =F(l)F(k) = j ◦ F(f) 

Source: the author.

Functors may, in turn, take the place of objects in a category. The category Hom(A,B)

has as objects the functors from A to B and natural transformations as morphisms. A natural

transformation η from a functor F:A→B to a functor G:A→B assigns for each A-object x a B-

morphism ηx:F(A)→G(A) such that for every A-morphism f:x→y the square formed by F(f),

G(f), ηx and ηy commutes, i.e., G(f) ◦ ηx = ηy ◦ F(f).

1Small categories are those whose classes of objects are actually sets. This is not true for  Cat, and

therefore it is not an object of itself, avoiding Russel-like paradoxes.
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Figure 3.3 – Natural transformation

A Bη
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Source: the author.

3.4 LIMITS AND COLIMITS

A diagram in a category A is a functor D:I→A. Intuitively, it is a selection of objects

and morphisms in A. A source for D is a pair (x, fi) consisting of an A-object x and a family of

morphisms fi:x→D(i) with domain x indexed by I. If for any I-morphism d:i→j the triangle

formed by D(d), fi and fj commutes, i.e., D(d) ◦ fi = fj, the source (x, fi) is called a cone. If (x, fi)

is a terminal cone, that is, for every other cone (x’, fi’) there exists a unique morphism g:x→x’

such that the resulting diagram commutes, (x, fi) is a limit. Figure 3.4 depicts these objects on

the left side, and the dual constructions on the right.

The dual to a source is a sink. A commutative sink is a cocone, which is dual to a

cone.  An initial  sink is  a  colimit,  that  is,  the  dual  to  a  limit.  Several  specific  limits  and

colimits have meaningful interpretations in many categories, as we shall discuss over the next

sections.

Figure 3.4 – Cones, limits, cocones and colimits
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Source: the author.
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3.5 PRODUCTS AND COPRODUCTS

The limit over a discrete diagram, that is, a diagram without non-identity morphisms,

is  called  a  product.  Examples  of  product  include  cartesian  products  in  Set, logical

conjunctions in  Prop and product categories in  Cat. The colimit over the same diagram is

called  a coproduct.  The coproducts  in  Set are  disjoint  set  unions,  while  in  Prop they are

logical disjunctions and in  Cat they are disjoint unions of categories. We describe products

and coproducts in  Cat  in detail in section 5.6.2. As a consequence of being self-dual, both

products and coproducts have the same meaning in Rel as disjoint set unions. For the entirety

of this work, we will use binary (co)products as exemplars for all (co)products. Figure 3.5

shows a binary product and a corresponding cone on the left, and a coproduct and a cocone

over the same diagram on the right.

Figure 3.5 – Products and coproducts
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3.6 PULLBACKS AND PUSHOUTS

A pullback is a limit for a diagram containing two morphisms  f:A→C and  g:B→C

with the same codomain.  As such,  the precise meaning of  each pullback depends on the

selected  morphisms.  In  Set the pullback is  a  subset  of  the Cartesian product  of  A and  B

consisting of pairs (x,y) such that f(x)=g(y), i.e., it is the categorical equivalent to an equation.

In Cat, if both morphisms are inclusions from subcategories, the pullback is the intersection

of A and B. Figure 3.6 shows the diagram for a pullback on the left side.
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Figure 3.6 – Pullbacks and pushouts
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The dual to a pullback is a pushout, i.e.,  a colimit over a diagram containing two

morphisms  f:A→B and  g:A→C with the same domain. Again, the meaning depends on the

selected morphisms. If  A is the intersection of  B and  C in  Set, the pushout is their union.

Similarly, if both morphisms are inclusions in Cat, the pushout is the amalgamation of B and

C. Figure 3.5 depicts the diagram for a pushout on the right side.
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4 RELATED WORK

In  one  of  the  earliest  works  to  use  category  theory  to  represent  the  semantic

knowledge present in information systems, Colomb, Dampney and Johnson (2001) used the

category-theoretic  concepts of cartesian morphisms and fibrations to define an abstraction

framework between enterprise models and the implementation models that instantiate them.

In the context of the proposed framework, this restriction means that, given a fibration F from

the implementation model to the enterprise model, for any two objects X and Z that are related

to the same object  Y in the implementation model, if there exists a morphism between their

respective  abstractions  given  by  F(X) and  F(Z),  then  there  must  exist  a  unique  relation

between  X and  Z such that the diagram commutes and whose abstraction is the morphism

between F(X) and F(Z).  The authors used this formalization to require that instances of the

codomain of a relation in the enterprise model are codomain of an instance of such relation.

However, this formalization leads to strong modeling restrictions, as we discuss in section 5.1.

The  authors  also  pointed  out  how  this  approach  helped  to  solve  intensionality  issues

originated from set-theoretic interpretations.

Later,  Lu  (2005) argued  for  a  category-theoretic  formalization  of  knowledge  that

abstracts  from  many  different  kinds  of  knowledge  representation  mechanisms,  including

database models and ontologies. Lu’s proposal defined categories enriched with morphism

“types”, along with type composition rules. That is, given two composable morphisms and

their types, rules on how to determine the type of their composition. The set of types must be

closed under composition, that is, for any two types  t and v their composition v ◦ t must be

among the existing types, and must contain a unity type that is neutral regarding composition,

i.e., for a unity type u and any other type t, u ◦ t = t. We expand on this definition in section

5.1 with the use of functors to map each morphism to its type.

Peruzzi  (2006) has provided a strong argument for the replacement of set theory by

category theory as a foundation in many areas of philosophy. His work precisely identifies the

inherent  extensionality  of set  theory,  even when used in conjunction  with modal  logic  or

possible-world semantics.  The author then goes on to show how category theory may be

utilized  to  allow  several  different  forms  of  extensionality  distinct  from the  classical  set-

theoretic  well-pointedness.  Additionally,  Peruzzi  describes  (scientific  and  philosophical)

theories as categories, rather than as sets of logical formulae, and models for one such theory

as functors from it to other categories. Since ontologies are theories that account for a certain
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world view, his work supports our proposal of ontologies as categories, which we detail in

chapter 5.

Johnson  and  Rosebrugh  (2010) used  category  theory  for  the  representation  of

ontologies,  defining  the  coproduct  of  concepts  to  be their  disjoint  union.  They have also

proposed the pullback over a diagram with a specialization  s:A→C and another conceptual

relation r:B→C as the inverse image of s along r, i.e., a specialization of B defined by being

related  to  A.  Later,  Spivak and Kent  (2012) found the  same constructions  in  their  ologs

(ontology  logs,  defined  as  labeled  categories),  in  addition  to  the  pullback  over  two

specializations  sA:A→C and  sB:B→C as the greatest common subsumee. In section 5.5, we

argue against the definition of the coproduct as a disjoint union but maintain both types of

pullback. The root for this disagreement lies in the view of concepts as essentially sets of

instances,  present in the referred works, and in the resulting extensionality of the models.

The  work  of  Seremeti  and  Kougias  (2013) described  how  the  composition  of

morphisms between ontologies facilitates the integration of new ontologies into preexisting

ontology networks, requiring a single anchor-morphism to be constructed manually and them

composing it with the other morphisms in the network to produce all possible mappings. The

authors also proposed the representation of ontologies as path categories with morphisms in

the form of lists  of the vertices  (concepts) and edges (relations)  in the path between two

concepts. They defined the composition of morphisms as the concatenation of consecutive

paths. We propose a similar composition rule in section 5.3, with the caveat that paths with

specific meanings are “compressed”, such as paths composed by transitive relations.

More recently, Aliyu et al.  (2015) defined a category-theoretic formalization of the

Resource  Description  Framework  (RDF)  with  resources  as  objects  and  properties  as

morphisms. Their work did not make clear, however, how the composition of properties is

supposed to behave.

Apart  from  formalizations  of  ontologies  as  categories,  several  works  discuss  the

relations  between ontologies  in category-theoretic  frameworks.  Bench-Capon and Malcom

(1999) defined relations between two ontologies O1 and O2 as pairs of morphisms fi:O→Oi for

i = 1, 2 in a category with ontologies as objects. Zimmerman et al.  (2006) rebranded these

relations  as V-alignments,  due to  their  shape,  and defined the operations  of  composition,

intersection and union via limits and colimits over these alignments. Figure 4.1 depicts the

composition  of  two  alignments  (A,αi) and  (B,βi) on  the  top,  the  intersection  between
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alignments  (A,fi)  and (B,gi) on the bottom left and the union of the same alignments on the

bottom right. 

Figure 4.1 – Composition, intersection and union of V-alignments

Source: Zimmerman et al. (2006, p. 4-5).

The authors also defined the operation of ontology merging as a pushout over the

alignment,  but found  the  V-alignment  lacking  the  expressiveness  necessary  for  merging

ontologies that are disjoint, i.e., that do not share concepts, but that contain concepts related

by specialization relations. The authors propose two possible methods to obtain the desired

merge. The first method utilizes W-alignments, which require the construction of a bridge

ontology and the computation of three distinct pushouts to find the merge. The second method

is based on a redefinition of the category of ontologies to accommodate morphisms that are

sets of triples expressing relations between the concepts in each ontology. Composition is

then defined as (x,z,R)  g ∈x ◦ f ↔  y (x,y,R∃ y (x,y,R 1)  f ∈x ˄ (y,z,R2)  g ∈x ˄ R = R2 φ R1, where φ is the

composition of conceptual relations defined through a composition table. In section 5.6.3 we

discuss how our proposal leads to the same formalization of the merge as a pushout over an

alignment of non-disjoint ontologies, and in section 5.6.5 we propose a different solution to

the problem of merging disjoint ontologies.
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Cafezeiro  and  Haeusler  (2007) expanded  the  category-theoretic  constructions  in

categories of ontologies to include the pullback from two ontology mappings as a search for

similarity in the context of a broader ontology. The authors also described how equalizers,

that is, limits over a diagram with two morphisms f and g:A→B with the same domain and

codomain, could be used to hide sensitive information inside an ontology. Following works

expanded on this basis with the introduction of “contextualized entities”, which are pairs of

ontologies where one provides context to the other (CAFEZEIRO et al., 2014; CAFEZEIRO;

HAEUSLER; RADEMAKER, 2008). An algebra for operating such pairs is then defined,

including the operations of entity  integration,  context  integration,  relative intersection and

collapsing  union.  Entity  integration  is  given by a  pullback over  two entities  that  share a

context, while context integration is a pushout over a single entity in two different contexts.

The authors define the two remaining operations respectively as the pullback and the pushout

in the category whose objects are the entity-context morphisms from the original ontology.

Noticing a gap in the preexisting literature, Antunes and Abel (2018) specified a set of

guidelines  for  the  evaluation  of  the  semantic  soundness  and  expressiveness  of  ontology

morphisms.  Five  criteria  where  defined:  first,  that  the  association  of  concepts  should  be

injective;  second,  that  the association  of relations  should also be injective;  third,  that  the

mapping of relations should preserve their respective domains and codomains; fourth, that the

mapping  of  concepts  should  preserve  their  metaproperties;  and  fifth,  that  the  ontology

morphisms  should  represent  relations  apart  from  equivalence  between  concepts.  The

metaproperties referred to here are the ones we have presented in section 2.2. We discuss in

the conclusion (chapter 6) how our proposal fulfills these requirements.
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5 ONTOLOGIES AS CATEGORIES

That the knowledge of entities is nothing apart from the knowledge of their qualities

and relations is a proposition that has persisted in the philosophical literature since Hume’s

bundle theory (1888). Intuitively, this proposition seems to be indeed true: when describing

things, we either describe their characteristics (an apple is red, a student is smart, a house is

large) and their relations to other entities (an apple is produced by an apple tree, a student is

enrolled at an educational institution, a house is located in some neighborhood). We can also

identify broader concepts that generalize them (an apple is a fruit, a student is a person, a

house is a building) that are, in turn, described in similar manner. Given that for long we have

understood qualities as entities on their own rights, that are associated with their bearers by

relations  such as  inherence,  and  since  the  connection  of  a  universal  to  its  more  generic

counterpart is also a relation, that of specialization, we can see the knowledge of entities as

that of bundles of relations in which they participate. Apart from these bundles, we can say

nothing on the subjects:  the entities by themselves,  i.e.,  without relations, appear as black

boxes from which we can extract no information2.

Accordingly, the practical construction of ontologies generally focuses on the relations

between concepts. This focus can be testified by the usual representation of ontologies as

graphs, as well as by the constructs used by ontology representation languages to model the

knowledge, such as OWL’s properties (ANTONIOU; VAN HARMELEN, 2009) and RDF’s

triples  (CYGANIAK; WOOD; LANTHALER, 2014),  which represent relations  (shown in

figure 5.1). Thus, tasks of ontological analysis and engineering are largely dependent on the

scrutiny of relations.

Figure 5.1 – Representation of an RDF triple consisting of a subject, a predicate and an object

Source: Cyganiak, Wood and Lanthaler (2014, p. 3).

2This perspective is akin to a weak version of Hume’s bundle theory. In Hume’s theory, substances are

considered  to  be  nothing  apart  from  collections  (or  bundles)  of  properties,  with  no  underlying

substratum. The notion presented here makes no judgement on the existence (or lack thereof) of such

substrata, depending only on the impossibility of attaining, and consequently modeling, knowledge of

it. This impossibility is supported by Hume’s original argument.
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As previously stated,  category theory provides a sound formal basis for examining

relations in the form of morphisms. This aspect leads to the conclusion that category theory is

a suitable framework for the study of ontologies. Additionally, category theory provides a

solution  to  intensionality  issues  present  in  previous  set  theoretic  approaches.  Set  theory’s

axiom of extensionality states that two sets are equal if they have the same elements, i.e., a set

is determined solely by its members. The issues this brings to conceptual modeling are easily

noticed.  If  we define a conceptual  relation  over a universe of discourse that  is  a set,  the

inclusion or exclusion of any entity in the domain requires a new universe of discourse (since

the two sets have different extensions and thus are different), and hence a new conceptual

relation would need to be defined.  Diversely,  when a conceptual  model is  specified,  it  is

intended to outline the underlying meaning of the concepts independently from any specific

state of the world.

The  current  solution,  introduced  to  the  field  of  ontology  engineering  by  Guarino

(1998), does not get rid of set theory. His work defines a new set (of possible worlds) over

which  the  universe  of  discourse  is  indexed.  The  entities  and  relations  are  then  defined

extensionally  over  this  indexed domain  space  and the  ontology “approximates  as  well  as

possible the set of intended models” according to such definitions. This formalization says

nothing about how the ontology expresses the meanings of concepts, leaving this important

aspect hidden behind an “approximation” in first order logic, and, while it solves the issue of

allowing the real world to change without the need of new conceptualizations to account for

it,  it  does  not  reflect  how we model  conceptual  knowledge in  reality.  According to  this

definition, in order to build the best possible approximation of the set of intended models of

the conceptualization, full knowledge of the extensions of every entity and relation in each

possible  world  would  be  required,  which  is  an  unreasonable  requirement.  Furthermore,

concepts with different intensions but equal extensions cannot be distinguished, as was noted

by the author.

With category theory, on the other hand, concepts are not anchored to their extensions,

but  to  the  conceptual  relations  in  which  they  participate.  Intuitively,  an  entity  is  said  to

instantiate a universal when it participates in the relations that define the universal. That is,

the meaning (its intension) of the universal is expressed in the relations, independently from

its possible instances (its extension). In the following sections, we shall present formalizations

based on category theory for several notions related to ontology engineering.
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5.1 FORMALIZATION OF INSTANTIATION RELATIONS

In this section, we propose category-theoretic formalizations for instantiation relations.

As discussed in chapter 2, instantiation is the relation that holds between entities and their

respective types, i.e., it holds whenever a given entity is covered by a universal’s principle of

application.  In  traditional  two-level  modeling,  we  formalize  these  relations  as  a  functor

I:S→O, where:

• S is a state of affairs formalized as a category with monadic particulars as objects

and particular relations as morphisms, and

• O is an ontology formalized as a category with monadic universals as objects and

relations (both universal and particular) as morphisms.

Thus, we “map” each particular entity in  S to its universal in  O through  I. If  S is a

typed category as defined by Lu (2005), we define the type of each S-morphism by its image

in O and type composition is simply composition in O. This definition respects associativity

and the other axioms of type composition. The unit type is given by O-identities, which are

trivially  neutral  regarding  composition.  Additionally, given two S-morphisms  f:X→Y and

g:Y→Z,  due to the definition of functor, there exists  an O-morphism  i=I(g)◦I(f)  such that

i=I(g ◦ f), i.e., the composition of the types of g and f is the type of the composition g ◦ f.

Figure 5.2 – Example of instantiation functor that fails fibration rules
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This approach does not employ fibrations (or op-fibrations) as proposed by Colomb,

Dampney and Johnson (2001). This is due to the fact that requiring I to be a fibration would



28

entail that, for any many-to-one relation i:A→B, given Y instance of B, each Xn instance of A

with fn:Xn→Y instance of i must be related to each other Xm by a relation gnm:Xn→Xm such that

fm ◦ gnm = fn and I(gnm) = idA:A→A. This definition would preclude, for example, the modeling

of  a  state  of  affairs  where  two distinct  students  John and  Paul are  enrolled  at  the  same

educational  institution  UFRGS without  being related to  each other.  Figure 5.2 shows this

situation, where I is a fibration but I’ is not. Similar world states frequently occur in reality.

Conversely, requiring  I to be an op-fibration would similarly restrain one-to-many relations

concerning their codomains.

We can easily  generalize  this  formalization  to  multi-level  modeling  by lifting  the

particularity restriction on S-objects and S-morphisms. Thus, an ontology could contain first-

order  universals  that  instantiate  second-order  universals  from another  ontology,  which,  in

turn, may instantiate third-order universals and so on. The approach connects each level in

this stratified scheme to the next through an instantiation functior. Orderless types, i.e., types

with  instances  in  multiple  different  orders,  may  be  included  with  the  addition  of  new

instantiation  functors  from  each  tiered  category  to  the  category  of  orderless  types,  as

presented in figure 5.3. It is important to note that, while instantiation is intransitive, it is not

antitransitive, since some orderless types such as Type and Entity are instances of themselves

(ALMEIDA; FONSECA; CARVALHO, 2017), and thus violate the antitransitivity condition

 x, y, z: (x instance of y ˄ y instance of z) → ¬ (x instance of z) ∀ z when x = y = z = Type.

Figure 5.3 – Scheme of categories in different abstraction levels and their instantiation functors
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Since each component of an instantiation functor relates two entities, we may model it

as a family of particular relations between entities of a single ontology to allow the study of

other types of cross-level relations. To enable such modeling, a definition of instantiation as a

conceptual relation is necessary, which may be given in terms of the instantiation functor and

a natural transformation. Suppose an ontology O⊤ with all possible monadic universals and all
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possible  relations  between them. This  ontology is  an object  in the category of ontologies

(which we shall discuss in section 5.6) such that for every other ontology  O there exists at

least one inclusion functor Inc:O→O⊤, that is, a functor that is both faithfull and injective on

objects. Given two ontologies O1 and O2, an instantiation functor  Inst:O1→O2 and inclusion

functors Inc1:O1→O⊤ and Inc2:O2→O⊤, there is a natural transformation η:Inc1  → Inc2  ◦ Inst

whose components  ηA are instantiation  relations  in  O⊤.  Figure 5.4 shows, on the left,  the

diagram with the three ontologies and the referred functors, and, on the right, the commuting

square consisting of the images of a morphism f  from   O  1 via   Inc  1 and via   Inc  2  ◦ Inst   and the  

components of the natural transformation   η  .

Figure 5.4 – Instantiation as natural transformation
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This  formalization  means  that,  for  any universal  relation  u:A→B  and any relation

r:X→Y  that instantiates it, there must exist two instantiation relations  i1:X→A and  i2:Y→B,

such that the square formed by the four relations commutes, i.e.,  u  ◦ i1  = i2  ◦ r,  as in the

example  given  in  figure  5.5,  where  u  is  the  universal  relation  enrolled  at between  the

universals Student and Educational Institution, r is the particular relation enrolled at between

John  and  UFRGS, i1 and  i2 are the instantiation relations between, respectively,  John and

Student and  UFRGS and  Educational Institution, and the composition  u ◦ i1  = i2  ◦ r is the

relation enrolled at some.

Figure 5.5 – Example of composition with instantiation
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 A separate analysis of each composition elucidates this definition. The composition

u ◦  i1 is  an instance-bound (by  X)  specialization  of  u,  while  the composition  i2  ◦  r  is  an

instance-bound universalization of r. In these operations, the resulting composition preserves

the real-world semantics from both r and u, while restricting the domain of u ◦ i1 to a single

instance and generalizing the codomain of i2  ◦ r to a (higher-order) universal. Consequently,

other relations may instantiate i2  ◦ r. In fact,  r  is an instance of  i2  ◦ r, and, if the diagram

commutes, also of u.

5.1.1 Instance-bound Universal Relations

An instance-bound universal relation is defined here as a universal relation between a

particular or lower-order universal and a higher-order universal, i.e., a universal relation that

crosses  the  boundary  between  different  levels  of  classification.  We  say  that  a  universal

relation is “bound by X” when X is the lower-order entity related by it.

An instance-bound universal relation is a generalization of similar relations in which

X takes part. As discussed previously, every unbound universal relation u:A→B gives rise to

an  instance-bound  specialization  of  itself  for  each  instantiation  in:Xn→A  through  the

composition u ◦ in. Differently from unbound relations, we do not define the instantiation of

instance-bound relations over a commutative square, but over a commutative triangle. That is,

given an instance-bound relation  b:X→B and an instantiation  i:Y→B, an instance of  b is a

relation r:X→Y such that i ◦ r = b.

So far, the focus of this discussion has been on relations that are bound by the domain,

but one can easily imagine relations directed in the opposite direction, that is, from the higher-

order  universal  to  the  lower-order  entity.  Due to  the  definitional  nature  of  relations  with

universals  as  domain,  all  instances  of  the  universal  would  necessarily  participate  in  an

instance of such relation,  which would lead to an instance-bound monadic universal.  One

possible example of such concepts is the universal  Brazilian, which is defined by a relation

with the particular  Brazil. Previous works have referred to similar universals as “dependent

types” (XI, 1998). Figure 5.6 shows examples for both domain-bound and codomain-bound

universal relations, where universals are emphasized in bold text.
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Figure 5.6 – Examples of instance-bound universal relations
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The instantiation triangle for codomain-bound relations is somewhat reversed. Given

an instance-bound relation c:A→Y and an instantiation i:X→A, an instance of c is a relation

r:X→Y  such that r  = c ◦  i.  We present  the instantiation  of  both types  of instance-bound

relations in figure 5.7. We note that, while the formalizations presented in this work allow the

inclusion of codomain-bound universal relations in the model, they are entirely inessential for

the framework.

Figure 5.7 – Instantiation of instance-bound universal relations
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5.2 FORMALIZATION OF SPECIALIZATION RELATIONS

Another kind of relation that is present in most ontologies is that of specialization.

Relations of specialization are particular relations between universal entities that are usually

defined as  A specializes  B  ↔  X (X instance  of  A  → X instance  of  B)∀ z . This  definition

appears, at first, to contradict the formalization of instantiation as a functor, since it would

map  each  entity  to  a  unique  universal  that  it  instantiates  and  prevent,  in  a  way,  the

instantiation of multiple universals by a single entity.  However, a closer inspection of the

intuitive notions of instantiation, presented at the beginning of this chapter, clarifies the issue.
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It is required for an instance to take part in the relations that define its corresponding

universal.  Thus,  stating  that  every  instance  of  a  universal  A also  instantiates  a  second

universal B means that A is defined upon at least all the relations that define B. We model this

proposition  by  the  composition  of  the  specialization  relation  s:A→B  and  each  universal

relation  ui:B→Ci with  B as domain. Each composition ui ◦ s : A→Ci is a specific (but still

universal) form of ui that preserves its meaning while restricting the domain. Figure 5.8 shows

an  example  of  such  compositions,  where  we  indicate  universals  in  bolded  text  and

specialization by a hollow-pointed arrow. Analogously, given a universal relation v:D→A, the

composition  s ◦ v : D→B is a generalization of  v with a broader domain that maintains its

meaning. That property has implications on the cardinality of universal relations that we shall

discuss in section 5.4. It also means that specialization is both monic and epic.

Figure 5.8 – Example of composition with specialization, instantiation and universal relations
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Source: the author.

With the definition of instantiation as a family of relations, we can achieve the same

conclusions  by  specifying  instantiation  as  transitive  over  specialization,  i.e.,  for  any

instantiation  i:X→A  and any specialization  s:A→B,  s  ◦  i  :  X→B  is  also  an instantiation.

Indeed, it is easy to see that the diagram formed by the three relations and their compositions

respects associativity, that is,  u ◦ (s ◦ i) = (u ◦ s) ◦ i. Therefore, both formalizations yield

equivalent results. While figure 5.8 gives an example of this property, figure 5.9 shows the

formal diagram..
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Figure 5.9 – Associativity on composition of instantiation, specialization and universal relations
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Furthermore, the definition of specialization clearly implies that it is transitive, i.e.,

given two specialization relations s1:A→B and s2:B→C, the composition s2 ◦ s1 : A→C is also

a specialization. We model this transitivity in typed categories as a type specialization subject

to the type composition rule (denoted by ◦T) specialization ◦T specialization = specialization.

Similarly, we model the transitivity of instantiation over specialization with the addition of a

type instantiation and the rule specialization ◦T instantiation = instantiation.

5.3 COMPOSITION OF RELATIONS

In  order  to  define  a  category  with  relations  as  morphisms,  we  need  to  define  a

composition  operation  over  relations,  i.e.,  an  operation  that  maps  each  pair  of  relations

f:A→B and  g:B→C to a relation  f  ◦g: A→C. Previous sections included discussions on the

behavior of specialization and instantiation relations on composition, but we will provide a

more comprehensive description. Generically, relations are  composable simply through the

explicitation  and connection  of  each constituent’s  meaning.  Constructions  of  this  sort  are

common in natural language, as exemplified in figure 5.10, in relations such as John is cousin

of the husband of a friend of Mary, that is the composition of the relations John is cousin of

Fred, Fred is  husband of  Anna and Anna is  friend of  Mary.  We note that this diagram both

commutes and respects associativity. This method for the composition of conceptual relations

is similar to the one defined by Seremeti and Kougias  (2013) for ontologies represented as

path categories.
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Figure 5.10 – Example of composition of relations in the domain of human relationships
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Source: the author.

While  this  procedure  is  enough  for  an  overall  description  of  the  composition  of

relations, each ontology should further specify composition for domain specific relations with

singular meanings, such as transitive relations like ancestor of in the genealogical domain and

on top of in the domain of spatial position.

It is noteworthy that the composition of two unbound universal relations always yields

an unbound universal relation. This proposition is a trivial consequence of both definitions of

instantiation presented in section 5.1. Assume otherwise, i.e., that there exists two universal

relations f:B→C and g:A→B, such that their composition f ◦ g:A→C is a particular relation.

For an instantiation functor I, it is easy to find as counterexample two composable relations

a:Y→Z and b:X→Y such that I(a)=f and I(b)=g. If I(a ◦ b) = f ◦ g, the definition of particular

entities (as those that may not be instantiated) is denied. Conversely, if  I(a ◦ b) ≠ f ◦ g, the

functor axioms are contradicted. Analogously, for a family of instantiation relations i1:X→A,

i2:Y→B and i3:Z→C, associativity implies that f ◦ (i2 ◦ b) = (f ◦ i2) ◦ b and, if the corresponding

diagram commutes (as required by the definition of instantiation), that is, g ◦ i1 = i2 ◦ b and f ◦

i2 = i3 ◦ a, we have f ◦ (g ◦ i1) =(i3 ◦ a) ◦ b, which means that the square formed by the relations

f ◦ g, a ◦ b, i1 and i3 also commutes, and thus a ◦ b instantiates f ◦ g. Since the assumption leads

to contradictions, it must be false.

5.3.1 Modeling Inference as Composition

Most of the composition rules discussed so far emulate inference processes commonly

found  in  ontology-based  systems.  In  the  case  shown  in  figure  5.5,  for  example,  the
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composition  of  instantiation  and universal  relations  materializes  the  knowledge that  there

exists  some  educational  institution  at  which  John is  enrolled,  even  if  there  is  missing

information on which particular institution plays that part. This is precisely a logic entailment,

as discussed in section 2.3.

The  behavior  of  specialization  on  composition  is  another  example  of  this

phenomenon. Figure 5.11 shows several examples, with dashed arrows denoting the relations

“inferred” through composition. It is plain to see how both the transitivity of instantiation

over  specialization  and  the  transitivity  of  specialization  itself  lead  to  the  discovery  of

previously implicit  knowledge,  as well  as the composition of specialization  and universal

relations.

Figure 5.11 – Examples of composition as inference
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Source: the author.

5.4 CARDINALITY OF RELATIONS

In conceptual modeling, the cardinality of a relation is a restriction on the minimum

and maximum numbers of entities associated through that relation. Cardinality may impose

different restrictions for the relation’s domain and codomain. Usually, minimum restrictions

take a value of 1 or 0 (no restriction) and maximum restrictions of 1 or any (no restriction,

usually denoted by ‘*’), but that is not always the case. Some parthood relations, for example,

have  minimum cardinality  2  on  the  part  end of  the  relation,  due  to  the  supplementation

principle. In our framework, cardinality materializes as restrictions on the instantiation of the
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relation. Accordingly,  only universal  relations  can have cardinalities,  given that  particular

relations hold directly between the two associated entities.

The  definition  of  instantiation  and  the  composition  rules  presented  in  section  5.1

presuppose  that  the  universal  relations  present  in  the  ontology  are  obligatory  for  every

instance of their domains. Therefore, the formalization of an ontology as a category does not

accept relations that are optional for their domains, i.e., whose minimum cardinality on the

domain is 0. Instead, we must formalize non-mandatory relations through a specialization of

the  domain  over  which  the  relation  is  obligatory.  Figure  5.12  shows  how  to  formalize

relations with different minimum cardinalities. We note that the relation  B→A in the first

diagram  is  the  result  of  composing  the  relation  B→A’ with  the  specialization  A’→A.

Similarly,  in the second diagram the relation  A→B is  the composition of  A→B’ with the

specialization B’→B. 

Figure 5.12 – Non-mandatory relations and their corresponding formalizations
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Source: the author.

We demonstrate  here  the broadening of  the  codomain  of  universal  relations  when

composed  with  specializations,  as  discussed  in  section  5.2,  along  with  its  effects  on

cardinality. The composition is optional for the codomain, i.e., it has minimum cardinality 0,

even if the original relation has a higher minimum. This optionality comes naturally from the

fact that not every instance of  A is an instance of  A’, and the original relation is mandatory

only for instances of A’.

Evidently,  this  kind  of  formalization  is  only  necessary  if  we intend  to  model  the

relation bidirectionally. If, instead, we regard it as a single relation directed from the universal

on which it is obligatory to the one on which it is not, the straight-forward formalization as a

single morphism is  enough. For example,  if  the enrollment  relation between students and

educational institutions is only mandatory for students, being optional for the institutions (i.e.,
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there  may exist  educational  institutions  without  any enrolled  student),  we may choose to

model the relation only in the Student→Educational Institution direction, or we may define a

specialization of  Educational Institution  called  Active Educational Institution,  which has a

mandatory  relation  in  the  opposite  direction  and,  therefore,  whose  instances  must  have

enrolled students. We show this example in figure 5.13.

Figure 5.13 – Example of non-mandatory relation
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5.4.1 Formalizing Cardinalities as Restrictions on Instantiation

As previously  stated,  cardinality  manifests  as  restrictions  on instantiation.  That  is,

given a universal relation u:A→B in O with maximum cardinality n in the codomain and an

instantiation functor  I:S→O, at most  n instances of  u  may share a single instance of  A as

codomain. We formalize this restriction with injective functors and a family of categories Ck

whose only non-identity  morphisms are  fi:X → Yi for i  = 1, 2, …, k.  If  u has maximum

cardinality n in the codomain, then for any k > n there exists no injective functor Fk:Ck → S

such that  I ◦ Fk  (fi) = u for all  fi. Pragmatically, we must check the restriction only for the

category Cn+1, since for any Cn+j with j > 1 there exists an obvious inclusion H:Cn+1 → Cn+j that

composed with an injective functor  Fn+j:Cn+j  → S would result in an injective functor from

Cn+1 to  S.  If  we  prove  that  no  such  injective  functor  exists,  all  others  with  higher  k

consequently do not exist as well. Conversely, if there is an injection functor for Cn+1, then the

instantiation I is not valid.

We formalize restrictions on the maximum cardinality of the domain in an analogous

way, with the exception that we exchange the family of categories  Ck for its dual, that is, a
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family  Dk with  morphisms  fi:Xi  → Y  for i  = 1, 2, …, k.  Thus,  if  u:A→B has  maximum

cardinality m in the domain, then there is no injective functor Gm+1:Dm+1 → S such that I ◦ Gk

(fi) = u for all fi.

Figure 5.14 – Minimum codomain cardinality over instantiation as a functor
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Similarly,  we  formalize  minimum  restrictions  as  mandatory  injective  functors.  If

u:A→B has minimum cardinality p on the codomain, then for each Vi instance of A, i.e., I(Vi)

= A, there exists an injective functor Fp,i:Cp → S such that Fp,i (X) = Vi. Figure 5.14 depicts one

such  situation,  where  we  represent  functors  by  bold  dashed  arrows.  Accordingly,  for  a

universal relation  u:A→B with minimum cardinality  q on the domain, for each Wi such that

I(Wi) = B there exists an injective functor Gq,i:Dq → S with Gq,i (Y) = Wi. We show an example

in figure 5.15.

Figure 5.15 – Minimum domain cardinality over instantiation as a functor
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In  order  to  check  the  restrictions  in  a  multi-level  model,  we  may  adapt  all

formalizations presented in this subsection for the use of a family of instantiation relations in

O rather than an instantiation functor I:S→O. To achieve this, we exchange the compositions

I ◦ Fk for functors Jk:Ck → O such that Jk (fi) = u for every fi and the Fk of interest are the ones

for which there is a natural transformation η:Fk  → Jk whose components  ηx are instantiation

relations. Figure 5.16 represents this adaptation. For domain cardinalities, we follow the same

process exchanging Fk for Gk and Ck for Dk.
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Figure 5.16 – Minimum codomain cardinality over instantiation as a natural transformation
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The  same  process  is  applicable  for  instance-bound  universal  relations,  with  the

singularities that the cardinality in the (co)domain for a (co)domain-bound relation is exactly

one,  for  the obvious  reason,  and that  the  ηx component  at  the  instance-bound end of  the

relation is an identity. Additionally, if the maximum cardinality in the other end of the relation

is also of 1, then there exists exactly one functor Fk or Gk for each Vi or Wi.

5.5 CATEGORICAL CONSTRUCTIONS IN ONTOLOGIES

Based on the deliberations that we presented thus far, we can formalize an ontology as

a category O = (E, R, id, ◦) composed of:

• a set of objects E whose members are monadic entities,

• for each pair (A,B) of monadic entities in E, a set R(A,B) of morphisms from A to

B whose members are relational entities,

• for each entity A in E, an identity relation idA:A→A, and

• an associative composition operator ◦ that maps each pair of relations f:A→B and

g:B→C to a relation g ◦ f:A→C, such that identities are neutral regarding ◦.

Additionally,  the operator  ◦  is subject to the rules of composition discussed so far.

That is, the composition of two relations is the connection of their respective meanings, with

the condition that, for any specialization relations  s1 and  s2, any instantiation relation  i, any

universal relation u and any particular relation p:

• s2 ◦ s1 is a specialization relation;

• s1 ◦ i is an instantiation relation;
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• s2 ◦ u is a generalization of u;

• u ◦ s1 is a specialization of u;

• u ◦ i is an instance-bound specialization of u;

• i ◦ p is an instance-bound universalization of p.

In the light of this definition, the following subsections shall discuss the meaning of

some categorical  constuctions,  such as limits  and colimits,  in categories delineated in this

manner, that is, ontologies formalized as categories.

5.5.1 Initial and Terminal Objects

The terminal object of any ontology, if it exists, is its most generic universal. Common

examples include OWL’s Thing (ANTONIOU; VAN HARMELEN, 2009) and UFO’s Entity

(GUIZZARDI;  WAGNER,  2010). We  will  refer  to  this  concept  as   in  the  following⊤

subsections. If an ontology contains no terminal object, then it contains at least two different

universals that do not specialize any other universal.

Some ontologies have a concept that cannot be instantiated and specializes every other

concept  in  the ontology,  usually  denoted .  When it  exists,   is  the initial  object  of the⊥. When it exists, ⊥ is the initial object of the ⊥. When it exists, ⊥ is the initial object of the

ontology.  Otherwise,  there  is  no  initial  object  unless  the  ontology  contains  no  disjoint

universals. In that case, the initial object is the most specific universal in the ontology.

5.5.2 Products and Coproducts

The coproduct of two universals A and B is a universal A+B that relates to every entity

to  which  both  A and  B relate.  Furthermore,  it  relates  to  those  entities  in  a  way  that

approximates the meaning from both relations. This means that every instance of A and every

instance  of  B is  involved  in  relations  analogous  to  the  ones  that  define  A+B.  This

formalization  matches  the definition  of  specialization  given in  section  5.2.  Therefore,  the

coproduct A+B, when it exists, is the least common subsumer of A and B, that is, a universal

whose intension is given precisely by their shared meaning, as we described in section 2.3.

Figure 5.17 shows an example, where dashed arrows represent the cocone morphisms. The
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proposed  formalization  also  implies  that,  given  the  specializations  sA:A→A+B and

sB:B→A+B, for any f:A→C and g:B→C, the relation h:A+B→C, subject to h ◦ sA = f and h ◦

sB = g, has as cardinalities on the (co)domain the lowest minimum (co)domain cardinality and

the highest maximum (co)domain cardinality between f and g. Moreover, the initial object ⊥. When it exists, ⊥ is the initial object of the

is neutral regarding the coproduct, while the terminal object  is absorbing with respect to it.⊤

That is, for any A, +⊥. When it exists, ⊥ is the initial object of the A = A, and +⊤ A = .⊤

Figure 5.17 – Coproduct example
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Source: the author.

This definition is opposed to the conceptions presented by Johnson and Rosebrugh

(2010) and Spivak and Kent  (2012),  that  interpret  the coproduct  as a “disjoint  union” of

classes. It fits here to pose the question on what a disjoint union of universals is supposed to

be. If it is a universal whose set of instances is the disjoint union of the set of instances of A

and the set of instances of B, then any entity that instantiates both A and B should be doubly

present in the disjoint union. However, if the only relations that it participates as an instance

of  the  disjoint  union  are  the  common  relations  from A and  B,  then  there  is  no  way of

differentiating its A counterpart in the disjoint union from its B twin. If otherwise there are

relations that are mandatory for some but not all of the instances of the disjoint union, the

basic assumptions on how universals are defined are contradicted, as well as the restriction on

optional relations discussed in section 5.4.

Further, this description is extensional, since it is defined not over the meaning of such

universal but on the enumeration of its instances, while, as previously discussed, we consider

ontological models as intensional. This extensionality implies that any instance that takes part

in every relation that is common to A and B but is not an instance of either A or B is also not

an instance of the disjoint union, even though its application principle would, theoretically,

cover it. Finally, this definition would imply different categorical interpretations of the same

universal  for  different  world  states.  If  A and  B are  not  necessarily  disjoint,  then  their

generalization would be the categorical coproduct in every state of affairs where no instance

that is shared by A and B exists, while it would not in states with any such instance.
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The product of two universals A and B is a universal A×B to which every entity that is

related to both A and B is related. No common specialization of A and B can fulfill this role,

even when they are not disjoint, since there may be universals with instances that are related

both to instances of A that are not instances of B and to instances of B that are not instances of

A. Instead, the product A×B is the universal whose instances are ordered pairs of an instance

of  A and  an  instance  of  B,  along  with  the  relations  has  A-part:A×B→A  and  has  B-

part:A×B→B. Any entity that is related to an instance of A and an instance of B is also related

to their corresponding pair, by being related to both its  A-part and its  B-part. Thus, for any

two relations  f:C→A  and g:C→B,  both  f and  g factor  through a  relation h:C→A×B  that

comprises both their meanings.

5.5.3 Pullbacks

Given two monadic universals A and B with specializations sA:A→C and sB:B→C, the

pullback A×CB of the corresponding diagram, when A and B are not disjoint, is the greatest

common subsumee of A and B, as we delineated in section 2.3. Otherwise, the pullback either

does not exist or is  (in this  last case,  the only existing cone is given by  ⊥. When it exists, ⊥ is the initial object of the s⊥. When it exists, ⊥ is the initial object of theA:⊥. When it exists, ⊥ is the initial object of the→A and

s⊥. When it exists, ⊥ is the initial object of theB:⊥. When it exists, ⊥ is the initial object of the→B). For any cone f:Y→A and g:Y→B, the diagram must commute, that is, sA ◦ f = sB ◦

g. The commutativity here means that f and g carry the same real-world semantics, and, thus

may both be instantiated by the same relation in reality. Therefore, there exists some common

specialization of A and B such that both f and g factor through it. If this specialization cannot

be further generalized, it is the pullback. The diagram presented on the left of figure 5.18 is an

example of a pullback of this kind.

Figure 5.18 – Pullback examples
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For a diagram containing a universal relation  u:A→C and a specialization  sB:B→C,

the pullback is a specialization of  A whose instances are exactly all instances of  A that are

related  through  u  to  instances  of  B.  For  any cone  f:Y→A and  g:Y→B,  the diagram must

commute,  that is,  u ◦ f  = sB ◦ g.  As discussed in section 5.2, the composition  sB ◦  g is a

generalization of g. Thus, u ◦ f should be of a similar generalization level, which requires that

f is  either a generalized relation or a specialization.  If it  is a generalized relation,  then it

factors through another relation r:Y→Y’ and a specialization s:Y’→A, and, since u ◦ f and sB ◦

g are supposed to have the same real-world meaning, it follows that g should also contain the

meaning of r, that is, factor through it. In that case, Y cannot be the pullback since there is a

unique arrow r:Y→Y’ for which the diagram commutes. If, however, f is a specialization, then

Y either  has  as  instances  all  instances  of  A that  are  related  to  instances  of  B or  is  a

specialization of the universal that has. Intuitively, this pullback comes from a process similar

to the one described in  section 5.4.  Since  A has a mandatory  relation with  C and  B is  a

specialization of C, then there is a (hidden) optional relation from A to B which is formalized

by the pullback,  as exemplified in the right  side of figure 5.18,  where  A is  the universal

Student, B is College and C is Educational Institution. This definition matches the pullbacks

found by Johnson and Rosebrugh (2010).

Both  types  of  pullback described in  this  subsection  emulate  the discovery  of  new

concepts  that  may  be  implicit  in  the  original  ontology.  In  the  examples,  the  discovered

concepts are the universals  Boy and  College Student. Similarly to the composition rules as

discussed in subsection 5.3.1, these constructions are akin to inferential processes executed by

ontology-based systems. The knowledge needed to infer the existence of such concepts is

present in the original diagrams, while the pullback provides their meaning.

5.6 A CATEGORY OF ONTOLOGIES

Just  as  easily  as  we have  analyzed  monadic  and relational  entities  in  a  category-

theoretic context, we may take ontologies themselves as the objects of a category. Since we

formalize ontologies as categories, we consider functors as morphisms between ontologies.

Additionally,  it  is  also  desirable  to  study  the  instantiation  functors  from world  states  to

ontologies, and therefore our category shall also admit world states (formalized as categories,

of course) as objects. Thus, we define this category as Ont = (O, F, id, ◦), consisting of:
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• a class of objects O whose members are ontologies and world states formalized as

categories,

• for each pair (A,B) of objects in O, a set F(A,B) of functors from A to B,

• for each entity  A in  E, an identity functor  idA:A→A, associating each object and

each relation in A to itself, and

• the usual functor composition operator ◦.

It  follows  effortlessly  from  this  definition  that  Ont is  a  subcategory  of  Cat,  the

category of small categories.

5.6.1 Initial and Terminal Objects

As mentioned previously, the ontology O⊤, that contains every monadic universal and

all relations between them, is an object in the category of ontologies. Even though there exists

an inclusion functor Inc:O→O⊤ for every ontology O and an instantiation functor I:S→O⊤ for

every  world  state,  O⊤ is  not  the  terminal  object  in  the  category,  since those functors  are

seldom unique. The ontology  O1 containing a single object and its identity morphism, for

example, may be mapped to O⊤ in as many different ways as there are objects in it. Instead,

the title of terminal object falls precisely upon O1, since every ontology and every world state

may be mapped to it by a unique functor that collapses all objects into O1’s single object and

all morphisms into its identity. The initial object of Ont is the empty ontology O0 that has no

objects and, consequently, no morphisms. O0 is mapped to every other object in Ont via the

empty functor.

5.6.2 Products and Coproducts

As discussed in chapter 4, cones for a discrete diagram with two ontologies as objects

were described in the related literature as ontology alignments. The terminal cone over such a

diagram is a product. Products are not, however, very useful as alignments,  since, like its

counterpart in Cat, products in Ont are product categories, which would “align” every object

from each ontology to all objects in the other. A product of two small categories A and B is a

category A×B whose objects are ordered pairs (a,b) and whose morphisms are ordered pairs
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(f,g), where a is an object and f is a morphism in A while b is an object and g a morphism in

B. The product A×B is trivially isomorphic to B×A.

Coproducts in Ont, as in Cat, are disjoint unions of categories. The disjoint union A+B

is a category whose collection of objects is the disjoint union of the objects from A and B.

Also, the set RA+B(X,Y) of morphisms between two objects X and Y is equal to RA(X,Y) if both

X and Y are A-objects, equal to RB(X,Y) if both X and Y are B-objects or empty otherwise.

5.6.3 Pullbacks and Pushouts

Previous authors have demonstrated in the category-theoretic literature (TRNKOVÁ,

1965) that a pushout over a diagram with inclusion functors Inc1:A→B and Inc2:A→C is the

amalgamation  of  B and  C with  respect  to  Inc1 and  Inc2.  This  proposition  matches  the

prevailing  notion  that  a  pushout  over  an  ontology alignment  is  a  merge  of  the  involved

ontologies. If the chosen alignment is a product, however, the resulting merge is necessarily

the terminal object O`1.

The pullback over a diagram with two inclusion functors Inc1:A→C and Inc2:B→C is

the intersection of A and B in respect to C. That is, a category whose objects are those objects

in  A and  B that  are  mapped  to  the  same  object  in  C and  whose  morphisms  are  those

morphisms in A and B that are mapped to the same morphism in C. This also agrees with the

meaning usually attributed to this construction in the related literature.

Figure 5.19 – Instance exchange as a limit 
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Source: the author.

For a diagram with a world state  S,  ontologies  O and  O’,  an instantiation  functor

I:S→O and an inclusion functor  Inc1:O’→O, the pullback is a subcategory  S’ of  S  with an
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instantiation  functor  I’:S’→O’  such  that  S’ contains  every  entity  in  S that  instantiates  a

universal in  O that is mapped from a universal in  O’ by  Inc1. This construction has useful

properties  for  semantic  interoperability  between  information  systems,  since  it  allows  the

exchange  of  instances  between  distinct  ontologies.  In  particular,  if  O’ is  an  ontology

alignment,  along  with  Inc1 and  another  inclusion  functor  Inc2:O’→O”,  the  composition

Inc2 ◦I’:S’→O” is  an  instantiation  functor.  Thus,  ontology  alignments  allow  for  the

transference  of  instances  from  one  ontology  to  the  other  through  a  pullback  and  a

composition. This entire operation is actually a limit over the diagram containing both the

alignment and the instantiation functor. Figure 5.19 depicts this limit.

5.6.4 Modeling Enriched Functors

Since functors relate entities, each component of a functor may be interpreted as a

conceptual relation and labeled accordingly.  However, not every functor map entities in a

semantically sound manner. That is, some mappings lead to absurd interpretations. We may

identify semantically plausible functors F:O1→O2 by the existence of a natural transformation

η:Inc1  → Inc2  ◦ F, where Inc1:O1→O⊤ and Inc2:O2→O⊤ are inclusion functors into O⊤. For a

simpler verification of this property, we may replace O⊤ by the ontology obtained through the

disjoint  merge  of  O1 and  O2 with  the  addition  of  the  components  of  F,  as  described  in

subsection 5.6.5.

We  may  then  label  each  component  Fi of  the  functor  F with  the  corresponding

component ηi of the natural transformation. Therefore, similarly to instantiation functors, it is

possible  to  model  specialization  functors,  parthood  functors,  or  yet  functors  where  each

component is a different sort of conceptual relation. Whenever a component ηi is an identity

morphism, the corresponding Fi is a conceptual equivalence. Remarkably, this is the case for

every component of an inclusion functor. The composition of functors enriched in this manner

is given by the composition of their respective natural transformations.

5.6.5 Merging Disjoint Ontologies

Even though the functors in  Ont are capable of representing complex relations,  as

discussed  in  subsection  5.6.4,  they  are  not  enough  to  concretize  the  merge  of  disjoint
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ontologies through a single pushout as described by Zimmerman et al. (2006). In reality, the

solution proposed in that work is also not suitable for such operations. Take, for example, the

alignment composed by morphisms  r:A→B and  s:A→C such that  r = (woman, person, )⊂)

and s = (woman, woman, =), where  ⊂) means strict specialization and = means equivalence,

following the original notation. With the provided definition of composition, in order for the

diagram to commute, the pushout over such alignment must be given by a pair of morphisms

t:B→B+AC and u:C→B+AC with t = (person, person, =) and u = (woman, person, ) ⊂) so that

t ◦ r = u ◦ s = (woman, person, )⊂) , as shown in figure 5.20. This is not the intended meaning

for  the  pushout,  which,  according  to  the  authors,  should  be  an ontology  containing  both

concepts woman and person and a specialization relation between them.

Figure 5.20 – Pushout over an alignment of disjoint ontologies

r

(woman, person, 
)

⊂)

Person

Woman

Person Woman

(woman, person, 
)

⊂)
u

s

(w
om

an
, w

om
an

, =
)

(p
er

so
n, 

pe
rso

n, 
=)

t

(w
om

an
, p

er
so

n,
 

)
⊂)

Source: the author.

Instead, a merge of two disjoint ontologies B and C aligned through functors F:A→B

and  G:A→C with  components  whose  meanings  are  different  from  equivalence  may  be

computed through a pushout over a different diagram, containing the disjoint union A+B+C

(given by a coproduct), a category ObjA+B+C whose objects are the same ones from the disjoint

union but without any non-identity morphism, a category Obj+
A+B+C that is ObjA+B+C enriched

with  the  non-equivalence  components  of  F and  G and  functors  Inc:ObjA+B+C→A+B+C

mapping each object  to  itself  and  H:ObjA+B+C→Obj+
A+B+C mapping each object  that  is  the

image of an equivalence component of F or G to its inverse image and the remaining objects

to themselves. The resulting diagram for the same previous example is given in figure 5.21.

The inclusions from the original ontologies to the final merged ontology B+AC are the result
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of  the  composition  I  ◦  Inci of  the  functor  I:A+B+C→B+AC  with  the  inclusions

Inci:i→A+B+C for i = A, B or C.

Figure 5.21 – Pushout over the modified alignment
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The process of construction of a diagram for the disjoint merge pushout just described

may be generalized for any alignment, since alignments of functors with only equivalence

components will have all equivalent objects collapsed by H. Additionally, we may also apply

the same process over single mappings  F:A→B by removing every reference to  C in the

previous definition. This procedure is equivalent to exchanging G for idA:A→A, since, again,

H collapses both copies of A in the disjoint union.

The operations of alignment intersection and union, defined over V-alignments, may

be computed over the original alignment given by F and G before the construction of the final

pushout diagram. For disjoint unions of alignments defined over single functors F:A→B and

F’:A→B, the intersection is given by an equalizer, as shown in figure 5.18. In order for the

diagram on the left to commute,  idA  ◦ I = idA  ◦ J and consequently I = J. Therefore,  E is an

equalizer for the diagram on the right. It is not possible to find a union of alignments given by

single functors, since F and F’ are contradictory total mappings (unless, of course, F=F’).

Figure 5.22 – Intersection of single-functor alignments as an equalizer
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6 CONCLUSION

This  work  proposes  category  theory  as  a  suitable  formalism  for  the  study  and

description  of  ontologies.  First,  we have  shown how the  modeling  based on relations  of

ontology engineering is equivalent to the focus of category theory on morphisms.  Then, we

identified the issues regarding the incompatibility of the intended intensionality of ontological

models  with  the  extensional  set-theoretic  foundations  currently  accepted  in  ontology

engineering,  and  addressed  said  issues  with  the  use  of  concepts  from  category  theory.

Particularly,  we have shown how the meaning of ontological  concepts is better  expressed

through morphisms and composition rules than as a mapping function over a set indexed by

possible worlds.

Following,  we  described  how  category  theory  and  its  constructions  allow  the

formalization of notions commonly present in ontologies and ontology engineering. Among

said formalizations, we defined instantiation both as a functor and as a natural transformation,

supporting  the  description  of  multi-level  models.  We  also  formalized  cardinalities  of

conceptual relations with injective functors, and some inferential processes as the application

of the composition operator.

We then combined the proposed formalizations  into a description of a category of

ontologies, which we examined in search for common category-theoretic constructions and

their meanings. The analysis has lead to new formalizations, such as disjointness of universals

as the inexistence of the pullback over a diagram with specializations.

Subsequently, we discussed how the interpretation of ontologies as categories affects

categories of ontologies. We have demonstrated how the category-theoretic constructions in

the  proposed  framework  have  the  same meaning  found  in  the  related  literature,  such  as

ontology  merging  as  a  pushout  over  an  alignment.  We  have  also  shown  how  this

interpretation  supports  semantic  interoperability  and  the  exchange  of  instances  between

distinct ontologies through pullbacks and composition. Additionally, we have described how

the category-theoretic formalization of ontologies allows the merge of disjoint ontologies with

the addition of new relations through the construction of a specific pushout diagram.

We have analyzed the categorical constructions in ontologies in more depth than the

previous  works  on  the  subject.  Additionally,  most  other  works  do  not  discern  the

extensionality issues of set theory and, consequently,  fail  to present category theory as an

adequate alternative.
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The  proposed  framework  easily  satisfies  most  of  the  guidelines  for  ontology

morphisms defined by Antunes and Abel (2018). The third criterion, i.e., that the domain and

codomain  of  conceptual  relations  should  be  preserved,  is  guaranteed  by the  definition  of

functors. Since this is the main aspect where most categories of ontologies agree, it comes

without  surprise  that  the  categorical  construction  found  here  match  the  ones  defined

previously in the literature. We may enforce the first and second criteria, that is, that concepts

and relations must be related injectively, by the selection of injective functors. The enriched

functors defined in subsection 5.6.5 assure the fifth condition, i.e., the potential for expressing

complex relations between the concepts, and additionally guarantee the semantic soundness of

the resulting map as intended by the authors. Only the fourth guideline, which concerns the

preservation of metaproperties, is not applicable to the framework as it currently exists. The

integration  of  a  future  categorical  formalization  of  such  metaproperties  into  the  present

framework may contemplate this last criterion.

In addition to the definition of a category-theoretic formalism for metaproperties of

concepts, we consider some possible paths for future research. Among them, we contemplate

the scrutiny of the relation between the ontology defined as a category and its expression in an

ontology representation language.  Additionally,  we intend to investigate  category-theoretic

definitions  for  other  foundational  concepts  in  ontology  engineering,  such  as  ontological

commitment. Finally, we consider the development of an extensive and thorough analysis of

the behavior of conceptual relations on composition, especially of the general composition

rules for particular and universal relations (both instance-bound and otherwise), possibly with

the  definition  of  metaproperties  for  relations  besides  those  of  transitivity,  reflexivity  and

symmetry.
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