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91501-970 Porto Alegre, RS, Brazil

(Received 30 October 2017; accepted 26 December 2017; published online 12 January 2018)

A collisional trapped non-neutral plasma is described by a hydrodynamical model in one-

dimensional geometry. For suitable initial conditions and velocity fields, the Lagrangian variables

method reduces the pressure dominated problem to a damped autonomous Pinney equation, repre-

senting a dissipative nonlinear oscillator with an inverse cubic force. An accurate approximate ana-

lytic solution derived from Kuzmak-Luke perturbation theory is applied, allowing the assessment

of the fully nonlinear dynamics. On the other hand, in the cold plasma case, the Lagrangian varia-

bles approach allows the derivation of exact damped nonlinear oscillations. The conditions for the

applicability of the hot, pressure dominated or cold gas assumptions are derived. Published by AIP
Publishing. https://doi.org/10.1063/1.5011169

I. INTRODUCTION

The analysis of arbitrary amplitude structures in charged

particle systems such as plasmas is a traditional research

field1–4 with ongoing interest.5–7 However, in most cases, the

previous literature regarding nonlinear solutions in fluid-

plasma systems was restricted to the approximation of a

cold, collisionless system, which can be a drawback in view

of realistic applications. The present work aims to remove

these constraints, considering a trapped electron gas (a non-

neutral plasma) possibly taking into account thermal effects

and dissipation due to a collisional drag.

We will consider nonlinear structures derived by means

of the Lagrangian coordinates method,1–3 applied to a hydro-

dynamical model with an adiabatic equation of state, which

is appropriate to fast processes where heat transfer does not

take place. Lagrangian variables are recognized as an effec-

tive method in fluid problems and have been recently

applied, e.g., for the derivation of nonlinear waves in one-

dimensional degenerate electron gases.8 In the hydrody-

namic model, the repulsive collective field due to the elec-

tron gas and the pressure term tends to produce expansion,

while an external harmonic trap provides confinement. Two

basic situations will be considered, according to the preva-

lence of thermal or Coulomb repulsion effects. Thanks to the

more complete formulation of the original model equations,

the precise conditions for the dominant effects can be evalu-

ated in terms of physical parameters. This fills a gap in the

literature, where, e.g., the exact conditions for the cold

plasma assumption are seldom evaluated.

Moreover, it will be shown that the presence of an exter-

nal trap is a necessary condition for the existence of a ther-

mally dominated regime. For instance, such a possibility

cannot take place in a one-component plasma with a fixed

ionic background, since in this case, the expansive role of

the pressure, in equilibrium with the ions’ attraction, would

be of the same order of the Coulomb repulsion (see Sec. III

for more details). On the other hand, the external confine-

ment allows the reduction of the complete problem to the

solution of the Pinney equation,9 which is endemic in

nonlinear physics. Pinney’s equation applies to the stability

analysis of beams in accelerators,10,11 cosmologic mod-

els,12,13 propagation of gravitational waves,14 rotating shal-

low water waves,15 Bose-Einstein condensates,16 quantum

Buneman instability,17 and many more.

Due to the presence of collisional drag, our version of

the Pinney equation contains a damping term, so that it will

become a dissipative Pinney equation,18 as apparent from

Eq. (17) below. The damped Pinney equation has been

attracting much attention recently, in view of applications in

dissipative quantum mechanics,19,20 barotropic Friedman-

Robertson-Walker universes with Chiellini damping,21 dissi-

pative Milne-Pinney systems22 and time-dependent non-

commutative quantum mechanics.23 In addition, although

our treatment is restricted to systems with a one-dimensional

(1D) geometry as a starting point, which is a frequently

adopted choice,5,24 it should be regarded as a general frame-

work to be followed in more complex situations. For

instance, it can be readily adapted to nonlinear spherical sur-

face waves25 or plasmas with a cylindrical symmetry,26

among other possibilities.27 The 1D geometry is relevant to

real trapped gases, such as in the two-stream instability in

quasi-1D Bose-Einstein condensates,28 or Pierce diode

plasmas.29,30

Although the present treatment has some similarity to

bounded plasmas where rigid or virtual walls exist, demand-

ing boundary conditions at the interfaces, here, due to the

gaseous nature, as well as due to the external confinement

and electrostatic repulsion, the electron gas boundaries are

self-consistently determined. For instance, in a bounded

plasma, one can have a velocity field u(x, t), such that

uð6d; tÞ ¼ 0, with interfaces at x ¼ 6d. Such a situation has

been treated in Ref. 24, 31, and 32. In our case, the starting

model is exactly the same as Ref. 33 for a non-neutral

plasma in a trap, except for the equation of state and because

we also allow for damping. For a finite plasma, the boundary

becomes defined in terms of the dynamics of the moving

fluid, as described in Ref. 34. Trapped clouds of identical

charges have been treated in many contexts, like for the
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breathing mode of a quantum electron gas.35 Experiments on

such harmonically confined gases frequently use magneto-

optical confinement techniques, tuned so as to obtain not

only three-dimensional but also quasi-two- or quasi-one-

dimensional configurations.36 We stress that in such systems,

by definition, there is not the need for a positive feedback

between “in” and “out,” as is the case of electronic devices

such as the Pierce diode.

This work is organized as follows. Section II introduces

the basic set of hydrodynamic equations and the transforma-

tion to Lagrangian variables. Section III develops the arbi-

trary amplitude full solution when thermal effects are

dominant and provides the precise applicability conditions of

the solution in terms of relevant physical parameters. Section

IV performs the same job of Sec. III, but in the opposite

case, where Coulomb repulsion dominates thermal effects

(cold plasma assumption). Section V shows sample applica-

tions of the results in the case of prevalent self-consistent

fields, for a few initial conditions. Section VI is reserved to

the conclusions.

II. BASIC MODEL AND LAGRANGIAN VARIABLES
METHOD

In a slab geometry where the relevant physics develops

in 1D space, the non-neutral plasma can be described by the

following standard hydrodynamic equations:

@n

@t
þ @

@x
ðn uÞ ¼ 0; (1)

@u

@t
þ u

@u

@x
¼ � 1

m n

@P

@x
� e E

m
� x2x� � u; (2)

@E

@x
¼ � e n

e0

: (3)

By definiteness, the system is composed of electrons (charge

�e, mass m) with number density n, fluid velocity u and

pressure P. Moreover, E is the internal electric field, e0

is the vacuum permittivity, and a drag term with collision

frequency � is also included. Confinement is provided by

an external harmonic field with angular frequency x. As

remarked in Ref. 33, the trapping potential can be provided by

a homogeneous ionic background with number density ni, in

which case x2 ¼ nie
2=ðme0Þ, supposing rapid oscillations so

that ions can be regarded as motionless. In this context, E by

definition is the electric field due to electrons only. Other pop-

ular particle confinement techniques are the radio-frequency

Paul trap37 and the Penning trap.38 In view of the fast pro-

cesses’ assumption, heat transport can be neglected. In this

context, an adiabatic equation of state P ¼ n0jBTðn=n0Þc can

be assumed, where jBT is the reference thermal energy and c
is the adiabatic index. For longitudinal waves, it is adequate

to choose c¼ 3, corresponding to 1D compression. Weak col-

lisionality is assumed, allowing wave propagation to remain

essentially 1D.

In order to derive arbitrary-amplitude solutions for sys-

tems (1)–(3), we introduce Lagrangian coordinates ðn; sÞ
given1,2 by

n ¼ x�
ðs

0

uðn; s0Þ ds0 ; s ¼ t; (4)

such that

@

@s
¼ @

@t
þ u

@

@x
;

@

@n
¼ 1þ

ðs

0

@uðn; s0Þ
@n

ds0
� �

@

@x
: (5)

The continuity equation (1) is then converted into

@

@s
1þ

ðs

0

@uðn; s0Þ
@n

ds0
� �

n

� �
¼ 0 (6)

with solution

n ¼ nðn; 0Þ 1þ
ðs

0

@uðn; s0Þ
@n

ds0
� ��1

; (7)

where nðn; 0Þ is the electron number density at s¼ 0.

The Gauss law [Eq. (3)] in transformed coordinates

reads

@E

@n
¼ � e

e0

nðn; 0Þ (8)

with solution

E ¼ � e

e0

ð
nðn; 0Þ dnþ E0ðsÞ; (9)

where E0ðsÞ is, at this stage, an arbitrary function of the new

time parameter. Physically, E0ðsÞ would be associated with

an additional external field, besides the harmonic confine-

ment, so we will set E0ðsÞ ¼ 0 in the continuation.

The only remaining equation to be solved is the momen-

tum transport equation (2), which becomes

@u

@s
¼ � 3 jBT

2 m
1þ

ðs

0

@uðn; s0Þ
@n

ds0
� ��1

@

@n
n

n0

� �2
" #

� x2 nþ
ðs

0

uðn; s0Þ ds0
� �

þ
x2

p

n0

ð
nðn; 0Þ dn� � u ;

(10)

where xp ¼ ½n0e2=ðme0Þ�1=2
is the plasma frequency, for a

reference number density n0.

There are two manifestly repulsive contributions in Eq.

(10). One of them is the pressure term proportional to jBT
and the another one is due to the electron self-consistent

field, proportional to x2
p=n0. These repulsive effects are

counterbalanced by the second term in the right-hand side of

Eq. (10), due to the harmonic confinement. In the following,

the solutions of Eq. (10) will be analyzed according to the

strengths of the thermal and self-consistent field effects.

III. DOMINATING THERMAL EFFECTS

Equation (10) is too difficult to be analytically solved

without further assumptions. As a working hypothesis, in

this section, we consider sufficiently simple, linear velocity

fields given by

u ¼ n=TðsÞ þ u0ðsÞ; (11)
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where TðsÞ and u0ðsÞ are functions to be determined. From

Eq. (7), we get

n ¼ nðn; 0Þ=qðsÞ; (12)

where

q ¼ qðsÞ ¼ 1þ
ðs

0

ds0

Tðs0Þ : (13)

Inserting u from Eq. (11) and n from Eq. (12) into Eq.

(10), the result we get is

ð€q þ � _q þ x2qÞq3nþ ð _u0 þ �u0 þ x2

ðs

0

u0ðs0Þ ds0Þq3

¼ � 3 jBT

2 m

@

@n
nðn; 0Þ

n0

� �2
" #

þ
x2

p q3

n0

ð
nðn; 0Þ dn ;

(14)

where a dot denotes the derivative with respect to s.

Deriving all terms in Eq. (14) twice with respect to n and

once with respect to s gives ðx2
p=n0Þ � dðq3Þ=ds� dnðn; 0Þ=

dn ¼ 0, a condition which is due to the electron self-

consistent repulsion term alone. Such a constraint cannot be

satisfied in nontrivial situations where neither qðsÞ or nðn; 0Þ
is a constant. Hence, the only meaningful possibility occurs

when the electron repulsion can be neglected in comparison

with the thermal effects (Fig. 1).

Disregarding the electron collective field in Eq. (14), for

consistency, one still needs to impose the pressure contribution

as a linear function of n, in the same manner as the left-hand

side of the equation is. By inspection, this requirement implies

nðn; 0Þ ¼ n0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c1

n
n0

� n
n0

� �2
s

; jnj � n0; (15)

where c1 is a dimensionless numerical constant and n0 > 0 is

a reference position. Outside the bulk of the electron gas,

where jnj � n0, we set nðn; 0Þ ¼ 0. Since the more interest-

ing physics takes place inside the electron cloud, we will

mainly discuss the problem for jnj � n0. Without loss of gen-

erality, in Eq. (15), it was chosen that nð0; 0Þ ¼ n0, which

becomes the definition of n0. In addition, for simplicity, we

shall consider only symmetric equilibrium densities, so that

c1 � 0 (Fig. 1).

Taking into account Eq. (15), the term that is indepen-

dent and does not depend on n gives

_u0 þ �u0 þ x2

ðs

0

u0ðs0Þ ds0 ¼ 0 : (16)

It is apparent that u0 will just execute linear transient oscil-

lations. For simplicity, it will be set to u0 ¼ 0, in what

follows.

On the other hand, the term proportional to n in Eq. (14)

provides

€q þ � _q þ x2q ¼ 3jBT

mn2
0

1

q3
: (17)

Equation (17) is an autonomous damped or dissipative

Pinney equation.18 The undamped case (�¼ 0) was solved by

Pinney,9 including a time-dependent frequency x ¼ xðtÞ, in

terms of the linearly independent solutions of the associated

Hill equation. Similar nonlinear equations were obtained in

non-uniform non-neutral plasmas,33 from a moment method

approach, without drag and for a pressure equation explicitly

depending on the position.

By inspection, it is possible to identify the equilibrium

solution q ¼ qeq where _q ¼ €q ¼ 0, given by

qeq ¼
3jBT

mx2n2
0

 !1=4

: (18)

The existence of (stable) equilibrium is due to the sign of the

inverse cubic term, which in turn comes from the concavity

of the number density in Eq. (15). Alternatively, one can

write the conservative part of Eq. (17) in terms of potential

V ¼ VðqÞ, defined by

V ¼ mx2q2

2
þ 3jBT

2mn2
0

1

q2
; (19)

so that

€q ¼ � @V

@q
� � _q : (20)

Evidently, the repulsive term from Eq. (19) prevents collapse

to the origin, as depicted in Fig. 2.

It happens that the damped Pinney equation (17) admits

an accurate approximate solution, derived from Kuzmak-

Luke perturbation theory,39,40 which is an appropriate tool

for weakly damped, nonlinear oscillator problems.41 From

Eq. (26) of Ref. 18, the solution reads

q2 ¼ q2
eq þ 2A2e��s þ 2A e��s=2

� q2
eq þ A2e��s

� �1=2

cos 2xðs� s0Þð Þ; (21)

where A; s0 are integration constants. As detailed in Ref. 18,

the weak damping assumption should be valid for theFIG. 1. Initial number density from Eq. (15) and c1 ¼ 0.
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accuracy of Eq. (21). In the undamped case (�¼ 0), Eq. (21)

shows exact oscillatory solutions in the interval I ¼
n
q > 0 jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2
eq þ A2

q
� jAj � q �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

eq þ A2
q

þ jAj
o

, with the param-

eter jAj playing the role of an initial amplitude, as depicted

in Fig. 2. Moreover, since �=x� 1, during one oscillation

period s ¼ p=x, the quantity jAj exp ð��s=2Þ does not

change very much and plays the role of a slowly varying

time-dependent amplitude.

From Eq. (13), one has qð0Þ ¼ 1, implying

cos ð2xs0Þ ¼
1� q2

eq � 2A2

2 A ðq2
eq þ A2Þ1=2

; (22)

which makes sense if and only if A2 � ð1� q2
eqÞ

2=4, or

equivalently qð0Þ ¼ 1 2 I, to avoid cos2ð2xs0Þ > 1. For

any A satisfying the requirement, by construction, the solu-

tion will remain regular and non-explosive, not producing a

multistream flow.1 This is due to the repulsive inverse cubic

term in the damped Pinney equation, which prevents q! 0.

Besides, taking into account equation (22), the parameter A
is obviously related to _qð0Þ, but in an awkward algebraic

way, we refrain to exhibit.

As an example, we take realistic parameters for a

trapped electron gas,42 namely n0 ¼ 1010 m�3; jBT ¼ 1 eV;
n0 ¼ 5 cm;x ¼ 5 xp ¼ 25 �, together with xp ¼ 5; 64 MHz;
qeq ¼ 0:72. The numerical simulation of Eq. (17) and the

approximate solution from Eq. (21) yield almost identical

results in this case, shown in Fig. 3.

To complete the solution procedure, the electric field

found from Eq. (9) and shown in Fig. 4 is

E ¼ � n0en0

2e0

n
n0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n

n0

� �2
s

þ arcsin
n
n0

� �0
@

1
A; (23)

which is also symmetric with respect to the origin n¼ 0.

To summarize, an accurate nonlinear solution of the full

hydrodynamic problem was found in terms of Lagrangian

variables, with the number density given by Eq. (12), where

nðn; 0Þ is shown in Eq. (15), which also defines the initial

condition nðx; 0Þ, since qð0Þ ¼ 1, by definition [see Eq.

(13)], the velocity field given by Eq. (11) with 1=T ¼ _q and

the electric field in Eq. (23). In terms of physical coordinates,

one has from Eq. (4) that x ¼ n=q; t ¼ s, which also implies

the damped nonlinear oscillations of the electron gas cloud

boundaries. Namely, jnj � n0 maps to jxj � n0=q. In brief,

the whole procedure is reducible to the dissipative Pinney

equation (17), with the approximate solution (21). However,

it is necessary to have a more detailed account on the validity

conditions of the solution, regarding weak collisionality and

thermal effect prevalence. These issues are discussed in the

immediate continuation.

A. Weak damping condition

In the context of the dissipative Pinney equation (17),

the approximate solution (21) holds for � � x and not nec-

essarily for � � xp, which turns out to be a more stringent

constraint. However, strongly collisional plasmas would

barely remain 1D. Hence, we need � � xp. It should be

noticed that the undamped case is a particular case for the

more general treatment. For real applications, it is necessary

to measure the strength of the drag force, in terms of suitable

physical mechanisms, setting �¼ 0, whenever possible.

Besides, as apparent from Eq. (40) below, damping plays a

regularizing role in avoiding collapsing dynamics.

FIG. 2. Effective potential from Eq. (19), showing also a representative tra-

jectory such that qð0Þ ¼ 1 > qeq and with an initial amplitude 	A > 0.

FIG. 3. Auxiliary function q as a function of time, from Eq. (21), approaching

qeq ¼ 0:72. Parameters: n0 ¼ 1010 m�3; jBT ¼ 1 eV; n0 ¼ 5 cm;x ¼ 5 xp

¼ 25 �. Initial conditions: qð0Þ ¼ 1; _qð0Þ ¼ 0. Correspondingly, A ¼ 0:24;
xs0 ¼ 0:01.

FIG. 4. Electric field from Eq. (23), normalized to E0 ¼ m x2
p n0=ð2 eÞ.
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Hence, it is useful to reproduce at least a few explicit

expressions of the damping rate. For instance, it can origi-

nate from electron-neutral collisions. In this case, one has

the estimate

� ¼ nNhr ui 	 nN pa2
0 uT � xp; (24)

where the symbol hi denotes average, nN is the neutral num-

ber density, r 	 pa2
0 is the electron-neutral collision cross-

section, a0 is the Bohr radius and uT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jBT=m

p
is the elec-

tron thermal velocity.

Also, notice that considering the electron gas as a whole,

the (elastic) electron-electron collisions cannot dissipate its

momentum. However, another possibility considers an

electron-ion gas, where the electron momentum could be dis-

sipated into the ion species due to electron-ion collisions.

For fast processes where the average ion velocity ui can be

neglected to a first approximation, a drag term reduces to

��ðu� uiÞ 	 ��u, with the damping rate given by the

Landau frequency �ei of electron-ion collisions.43 In this

case, the weak collisionality holds for

� ¼ �ei ¼
2 xp

3

lnK
K
� xp ; K ¼ 4pn0k

3
D

3
; kD ¼

uT

xp
:

(25)

However, in such an alternative scheme from the start, one

needs to explicitly take into account the ion background,

which would slightly modify some of the analytic results in

this section.

B. Pressure dominance: Validity conditions

We can now analytically evaluate the pressure domi-

nance condition. Specifically, from comparison of the repul-

sive terms in Eq. (14) and using Eq. (15), it amounts to

3jBTn=ðmn2
0Þ 
 �eE=m, where the electric field is given by

Eq. (23). A short algebra then yields

3jBT

mx2
pn

2
0


 q3 f ðn=n0Þ ;

f ðn=n0Þ ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n

n0

� �2
s

þ arcsinðn=n0Þ
n=n0

0
@

1
A 	 1 : (26)

The last estimate happens because f ðn=n0Þ does not change

appreciably from unity in the interval jnj � n0, as seen in

Fig. 5.

Finally, the most stringent constraint from the inequality

in Eq. (26) is for the maximum value q ¼ qmax 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

eq þ A2
q

þ jAj, a return point obtained from the perturbative solution

(21) where damping was neglected, for the sake of the esti-

mate. Hence, the pressure dominance assumption holds for

3jBT

mx2
pn

2
0



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

eq þ A2

q
þ jAj

� �3

� 1

2
1þ q2

eq þ j1� q2
eqj

� �� �3

; (27)

where the last inequality is due to the internal condition

reported below in Eq. (22). In terms of physical parameters,

the inequality (27) unveils two subclasses, as follows.

1. Thermal dominated equilibrium

The thermal dominated equilibrium case corresponds to

q2
eq � 1) x4

x4
p


 3jBT

mn2
0x

2
� 1 : (28)

2. Harmonic confinement dominated equilibrium

Although in this section, the main repulsive influence in

the electron momentum equation is always due to the pres-

sure term, it can happen that the external force is so strong

that q2
eq � 1, which we refer to as the harmonic confinement

dominated equilibrium case. It corresponds to

q2
eq � 1) 1 � 3jBT

mn2
0x

2



x2
p

x2
: (29)

It must be observed that for all values of qeq, one needs

x2 
 x2
p. This is because the pressure term in the hydrody-

namic equations is compensated by the confinement term,

which is proportional to x2. Hence, to disregard the

Coulomb repulsion (proportional to x2
p) in comparison to the

thermal effects, necessarily x2 
 x2
p. The example in Fig. 3

fits the harmonic confinement dominated scenario. For the

corresponding parameters, the plasma is almost ideal

(K 	 107), and a suitable damping mechanism would be col-

lision with neutrals (Figs. 6 and 7).

IV. NEGLIGIBLE THERMAL EFFECTS

When the Coulomb repulsion dominates the pressure

effects, one can drop the �jBT term in Eq. (10). In this situa-

tion, the undamped problem was solved in Ref. 1, with an

ionic background but without external confinement. Our aim

is the treatment of the � 6¼ 0 case with harmonic trap, which

was not fully performed before, to the best of our

knowledge.

Ignoring thermal effects and differentiating all terms in

Eq. (10) with respect to s, we get

FIG. 5. Function f ðn=n0Þ from Eq. (26).
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@u

@s2
þ � @u

@s
þ x2u ¼ 0; (30)

whose general solution is

u ¼ e��s=2 ðuðn; 0Þ cos ðXsÞ þ x XðnÞ sin ðXsÞÞ ;
X ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � �2=4

p
;

(31)

where XðnÞ is, at this stage, an arbitrary function of the indi-

cated argument and dimensions of a length. We will consider

only the more interesting case, where the damping is weak

so that X2 > 0.

Inserting the velocity field from Eq. (31) back into Eq.

(10) gives

XðnÞ ¼ 1

Xx

�
� x2nþ

x2
p

n0

ð
nðn; 0Þ dn� �uðn; 0Þ

2

�
: (32)

Then, inserting XðnÞ from Eq. (32) into Eq. (7), the

result is

n ¼ nðn; 0Þ 1þ e��s=2

X
@uðn; 0Þ
@n

sin ðXsÞ

"

þ 2

�
x2

p nðn; 0Þ
x2 n0

� 1

�
wðsÞ

#�1

; (33)

where

wðsÞ ¼ 1

2
1� e��s=2 cos ðXsÞ � � e��s=2

2 X
sin ðXsÞ

� �
; (34)

an oscillatory function frequently appearing in what follows.

The electric field follows from Eq. (9), with the choice

E0ðsÞ ¼ 0. To finalize the arbitrary amplitude solution, the

original spatial coordinate is found from Eq. (4) and reads

x ¼ nþ e��s=2

X
uðn; 0Þ sin ðXsÞ

þ 2 �nþ
x2

p

x2 n0

ð
nðn; 0Þ dn

 !
wðsÞ : (35)

The results generalize those of Chap. 3 of Ref. 1 and repro-

duce them in the dissipation-free (� ¼ 0) and balanced

(x ¼ xp) cases. Interestingly, combining Eqs. (9) and (35),

one concludes that asymptotically, the electric and harmonic

forces balance, or eE ¼ �m x2 x as s!1, as expected.

Although the initial conditions nðn; 0Þ; uðn; 0Þ remain

rather general, a constraint arises from the requirement of a

positive definite number density, as follows.

A. Admissible initial conditions in the cold case

Unlike the thermally dominated case, corresponding to

regular solutions by inspection, in the cold case, there is the

need to determine in which circumstances explosive solu-

tions can take place. The mathematical conditions to avoid

the associated multistream flow are described, e.g., in page

37 of Ref. 1, which we strictly follow here. Supposing

nðn; 0Þ � 0 everywhere, from Eq. (33), one has nðn; sÞ � 0

for all time provided

x2
p nðn; 0Þ
x2 n0

þ Fðn; sÞ � 0; (36)

where

Fðn; sÞ ¼ e��s=2 a sin ðXsÞ þ b cos ðXsÞð Þ (37)

in terms of

a ¼ 1

X
@uðn; 0Þ
@n

þ �

2 X
1�

x2
p nðn; 0Þ
x2 n0

 !
;

b ¼ 1�
x2

p nðn; 0Þ
x2 n0

:

(38)

It is easy to verify that in terms of time, the minimum value

of Fðn; sÞ occurs at s ¼ s� such that

Xs� ¼ arctan
X a� � b=2

X bþ � a=2

� �
þ p ¼ p; (39)

where the last equality holds for @uðn; 0Þ=@n ¼ 0, which for

simplicity we assume, to avoid too cumbersome expressions.

Then, evaluating Eq. (36) at s ¼ s� ¼ p=X and isolating

nðn; 0Þ, we derive
FIG. 7. Electric field from Eq. (50), with D¼ 10, normalized to E0 ¼ m x2

n0=ð2 eÞ.

FIG. 6. Function w from Eq. (34) for different damping strengths. Upper

curve, blue: �=X ¼ 0; mid curve, orange: �=X ¼ 1=100; lower curve, green:

�=X ¼ 1=10. One has w! 1=2 as s!1, except in the undamped case.
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nðn; 0Þ
n0

� x2

x2
p

1

1þ exp p�=ð2 XÞ½ � ; (40)

which is the required constraint on the initial number den-

sity, in the case of a uniform initial velocity field uðn; 0Þ. If

the inequality (40) is violated, one has that eventually nðn; sÞ
becomes negative in certain regions. Moreover, inversion of

the Lagrangian variable transform in Eq. (35) becomes mul-

tivalued in this case. From Eq. (40), the striking influence of

the balance factor x2=x2
p is apparent, besides the regulariz-

ing role of damping, which allows smaller values of nðn; 0Þ.
The undamped (�¼ 0) case can be easily evaluated from

Eq. (36), without restriction on initial velocity fields, with

the result

nðn; 0Þ
n0

� x2

2 x2
p

1þ 1

x2

@uðn; 0Þ
@n

� �2
" #

: (41)

In brief, Eqs. (40) and (41) provide meaningful neces-

sary conditions for regular solutions in the cold case.

V. SAMPLE APPLICATIONS IN THE COLD CASE

Unlike the hot or thermally dominated case, there is no

strong restriction on the functional form of the initial condi-

tion nðn; 0Þ and on the general form of the velocity field,

when pressure effects can be disregarded. This allows the

explicit construction of an infinite class of solutions, pro-

vided the mild constraints of Sec. IV A are obeyed. As an

illustration, we consider two initial conditions: a localized,

homogeneous electron gas and an initial condition describing

a bunching of electrons.

A. Homogeneous initial condition

For the sake of illustration, suppose a uniform electron

gas at s¼ 0 is restricted to jnj < n0, with the following initial

conditions:

nðn; 0Þ ¼
n0; jnj < n0;

0; jnj > n0;

(
(42)

together with uðn; 0Þ ¼ 0.

Using Eqs. (8), (31), and (33), the complete solution in

the bulk of the electron cloud (jnj < n0) is found as

n ¼ n0 1þ 2
x2

p

x2
� 1

� �
wðsÞ

� ��1

; (43)

u ¼ exp ð��s=2Þ sin ðX sÞ ðx2
p � x2Þ n=X ;

E ¼ �n0 e n=e0;
(44)

where wðsÞ is defined in Eq. (34).

The Lagrangian coordinate follows from Eq. (35) yield-

ing (inside the electron’s bulk):

n ¼ x 1þ 2
x2

p

x2
� 1

� �
wðsÞ

� ��1

: (45)

Therefore, the domain of the electron cloud will be given by

jxj � n0 ½1þ 2ðx2
p=x

2 � 1ÞwðsÞ�, asymptotically tending to

jxj � x2
p n0=x2 since wðsÞ ! 1=2 as s!1. In addition,

n! n0 x2=x2
p in the long time limit. As expected, a stronger

trapping�x2 produces a more localized solution, while a big-

ger electronic density �x2
p yields the inverse effect. Notice

that the solution becomes stationary when x ¼ xp, in which

case the initial condition represents an equilibrium state.

The number density in Eq. (43) is positively definite and

well behaved for all time provided

x2
p

x2
>

1

1þ exp p �=ð2 XÞ½ � (46)

in agreement with Eq. (40). The strict inequality sign in Eq.

(46) is necessary to avoid explosive solutions associated

with wave breaking, where the density and the gradient of

the velocity field blow up to infinity in a finite time. Finally,

since the electron cloud is always spatially homogeneous,

temperature effects are automatically zero.

B. Gaussian initial condition

Suppose an infinite system with an initially Gaussian

concentration of electrons

nðn; 0Þ ¼ n0 x2

2 x2
p

1þ D exp ð�n2=n2
0Þ

� �
; uðn; 0Þ ¼ 0;

(47)

where D and n0 are positive parameters. The constraint (40)

is manifestly satisfied. Working out Eq. (33), the exact num-

ber density is expressed as

nðn; sÞ ¼ n0 x2

2 x2
p

1þ D exp ð�n2=n2
0Þ

h i
1þ ð�1þ D exp ð�n2=n2

0ÞÞwðsÞ
h i (48)

in terms of the same function wðsÞ defined in Eq. (34).

Asymptotically, one has n! n0x2=x2
p.

Carrying on the necessary steps, the velocity and electric

fields become

u ¼ x2 n0

2 X
exp ð�� s=2Þ sin ðX sÞ � n

n0

þ
ffiffiffi
p
p

D
2

Erf
n
n0

� �" #
;

(49)

E ¼ �m x2 n0

2 e

n
n0

þ
ffiffiffi
p
p

D
2

Erf
n
n0

� �" #
: (50)

Remembering that s ¼ t, the remaining step of the inte-

gration rests on the inversion of the Lagrangian coordinate

transformation, which from Eq. (35) turns out to be

x

n0

¼ n
n0

þ � n
n0

þ
ffiffiffi
p
p

D
2

Erf
n
n0

� �" #
wðsÞ; (51)
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where ErfðsÞ ¼ 2=
ffiffiffi
p
p	 
 Ð s

0
exp ð�s02Þ ds0 denotes the error

function in terms of a generic argument s.

Although Eq. (51) represents a higher transcendental

equation, it can be easily solved numerically to obtain n as a

function of (x, t), provided all pertinent parameters are fur-

nished. Due to 0 � wðsÞ < 1, it can be shown that the solu-

tion is unique. An example of such a procedure is shown in

Fig. 8.

Using Eq. (10), it can be shown that the cold electron

gas assumption is satisfied, provided

jB T

m
�

x4
p n2

0

x2 D ð1þ DÞ : (52)

In particular, if there is no initial bunching (D 	 0), the elec-

tron gas becomes homogeneous everywhere [see Eq. (48)]

and pressure effects are automatically negligible, as mani-

fested from Eq. (52).

VI. CONCLUSION

In this work, new arbitrary amplitude structures were

derived for trapped charged particle systems, in terms of the

Lagrangian variables method. Two classes of solutions have

been identified. One of them is entirely new and valid for

thermally dominated systems, becoming essentially reduc-

ible to the Pinney equation, a traditional ordinary differential

equation in nonlinear physics. Moreover, in the case of a

non-ideal non-neutral plasma, dissipation can also be han-

dled by perturbation theory, provided the damping is weak.

The second class of solutions, applicable to Coulomb repul-

sion dominated systems, significantly generalizes the known

results in the literature, now including collisional effects and

an external harmonic trap. The conditions for the validity of

the solutions have been fully determined in terms of physical

parameters, which helps the experimental verification of the

prescribed dynamics.

The spirit of this work can be generalized in several

directions, allowing for more complex geometries,44 relativ-

istic effects45,46 and harmonic traps with a time-dependent

frequency or external forcing. For instance, the dissipative

Pinney equation has well-known accurate perturbative

solutions in the weakly damped non-autonomous case.18 In

addition, the situation where thermal and Coulomb repulsion

effects are of the same order can in principle be handled to

some extent,8 using a linearization procedure of the pressure

term.1 These possibilities are under investigation and will be

reported elsewhere.
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