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This paper presents a quasilinear analysis of the relativistic electron cyclotron maser instability. Two 
electron popUlations are assumed: a low-temperature background component and a more energetic 
loss-cone population. The dispersion relation is valid for any ratio of the energetic to cold 
populations, and includes thermal and relativistic effects. The quasilinear analysis is based upon·an 
efficient kinetic moment method, in which various moment equations are derived from the particle 
kinetic equation. A model time-dependent loss-cone electron distributidn function is assumed, which 
allows one to evaluate the instantaneous linear growth rate as well as the moment kinetic equations. 
These moment equations along with the wave kinetic equation form a fully self-consistent set of 
equations which governs the evolution of the particles as well as unstable waves.' This set of 
equations is solved with physical parameters typical of the earth's auroral zone plasma. © 1995 
American Institute of Physics. 

I. INTRODUCTION 

The relativistic electron cyclotron maser instability is 
driven by an inverse population of electrons in momentum 
space perpendicular to the magnetic field. The instability op­
erates near the electron cyclotron frequency and/or its har­
monics, and unlike most plasma instabilities the maser insta­
bility amplifies various radiation modes as well as the usual 
trapped modes. The instability relies on the relativistic 
wave-particle interaction. Without the relativistic effect, the 
maser instability cannot be described. Because of these char­
acteristics, the instability is called the relativistic electron 
cyclotron maser in the literature. 

During the past decade or so, extensive studies of the 
relativistic electron cyclotron maser instability have been 
carried out. I- 38 These authors have applied the relativistic 
maser instability to a wide variety of applications ranging 
from astrophysical radio sources,I-3 planetary radio 
emissions,4-8 solar microwave bursts,9-13 the earth's kilo­
metric radiation,14-36 and laboratory microwave generation 
devices.37,38 

Among these possible applications, we mention a well­
known example, namely, the earth's kilometric radiation. 
This radiation phenomenon was successfully explained in 
terms of the weakly relativistic maser instability by Wu and 
Lee. 14 Their work stimulated the recent surge of research 
activities on this topic in the space and astrophysical plasma 
physics community. The source of instability for the kilomet­
ric radiation was identified as the loss-cone electrons that are 
formed when the energetic electrons injected from the geo­
magnetic tail region are reflected by the converging geomag­
netic field. 

Many of the articles in the literature on this instability 
emphasize the linear aspectl4

-
28 (for an extensive review of 

the topic see Ref. 29) although a few discussions on nonlin­
ear evolution can also be found in the literature. Most non­
linear theories make use of numerical simulation 

method.3°-33 Some attempts have been made, however, to 
study the nonlinear stage of the instability by using analytical 
means, namely quasilinear theory.11,12,15,28,36 Studies based 
upon particle simulations have confirmed that the dominant 
saturation mechanism for the maser instability is the quasi­
linear process. 

Among these works related to quasilinear theory, Refs. 
11 and 36 discuss the instantaneous anomalous transport rate 
(i.e., quasilinear diffusion rate) that results from the maser 
instability. Particularly, Ref. II discusses the case of domi­
nant isotropic background plasma with a small component of 
loss-cone electrons, while Ref. 36 discusses the case when 
the background electron component is absent. On the other 
hand, Ref. 15 and its generalization Ref. 28 discuss the so­
lution of the quasilinear equation by assuming a quasi or 
exactly perpendicular propagation angle. A recent work by 
Aschwanden,12 however, constitutes an important step to­
ward a comprehensive treatment of quasilinear theory of ma­
ser instability without employing various approximations 
which were utilized in other related works. 11,15,28,36 
Aschwanden numerically solved the set of fully self­
consistent quasilinear particle and wave kinetic equations, on 
the basis of cold plasma dispersion relation and the assump­
tion that cold electrons support the wave while the energetic 
population contributes to the growth of the wave. 

The present paper resumes the subject by using a disper­
sion relation in which thermal effects as well as effects of 
energetic population on the dispersive property of the wave 
are fUlly taken into account. Whereas Aschwanden solved 
the particle kinetic equation numerically, we make use of an 
efficient moment kinetic equation by modeling an appropri­
ate time-dependent particle distribution function. This 
method has already been employed successfully in previous 
studies?9,40 with the use of cold plasma dispersion relation, 
and now assumes a full power with the inclusion of thermal 
effects. Therefore, this paper introduces a new and efficient 
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method for quasilinear analysis of the maser instability. As 
an application, we choose one set of parameters typical of 
the earth's auroral zone plasma. Of course, more elaborate 
discussion with an extensive parameter study can be carried 
out on the basis of the present method. 

The organization of this paper is the following. Section 
II presents the general formulation employed in the present 
investigation, including the dispersion relation for electro­
magnetic waves, the procedure for obtaining the linear 
growth rate, and quasilinear formalism utilized in the present 
work. Thermal and relativistic effects are fully taken into 
account in the derivation of the dielectric tensor elements. 
Then, Sec. III introduces the model time-dependent electron 
loss-cone distribution function, based on which the moment 
kinetic equations are explicitly evaluated. The general for­
malism developed in Sec. II is then applied to this particular 
model. Section IV is dedicated to a numerical analysis, and 
finally, Sec. V presents summary and discussion. 

II. GENERAL FORMULATION 

In the present analysis we are interested in the instabili­
ties that operate in the vicinity of the electron cyclotron fre­
quency and/or its harmonics. Consequently, because of the 
high wave frequency, the ions are treated as if they are infi­
nitely massive so that the ion response to any perturbation 
can be ignored. Hence, the ions play no dynamical role but 
only provide an overall charge neutrality. 

The electrons are assumed to be composed of relatively 
less energetic (Le., "cold") component and an energetic 
component possessing a one-sided loss-cone structure in mo­
mentum space. The ambient magnetic field is assumed to lie 
in z direction (Bo=Boez), and the wave vector k lies in x-z 
plane, k=k sin (}ex + k cos (}ez. 

A. Dispersion relation 

The dispersion relation is written as 

A(k,w)=ANi +BNi +C=O, 

where 

B=(XII + I-N[)[X~3-1-e33+ X33(X22 + I-Nfl)] 

- (X22+ 1-NfI)[ I + XII + XI3( 2NII+ Xl3)] 

- Xi2( 1- XI3)+2XI2XZ3(NII+ X13), 

(1) 

NJ. and Nil are, respectively, the perpendicular and parallel 
components of N=ck/w, where k is the wave vector. We use 
indices (1,2,3) and (x,y,z) interchangeably. 
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The tensor Xij whose elements appear in Eq. (1) are 
defined as part of the dielectric tensor, which may be written 
with the use of a double series expansion on both harmonics 
of the cyclotron frequency and Larmor radius, as in Ref. 41. 
These infinite series can be rewritten as a single infinite 
series,35 resulting in the following expression: 

where 

x ()C (N.L)2(m-l) 
Xi) = y0i3+<5j3 2: y 

m=l 

m 

X 2: sjj(n,m)l(n,m,oi3+ 0j3)' 
n=-m 

In these expressions, we have defined 

f 
ulu2m-1 

l(n.m,l)= d 3u II.L 'XI, 
y-nY-Nllull 

sll(n,m) =n 2a(!nl,m -In!), 

sI2(n,m) = - imna<tnl,m -In/}:::: - S2I (n,m), 

su(n,m)=naCln[,m-lnl) =s31(n,m), 

sZ2(n,m) = b(ln/,m -lnD, 
s23(n,m) =ima(lnl,m-Inl} = -sdn,m), 

s33(n,m) =a(lnl,m -In/), 

(-1)m[2(n+m)]! (1)2(n+mJ 
a(n,m)= [(n+m)!F(2n+m)tm! '2 ' 

b(O,m)=a( 1 ,m-2), 

b(n,m) = ~ [a(n- I,m) +a(n + I,m - 2) 

n+m-l ] 
-2 n+m a(n,m-l), n>O, 

with an additional rule r (1 )/( - m)! 1 = 0, for m ~ 1. 
Moreover, 

1 
Z= Y [( y-NlIull)Bu.t + NliuJ. BUll]' 

(2) 

where u==p/(mc). Finally, wpe is the electron plasma fre­
quency and De is the electron cyclotron frequency. 

B. Quasilinear formalism 

Quasilinear kinetic equation for the energetic electron 
component may be derived in a standard textbook procedure, 
and may be written as follows: 
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where summation over unstable modes is implicit, and 

L'=nyau.L +au~NIINJ.' 

L"""nYaUL +NlluJ.aull' 

akorr= (_l)n{[ Ed E33- N~) + E23{ E[3 + NIINJ.)]II7+ [( E13 + NllNl )2_ (EI ~ - NW)( E33 - Ni) ]II~- [E23(El1·-NW) 

+ E12( EJ3+NJ. NII)]II3}X{ -[ Ed E33 - Ni)+ E23(E13 + N LNII)F+[(E13 + NIIN1 )2_(Ell- NW)(E33 _N~)]2 

-[ 1023(1011 - NW) + E12( E13 + NJ.NII)]2} -112, 

(3) 

Defining U and f.£ variables, such that u=(ui+ufi)lf2 and f.£=uu(ui+ufir- 1I2 , and defining moments of quasilinear 
equation as (g)$ J d3u gfe' we arrive at the following: 

d _ J 3 1- f.£2 ( D p.p. ) 
dt (f.£)- d u -u- D p.AJe- --;;- a,Je_ ' (4) 

where 

These expressions for the diffusion coefficient tensor Dab can be substituted into Eq. (4) explicitly. As a consequence, one 
can show that the time evolution of the moments are given by 

:1" (u2)= -471"2 ~ I~"" dq Io"" dwi·O!:f y I d
3
u(1- f.£2)ujakOrw[ aJe' ~ (f.£- N~U) B,Je] yo( y-nY -NIlUII)' . 

n=-OO . 

(5) 

:1" (f.£)=271"2n~"" I~oo dq Iooo dwl O!:f y I d
3
u (1 ~f.£2) (f.£- N~U) lak

O nl2[ aJe- ~ (f.£- N~U) a,Je] 

X yoC y- n Y - NlluU)' 

where we have defined the normalized time r=jnejt, and have rewritten the spectral wave energy density as a function of 
normalized quantities 

The quantity NJ. that appears in jakonf is obtained from the dispersion relation, as a function of Nil and w, where NII=qlw. 
Using the resonance condition, u integration can be performed, and the time evolution of the moments can be shown to 

reduce to 

:1" (u2)= -871"3 n~oo J~oo dq In"" dwl O!;qI2 Y( 0(nY -1) fl df.£ Q+Cf.£) + 0(1-nY)0(n2y2-1+ NW) 

X I:f df.£[Q+(p,) + Q -(f.£)]), 
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where 

The upper and lower limits in the J.L integration are given by 
J.Li=,JI-n 2y 2 /N/I, J.Lf=l, for NII>O, and J.Li:=::.-I, 
J.Lf= - )1-n2y 2/jNllj, for NII<O. 

The wave amplitudes evolve in time according to 

(7) 

where the normalized growth rate Wi = Im( w) is self­
consistently obtained from the dispersion relation (1). 

C. Derivation of the growth rates 

The instantaneous growth rate, which is necessary for 
quasilinear evolution of the wave is obtained from the solu­
tion of the dispersion relation. However, the dielectric tensor 
which appears in the coefficients of Eq. (I) when thermal 
effects are taken into account, features a rather complex de­
pendence on w. As a consequence, to obtain the wave fre­
quency as a function of k, for a given mode, is not a trivial 
task, and requires sophisticated and time-consuming numeri­
cal procedures. In order to overcome this difficulty and to 
make the present quasilinear treatment tractable, we employ 
an approximate procedure, which turns out to be quite satis­
factory as far as the frequency range in which significant 
growth occurs is not in the range of anomalous dispersion, 
and as far as the group velocity does not approach zero. 

We obtain the growth rate as follows. The dispersion 
relation as given by Eq. (l) is formally written as a quartic 
equation, with N i as the unknown. Therefore, the roots can 
be formally written as 

2 -B±,JB2 +4AC 
Ni = 2A . (8) 

This is a formal expression, since the coefficients A, B, 
and C are functions of N i . We then follow an iterative pro­
cedure. For a given value of the real wave frequency, we 
evaluate the cold plasma root corresponding to a specific 
mode. This root is inserted into the coefficients A, B, and C, 
and new roots are found from Eq. (8). In this procedure, the 
quantity Nil is treated as a parameter. It can be proved a 
posteriori that the most important wave growth occurs in 
directions almost perpendicular to the ambient magnetic 
field. With sufficient accuracy, therefore, Nil can be consid­
ered as real along the ray path. The new roots found are then 
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n YNIIJ.L+ S ~n2y2N[ J.L2 - (1- n2y2)( 1-N~ J.L2) 
U,,= l-NffJ.L2 ' 

s=::!: 1. 

substituted to the coefficients, and the process is repeated 
until convergence is achieved. We found that usually only a 
few iterations are sufficient to attain convergence. 

The outcome of this iterative procedure is a complex 
value of Ni (or k1.' since these quantities are proportional). 
For a finite group velocity, negative imaginary part of the 
wave vector implies that the wave amplitude grows convec­
tively. Owing to the finite group velocity, the growth along 
the ray path can be written equivalently as a temporal 
growth. This leads to the following approximate expression 
for the growth rate: 

w;=-k;v gx • (9) 

In the above, v gx is the x component of the group velocity, 
and k i is the imaginary part of k 1. • 

III. MODEL TIME-DEPENDENT ELECTRON LOSS­
CONE DISTRIBUTION 

The electron population in the source region is assumed 
to be composed of two populations. The cold background 
population is represented by a low temperature Maxwellian 
distribution function 

(10) 

where a~ =: 2 T bl mec
2

, and T b is the temperature of the back­
ground electrons. measured in energy units. The background 
distribution is assumed to be stationary during the time evo­
lution of the system. 

We now proceed to discuss the model distribution func­
tion for the energetic electrons possessing a one-sided loss 
cone. The model distribution is assumed to be valid for all 
times. That is. instead of solving the kinetic equation for the 
distribution function, we simplify the analysis considerably 
by assuming a time-dependent model for the loss-cone elec­
tron component. For the present purpose, we consider the 
following model distribution function: 39.40 

fe(u,J.L,t) = 1T312~3{t) exp( - );t))C(J.L,t). (II) 

The total thermal energy associated with the energetic 
loss-cone electrons is given by Elmc 2=ne(u

2/2} 
=3nea2/4, where ("·}=21Tf~ldJ.LIodu u2"·f<u,J.L). 
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Using the relation E=3n~T/2, one can relate the effective 
temperature of the loss-cone electrons to the parameter a as 

') ') 

Te=ml'c~a~/2. 

In Eq. (11) G(f.I-,t) is the time-dependent pitch angle 
distribution modeled by 

G(f.I-,t)= 1 +Mt)- ~ tanh(1lo) [tanh2
( f.I-;ol) +A(t)]. 

(12) 

The loss-cone angle Ou;can be determined by taking the 
second derivative of the function G(f.I-,t) with respect to f.I­
and setting it equal to zero. It turns out that the loss-cone 
angle Or..c is· given by 

(13) 

For BLC= 15° the corresponding 0=0.025, for 8r.c=30°, 
0=0.1017, for 8r.c=45°, 0=0.2224, for BLC=60°, 0=0.3797, 
for ()Lc=75°, 0=0.5628, and for ttc=90°, 0=0.7593. 

Shown in Fig. 1 are three-dimensional surface plots as 
well as two-dimensional contour plots of the model distribu­
tion function for energetic electrons, for T e = 4 ke V, loss­
cone angle of Br..c=300 (corresponding to 0=0.101 7304) 
and for three different values of the parameter A (A=O, 1, 
and 10). It should be noted that the limit A--+oo corresponds 
to an isotropic distribution with no loss-cone feature. 

The averages (u2) and (f.I-), whose evolution in time is 
governed by Eqs. (6), are related to the parameters a and A 
as follows, which can be easily demonstrated: 

(14) 

These relations are used in the numerical study of qua­
sUinear evolution. Another useful notion, which is introduced 
as this point, is the notion of the ratio between wave energy 
and particle energy (associated with the energetic electrons), 
for each wave mode 

Ewave f d3k(loEId 2 + IOBkI 2 )/(8'1T) 

Epartide nem ec2 I d3u(u212 )fe 

=3
4 -n; (1 + nb) fi; Joo dq (00 dwl8Ewql2 
a. nl' wp -00 Jo 

X[1+INI 2(1-lsk·k/ 2
)], (IS) 

where k is a unit wave vector. This quantity is useful for the 
normalization of the wave spectra. 

A. Evaluation of l(n,m,1) and e33 for the energetic 
distribution 

The [(n,m,l) integrals defined in l Eq' (2) can be sepa~ 
rated into principal and resonant parts, by the use of the 
Landau contour 

I(n,m,l) = [' (n,m,l) + il"(n,m,l), 

J 
ulu2m-l 

[1(n,m,l)=9 d 3u II: NSf" 
y-n - lIuli 

(16) 

I"(n,m,l)=-'1T J d 3u uliuim-12f,0(y-nY-NllulI)' 
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FIG. L Three-dimensional surface plots as well as two-dimensional contour 
plots of the model distribution function for energetic electrons, for Or.c=30° 
and Te=4 keY. (a) 6.=0, (b) 6.=1, and (c) 6.=10. 

where 9 stands for the principal part of the integral. 
Let us first discuss the case of energetic electrons, whose 

distribution is described by Eq. (11). The resonant part 
["(n,m,l) may be written as follows: 

I"(n,m,l)= -2'1T2( ®(nY-l) fl df.l- P +(f.I-) 

+®(1-nY)®(n2y2-1 +N~) 

L. F. Ziebell and P. H. Yoon 1289 



where 

IL'( 1- IL2)mu;+2m+ I 

P,(IL) = I N I [yJufe+(NII 
U+- IIILY+ 

- 'YILI U JJ ,J'e]u,' 

(17) 

(I 8) 

The symbol ["']u means that the quantity has to be 
s 

evaluated at the resonant velocity Us' The derivatives Jufe 
and J,J'e can be obtained in a straightforward manner from 
Eq. (l I). The limits of the integration, ILi and IL f' are the 
same as defined immediately following Eq. (6). 

The growth rate is very sensitive to changes in the dis­
tribution function along the resonance curve in momentum 
space. Therefore, the resonant parts, as given by Eq. (I7), 
must be evaluated self-consistently at each time step along 
the time evolution of the distribution. On the other hand, the 
principal parts are dependent upon the integrated distribution 
and usually can be regarded as rather insensitive to detailed 
features in the distribution, unless some peculiar circum­
stances are satisfied.42 This virtual independence on detailed 
features of the distribution allows for some further approxi­
mations, which simplify the evaluation of the principal parts 
of the integral, and contribute very much to speeding up the 
quasilinear code. With this reasoning taken into account, 
when evaluating the principal part of the integral l(n,m,l) 
we neglect the IL dependence of the distribution, thereby 
considering a Maxwellian distribution. Moreover, to avoid 
repeated evaluations, we consider that the temperature of the 
distribution do not change appreciably along the time evolu­
tion. Therefore, the principal part of the integral can be re­
garded as a constant. The validity of this approximation is 
confirmed a posteriori with an actual observation of the tem­
perature change in the numerical analysis that follows. 

Therefore, the principal part of the integrall(n,m,!), for 
the case of energetic population is given by 

4a
2m

-
2 J" l'(n,m,/)= - J:;; _>: dUll ulie-J<eu~12 

x (0(m)m~1 (m-I-k)!x~ 
k~O 

- x:e -<'Ei(x,) ) , (19) 

where x ll = - [(2)/(a6)]( l-n Y-Nllull+U[I2). Here, Ei(x) 
is the exponential integral,43 defined by 

J
x e-t 

Ei(x)= -.-7' dt-. 
-x t 

(20) 

The quantity e33 can be written in a similar way 

4 X JX 2 e 2 - u 12 -x . e33=2 r= dUll Ulle 1'( Ii [e °El(XO)], 
ao Y7T -'" 

(21) 
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where Xe=(nelnr)X, with nr=ne+nb' Also, ao is the ini­
tial value of a. 

In the derivation of Eqs. (19) and (21) we have taken 
into account, the fact that the electrons are weakly relativis­
tic, and have expanded the relativistic Y factor as 
y= I + u2/2. In the evaluation of the resonant part [Eq. 
(17)], where the exact position of the resonance curve is 
more important, relativistic effects have been fully incorpo­
rated. 

B. Evaluation of l(n,m,1) and e33 for the background 
distribution 

For the case of the background distribution, which re­
mains stationary throughout the time evolution, the principal 
parts are given by similar expressions as those obtained for 
the energetic electrons 

4 2m-2 (m-I 
ab J'" 2 2 l'(n.m,l)= - J:;; -oc dUll u~e-ulI'ab 0(m) ~ (m 

k=O 

(22) 
4 Xb J'" ? 2 e33=-:::Z -r= dUll u[e-J<bulll2[e-YOEi(yo)], 
ab \l7T -0: 

where YII = - [(2)/( a~)]( 1-n Y - N11ulI+ u~I2), and 
Xb=(nb1nr)X. 

The resonant parts for the case of background distribu­
tion can be obtained by the application of Eq. (J 7) to ib 
distribution. However, we further simplify the evaluation of 
these quantities by considering that for these very cold par-

2 
tic1es,fb = Ahe-ZYIOIb, where Ab= 1I[2a~7TK2(2Ia~)], K2 

being the modified Bessel function of the second kind.44 

Therefore. the resonant part of l(n,m,l) is simply given by 

(23) 

IV. NUMERICAL ANALYSIS AND RESULTS 

The relevant parameters for our quasilinear investigation 
are the ratio of electron plasma to electron cyclotron fre­
quency, rJ'=wpelfle' the ratio between the energetic electron 
density and the background electron density, p'=ne1nb' the 
background electron temperature T b , the effective tempera­
ture of the energetic electrons. T e' the loss cone angle, and 
the ratio between wave energy and particle energy. We 
choose this set of parameters by considering a situation typi­
cal of the earth's auroral zone plasma. 

The physical condition at the auroral region is such that 
hot magnetospheric population prevails over the cold one for 
z ~ 1.5 R E, where RE is the radius of the earth, while the 
cold population dominates at low altitudes. The effective 
temperature for the energetic electrons is never far from 4-5 
ke V. It is known that the ratio of plasma to cyclotron fre­
quency is lower than 0.1 for l.l R£;:5z;:52 RE and ap-

L. F. Ziebell and P. H. Yoon 
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FIG. 2. (a) X mode growth rate for 6.=0 (initial value); (b) 0 mode growth rate fOf 6.=0 (initial value); (c) X mode growth rate for 6.=0.2; (d) 0 mode 
growth rate for 6.=0.2. wp/ln.l=o.05, nb1ne=0.1. x axis, normalized wave frequency (w); y axis, COS-I(q). 

proaches 17= 1 for z -+4 R E, and recent observations have 
emphasized the occurrence of low density plasmas (ne < 1 
cm -3) in the source region.45,46 

Taking these informations into account, we assume a low 
density case, which may be relevant for the AKR (auroral 
kilometric radiation), by considering 17=0.05. The back­
ground temperature is taken as T b = 0.2 ke V, the energetic 
temperature T e = 4 ke V, and the lossccone angle is taken as 
Or.c=30°. We consider three different cases regarding the 
ratio of electron populations, ranging from the cold domi­
nated case to the case of equal electron populations. 

A. Initial growth rates 

First we discuss the initial growth rates for each mode. 
For the present purpose, we concentrate on the fundamental 
X and 0 modes. The harmonics of these modes could be 
included in the analysis, in principle, but it turns out that they 
are only weakly unstable when compared with the funda­
mental modes, for the present choice of parameters. The W 
mode is also stable. The Z mode can playa very relevant role 
for higher density cases,40 but is stable for the present case. 

Panels (a) and (b) of Fig. 2 show, respectively, the initial 
normalized growth rates for the X and 0 modes, for p=O.l, 
vs normalized frequency wand cos -1 q. The quantity 
cos- 1 q approximately coincides with the propagation angle, 

Phys. Plasmas, Vol. 2, No.4, April 1995 

for w= 1 and refractive index =1, which is the case except 
near the cutoffs. We have searched the parameter space, and 
concentrated in the region where the growth rates are signifi­
cant, utilizing a 31 X 31 grid in w - q space. It is seen that 
absolute values of the growth rates are very small as com­
pared to the real frequencies, which validates the use of qua­
silinear theory. 

Panels (c) and (d) of Fig. 2 show the normalized growth 
rates for a case of partially filled loss cone, where we have 
assumed 11=0.2. These panels illustrate the decrease in the 
absolute value of the glOwth rates, and the reduction of the 
unstable region in w-q space. 

B. Quasilinear analysis 

We now discuss the quasilinear evolution of the waves 
and particles. For this analysis, we start by discussing the 
initial wave spectral distribution. For the sake of simplicity, 
we assign the same initial level of wave energy for each 
mode. For the first set of applications, we assume that at 
7=0, E;aveCO)IEparticle = E~ave(O)IEparticle = l.OX 10-4

. 

In addition, we assume that the spectral electric field distri­
bution is uniform over the initially unstable (w,q) space, and 
zero ,otherwise. The initial amplitude of the wave 
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FIG. 3. Time evolution of the parameter 11'(1'). (a) p= I; (b) p=O.I; (e) 
p=O.OI. wp/ID,I = 0.05, Ew.v/Epartld,(O)= LO.X 10-4

, for eac~ mode. 
Curve (d) was obtained with another approach, usmg cold plasma disperSIOn 
relation. 

spectrum is then constant over unstable space, determined in 
such a way that the integrated spectrum satisfies the condi-
. x -10 10-4 hon Ewave(O)IEparticle- • X . 

Using this procedure to determine the initial wave spec­
tra, we have numerically solved the moment kinetic equa­
tions (6). These two equations, together with Eq. (7) for the 
three modes of wave spectra, form a set of 3(nwX nq) + 2 
coupled equations, which we have solved by employing 
Runge-Kutta method with adaptative stepsize control,47 
where nw and nq are the number of points in the spectral grid 
(we have used a 31 x31 grid). In the solution of the disper­
sion relation we have neglected harmonics, and we have uti­
lized the small Larmor radius approximation. 

The resulting evolution of the parameters 0'( r) and A( r) 
vs the normalized time r is depicted in Figs. 3 and 4 respec­
tively, for three values of the population ratio, p=O.O I, 0.1, 
and 1.0. Figure 3 shows that the effective temperature a 
changes very little, attaining in the three cases an asymptotic 
value O'(r ..... oo) =0. 1215. The difference between the three 
cases is the rate of change, with the steady state being 
quickly attained in the case of p= 1.0, while the change is 
slowly produced in the case of p=O.OI. In a different time 
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FIG. 4. Time evolution of the parameter 11(1'). (a) p=l; (b) p=O.I; (c) 
p=O.OI. wpJID,I=0.05, Ewav.!Eparticle(O) = 1.0.X 10-4

, for eac~ m~e. 
Curve (d) was obtained with another approach, usmg cold plasma dlspefSlon 
relation. 
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FIG. 5. Time evolution of E~av.!Epartlcle' (al p= 1; (b) p=O.l; (c) p=O.Ol. 
wp,/ID .. 1 =0.05, EwavelEparticle(O)= LOX 10-4

, for eac~ mOd.e. Curve, (d) was 
obtained with another approach, using cold plasma disperSIOn relallon. 

scale one sees that the case of p=O,O 1 is still evolving at 
time r=5.0X lOS. with the asymptotic state of 0'=0.12128 
attained for r=3.0X 106

. Curve (d) of Fig. 3 is for the case 
p=O.O 1, and is the outcome of a quasilinear analysis based 
upon an approximation which assumes that cold electrons 
support the waves.40 

Figure 4 shows that in the case of p= 1.0, the loss cone is 
quickly filled up, until the parameter A reaches A= 1.05, for 
r= I.8X 105

, The initial rate of evolution is smaller in the 
intermediate case, p=O.l, attaining the asymptotic state of 
A=Q,75. For the case of low population of energetic elec­
trons, p=O.Ol, curve (c) of Fig. 4 shows that the asymptotic 
state of the quantity A is nearly A=O.5, attained for r even 
beyond 5X 105, In Fig. 4(d) one can see the prediction based 
upon the cold plasma dispersion relation, featuring slightly 
larger loss-cone filling, as compared with Fig. 4(c). 

In order to understand these results, one should note that 
the loss cone is already partially filled from the start by the 
cold electron population. In the case of smaller ratio between 
energetic and cold electrons a smaller amount of hot elec­
trons diffusion into the loss cone is therefore sufficient to 
stabilize the instability, when compared to a case of larger 
population ratio. This explains why the saturation is attained 
for smaller values of A progressively when the population 
ratio decreases, as shown by curves (a), (b), and (c) of Fig. 4. 

Figure 5 displays the time evolution of E way; E particle, for 
the X mode. The case of p=O.OI is depicted by curve (c), 
which shows the wave amplitude initially growing slowly, 
and tending to saturate at a level of intensity approximately 2 
orders of magnitude above the original wave leveL The satu­
ration indeed occurs beyond the time limit shown in Fig. 5, 
for r=3.0X 106, with the asymptotic value of 
E IE art' I =1 286X 10-2• Figure 5(b) shows the case of wave' p Ie e • 
p=O.l, which grows at a faster initial rate, but quickly satu-
rates for r= 1.3X 105

, The case of equal electron populations 
is shown by Fig. 5(a). As a result of larger initial growth 
rates, the diffusion proceeds very quickly, but the instability 
saturates nearly at the same wave level attained in other 
cases of smaller population ratio, with asymptotic value 
slightly smaller than in the case of Fig. 5(b). Also shown is 
the result based upon the cold plasma dispersion relation, for 
p=O.Ol [Fig. 5(d)]. The growth of the wave amplitUde is 
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, for each mode. Curve (d) was 
obtained with another approach, using cold plasma dispersion relation. 

initially slightly faster than predicted by the thermal code. 
but the asymptotic level is nearly the same. 

The results depicted by curves (a). (b). and (c) in Fig. 5 
deserve further comments. The case of smaller population of 
energetic electrons features smaller growth rates. which 
makes the wave growth slower. However, the saturation of 
the instability depends upon the diffusion, which fills up the 
loss cone. Due to the normalization utilized, according to Eq. 
(15), the amplitude of the wave energy in the case of p=O.Ol 
is nearly a factor of 100 smaller than the amplitude in the 
case of p= 1.0. The smaller amplitude of the waVe energy 
explains the slower diffusion, which· allows continued 
growth even after the instability has saturated for the case of 
higher energetic population. 

Another interesting feature which must be discussed is 
connected with the conservation of energy in the amplifica­
tion process. The conservation must be analyzed by compar­
ing the average particle energy, as given by a, and the wave 
energy, as given by the parameter EwavefEparticle. The degree 
of filling up of the loss cone by energetic particles (Ll) is"not 
directly involved in the energy conservation. It only contrib­
utes indirectly, through the average particle energy. It is seen 
from Fig. 5 that the asymptotic value of the energy ratio 
Ewav.!Eparticle slightly increases with the decrease of the 
population ratio. while the quantity a decreases with the 
population ratio. as shown in Fig. 3. This behavior is as 
expected from wave-particle energy conservation. 

The ordinary mode shows similar features as those ob­
tained for the extraordinary mode. These features can be ob­
served in Fig. 6, which shows the time evolution of 
Ewav/Eparticle, for the 0 mode. However. for the case of the 
ordinary mode, the growth is much less conspicuous, and the 
final wave level is between 10% and 15% above the original 
wave level. Similar to what we have in Fig. 5, curve (d) is 
obtained with the cold plasma code, for the same parameters 
as curve (c). 

We also studied the influence of the initial level of wave 
activity, by considering different values of the ratio 
Ewave(O)IEparticle. Figure 7 shows the time evolution of the 
energy ratio for the X mode, for p=O.Ol and three different 
values of the initial ratio. In the case of very low initial 
activity Ewave(O)IEparticle= l.OX 10-6

, depicted by curve (c), 

Phys. Plasmas, Vol. 2, No.4, April 1995 

le-Ol 

1,,-02 

le-03 

EX = le-04 
Ep 

le-05 

1e-06 

le-07 
Oe+OO le+05 2e+05 3e+05 4e+05 5e+05 

T 
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parameters as curves (a), (b), and (e), respectively, but were obtained with 
anotherapproaeh, using cold plasma dispersion relation. 

the diffusion proceeds slowly, while the wave level grows by 
a factor of 4 orders of magnitude. In the intem1ediate case, 
Ewave(O)IEparticle= l.OX 10-5

, shown by Fig. 7(b), the growth 
is nearly of 3 orders of magnitude, while in the case of 
higher initial wave level [Fig. 7(a)J, the growth is by a factor 
of 2 orders of magnitude. 

Taking into account the results shown in Fig. 7, for dif~ 
ferent levels of initial wave activity, and also those of Fig. 5, 
one arrives at the conclusion that, for a significant range of 
initial wave levels and ratio of populations, the amplification 
due to the loss-cone instability, for X-mode waves, saturates 
at a level such that Ewave(O)IEparticleCT-tOC) = l.0-2.0X 10-2. 
It is expected that this saturated level could be higher, how­
ever. if a source of loss-cone particles is taken into account 
in the kinetic equation. We have also included in Fig. 7 the 
results obtained with the formulation which uses the cold 
plasma dispersion relation. The qualitative results regarding 
the effect of the initial wave level are similar to those exhib­
ited by Figs. 7(a)-7(c). For the entire range of initial wave 
levels considered, the initial rate of wave growth predicted 
by the thermal calculation is smaller than that predicted by 
the cold plasma version, but the asymptotic level attained by 
the wave field is nearly the same in both cases. 

Figure 8 shows the time evolution of the energy ratio for 
the 0 mode, for p=O.OI and for the same three different 
values of the initial ratio as those considered in obtaining 
Fig. 7. The outcome is that the 0 mode growth is not sig­
nificant and remains on the order of 15%-25% growth over 
the initial value, for the whole range of initial wave level 
considered. 

All these results were obtained for a fixed value of the 
parameter 1], namely, 1]=0.05. However, it is interesting to 
verify the dependence on 1] exhibited by our formulation. 
since previous studies based on an approximated analytical 
approach and numerical simulations have indicated that the 
efficiency of the amplification increases with the decrease of 
the frequency ratio 1].28 The saturation efficiency. denoted in 
Ref. 28 as E, was defined as the ratio between the average 
electromagnetic wave energy density at saturation and the 
perpendicular particle energy density. The distribution func-
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tion utilized as starting point for the simulations was a DGH 
distribution with loss-cone index I, assuming absence of the 
cold electron component. 

Therefore, we have considered the case of 77=0,03 and 
p= 1.0, in order to compare our results with those of the 
numerical simulation of Ref. 28, regarding the 77 depen­
dence. In Table I we list the saturation value of 
Ewav./Eparticle' for the X mode, for 77=0.03 and 77=0.05, and 
for p= 1.0. We also list in Table I the saturation efficiency for 
the X mode obtained in the numerical simulations described 
in Ref. 28 for the case l = 2. 

The ratio between the two values of Ewav./Eparticle listed 
in Table I is 1.997/1.113=1.79. The ratio between the two 
values of the efficiency € is 0.069/0.044= 1.57. On the other 
hand, the inverse ratio between the two values of 77 consid­
ered is 0.0510.03= 1.67. Therefore, we can conclude that the 
present quasilinear approach predicts a saturation efficiency 
for the X mode which is nearly proportional to Oe1wpe, simi­
larly to what has been obtained with numerical simulations 
conducted in the same range of electron energies.28 

V. SUMMARY AND CONCLUSIONS 

In the present paper we have carried out a quasilinear 
analysis of the electron cyclotron maser instability driven by 
a loss-cone population. The novel feature of the present ap­
proach is that, instead of solving the quasilinear kinetic equa­
tion for the particles, we have modeled a time-dependent 
loss-cone distribution function, and discussed the evolution 
of the particles by only considering moments of quasilinear 
equation. This approach has alreadY been used in another 
article based upon an approximation which assumes that the 
waves were supported by the cold plasma population,39.40 but 
the present analysis introduces thermal effects and utilizes 
the full dispersion relation in the quasilinear treatment of the 

TABLE 1. Saturation value of Ewav/EpaItkle, for the X mode, for p= 1,0 and 
different values of ",. 
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0.05 
0.03 

1.113x 10-2 

1.997 x 10-2 
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0.044 
0.069 

loss-cone instability. For the sake of demonstration, we have 
chosen a set of parameters typical of the earth's auroral zone 
plasma. which may be relevant to the description of the au­
roral kilometric radiation. For the parameters chosen. the ra­
tio between electron plasma frequency and electron cyclo­
tron frequency is sufficiently small in order that the only 
relevant unstable modes are the fundamental X and· 0 
modes. 

We have initially considered the case of moderately high 
initial wave level, for three different ratios between the en­
ergetic and the background popUlation. The results indicate 
that, even though the case of higher population of energetic 
electrons displays larger growth rates, the fast diffusion satu­
rates the instability at a wave level which is not significantly 
different than that obtained in the case of small population of 
energetic particles. We have also studied the influence of the 
initial wave level, for a given ratio of popUlations. When the 
wave level is initially very small, the ensuing growth of X 
mode waves is very significant, while it is only moderate in 
the case of relatively high initial wave level. For the 0 mode, 
however, the wave growth has been demonstrated to be small 
for any initial wave level. 

The dependence of the amplification efficiency on the 
frequency ratio wp./Oe has also been briefly discussed, It has 
been seen that the saturation amplitude for X mode waves 
increases when this frequency ratio is decreased, in agree­
ment with results previously obtained by means of numerical 
simulations. 

We have also presented some results obtained with the 
use of an approximation which assumes that the cold elec­
trons support the waves. In order to validate this approxima­
tion, we have considered the case of small population of 
energetic electrons, as compared to background electrons, for 
several values of the initial wave level. The resulting time 
evolution has been shown to be quantitatively similar to that 
obtained with the code which fully incorporates thennal ef­
fects, for the same population ratio. 

The approach using the cold plasma approximation has 
been previously utilized for a case with higher value of the 
ratio between electron plasma to cyclotron frequency, such 
that the Z mode was also initially unstable. For the case of 
dominant cold plasma, it has been seen that despite the fast 
initial growth for the X mode, the Z mode actually saturates 
at a larger ampIitude. 39.40 The method for calculating the 
growth rate introduced in the present paper is not particularly 
well suited for the Z mode, because the Z mode instability is 
an absolute instability with the group velocity approaching 
zero. However, if the limitation of the present method can be 
overcome (say, by directly calculating for the complex fre­
quency), it would be interesting to investigate the situation in 
which the Z mode competes with other modes, with the use 
of the code which fully includes thermal effects. The method 
presented in this paper can also be used for quasilinear analy­
sis of the maser instability in the case of other applications, 
such as solar microwave bursts. 
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