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Abstract  The dispersion of pollutants in the atmospheric boundary layer is a stochastic process but many approaches 

make use of deterministic models, such as the advection-diffusion equation, that determines average values. Comparison 

between observation and model prediction show a significant spread of values due to the stochastic character of the 

pollution dispersion phenomenon. Measured data though represent only one sample of an unknown distribution. Thus, the 

present article is a first attempt to reconstruct at least some of the pollutant concentration distribution properties from the 

comparison of deterministic predictions to observed concentrations under specific micro-meteorological conditions. The 

experimental data are the findings of the Copenhagen campaign. We show the scatter plot of observed versus predicted 

ground level concentrations from which distributional properties are extracted by determining the distance of each plot 

point from the bisector, proposing a parametrization for the probability function and fit the discrete set of data points. The 

probability density function obtainde from the probability distribution shows a narrow peak centered at zero besides a 

second smaller but displaced contribution. A reconstructed distribution symmetrically around zero signifies, that the model 

describes the average values of the distribution with fairly good fidelity and the width could be used as an approximation 

for the second statistical moment. The distribution which is not centered at the origin indicates either missing physics in the 

model, or failures in the measuring procedure. The reconstructed distribution with correlation less than one shows the 

aforementioned stochastic character of the phenomenon. Although applied to a specific experiment and using one 

deterministic model the reconstruction method is general and can be applied to other scenarios in an analogue fashion. 

Keywords  Dispersion of pollutants, Stochastic phenomenon, Deterministic predictions, Probability density function 

 

1. Introduction 

The dispersion of pollutants in the atmospheric boundary 

layer is a stochastic process which varies unpredictably over 

a time interval. Although it is a random phenomenon, in 

many approaches is modeled by deterministic models, in our 

case given by the advection-diffusion equation, that 

determine average values. 

A variety of studies have shown that in almost all cases a 

significant spread of values in the observed-predicted 

concentration plot occurs which on the one side may have 

influences by model uncertainties but on the other hand 

stems from the stochastic character of the dispersion 

phenomenon. 

Independent of the model nature and its predictability, it is 

noteworthy, that measured data in general may not be 

repeated with equal micro-meteorological conditions, so that  
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often a measured concentration is only one sample of an 

unknown distribution, with its related statistical moments. 

The model choice in favor of the advection-diffusion 

equation is based on formal progress in solving this equation 

in an (semi-)analytical fashion and although predicting only 

average values shows fairly good agreement with 

measurements. The short coming of lacking information of 

higher statistical moments in the model is to its simplified 

closure by K-theory. This theory was extended by 

parameterizations that besides the vertical eddy diffusion 

profile also takes into account the changes in the diffusion 

parametric functions with distance from the pollution source. 

In this line the present article is a first attempt to 

reconstruct at least some of the pollutant concentration 

distribution properties from the comparison of deterministic 

predictions to observed concentrations for observations with 

determined micro-meteorological conditions. The same 

conditions are used for the deterministic dispersion 

simulations. In principle, the presented procedure may be 

applied to any other dispersion model, so that in the present 

discussion, focus is put on the reconstruction procedure and 

less on the pertinent question as to what is the most 



 American Journal of Environmental Engineering 2016, 6(4A): 6-11 7 

 

 

appropriate model for describing the phenomenon in 

consideration.  

2. The Model 

The model used in this approach is the advection-diffusion 

equation obtained by combining the continuity equation with 

Fick’s Law: 
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𝜕𝑐 
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𝜕

𝜕
 𝐾𝑧

𝜕𝑐 

𝜕𝑧
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where 𝑥 is the direction of the mean wind, 𝑐  is the mean 

concentration, 𝑢  is the mean wind, 𝐾𝑦  and 𝐾𝑧  are the 

turbulent diffusion coefficients and in this case 𝐾𝑧  

dependent on the height 𝑧  and time 𝑡 . Equation (1) is 

subject to the initial condition of zero concentration and zero 

flow in the contours of the area of interest. The source is 

𝑢 𝑐  0, 𝑦, 𝑧, 𝑡 = 𝑄𝛿 𝑦 − 𝑦0 𝛿 𝑧 − 𝐻𝑠  in 𝑥 = 0,  where 𝑄 

is the rate of emission of the pollutant, 𝐻𝑠 is the height of 

the source, 𝛿 is the Dirac delta function, 𝑦0 is characterized 

by the crosswind coordinate of the source and h is the height 

of the boundary layer. 

The success of a deterministic model is strongly 

influenced by the way the turbulent parameters are related to 

the understanding of the phenomenon. The diffusion 

coefficient, with temporal dependence, derived by Degrazia 

et al. [1] is based on diffusion theory, statistical Taylor 

approach and a spectral model of kinetic energy. This 

methodology derived from convective and moderately 

unstable conditions, provide diffusion coefficients 

characteristic described in terms of speed and duration of 

energy containing eddies and scales can be expressed by 

algebraic formulation as: 
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Here 𝛼 = 𝑥, 𝑦, 𝑧, 𝑖 = 𝑢, 𝑣, 𝑤, and 

𝑐𝑖 = 𝛼𝑖 0.5 ± 0.05  2𝜋𝜅 −2 3  

𝛼𝑖 = 1,
4

3
,

4

3
 respectively for 𝑢, 𝑣 and 𝑤 [2], 𝜅 = 0.4 is 

the von Karman constant,  𝑓𝑚
* 

𝑖
 is the normalized 

frequency of the spectral peak, h is the height of the 

atmospheric boundary layer, 𝑤* is the convective velocity 

scale, 𝜓 is the non-dimensional molecular dissipation rate 

function and 𝑋 =
𝑥𝑤*

𝑢 ℎ
 is the non-dimensional travel time, 

where 𝑢  is the horizontal mean wind speed. 

For horizontal homogeneity the convective boundary 

layer evolution is driven mainly by the vertical transport of 

heat. As a consequence of this buoyancy driven ABL, the 

vertical dispersion process of scalars is dominant when 

compared to the horizontal. Therefore, the present analysis 

will focus on the travel time dependent vertical eddy 

diffusivity. This vertical eddy diffusivity can be derived 

from Eq. (2) by assuming that 𝑐𝑤 = 0.36 and 

 𝑓𝑚
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for the vertical component [3]. 

Furthermore, considering the horizontal plane, we can 

idealize the turbulent structure as a homogeneous one with 

the length scale of energy-containing eddies being 

proportional to the convective boundary layer height h. Thus, 

for the lateral eddy diffusivity we used the asymptotic 

behaviour of Eq. (2) for large diffusion travel times with 

𝑐𝑣 = 0.36 and  𝑓𝑚 𝑣 = 0.66
𝑣

ℎ
 [4]. 

Finally, the dissipation function 𝜓 according to [5, 6] has 

the form 

𝜓 1 3  =   1 −
𝑧

ℎ
 

2

−  
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𝐿
 
−2 3 

+ 0.75 

1 2 

 

where 𝐿 is the Monin-Obukhov length in the surface layer.  

2.1. Results 3D-GILTT 

Equation (1) was solved analytically in [7] by combining 

the idea of the decomposition method and GILTT. Upon 

applying the idea of the decomposition reduces the 

advection-diffusion equation with time dependence of the 

diffusion coefficient into a set of recursive equations 

depending only on the diffusion coefficient in the spatial 

variable 𝑧 (besides𝑡), which is then directly solved by the 

aforementioned method. 

Table 1.  Pollutant concentrations for nine runs at various positions of the 
Copenhagen experiment and model prediction by the 3D-GILTT approach 
with time dependence of eddy diffusivity. Concentration is divided by the 
emission rate 

Run 
Distance 

(m) 

Observed 

(10-7s.m-3) 

Predictions 

(10-7s.m-3) 

1 1900 10.5 10.21 

1 3700 2.14 3.65 

2 2100 9.85 7.09 

2 4200 2.83 2.28 

3 1900 16.33 9.80 

3 3700 7.95 7.88 

3 5400 3.76 4.50 

4 4000 15.71 15.24 

5 2100 12.11 6.68 

5 4200 7.24 4.48 

5 6100 4.75 3.73 

6 2000 7.44 7.78 

6 4200 3.47 2.20 

6 5900 1.74 1.46 

7 2000 9.48 6.60 

7 4100 2.62 3.32 

7 5300 1.15 1.65 

8 1900 9.76 5.97 

8 3600 2.64 4.87 

8 5300 0.98 1.91 

9 2100 8.52 5.64 

9 4200 2.66 3.04 

9 6000 1.98 2.19 
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Figure 1.  Observed (Co) and predicted (Cp) scatter plot of centerline concentration using the Copenhagen dataset. Data between dotted lines correspond to 

ratio 𝐶𝑜 𝐶𝑝 ∈  0.5,2  

Evaluation of the performance of the 3D-GILTT and 

simulation of the dispersion of contaminants in the  

atmospheric boundary layer is compared to the performance 

of the solutions against experimental concentrations of the 

Copenhagen campaign [8]. 

The vertical wind speed profile used in the simulations is 

described by the power law that follows 

𝑢 

𝑢1 
=  

𝑧

𝑧1
 
𝑛

                   (3) 

where 𝑢  and 𝑢1  are the average speeds of the horizontal 

wind at heights 𝑧 and 𝑧1, respectively and 𝑛 is an exponent 

which is related to the intensity of turbulence [9], where 

according to the author 𝑛 = 0.1 is valid for a power wind 

profile in unstable conditions. Table 1 shows the comparison 

of 3D-GILTT simulated results against experimental data.  

Figure (1) shows the scatter plot of ground level 

concentrations observed versus model simulations by 

3D-GILTT and normalized by the emission rate. For 

statistical comparisons of performance between the 

Copenhagen experimental data and the results from the 

GILTT the following statistical indices are used for 

evaluation.  

NMSE(normalized mean square error)= 𝐶𝑜 − 𝑐𝑝 
2

𝐶𝑜 𝐶𝑝 , 

COR(correlation coefficient) = 0.5 𝐶𝑝 𝐶𝑜  2, 

FS(fractional standard deviations)= 𝜎0𝜎𝑝 0.5  𝜎𝑜 + 𝜎𝑝  

where the subscripts 𝑜 and 𝑝  refer to observed and 

predicted quantities, respectively, and the overbar indicates 

an averaged value. An acceptable result should reflect small 

values for the indices NMSE and FS and above 0.8 for the 

index COR. Table 2 displays the model performance 

evaluated by the statistical indices. 

Table 2.  Statistical comparison between the 3D-GILTT model and the 
Copenhagen dataset 

Model NMSE COR FS 

3D-GILTT 0.17 0.89 0.32 

A critical comment is in order here. From the data fitting 

point of view the ideal values of vanishing NMSE and FS are 

desired, whereas a correlation shall be close to unity. 

Recalling, that for the considered type of problem the 

measured phenomenon has turbulence characteristics where 

statistical moments beyond the first one are significant for an 

adequate distributional description but the underlying 

theoretical model considers only average values, 

consequently the best one may expect is a correlation from 

0.8 on and above depending on the natural width and  

kurtosis of the measured distribution, which is not present in 

the deterministic model. 

3. Distribution Reconstruction 

As a first approach towards a procedure to recover some 

distributional properties from the comparison with the 

experimental data set, one determines the distances of each 

point (Co,Cp) to the ideal line, i.e. the bisector. To this end we 

introduce a simple change of the canonical basis           

𝛼 =   1,0 ,  0,1  to the orthogonal base with 𝛽 =

  
1

 2
,

1

 2
 ,  

−1

 2
, −

1

 2
  . Thus, the distance from each 

respective point to the bisector is expressed in the new basis, 

by 

 
𝛥𝑥
𝛥𝑦

 =  𝐼 𝛼
𝛽
 
𝐶𝑜

𝐶𝑝
                (4) 

where 𝛥𝑦  is the distance of  𝐶𝑜 , 𝐶𝑝  to the bisector line and 

 𝐼 𝛼
𝛽

 is the matrix representing the change of basis. Table (3) 

shows the distance of each point resulting from the above 

procedure. 

Once Δ is known, one can construct a probability 

distribution function 

𝐹𝑥 𝑋 = 𝑃 𝜔𝑋 𝜔 ⊆ 𝑋               (5) 

where 𝐹𝑥 𝑋  shall satisfy 

i) Fx (−∞) = 0, 

ii) Fx (∞) = 1, 
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iii) Fx is monotonically increasing. 

Table 3.  Distances 𝛥 of each point (Co,Cp) to line of 45o 

(Co,Cp) Δ 

(10.5, 10.21) 0.145 

(2.14, 3.65) -0.755 

(9.85, 7.09) 1.38 

(2.83, 2.28) 0.275 

(16.33, 9.80) 3.265 

(7.95, 7.88) 0.035 

(3.76, 4.50) -0.370 

(15.71, 15.24) 0.235 

(12.11, 6.68) 2.715 

(7.24, 4.48) 1.380 

(4.75, 3.73) 0.510 

(7.44, 7.78) -0.169 

(3.47, 2.20) 0.635 

(1.74, 1.46) 0.140 

(9.48, 6.60) 1.440 

(2.62, 3.32) -0.350 

(1.15, 1.65) -0.250 

(9.76, 5.97) 1.895 

(2.64, 4.87) -1.115 

(0.98, 1.191) -0.465 

(8.52, 5.64) 1.440 

(2.66, 3.04) -0.189 

(1.98, 2.19) -0.105 

Figure (2) shows the probability distribution function. To 

determine the probability density function, it is necessary to 

transform our discrete variable X in a continuous variable, 

which may be attained introducing a parametrization 

compatible with the restrictions for 𝐹𝑥 −∞ . The 

distribution profile presented in figure 2 may be 

parametrized by an approximation using a superposition of 

hyperbolic tangent functions. In the present case the 

implementation needed only the sum of two hyperbolic 

tangent functions. 

𝐹𝑋 𝑋 =
1

2
 𝑎1 𝑡𝑎𝑛ℎ 𝑎2𝑋 + 1 +  1 − 𝑎1  𝑡𝑎𝑛ℎ 𝑎3 −

𝑎4𝑋 + 1                                (6) 

That is, FX is defined such that a1 refers to an amplitude, a2 

and a4 are factors related to the growth rate of X and a3 

determines translation in X for the second function. 

A best fit for the discrete set of data points may be 

obtained upon minimizing the squares of differences 

between the data and the parametrized probability 

distribution function. A variety of minimizing procedure are 

at hand, for simplicity we use as an optimization the method 

of least squares. The least squares problem is to find the 

parameter set a that minimizes the expression 

𝐺 𝑎 =
1

2
  𝑟𝑘 𝑎  

2
=

1

2
 𝑟 𝑎 2 𝑚

𝑘=1          (7) 

where a = [a1, a2, a3, a4]
T and r(x) represents the difference 

between the data set and the proposed function, assuming m 

points to be adjusted to the curve. 

The solution of the least squares problem was 

implemented using Newton's method although it is known to 

work with local convergence only. Due to that fact a 

preprocessing was applied for the iterative process such that 

the initial values for the parameter set of the Newton iteration 

was within the radius of convergence. 

The approximation to Newton’s iterative process was 

established graphically and the resulting interpolation 

parameter set is given by a1 = 0.787834, a2 = 1.33617, a3 = 

2.31281 and a4 = 1.09579. Figure (3) shows the agreement of 

the approximate function with the set of predicted data. 

 

 

Figure 2.  Probability distribution function 
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Figure 3.  Comparison of the distribution function proposed and the data points from comparison 

 

Figure 4.  Probability density function P(X) 

From these findings one can calculate the probability 

density function by the well known relation between the 

probability distribution and the probability density function, 

𝑃 𝑥 =
𝑑𝐹𝑋  𝑋 

𝑑𝑋
                   (8) 

where P(±∞) = 0 holds and further P(X) is normalized. 

 𝑃 𝑥 𝑑𝑥 = 1
∞

−∞
. 

The probability density function is shown in Fig. (4). By 

inspection one observes a narrow peak centered at zero. If 

the reconstructed distribution was symmetrically around 

zero, one could conclude that the model describes the 

average values of the distribution with fairly good fidelity 

and the width could be used as an approximation for the 

second statistical moment. However, figure 2 shows also a 

second contribution with a maximum approaximately at X=2. 

This distribution which is not centered at X=0 indicates that 

there is either some physics missing in the model, or that 

there occurred errors in the measuring procedure. Without 

further information on data acquisition or turbulence 

parameterization no conclusion may be drawn so far. In any 

case the reconstructed distribution clearly shows the 

aforementioned stochastic character of the phenomenon and 

explains why one should expect values for COR < 1. 
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From the obtained probability density function one may 

obtain confidence levels for probabilities of sample data. 

This may be used as a further plausibility test for the 

reconstructed distribution. Such a procedure is necessary due 

to the fact that the observed data are only one sample of an 

unknown distribution, where the reconstructed distribution is 

a first estimate. The width of the distribution indicates how 

significant higher stochastic moments are in order to 

describe the turbulent phenomenon. For instance a narrow 

width indicates that a deterministic model is sufficient 

whereas a broad one indicates that a model extension is of 

need, i.e. additional equations for the higher statistical 

moments shall be proposed. The confidence level is 

determined by 

 𝑃 𝑥 𝑑𝑥 = 𝜈
𝑥 +𝛥 

𝑥 −𝛥 
                (9) 

where 𝛥  is the expectation value, i.e. the value an exact 

deterministic model would predict. Table 4 also shows that 

because of the non-centered distribution the confidence 

intervall is not symmetric, due to the already mentioned 

model or measuring errors. It is noteworthy, that the 

distribution width and associated confidence level is not a 

measure for the reliability of the model but a manifestation of 

the uncertainties of the turbulencde parametrization or 

experimental data quality. 

Table 4.  Confidence levels and corresponding confidence interval 

95% [-1.59809, 2.79609] 

80% [-0.787786, 2.79609 

70% [-0.37872, 2.27413] 

50% [-0.162961, 1.43876] 

30% [0.0281579, 0.777125] 

10% [0.222279, 0.44912] 

4. Conclusions 

The present work focussed on the pertinent question of 

describing the stochastic phenomenon of pollution 

dispersion in the planetary boundary layer by a deterministic 

model. Although being one of the oldest enigmas of 

fundamental and applied science, up to now no model exists 

that is able to reliably dewscribe effects of turbulent flows. 

Moreover, in the planetary boundary layer thermal effects 

are absorbed in the eddy diffusivities by their stability 

regime dependent parametrizations, which have their origin 

in the closure problem a crucial step along the derivation of 

the model. As a first attempt to recover the lost statistical 

moments by the modelling details a comparison of 

experimental data to the predicted values by the 

deterministic model was peformed. The procedure used a 

projection of the dispersed data points, i.e. observed versus 

predicted concentrations, which resulted in a discrete sample 

that were used to parametrize a probability distribution 

function. From the analysis of the obtained probability 

density function one could identify at least two distributions, 

the first one symmetric around the bisector, that 

corresponded to data compatible with the model and the 

second one that indicated or model or measurement errors. 

Evidently the present discussion leaves open a variety of 

questions, such as how to discriminate model and 

measurement failures, though we believe to have done a first 

step into a new direction.         
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