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SWAP algorithms can shift the glass transition to lower temperatures, a recent unexplained observation
constraining the nature of this phenomenon. Here we show that SWAP dynamics is governed by an
effective potential describing both particle interactions as well as their ability to change size. Requiring
its stability is more demanding than for the potential energy alone. This result implies that stable
configurations appear at lower energies with SWAP dynamics, and thus at lower temperatures when the
liquid is cooled. The magnitude of this effect is predicted to be proportional to the width of the radii
distribution, and to decrease with compression for finite-range purely repulsive interaction potentials. We
test these predictions numerically and discuss the implications of our findings for the glass transition.
These results are extended to the case of hard spheres where SWAP is argued to destroy metastable states
of the free energy coarse grained on vibrational timescales. Our analysis unravels the soft elastic modes
responsible for the speed-up induced by SWAP, and allows us to predict the structure and the vibrational
properties of glass configurations reachable with SWAP. In particular, for continuously polydisperse
systems we predict the jamming transition to be dramatically altered, as we confirm numerically. A
surprising practical outcome of our analysis is a new algorithm that generates ultrastable glasses by a
simple descent in an appropriate effective potential.
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I. INTRODUCTION

Understanding the mechanisms underlying the slow-
ing-down of the dynamics near the glass transition is a
long-standing challenge in condensed matter [1,2].
Unexpectedly, SWAP algorithms [3–5] (in which particles
of different radii can swap in addition to the usual moves
of particle positions) were recently shown to allow for
equilibration of liquids far below the glass transition
temperature Tg [6–9]. This discovery has practical
importance, as it allows one to reach quench rates similar
to experiments in glasses, and to observe numerically
known phenomena (including the brittleness of metallic
glasses [10]) previously very hard to reproduce computa-
tionally. For judicious choice of poly-dispersity, one finds
the following. (i) The glass transition is shifted to lower
temperatures: with swaps the α-relaxation time at Tg is
only 2 or 3 orders of magnitude slower that in the liquid,

instead of 15 orders of magnitude for regular dynamics.
The slowing-down of the dynamics occurs at a lower
temperature, which we refer to as TSWAP

0 . (ii) The spatial
extent of dynamical correlations, which are significant
near Tg, are greatly reduced with SWAP and occur only at
TSWAP
0 . (iii) The mean squared displacements of particles

on vibrational timescales increases significantly in this
temperature range [8]. These observations constrain
theories of the glass transition. In particular, these
observations appear inconsistent with current formula-
tions of theories based on a growing thermodynamic
length scale [11]. A theory of the glass transition should
explain both SWAP and non-SWAP dynamics. Goldstein
[12] proposed that the glass transition is initiated by a
transition in the free-energy landscape: at high temper-
ature, the system resides near saddles, whereas below
some temperature T0, the dynamics can occur only by
activation (whose nature is debated), and is thus much
slower. In mean-field models of structural glasses such a
transition in the landscape is predicted [13–16] and
corresponds to a mode coupling transition where the
relaxation time diverges. It was suggested that the
mode coupling transition would be shifted to lower
temperature with SWAP dynamics in Ref. [11], as proven
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and confirmed numerically in a mean-field model of
glasses [17]. Yet, understanding the real-space mecha-
nisms underlying the speed-up induced by SWAP in finite
dimensions (where the relaxation time cannot diverge) as
well as the nature of the very stable glassy configurations
SWAP can reach remains a challenge.
In this work, we tackle these questions by first

reviewing the equilibrium statistical mechanics theory
of polydisperse systems [18,19], to show that they are
equivalent to a system of identical particles that can
individually deform according to a chemical potential
μðRÞ, where R is the particle radius. In the (practically
important) case where polydispersity is continuous, μðRÞ
is smooth, allowing us to define normal modes of the
generalized Hessian that includes radii as degrees of
freedom. We prove that requiring its stability is strictly
more demanding than for the usual Hessian. Second, we
show that these results stringently constrain the glassy
states generated by SWAP algorithms. We illustrate this
point by studying the jamming transition in soft repulsive
particles, which we prove must be profoundly altered:
hyperstaticity is found with an excess number of contacts
δz with respect of the Maxwell bound δz ∼ α1=2 > 0,
where α characterizes the width of the radii distribution
ρðRÞ. Although we find that the vibrational spectrum of
the generalized Hessian is marginally stable with respect
to soft extended modes near jamming, these modes are
gapped in the regular Hessian, unlike for packings
obtained with regular dynamics [20–23]. These results
are verified numerically by introducing a novel algorithm
performing a steepest descent in the generalized potential
energy that includes μðRÞ, which can generate extremely
stable glasses without any activation. Third, we inves-
tigate the glass transition. We show that the inherent
structures obtained after a rapid quench with the regular
dynamics are unstable with respect to this new algorithm,
which reaches significantly smaller energies. This result
indicates that metastable states appear at lower energies
with SWAP, and therefore at lower temperatures when the
liquid is equilibrated. Thus the Goldstein transition must
be shifted to a lower temperature with SWAP dynamics,
suggesting a natural explanation for its speed-up, which
specifies the collective modes facilitating the dynamics
for TSWAP

0 < T < Tg. We predict this shift to be propor-
tional to α in general, and to be inversely proportional to
the distance to jamming for sufficiently compressed soft
spheres. Lastly, we argue that these results apply to hard
spheres as well, if the energy is replaced by a coarse-
grained free-energy landscape as previously studied in
Refs. [21,24–26]. We use this approach to provide a
simple phase diagram where the Goldstein transition
and the emergence of marginality [20] (referred to
as a Gardner transition in infinite dimension [26]) can
be related to structure for both SWAP and non-SWAP

dynamics.

II. GRAND-CANONICAL DESCRIPTION OF
POLYDISPERSE SYSTEMS

A. Effective potential

We next show that systems of polydisperse particles
can be described by an effective potential that includes
particles’ radii as degree of freedom, an idea first put
forward in Refs. [18,19]. We consider a system of N
particles with continuous polydispersity ρðRÞ, of width
α ¼ hðhR2i − hRi2Þ1=2i=hRi. Here fRg indicates the set of
particle radii and frg their positions. In what follows we
denote hRi≡ R0, and Uðfrg; fRgÞ the total potential
energy in the system. In the usual view point, frg are
degrees of freedom and fRg are fixed parameters. We now
show that there is an equivalent formulation of the problem
where both frg and fRg play a similar role.
We define the partition function ZðfrgÞ annealed over

the particle radii:

ZðfrgÞ ¼
X

PðfRgÞ
exp½−βUðfrg; fRgÞ�; ð1Þ

where the sum runs over all the permutations PðfRgÞ of
the particle radii. In the thermodynamic limit, a grand-
canonical formulation is equivalent, in which particles of
different radii correspond to different species. The asso-
ciated partition function is written as

ZGCðfrgÞ ¼
X
fRg

exp

�
−β

�
Uðfrg; fRgÞ þ

XN
i

μðRiÞ
��

;

ð2Þ

where μðRÞ is the chemical potential of particles with
radius R. It is chosen such that in the thermodynamic limit,
the distribution of radii that follows from Eq. (2) is

ρðRÞ≡ 1

Z

X
frg;fRg

1

N

�X
i

δðR − RiÞ
�

× exp

�
−β

�
Uðfrg; fRgÞ þ

XN
i

μðRiÞ
��

: ð3Þ

A key remark is that once Eq. (2) is integrated on particle
positions frg, one obtains the partition function for the
coupled degrees of freedom frg and fRg with an effective
energy functional:

Vðfrg; fRgÞ ¼ Uðfrg; fRgÞ þ
XN
i

μðRiÞ: ð4Þ
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B. Grand-canonical dynamics

According to Eqs. (2) and (4), equilibration in poly-
disperse systems can be reached by dynamics where both
positions frg and radii fRg evolve in time, so as to
equilibrate the effective energy V. We shall refer to such
procedures as grand-canonical dynamics. We now argue
that SWAP belongs to that class in the thermodynamic limit.
Indeed, if the system is very large, swapping two particles
is equivalent to swapping one particle with a bath of
particles of different radii. This bath is described by a
chemical potential μðRÞ, which must precisely be such that
the polydispersity ρðRÞ is maintained over time.
We see below that the effective energy landscape

affecting grand-canonical dynamics (including SWAP) is
profoundly different from the usual potential energy
landscape affecting the normal dynamics (while all thermo-
dynamic quantities are by construction identical, independ-
ently of the dynamics chosen). In particular, inherent
structures [i.e., minima of Vðfrg; fRgÞ] appear at lower
potential energies for grand-canonical dynamics, as we now
show using stability considerations.

C. Mechanical stability under SWAP

Let us consider inherent structures (our arguments for the
energy landscape are later extended to the free-energy
landscape in the case of hard spheres). In the thermody-
namic limit, mechanical stability under SWAP dynamics
requires V to be at a minimum. Beyond the usual force
balance condition, it implies:

∂U
∂Ri

≡X
j

fij ¼ −
∂μ
∂R

����
R¼R�

i

; ð5Þ

where fij are the contact forces between particle i and j
(positive in our notations for repulsive forces), and (fr�g,
fR�g) the particle positions and radii at the minimum.
For unimodal distribution ρðRÞ, one expects μðRÞ to be
unimodal, too. In an amorphous solid the fluctuations of the
left-hand side of Eq. (5) are of order pRd−1

0 , where p is the
pressure and d the spatial dimension. To achieve a
distribution of radii of width α, the stiffness kR acting
on each particle radius must thus be of order

kR ≡ h∂2μ=∂2Rii ∼ pRd−2
0 =α; ð6Þ

where the average is taken over all particles i.

D. Generalised vibrational modes

Stability also requires the Hessian HSWAP (the matrix of
second derivatives of V) to be positive definite. Including
the particles’ radii, we consider a total of Nðdþ 1Þ degrees
of freedom; therefore, HSWAP is a Nðdþ 1Þ × Nðdþ 1Þ
symmetric matrix, of eigenvalues ω2

SWAP. It contains a block
of size Nd × Nd, which is the regular Hessian Hij ¼

∂2U=∂ri∂rj. We denote by ω2 its eigenvalues. Because
hybridization with additional degrees of freedom can only
lower the minimal eigenvalues of the Hessian, HSWAP has
lower eigenvalues than H (as quantified below), implying
that mechanical stability is more stringent with SWAP

dynamics (and more generally with grand-canonical
dynamics).
Let us illustrate this result perturbatively when kR ≫ k,

where k is the characteristic stiffness of the interaction
potential U. In general, the eigenvalues of H are functions
of the set of stiffnesses fkijg, but also of the interaction
forces ffijg [27]. We first ignore the effects induced by the
presence of such interaction forces, referred to here and in
what follows as prestress. Moving along a normal mode of
H by a distance x (while leaving the radii fixed) leads to an
elastic energy ∼ω2x2 and changes forces by a characteristic
amount δf satisfying δf2=k ∼ x2ω2. Because of such
change, Eq. (5) is not satisfied anymore. Thus the potential
V can be reduced further by an amount of order δf2=kR ∼
ω2x2k=kR if the radii are allowed to adapt. This reduced
energy can be approximatively written as x2ω2

SWAP, where
ω2

SWAP is the eigenvalue associated to that mode in the
effective Hessian. We thus obtain:

ω2 − ω2
SWAP ∼ ω2

k
kR

; for kR ≫ k: ð7Þ

III. SOFT-SPHERE SYSTEMS

To illustrate these ideas, we consider soft spheres with
half-sided harmonic interactions, so that

Uðfrg; fRgÞ ¼
X
i;j

k
2
ðrij − Ri − RjÞ2ΘðRi þ Rj − rijÞ;

ð8Þ

where rij is the distance between particles i and j, andΘðxÞ
is the Heaviside step function.

A. Jamming transition for soft spheres under SWAP

When materials with such finite-range interactions are
quenched to zero temperature, they can jam into a solid or not,
depending on their packing fraction. At the jamming tran-
sition separating these two regimes, vibrational properties are
singular [28,29], and the effects of SWAP are expected to be
important, as we show next. The vibrational spectrum of the
regular Hessian is strongly affected by the excess number of
constraints δz with respect to the Maxwell threshold where
the numbers of degrees of freedom and constraints match.
Effective medium [30] or a variational argument [31] implies
that in the absence of prestress, soft normal modes in the
Hessian must be present with eigenvalues:
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ω�2 ∼ k δz2: ð9Þ

For swap with a small polydispersity α ≪ Δ, where we
introduced the dimensionless particle overlapΔ≡ pRd−2

0 =k,
then following Eq. (6) kR ≫ k, and Eq. (7) applies. It implies
that soft normal modes will be present at lower eigenvalues
ω� 2

SWAP ∼ δz2kð1 − C0α=ΔÞ,whereC0 is a numerical constant.
Prestress can be shown to shift eigenvalues of the Hessian by
some amount ≈ − C1kΔ [20,32], leading to eigenvalues
satisfying ω0 2

SWAP ∼ δz2kð1 − C0α=ΔÞ − C1kΔ. Mechanical
stability requires positive eigenvalues, and we obtain

δz ≥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1Δ

ð1 − C0
α
ΔÞ

s
; for α ≪ Δ: ð10Þ

Equation (10) indicates that away from jamming, the relative
effects of SWAP on the structure are proportional to α=Δ,
corresponding to the saturation of inequalities of the kind
of Eq. (10). Below, we provide numerical evidence that it is
also the situation if SWAP is used, at least near jamming. Here
this assumption gives an expression for δzwhich is above (but
very close to, in the limit α ≪ Δ) the bound for non-SWAP

dynamics of Ref. [20], recovered by setting α ¼ 0. Thus, in
this limit,we expect very small change of structure in theglass
phase between SWAP and non-SWAP dynamics.
For SWAP with a large polydispersity α ≫ Δ, the sit-

uation is completely different. We then have kR ≪ k: in this
regime the strong interactions correspond to those between
particles in contact. As far as the low-frequency end of the
spectrum is concerned, these interactions can be considered
to be hard constraints (i.e., k ¼ ∞), whose number isNz=2.
The dimension of the vector space satisfying such hard
constraints is Nðdþ 1Þ − Nz=2 ¼ Nð1 − δz=2Þ. These
modes gain a finite frequency due to the presence of the
weaker interactions of strength kR associated with the
change of radius. Importantly, the number of these weaker
constraints left is simply the number of particles N. If δz
is small, the number of degrees of freedom Nð1 − δz=2Þ is
just below the number of constraints N: for this vector
space we are close to the “isostatic” or Maxwell condition
where the number of constraints and degrees of freedom
match. Thus we can use the same results for the spectrum
valid near the jamming transition introduced above. They
also apply in that situation, with the only difference that the
stiffness scale k is replaced by kR. In particular, if prestress
is not accounted for, a plateau of soft modes must appear
above some frequency given by Eq. (9):

ω� 2
SWAP ∼ kRδz2 ∼ k

Δ
α
δz2; ð11Þ

This plateau survives up to the characteristic frequency:

ωi ∼
ffiffiffiffiffi
kR

p
∼

ffiffiffiffiffiffiffiffiffi
Δ=α

p
: ð12Þ

When prestress is accounted for, eigenvalues of the Hessian
are again shifted by ∼ − kΔ. Mechanical stability then
implies Δ=αδz2 > C2Δ and

δz ≥ C2

ffiffiffi
α

p
; for Δ ≪ α: ð13Þ

In this regime, marginal stability [the saturation of the
stability bound of Eq. (13)] implies a pressure-independent
coordination, with δz ∼

ffiffiffi
α

p
and

ω�
SWAP ∼

ffiffiffiffiffiffi
kΔ

p
: ð14Þ

We thus predict that SWAP dynamics destroys isostaticity,
and significantly affects structure and vibrations. For
sufficiently large α, this regime will include the entire
glass phase, and vibrational properties and stability will be
affected in the vicinity of the glass transition (which sits at a
finite distance from the jamming transition [33]) as well.
Note that these predictions apply to algorithms that allow

for swap moves up to the jamming threshold. This is not the
case, e.g., in Ref. [34], where swaps are used to generate
dense equilibrated liquids that are then quenched without
swap toward jamming. We also expect isostaticity to be
restored in algorithms for which the set of particle radii is
strictly fixed, but only below some pressure pN that vanishes
as N → ∞, above which our predictions should apply.

B. Numerical model

As shown in Eq. (4), SWAP dynamics is equivalent to a
system of interacting particles which can individually
deform. To test our predictions, we consider soft spheres
as defined in Eq. (8), whose radii follow the internal
potential:

μðfRgÞ ¼ k̄R
2

X
i

ðRi − Rð0Þ
i Þ2

�
Rð0Þ
i

Ri

�
2

; ð15Þ

where k̄R is a characteristic stiffness. We considered a
potential diverging as Ri → 0 to avoid particles shrinking to
zero size. To avoid crystallization we further considered

that particles are of two types: for 50% of them, Rð0Þ
i ¼ 0.5,

while for the others, Rð0Þ
i ¼ 0.7. This choice leads to a

bimodal distribution of size ρðRÞ, as shown in Fig. 1. Our
model corresponds to a SWAP dynamics where swap is
allowed only between particles of the same type. Note that
broad monomodal distributions can be optimized to make
SWAP more efficient while avoiding crystallization [8],
which would be similar to having a very large α in our
theoretical description. The spatial dimension is d ¼ 2 in
our simulations, and k ¼ 1 is our unit stiffness, leading to a
simple relation Δ ¼ p.
To study the jamming transition, we consider a pressure-

controlled protocol at zero temperature described in the
Appendix A 1. The chemical potential of Eq. (15) must
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evolve with pressure to maintain a fixed polydispersity. As
shown in Fig. 1(b), it can be achieved within great accuracy
simply by imposing that k̄R ¼ p=ᾱ, where ᾱ is a parameter
that controls the width α, as shown in the inset of Fig. 1. For
this bimodal distribution, α is defined as α ¼ ðα1 þ α2Þ=2,
where α1, α2 are the relative width of each peak in ρðRÞ. In
the limit where the non-SWAP dynamics is recovered—
which happens when ᾱ → 0—α and ᾱ are proportional.

C. Structure and stability

Our central prediction is that for SWAP dynamics,
materials must display a larger coordination to enforce
stability. This prediction is verified in Fig. 2(a), which
shows δz versus Δ for various values of ᾱ. Isostaticity is
indeed lost and the coordination converges to a plateau
as Δ decreases. Strikingly, we find for the plateau value
δz ∼

ffiffiffī
α

p
, consistent with a saturation of the stability

bound of Eq. (13). This scaling behavior is implied by
the scaling collapse in Fig. 2(b), which also confirms that
the characteristic overlap below which swap affects the
dynamics scales as Δ ∼ ᾱ. Overall, these results support

that the numerical curves δzðΔÞ in Fig. 2(a) correspond to
the marginal stability lines under SWAP dynamics, shown
for different polydispersity (see more on that below).

D. Packing fraction

For traditional dynamics, polydispersity tends to have
very limited effects on the value of jamming packing
fraction ϕJ. We confirm this result in the S.I., by showing
that although our model can generate very different dis-
tributions ρðRÞ, the values we obtain for ϕJ cannot be
distinguished if jamming is investigated using non-SWAP

dynamics. However, for SWAP dynamics we expect the
situation to change dramatically: since stability requires
much more coordinated packings, they presumably need
to be denser, too. We denote the jamming packing fraction
for SWAP ϕc ≡ limΔ→0ϕðΔÞ. The inset of Fig. 3(a) confirms
that ϕc increases significantly as ρðRÞ broadens. To
quantify this effect we consider ϕðΔ; ᾱÞ, as shown in the
main panel. Assuming a scaling form for this quantity, and
requiring that it satisfies the known results for the jamming
transition for Δ ≫ ᾱ implies ϕðΔ; ᾱÞ − ϕJ ¼ fðΔ=ᾱÞᾱβ,
where fðxÞ is some scaling function and β ¼ 1. Since the
coordination does not change for Δ ≪ ᾱ, we expect that it
is true for the structure overall and for ϕ, implying that
fðxÞ ∼ x0 as x → 0. These predictions are essentially
confirmed in Fig. 3(b). Note, however, that the best scaling
collapse is found for β ¼ 0.83 < 1. These deviations are
likely caused by finite-size effects, known to be much
stronger for ϕ than for the coordination or vibrational
properties [35], and which may thus be present for our
systems of N ¼ 484 particles.

E. Vibrational properties

We computed the Hessian HSWAP and diagonalized it (see
details in SI) to extract the density of states DðωÞ, as shown
in Fig. 4(a) for different pressures at fixed polydispersity. As
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for ᾱ ¼ 0, and for the smallest pressure we simulate
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expected, at low particle overlap Δ two bands appear in the
spectrum. The lowest-frequency band presents a plateau
above some frequency scale ω�

SWAP which satisfies ω�
SWAP∼ffiffiffiffi

Δ
p

, as shown in the inset of Fig. 4(a), as expected if the
structure were marginally stable. As shown in the S.I., in the
absence of prestress the minimal eigenvalues of the Hessian
increase substantially, again a signature of marginal stability
[20]. Further evidence appears in Fig. 4(b), showing DðωÞ
at fixed Δ ¼ 10−4 for varying polydispersity. ω�

SWAP

essentially does not depend on ᾱ, as shown in the inset
of Fig. 4(b), as expected for marginal packings if the pressure
is fixed. The cutoff frequency ωi of the low-frequency
plateau scales as ωi ∼

ffiffiffiffiffi
kR

p
∼ 1=

ffiffiffī
α

p
, as predicted above.

IV. GLASS TRANSITION

We now turn to the glass transition, which always
takes place at a sizable distance form the jamming

transition [33]: for example, for hard disks, ϕg ≈ 0.78
and ϕc ≈ 0.85. A similar difference of packing fraction
occurs by compressing soft spheres at overlap Δ ≈ 0.05, as
illustrated in Fig. 5(d). From the arguments above, we
expect that if the polydispersity is sufficiently large,
vibrational properties will be strongly affected even far
away from jamming, in particular, near the glass transition.
The direct consequence of this fact is that the energy

landscape will be affected by SWAP, which will in turn affect
the glass transition. Configurations of high energy are
unstable—they reside in the vicinity of saddles with many
unstable directions—whereas below some characteristic
energy, minima appear. However, since stability is strictly
more demanding with SWAP, this characteristic energy must
be reduced when SWAP is allowed for. We prove this point
in Figs. 5(a) and 5(b), where inherent structures of energy
U∞ are obtained after using a steepest descent for non-
SWAP dynamics. These configurations are not stable for
our generalized steepest descent that let particles deform,
which leads to configurations of energy Uα < U∞. This
effect is stronger near jamming in relative terms, as shown
in Fig. 5(c), but remains significant away from jamming if
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FIG. 4. (a) DðωÞ for different Δ at fixed ᾱ ¼ 10−3. Inset: ω�
SWAP

versus Δ, where ω�
SWAP is extracted asDðω�

SWAPÞ ¼ 10−2. Dashed
line corresponds to the marginality condition ω�

SWAP ∼
ffiffiffiffi
Δ

p
.

(b) DðωÞ for different c̄ and fixed Δ ¼ 10−4. Inset: ω�
SWAP versus

Δ. Dashed line is the theoretical prediction ωi ∼
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Δ
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=

ffiffiffī
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and the

continuous line corresponds to ω�
SWAP ¼ ffiffiffiffi

Δ
p ¼ 0.001.

(a)

(b)

(d)

(c)

FIG. 5. (a) Illustration of the effect of SWAP on the energy
landscape. Systems rapidly quenched with non-SWAP dynamics
display an energy U∞. These states are unstable to a steepest
descent with SWAP, leading to a lower energyUα: metastable states
appear at lower energies with SWAP. (b) Values for U∞ (full
symbols) and Uα (open symbols) as a function of the dimension-
less pressure Δ imposed during the quenches as a function of ᾱ as
shown in the legend. The ratioU∞=Uα is shown in (c), it is stronger
near jamming but the effect remains significant important even far
for jamming if the system is sufficiently polydisperse. As shown in
the inset, in relative terms the shift of the energy of inherent
structures ðU∞ − UαÞ=Uα is proportional to α and inversely
proportional to Δ when Δ is large enough. (d) The packing
fraction ϕc obtained after SWAP is turned on is larger than ϕ∞
obtained for non-SWAP dynamics, an effect that is stronger near
jamming.
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the polydispersity is broad enough. It corresponds, for
example, to a reduction of energy of 25% for Δ ¼ 0.05 for
our α ¼ 0.06. We show in the inset of Fig. 5(c) that the
relative shift of energy induced by SWAP ðU∞ − UαÞ=Uα is
proportional to α and inversely proportional to Δwhen Δ is
large enough, consistent with what we found for the
structure in Eq. (10).
Thus, as the temperature is lowered in these liquids, the

Goldstein temperature where activation sets in will be
smaller when SWAP is allowed for. This analysis thus
predicts an entire temperature range in which the non-
SWAP dynamics is slowed down by activation, whereas with
SWAP dynamics the system can flow along unstable modes.
More quantitatively, we predict the shift of glass transition
temperature ΔTg=Tg induced by SWAP to be proportional to
α, consistent with the observation that very broad distri-
butions lead to large SWAP effects [8]. We also predict that
ΔTg=Tg is inversely proportional to the distance to jam-
ming Δ when this quantity is well defined (e.g., for soft
spheres, but also to some extent for Lennard-Jones poten-
tials [29,36]) and large enough. In real space, the unstable
modes that render activation useless involve both transla-
tional degrees of freedom as well as swelling and shrinking
of the particles. We show an example of such a mode in
Fig. 6, corresponding to the softest mode of the generalized
Hessian we obtain with parameters α¼0.06 and Δ ¼ 10−2.
It illustrates that the particle displacements are not neces-
sarily divergence-free when SWAP is allowed, since the
system can locally compress or expand by changing the
particle sizes.
The interpretation of SWAP acceleration described above

is consistent with the observation that the dynamics is less
collective with SWAP at the temperature where the non-
SWAP dynamics is activated, since the system can rearrange
locally without jumping over barriers if there are enough

unstable modes. Collective dynamics is expected only
when these modes become less abundant at lower temper-
atures. Likewise, we expect the Debye-Waller factor to be
larger with SWAP, since the vibrational spectrum is softer.
Note that these arguments are not restricted to finite range
interactions. We expect them to apply as well to Lennard-
Jones potentials, for example, where the abundance of
degrees of freedom versus the number of strong interactions
is also known to affect the vibrational spectrum [29,36].

V. HARD-SPHERE SYSTEMS

Our arguments above consider the potential energy
landscape. For interaction potentials which are very sharp,
nonlinearities induced by thermal fluctuations are impor-
tant, and the vibrational properties of a glassy configuration
at finite temperature T can differ significantly from those of
its inherent structure obtained by quenching it rapidly. Here
we consider the extreme case of hard spheres where the
energy is always zero, and cannot be used to define
vibrational modes. Instead, by averaging on vibrational
timescales within a glassy configuration, a local free energy
can be defined [24–26], where particles that collide within
that state interact with a logarithmic potential. This
description is exact near jamming and systematic devia-
tions are expected away from it [37]. However, in practice,
the Hessian defined from this free energy captures well
the fluctuations of particle positions and the vibrational
dynamics throughout the glass phase [25]. This procedure
can be pursued to include thermal effects in soft spheres
as well [38].
Stability and vibrational properties can be computed in

terms of this Hessian for non-SWAP dynamics [24,25].
Salient results are shown in the simplified diagram of
Fig. 7. Once again, two key determinants of stability are
the typical gap between interacting particles Δ̃≡ T=ðpRd

0Þ
relative to the particle radius, and the excess coordination
δz, where the coordination is defined from the network of
particles that are colliding within a glassy state. A marginal
stability line separates stable and unstable configurations,
as illustrated in Fig. 7, whose asymptotic behavior follows
δz ∼ Δ̃ð2þ2θÞ=ð6þ2θÞ, where θ ≈ 0.41 [38]. (Strictly speaking,
this line will depend slightly on the system preparation, but
this dependence is expected to be modest, and is irrelevant
for the present discussion.)
Under a slow compression the system follows a line [in

red (Fig. 7)] in the ðΔ̃; δzÞ plane. Mechanical stability is
reached only for some Δ̃ < Δ̃0, a characteristic onset gap
where the dynamic crosses over to an activated regime
where vibrational modes become stable, consistent with
Goldstein’s proposal. In these materials, deeper in the glass
phase the system eventually returns to the stability line, and
undergoes a sequence of buckling events that leave it
marginally stable [20,21,25]. Marginal stability implies the
presence of soft elastic modes (that differ from Goldstone

FIG. 6. Example of soft mode with ω ≈ 0.078 for ᾱ ¼ 1 and
Δ ¼ 10−2. Blue disks indicate the initial particles radii, red disks
the new radii induced by motion along that mode. Arrows
represent the displacements δr⃗i of the particles multiplied by 4
for visualization.

THEORY FOR SWAP ACCELERATION NEAR THE GLASS … PHYS. REV. X 8, 031050 (2018)

031050-7



modes) up to nearly zero frequency, and fixes the scaling
properties of both structure and vibrations as jamming is
approached [20,21]. These results, valid in finite dimen-
sions, have been quantitatively confirmed in infinite
dimension calculations [22,26,39]. In that case, the point
where buckling sets in was argued to be a sharp transition,
coined Gardner, where the free-energy landscape fractures
in a hierarchical way [39], as supported by numerical
studies [40]. For very rapid quenches, it was argued that the
entire glass phase should be marginal [25,39].
How is this picture affected by SWAP? Our arguments for

the generalized Hessian of the soft-sphere system essen-
tially go through unchanged for the generalized Hessian of
the free energy in the hard-sphere system. Once again,
stability becomes more demanding with SWAP, and the
marginal stability line is shifted to higher coordination in
the ðΔ̃; δzÞ plane as represented in the right-hand panel of
Fig. 7. Thus, the glass transition is shifted toward higher
packing fractions. At smaller gap Δ̃ (corresponding to the
approach of jamming), stability implies δz ≥ α1=2, again
implying that isostaticity is lost with SWAP. We conjecture
that, just as for soft particles, marginal stability is reached
in the glass phase, which would correspond to a Gardner
transition in infinite dimensions.

VI. CONCLUSION

In SWAP algorithms, the dynamics is governed by an
effective potential Vðfrg; fRgÞ that describes both the
particles’ interaction and their ability to deform. As a result,
we show that vibrational and elastic properties are softened
when swaps are allowed for, while thermodynamic quantities
are strictly preserved (when thermal equilibrium is reached).
This result supports that the crossover temperature T0, where
mechanical stability appears and dynamics becomes acti-
vated, must be reduced with SWAP with TSWAP

0 < T0, leading
to a natural explanation as to why the glass transition occurs
then at a lower temperature TSWAP

g < Tg. Secondly, SWAP

must strongly affect the structure of the glass phase. This is
particularly striking near the jamming transition that occurs in
hard and soft spheres, where we predict that well-known key
properties such as isostaticity must disappear. We confirm
these predictionsnumerically, and find that for rapid quenches
the effective potential Vðfrg; fRgÞ appears to be marginally
stable throughout the glass phase.
Concerning the glass transition, our work does not

specify the mechanism by which activation occurs in
glasses, but it does support that SWAP delays the temper-
ature where activation is required for structural relaxation,
which potentially explains several previous observations of
SWAP algorithms [6–9]. Possible theories to describe the
mechanism by which activation occurs in glasses include
elastic [41] and facilitation models [42]. We believe,
however, that theories based on a growing thermodynamic
barrier (induced by a growing static length ξ) will be hard to
reconcile with the notion that some collective modes do not
see any barriers at all [43].
Our analysis also makes additional qualitative testable

predictions. By increasing continuously the width α of
the radii distribution ρðRÞ, we predict that TSWAP

g ðαÞ will
smoothly decrease, while TgðαÞ should be essentially
unchanged, with ½TgðαÞ − TSWAP

g ðαÞ�=TgðαÞ ∝ α and, more
specifically, ∝ α=Δ for soft spheres. Furthermore, many
studies have analyzed correlations between dynamics and
vibrational modes, see, e.g., Refs. [14,15,25,46], which can
be repeated to relate the SWAP dynamics to the spectrum of
the effective potential Vðfrg; fRgÞ. Near Tg, we predict the
latter to have more abundant modes at low or negative
frequencies than the much-studied Hessian of the potential
energy, and its softest modes to be better predictors of
further relaxation processes. Lastly, the present analysis
suggests that adding additional degrees of freedom (such as
changing the shape of the particles, and not only their size)
will increase even further the difference between SWAP and
non-SWAP dynamics.
Finally, we show that ultrastable glasses can be built

on the computer, simply by descending along the effective
potential Vðfrg; fRgÞ. As illustrated in Fig. 7, these
configurations must sit strictly inside the stable region of
the regular dynamics (i.e., at a finite distance from the blue

FIG. 7. Log-log representation of the stability diagram in the
coordination δz ¼ z − zc and Δ̃ plane for continuously poly-
disperse thermal hard spheres with non-SWAP (left) and SWAP

(right) dynamics. Note that for hard spheres Δ̃ is independent of
temperature and vanishes at jamming. In the left-hand panel, the
blue line separates mechanically stable and unstable configura-
tions. The red line indicates the trajectory of a system under a
slow compression. When Δ̃ decreases toward the onset gap Δ̃0,
metastable states appear and the dynamics becomes activated and
spatially correlated. In the glass phase, the red trajectory will
depend on the compression rate, but will eventually reach the blue
line at some (rate-dependent) Δ̃G. When this occurs, a buckling or
Gardner transition takes place where the material becomes
marginally stable, leading to a power-law relation between Δ̃
and δz. Right: For SWAP dynamics, stability is more demanding
and is achieved only on the green line, which differs strictly from
the blue one. Thus the onset gap decreases to some value
Δ̃s

0 < Δ̃0: the dynamics become activated and correlated at larger
densities, shifting the position of the glass transition. Marginality
is still expected beyond some pressure Δ̃s

G, but leads to plateau
value for the coordination, indicating that isostaticity is lost.
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line in Fig. 7). As a consequence, the usual potential energy
landscape UðfrgÞ around the obtained configurations does
not display excess soft anomalous modes at very low
frequency, even near the jamming transition: these modes
are gapped. This result must hold for the ground state,
too (which must be stable toward SWAP), and by continuity
also for low-temperature equilibrated states. It may explain
why marginal stability (and the Gardner transition leading
to it) could not be observed in protocols where a thermal
quench was used from SWAP-generated configurations [47].
It would be very interesting to see if other well-known
excitations of low-temperature glassy solids are also
gapped in these configurations, including two-level sys-
tems, reported to be almost absent in experimental ultra-
stable glasses [48].

ACKNOWLEDGMENTS

We thank L. Berthier, G. Biroli, M. Cates, M. Ediger, and
F. Zamponi for discussions and E. DeGiuli for providing
useful comments on the manuscript. E. L. acknowledges
support from the Netherlands Organisation for Scientific
Research (NWO) (Vidi Grant No. 680-47-554/3259).
M.W. thanks the Swiss National Science Foundation for
support under Grant No. 200021-165509 and the Simons
Foundation Grant (No. 454953 Matthieu Wyart).

APPENDIX: SUPPLEMENTAL MATERIAL

This appendix provides (i) descriptions of the numerical
model, protocols, and methods used to generate athermal
packings under SWAP dynamics at different pressures, (ii) a
computation of the Hessian of the potential energy, together
with explanations about how prestress affects the vibra-
tional modes, and (iii) a discussion about the effect of the
radii distribution generated by SWAP dynamics on the value
of the packing fraction of our athermal packings obtained
while freezing the degrees of freedom associated with
particles’ radii.

1. Numerical model, protocols, and methods

We employ systems ofN ¼ 484 particles in a square box
in two dimensions. The total potential energy depends upon
the particles’ coordinates frg and radii fRg, as

Vðfrg; fRgÞ ¼ Uðfrg; fRgÞ þ μðfRgÞ: ðA1Þ

The pairwise potential term reads

Uðfrg; fRgÞ ¼ k
2

X
ij

½rij − ðRi þ RjÞ�2ΘðRi þ Rj − rijÞ;

ðA2Þ

where k is a stiffness, set to unity, rij is the distance
between the ith and jth particles, and ΘðxÞ is the Heaviside

step function. The chemical potential associated with the
radii is

μðfRgÞ ¼ k̄R
2

X
i

ðRi − Rð0Þ
i Þ2

�
Rð0Þ
i

Ri

�
2 ≡X

i

μðRi; R
ð0Þ
i Þ;

ðA3Þ

where k̄R is the stiffness of the potential associated with the
radii fRg that serves as a parameter in our study, and is set

as described below. Rð0Þ
i denotes the intrinsic radius of the

ith particle. In each configuration we randomly assigned

Rð0Þ
i ¼ 0.5 for half of the particles and Rð0Þ

i ¼ 0.7 for the
other half. The massm of particles, and that associated with
their fluctuating radii, are all set to unity. Vibrational
frequencies should be understood as expressed in terms
of

ffiffiffiffiffiffiffiffiffi
k=m

p
, and pressures in terms of k.

Configurations in mechanical equilibrium at zero tem-
perature and at a desired target pressure p0 were generated
as follows. We start by initializing systems with random
particle positions at packing fraction ϕ ¼ 1.2, and set the

initial radii to be Ri ¼ Rð0Þ
i . We then minimize the total

potential energy Vðfrg; fRgÞ at a target dimensionless
pressure Δ0 ¼ 10−1 using a combination of the FIRE

algorithm [49] and the Berendsen barostat [50]; see further
discussion about the latter below. Each packing is then used
as the initial conditions for sequentially generating lower-
pressure packings, as demonstrated in Fig. 8. Following
this protocol, we generated 1000 independent packings
at each target dimensionless pressure, which ranges from
Δ0 ¼ 10−1 up to Δ0 ¼ 10−5. For each target pressure, we
set the stiffness k̄R of the chemical potential of the radii
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FIG. 8. Dimensionless pressure Δ as a function of iteration
number for a packing-generating simulation starting from one
particular initial condition. Each step of the staircase shape of the
signal corresponds to the production of a packing at some desired
target pressure. The criterion for convergence to mechanical
equilibrium at each pressure is explained in the text. We produced
packings ranging from Δ ¼ 10−1 to Δ ¼ 10−5.
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according to k̄R¼p0=ᾱ, and vary ᾱ systematically between
3 × 10−4 and 1. During minimizations we calculate a
characteristic net force scale Ftyp ≡ ðPikF⃗ik2=NÞ1=2,
where F⃗i ¼ −∂V=∂r⃗i is the net force acting on the ith
particle, whose coordinates are denoted by r⃗i. A packing is
considered to be in mechanical equilibrium when Ftyp

drops below 10−8Δ0.

a. Berendsen barostat parameter

The FIRE algorithm [49] features equations of motion
which are to be integrated as in conventional MD simu-
lations. We exploit this feature and embed the Berendsen
barostat [50] in our Verlet integration scheme [51]. This
amounts to scaling the simulation cell volume by a factor χ,
calculated as

χ ¼ 1 − ξδtðΔ0 − ΔÞ; ðA4Þ

where δt is the (dynamical) integration time step, and ξ is a
parameter that determines how quickly the instantaneous
dimensionless pressure converges to the target dimension-
less pressure [51]. Figure 9 shows the ξ dependence of the
convergence of the instantaneous dimensionless pressure Δ
to the target valueΔ0. Below ξ ¼ 0.01, the behavior ofΔ as
a function of iteration number is similar. We therefore set
ξ ¼ 0.01 throughout this work.

2. Computation of HSWAP

The total potential energy Vðfrg; fRgÞ of our model
system is spelled out in Eqs. (A1)–(A3). We next work out
the expansion of V in terms of small displacements δr⃗i of

particle positions, and small fluctuations δRi of the radii,
about a mechanical equilibrium configuration with energy
V0, as

δV ≡ V − V0 ≃
1

2

X
ij

δr⃗i ·Hij · δr⃗j þ
1

2

X
ij

δRiQijδRj

þ
X
ij

δRiTij · δr⃗j; ðA5Þ

where Hij ≡ ∂2V=∂r⃗i∂r⃗j, Q≡ ∂2V=∂Ri∂Rj, and Tij≡
∂2V=∂r⃗i∂Rj. The expansion given by Eq. (A5) can be
written using bra-ket notation as

δV ¼ 1

2
hδljHSWAPjδli; ðA6Þ

where jδli is a ðdþ 1ÞN-dimensional vector which con-
catenates the spatial displacements δr⃗i and the fluctuations
of the radii δRi: ðδr⃗1; δr⃗2;…; δr⃗N; δR1;…; δRNÞ. The
operator HSWAP can be written as

HSWAP ¼
� ½HNd;Nd� ½TNd;N �
½TT

N;Nd� ½QN;N �
�
:

The elements of the submatrix HNd;Nd can be written as
tensors of rank d ¼ 2 as

Hij ¼ δhiji

�
kðrij − Ri − RjÞ

2rij
n⃗⊥ij ⊗ n⃗⊥ij þ

k
2
n⃗ij ⊗ n⃗ij

�

þ δi;j
X
l

�
kðril − Ri − RlÞ

2ril
n⃗⊥il ⊗ n⃗⊥il þ

k
2
n⃗il ⊗ n⃗il

�
;

where n⃗ij is a unit vector connecting between the ith and
jth particles, n⃗⊥ij is a unit vector perpendicular to n⃗ij, ⊗
is the outer product, δhiji ¼ 1 when particles i, j are in
contact, δi;j is the Kronecker delta, and the sum is taken
over all particles l in contact with particle i. The elements of
the submatrix QN;N are scalars given by

Qij ¼ δhijikþ δi;j

�X
hli

kþ ∂2μðRi; R
ð0Þ
i Þ

∂R2
i

�
: ðA7Þ

The matrix TN;Nd is not diagonal, and each element can be
expressed as a vector with two components given by

Tij ¼ −δhijikn⃗ij − δi;j
X
l

kn⃗il: ðA8Þ

The eigenvectors of HSWAP are the normal modes of the
system, and the eigenvalues are the vibrational frequencies
squared ω2. The distribution of these frequencies is known
as the density of states DðωÞ.
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FIG. 9. Instantaneous dimensionless pressureΔ as a function of
the number of iterations for one initial condition, taken to be
Δ ¼ 0.025. Here we set ᾱ ¼ 10−3, fix the target pressure to
Δ0 ¼ 10−3, and observe the form of the convergence of the
instantaneous dimensionless pressure to the target dimensionless
pressure, for different values of the Berendsen barostat parameter
ξ (see definition in text).
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a. Effect of the prestress on the vibrational modes

When a system of purely repulsive particles is at
mechanical equilibrium, forces fij are exerted between
particles in contact. These forces give rise to a term in the
expansion of the energy, of the form

−
1

2

X
hiji

fij
rij

½ðδr⃗j − δr⃗iÞ · n⃗⊥ij�2; ðA9Þ

often referred to as the “prestress term.” For plane waves, it
can be shown that the energy contributed by this term is
very small. However, for the soft modes present when the
system is close to the marginal stability limit, it can be
shown that this term reduces the energy of the modes
by a quantity proportional to the pressure [20]. Marginal

stability corresponds to a buckling transition where the
destabilizing effect of prestress exactly compensates the
stabilizing effect of being overconstrained. In this scenario,
where two effects compensate each other, the eigenvalue of
the softest (non-Goldstone) modes of the Hessian in the
absence of prestress ω̄2 must be much larger than ω�2
computed when prestress is present. To demonstrate this,
we have calculated the density of states for systems while
including and excluding the prestress term. The results are
shown in Fig. 10, where it is found that near jamming
ω�2=ω̄2 ≈ 5%, which is consistent with what was previ-
ously found for the traditional jamming transition [21] and
supports that the system is very close to (but not exactly at)
marginal stability.

3. Packing fraction

In the main text we show that the jamming packing
fraction ϕc generated using the SWAP dynamics increases
when ρðRÞ broadens, i.e., for smaller values of the
parameter ᾱ that controls the stiffness of the potential
energy associated with the radii. Here we compare the
dependence of the packing fraction on pressure as mea-
sured for systems in which the radii are not allowed to
fluctuate. In addition, in this test we borrow the distribution
of radii ρðRÞ from SWAP packings generated at p ¼ 10−4,
and at various values of the parameter ᾱ, varied between
1 to ∞ (the latter corresponds to disallowing particle
radii fluctuations). Packings were generated using the total
potential energy as given by Eq. (A2) (with the radii Ri
considered to be fixed), and using the same protocol and
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numerical methods used to generate the SWAP packings.
The results are shown in Fig. 11, where it can be seen that
the value of ϕc is essentially the same for any borrowed
ρðRÞ from the SWAP packings.
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