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Abstract

Quantile regression provides estimates of a range of conditional quantiles. This
stands in contrast to traditional regression techniques, which focus on a single con-
ditional mean function. Quantile regression in the finite sample setting can be made
more efficient and robust by rounding the sharp corner of the loss. The main mod-
ification generally involves an asymmetric ℓ2 adjustment of the loss function around
zero. The resulting modified loss has qualitatively the same shape as Huber’s loss when
estimating a conditional median. To achieve consistency in the large sample case, the
range of ℓ2 adjustment is controlled by a sequence which decays to zero as the sample
size increases. Through extensive simulations, a rule is established to decide the range
of modification. The simulation studies reveal excellent finite sample performance of
modified regression quantiles guided by the rule.

KEYWORDS: Case indicator; check loss function; penalization method; quantile re-
gression

1 Introduction

Quantile regression has emerged as a useful tool for providing estimates of conditional quan-
tiles of a response variable Y given values of a predictor X. It allows us to estimate not
only the center but also the upper and lower tails of the conditional distribution of interest.
Due to its ability to capture full distributional aspects, rather than only the conditional
mean, quantile regression has been widely applied. Koenker & Bassett (1978) and Bassett &
Koenker (1978) consolidate a foundation for quantile regression. This foundation is extended
to non-iid residuals in the linear model by He (1997) and Koenker & Zhao (1994). The loss
function that defines quantile regression is called the check loss. The check loss has an asym-
metric v-shape and becomes symmetric for the median. Lee, MacEachern & Jung (2007)
introduced a new version of quantile regression where the check loss function is adjusted
by an asymmetric ℓ2 penalty to produce a more efficient quantile estimator. Initially, the
modification of the loss function arises from including case-specific parameters in the model.

An additional penalty for the case specific parameters creates an adjustment of the check
loss function over an interval. See Lee et al. (2007) for more details. The purpose of this
paper is to provide a rule for determining the length of the interval of adjustment in the
check loss function. To obtain a consistent estimator, the modification must vanish as the
sample size grows. A brief theoretical review of ℓ2 adjusted quantile regression is given in
Section 2. In Section 3, extensive simulations are performed to develop a rule which will
provide guidance on implementation of the modified procedure. The performance of the rule
is demonstrated in Section 4 through simulation and real data. Discussion and potential
extensions appear in Section 5.
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2 Overview of ℓ2 Adjusted Quantile Regression

To estimate the qth regression quantile, the check loss function ρq is employed:

ρq(r) =

{
qr for r ≥ 0

−(1− q)r for r < 0.
(1)

We first consider a linear model of the form yi = x⊤
i β + ϵi, where the ϵi’s are iid from

some distribution with qth quantile equal to zero. The quantile regression estimator β̂ is the
minimizer of

L(β) =
n∑

i=1

ρq(yi − x⊤
i β). (2)

To treat the observations in a systematic fashion, Lee et al. (2007) introduce case-specific
parameters γi which change the linear model to yi = x⊤

i β + γi + ϵi. From the fact that
this is a super-saturated model, γ = (γ1, ..., γn)

⊤ should be penalized. Together with the
case-specific parameters and an additional penalty for γ, the objective function to minimize
given in (2) is modified to be

L(β, γ) =
n∑

i=1

ρq(yi − x⊤
i β − γi) +

λγ

2
J(γ), (3)

where J(γ) is the penalty for γ and λγ is a penalty parameter. Since the check loss function
is piecewise linear, the quantile regression estimator is inherently robust. For improving
efficiency, an ℓ2 type penalty for the γ is considered. As detailed in Lee et al. (2007), desired
invariance suggests an asymmetric ℓ2 penalty of the form J(γi) := {q/(1 − q)}γ2

i+ + {(1 −
q)/q}γ2

i−. With the J(γi), let us examine the minimizing values of the γi, given β. First,

note that minγ L(β̂, γ) decouples to minimization over individual γi. Hence, given β̂ and a

residual ri = yi − x⊤
i β̂, γ̂i is now defined to be

argmin
γi

Lλγ (β̂, γi) := ρq(ri − γi) +
λγ

2
J(γi), (4)

and is explicitly given by

− q

λγ

I
(
ri < − q

λγ

)
+ riI

(
− q

λγ

≤ ri <
1− q

λγ

)
+

1− q

λγ

I
(
ri ≥

1− q

λγ

)
.

Plugging γ̂ in (4) produces the ℓ2 adjusted check loss,

ργq (r) =


(q − 1)r − q(1−q)

2λγ
for r < − q

λγ
λγ

2
1−q
q
r2 for − q

λγ
≤ r < 0

λγ

2
q

1−q
r2 for 0 ≤ r < 1−q

λγ

qr − q(1−q)
2λγ

for r ≥ 1−q
λγ

.

(5)
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In other words, ℓ2 adjusted quantile regression finds β that minimizes Lλγ (β) =
∑n

i=1 ρ
γ
q (yi−

x⊤
i β). Note that the modified check loss is continuous and differentiable everywhere. The

interval of quadratic adjustment is (−q/λγ, (1 − q)/λγ), and we refer to the length of this
interval 1/λγ as the “window width”. When the λγ is properly chosen, the modified procedure
will enjoy its advantage to the full. The next section addresses how to set a good rule for
selection of λγ.

3 Simulation Study

To develop a rule and obtain a consistent estimator, we first consider λγ of the form λγ :=
cqn

α/σ̂ where cq is a constant depending on q, n is the sample size, α is a positive constant,
and σ̂ is a robust scale estimate of the error distribution. Theorem 2 in Lee et al. (2007)
suggests that for α > 1/3, the modified quantile regression is asymptotically equivalent to
the standard quantile regression. However, for optimal finite sample performance, we will
consider a range of α values. We use 1.4826·MAD (Median Absolute Deviation) as a robust
scale estimator σ̂. The form of the rule suggests that cq should be scale invariant and depend
only on the targeted quantile q.

In this section, choice of the window width will be investigated by simulation. Through-
out the simulation, the linear model yi = β0+x⊤

i β+ ϵi is assumed. Following the simulation
setting in Tibshirani (1996), x⊤ = (x1, ..., x8) is generated from a multivariate normal dis-
tribution with mean (0, ..., 0) and variance Σ, where σij = ρ|i−j| with ρ = 0.5. The true
coefficient vector β is taken to be (3, 1.5, 0, 0, 2, 0, 0, 0). Various distributions are considered
for ϵi, including normal, t, shifted log-normal, shifted gamma, and shifted exponential error
distribution. In each distribution, ϵi is assumed to be iid with median zero and variance 9
(except when the ϵi follows the standard normal distribution). For the t distributions, 2.25,
5, and 10 degrees of freedom are used, maintaining a variance of 9.

Several values of α were tried. After examining the results, a decision was made to set
α equal to 0.3. This makes α to be independent of sample size. Thus we search only for cq.
Sample sizes range from 102 to 104, and various quantiles from 0.1 to 0.9 are considered. To
gauge the performance of ℓ2 adjusted quantile regression with λγ, define mean squared error

(MSE) of the estimated quantile X⊤β̂ + β̂0 at a new X as

MSE = Eβ̂,X ||(X⊤β̂ + β̂0)− (X⊤β + β0)||2

= Eβ̂,X{(β̂ − β)⊤X⊤X(β̂ − β) + (β̂0 − β0)
2}

= Eβ̂{(β̂ − β)⊤Σ(β̂ − β) + (β̂0 − β0)
2}.

(6)

MSE is integrated across the distribution of a future X. The distribution of the future X
is normal with mean (0, ..., 0) and variance Σ. In the simulation, MSE is approximated

by a Monte Carlo estimate over 500 replicates, M̂SE = 500−1
∑500

i=1((β̂
i − β)⊤Σ(β̂i − β) +

(β̂i
0 − β0)

2), where β̂i and β̂i
0 are the estimates of β and the intercept β0 for the i

th replicate,
respectively. With fixed α, the window width (σ̂/(cqn

α)) is a function of the constant cq
only. Thus by varying cq, an ‘optimal’ window width which provides the smallest MSE can
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be obtained. The optimal window widths, found by a grid search, are shown in Figure 1 for
various error distributions.

Each panel of Figure 2 shows a typical shape of the MSE curve as a function of window
width. In general, MSE values begin to decrease as we increase the window width from zero
until it hits its minimum, and increase thereafter due to an increase in bias. However, when
estimating the median with normally distributed errors,MSE decreases as the window width
increases. This is not surprising, given the optimality properties of least squares regression
for normal theory regression. The comparisons between sample mean and sample median
can be explicitly found under the t error distributions using different degrees of freedom.
The benefit of the median relative to the mean is greater for thicker tailed distributions. We
observe that this qualitative behavior carries over to the optimal window width. Thicker
tails lead to shorter optimal windows, as shown in Figure 1.

3.1 Development of a Rule

Under each error distribution mentioned above, the ‘optimal’ constants which yield smallest

M̂SE are found at the quantiles 0.1, 0.2, ..., 0.9. First, omitting the median, log of the
optimal constant log(cq) from the standard normal error is regressed on q to suggest a
possible relationship. A significant linear relationship exists. The fitted values from this
regression were used to produce values for cq. These values were then applied to the other
error distributions. However, the rule obtained from the normal distribution led to poor

M̂SE values when applied to skewed error distributions. This is due to the overestimation
of the window width or equivalently, underestimation of cq near the median. As we can see
in Figure 2, too large a window may lead to a huge MSE.

As an alternative, another rule expressing the relationship between the optimal log(cq)
and q was developed from the exponential error distribution. The top left plot in Figure
3 shows the relationship between optimal log(cq) and q. Before fitting a linear model of
log(cq) = β0 + β1q + ϵ, q greater than 0.5 were converted to 1 − q, since it was judged
desirable to have a rule which will work well for symmetric distributions. The solid line in
the top right plot of Figure 3 is the fitted line using all observations, whereas the dashed line
is from only observations with q ≥ 0.5, excluding observations with + mark. The dashed
line is accepted as a final rule.

The final rule is compared to the other rules from normal, t, log-normal, and gamma
distributions. In Figure 3, the solid lines in the second and third rows represent ‘optimal’
rules from each distribution mentioned above (developed on quantiles ≥ 0.5) whereas the
dashed line is the final rule. Numerical expression of the final rule is given by

cq ≈
{

0.5e−2.118−1.097q for q < 0.5
0.5e−2.118−1.097(1−q) for q ≥ 0.5,

(7)

where q stands for the qth quantile.
Under various error distributions, the estimated cq from the rule (7) is employed to gauge

its prediction performance. Specifically, M̂SE values for quantile regression (QR), modified
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Figure 1: ‘Optimal’ intervals of adjustment for different quantiles (q), sample sizes (n)
and error distributions. The vertical lines in each distribution indicate the true quantiles.
The stacked horizontal lines for each quantile are corresponding optimal intervals. The five
intervals at each quantile are for n= 102, 102.5, 103, 103.5 and 104.
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Figure 2: M̂SE values evaluated at one hundred points marked with ‘+’ and connected
by a smoothing spline. The smallest and largest window widths in each plot correspond
to the window width approximately 5% and 98% of data in it, respectively. The residual
distribution is the t (df=10) distribution, sample sizes are 102 (left panel) and 103 (right

panel), and the 0.2 quantile is estimated. The horizontal lines represent the M̂SE values
from the standard quantile regression.

quantile regression with optimal cq (OPT), and modified quantile regression with cq chosen
by the final rule (QR.M) are compared. Figures 6 through 11 show the behavior of QR,

OPT, and QR.M in terms of M̂SE. Overall, QR.M handily outperforms standard quantile
regression. Surprisingly enough, the version of finite sample performance for this modified
quantile regression is often nearly optimal. This near-optimality extends across a range of
residual distributions.

In practice, the robust linear modeling procedure, rlm(MASS) in R package is ready to
be utilized. Equipped with the derivative of (5), the modified estimators can be obtained
from the rlm function by specifying q and the corresponding rule cq. Since the rlm function
internally uses re-scaled MAD for the method of scale estimation, the estimate of the scale
parameter in λγ is automatically obtained.

4 Application to Engel’s Data

Engel’s data consists of the household food expenditure and household income from 235
European working-class households in the 19th century. Taking the log of food expenditure
as a response variable, we investigate the relation between log of food expenditure and log of
household income. In Figure 4, Engel’s data is plotted after transformation of both variables.
Superimposed on the scatter plot are the fitted lines from quantile regression (QR), and
modified quantile regression (QR.M) using the rule developed in Section 3. Although the
two methods display quite similar fitted lines, Figure 5 reveals the difference between QR
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Figure 3: Top left: Relationship between optimal log(cq) and quantile from the exponential
distribution. Top right: Left plot is folded in half at q = 0.5. Circles with a + mark
are from the left fold (quantile < 0.5) and the others are from the right fold (quantiles ≥
0.5). The solid line is the fitted line using all observations whereas the dashed line excludes
observations with a + mark (final rule). Solid lines in the middle and bottom plots are the
rules corresponding to normal, t, log-normal, and gamma distributions compared to the final
rule (dashed line).
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and QR.M. We note that these fitted lines from modified quantile regression do not across
over the range of log(Household income) in the data. This is partly due to the averaging
effect of the ℓ2 adjustment to the check loss function.

6.0 6.5 7.0 7.5 8.0 8.5

5.
5

6.
0

6.
5

7.
0

7.
5

log(Household Income)

lo
g(

F
oo

d 
E

xp
en

di
tu

re
)

QR
QR.M

Figure 4: Superimposed on the scatter plot are the 0.05, 0.1, 0.25, 0.5, 0.75, 0.90, 0.95
standard quantile regression (solid, blue) lines, and modified quantile regression (dashed,
red) lines for Engel’s data after log transformation of both response and predictor variables.

5 Conclusion

We have shown how case-specific indicators can be utilized in the context of quantile regres-
sion through regularization of their parameters. The simulation studies suggest a simple rule
to select the regularization parameter for the case-specific parameters. The behavior of the
newly developed rule is excellent under both symmetric and asymmetric error distributions
at any conditional quantile, regardless of the sample size. The analysis of Engel’s data also
reveals that the modified procedure is less prone to crossing estimates of quantiles than is
quantile regression (this is confirmed in further investigation not presented here). For large
sample behavior, details of theoretical results and conditions regarding consistency proper-
ties are given in Lee et al. (2007). In terms of computation, modified quantile regression
requires only slight adjustment to existing software. The simulated and real data analyses
have shown the potential of ℓ2 adjusted quantile regression and the rule for selecting the
window width. Finally, we wish to point out a possible direction where our research can
be extended. As Koenker & Zhao (1994) and Koenker (2005) considered heteroscedastic
models in quantile regression, the scope of our modified quantile regression procedure can
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Figure 5: Top: Residuals from a median fit via QR and QR.M. Bottom: Differences between
fitted median line and the fitted quantiles at q=0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95.
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be expanded to include non-iid error models.
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Figure 6: M̂SE values from quantile regression (QR), modified quantile regression with
optimal window width (OPT), and modified quantile regression using the rule (QR.M) under
a standard normal error distribution.
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Figure 7: M̂SE values from quantile regression (QR), modified quantile regression with
optimal window width (OPT), and modified quantile regression using the rule (QR.M) under
t (df=2.25) error distribution.
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Figure 8: M̂SE values from quantile regression (QR), modified quantile regression with
optimal window width (OPT), and modified quantile regression using the rule (QR.M) under
a t (df=10) error distribution.
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Figure 9: M̂SE values from quantile regression (QR), modified quantile regression with
optimal window width (OPT), and modified quantile regression using the rule (QR.M) under
a gamma (3,

√
3) error distribution.
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Figure 10: M̂SE values from quantile regression (QR), modified quantile regression with
optimal window width (OPT), and modified quantile regression using the rule (QR.M) under
a log-normal error distribution.
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Figure 11: M̂SE values from quantile regression (QR), modified quantile regression with
optimal window width (OPT), and modified quantile regression using the rule (QR.M) under
an exponential (3) error distribution.
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