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Abstract

The Southern Brazilian Highlands are composed by a mosaic of Mixed Ombrophilous Forest (MOF) and grassland
formations, an interesting landscape for the study of population structure. We analyzed the genetic diversity within
and among populations of the MOF-endemic bromeliad Vriesea reitzii by genotyping seven nuclear microsatellite
loci in 187 individuals from six populations. We characterized levels of genetic diversity and assessed the genetic
structure among populations. Vriesea reitzii populations showed high levels of genetic variation (number of alleles 28
- 43, allelic richness 3.589 - 5.531) and moderate levels of genetic differentiation (FST = 0.123, RST = 0.096). The high
levels of genetic diversity may be explained by species life-history traits, such as habit and mating system. The mod-
erate structure may be a product of the combination of ancient and contemporary gene flow, resulting from the ex-
pansion of the forest in the Holocene, and/or due to facilitated dispersal mediated by the MOF’s mosaic landscape.
The genetic results indicated no imminent threat to this bromeliad. However, the species is highly associated with the
MOF, putting landscape conservation at the center of conservation efforts for the species’ maintenance.
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Introduction

The Brazilian Atlantic rainforest (BAF) represents

the second largest tropical moist forest in the world and is

recognized for its high levels of biodiversity and endemism

(Ledru et al., 2016). The BAF is an ecogeographically sub-

divided biome. By its broadest definition, it includes sev-

eral types of vegetation, including semi-deciduous and

mixed forests, in addition to the ombrophilous forest of the

coast (Oliveira Filho and Fontes, 2000; Goetze et al.,

2015). At the southernmost limit of the BAF sensu lato lies

the Mixed Ombrophilous Forest (MOF), or Araucaria For-

est, which extends up to 700 km inland (Oliveira Filho and

Fontes, 2000). It is disjunctly distributed across the south-

ern plateau of Southeastern Brazil, between 24° and 30° S,

at altitudes between 500 and 1400 m above sea level

(Behling and Pillar, 2007).

The Araucaria Plateau is a geomorphological unit

that occupies approximately three-quarters of the southern

area of South Brazil, between the Iguaçú and Uruguay

Rivers (Behling and Pillar, 2007; Calegari et al., 2017). Its

vegetation is characterized by a mosaic of MOF and grass-

land formations. In the grassland areas it is common to find

Araucaria angustifolia in an irregular distribution, together

with “capões” (clumps of trees) and gallery forest, whose

floristic composition is similar to that of the MOF (Calegari

et al., 2017). The origin of this mosaic, which is character-

istic of the Southern Brazilian highlands, has been widely

debated. According to Behling et al. (2005), several palaeo-

ecological studies carried out in this region have proven

that extensive areas of grassland vegetation existed on the

highlands throughout the glacial, early and mid-Holocene

periods, with forests restricted to deep valley refuges.

Mounting evidence suggests that around 3000 years ago,

during the Holocene, the MOF expanded from the gallery

forests along the rivers as a result of increasing tempera-

tures and humidity (Behling et al., 2004).

Starting around the First World War, fueled by diffi-

culties in commercializing pine wood from Latvia, Europe-

ans began to explore the Brazilian pine Araucaria angus-
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tifolia. As a consequence, the MOF has suffered a further

drastic reduction in its geographic distribution, giving way

to the current patchwork of pasture, monoculture stands of

Pinus and Eucalyptus, and open fields interspersed with

Araucaria fragments (Fonseca et al., 2009; Boelter et al.,

2011). In spite of these known – ancient and more recent –

factors, the origin of the formation of this mosaic remains

unknown, and the effect of human impact on the overall

biodiversity of the region throughout time is ill understood.

In fragmented or mosaic landscapes, genetic ex-

change among plants tends to be restricted, and high ge-

netic differentiation among spatially isolated populations

might be expected as a result of random genetic drift, re-

stricted gene flow or selection (Frei et al., 2012; Devitt et

al., 2013; Maurice et al., 2016). Studies addressing plant

population structure in the MOF are restricted almost ex-

clusively to Araucaria angustifolia (e.g., Bittencourt and

Sebbenn, 2007; Danner et al., 2013; Medina-Macedo et al.,

2015). In order to develop a better understanding of the dy-

namics of this particular mosaic of forest and grassland in

the Southern Brazilian Highlands, the contribution of data

from other species is crucial.

The family Bromeliaceae is widespread across the

Neotropical region and occupies most distinct environ-

ments in the American continent (Brown and Gilmartin,

1989; Smith and Till, 1999; Benzing, 2000; Givnish et al.,

2014). Within the BAF, the bromeliads are one of the spe-

cies richest and most diverse families, therefore represent-

ing an important component of this biome (Martinelli et al.,

2008). Vriesea is the third largest bromeliad genus. It com-

prises approximately 290 species, 94.8% of which are en-

demic to Brazil (Costa et al., 2014; Barfuss et al., 2016).

The main center of diversity of the genus lies in the BAF

(Costa et al., 2014), and most population genetic studies on

Vriesea focus on species from the coastal regions, or BAF

sensu stricto (Alves et al., 2004; Palma-Silva et al., 2009;

Zanella et al., 2012, 2016). Additional studies have investi-

gated the genetic patterns of bromeliads restricted to higher

altitudes of Andean landscape, such as Puya raimondii

(Sgorbati et al., 2004), as well as tropical inselbergs and

outcrops (Barbará et al., 2009; Boisselier-Dubayle et al.,

2010; Domingues et al., 2011; Ribeiro et al., 2013; Lavor et

al., 2014). However, little is known about species endemic

to the MOF.

Here, we investigate the genetic diversity within and

among populations of the MOF-endemic bromeliad Vrie-

sea reitzii Leme & A.F. Costa, across its entire geographic

distribution. Vriesea reitzii is an epiphytic bromeliad that

occurs in MOF fragments at altitudes ranging from 750 to

1200 m (Rech-Filho et al., 2005; Alves et al., 2006). Due to

its morphological similarity with V. philippocoburgii, V.

reitzii was, for a long time, neglected as a species. How-

ever, morphological and ecological characteristics have led

to the recognition of two distinct taxonomic units (Leme

and Costa, 1991). Due to this very recent description of V.

reitzii as a separate species there is an almost complete lack

of data on its breeding system, life history and demograph-

ics. However, based on the great resemblance between V.

reitzii and V. phillipocoburgii, it is reasonable to hypothe-

size that the two species share the same or very similar

characteristics. Vriesea phillipocoburgii is an epiphyte bro-

meliad pollinated by hummingbirds, whose seeds are dis-

persed by the wind (Machado and Semir, 2006; Fischer EA,

1994, Master’s thesis, Universidade Estadual de Campi-

nas). In the only previously published report on the demog-

raphy and life history of V. reitzii, Favretto and Geuster

(2012) found that the species bloomed during the spring in

the municipality of Joaçaba, Santa Catarina. According to

the authors, the species reaches high population densities in

places with a good exposure to light.

In addition to the potential conservation implications

of our work, this study is motivated by a desire to under-

stand the genetic structure of populations from an ex-

tremely fragmented mosaic landscape, the Southern Brazil-

ian Highlands, using V. reitzii as model. We hypothesized

that the populations of V. reitzii would show a high level of

genetic structure, similar to other bromeliad species that

have been studied on inselbergs. However, there are no re-

ports of genetic population studies in MOF bromeliads, and

their genetic structure remains unknown. The specific aims

of the present study were: (i) to assess the intra- and inter-

population genetic diversity of V. reitzii using nuclear

DNA; (ii) to quantify the degree of genetic differentiation

among populations and discuss the results in the light of the

particularity of the forest and grassland mosaic covering

the Southern Brazilian Highlands; (iii) to provide data as a

basis for conservation actions for the species.

Material and Methods

Sampling and DNA extraction

We sampled six populations of V. reitzii, covering its

entire geographical distribution across the Mixed Ombro-

philous Forest. In preparation of the sample collection, we

consulted herbarium records and contacted national parks

and other locations, for which the species was described. In

many of these places, the species was not found anymore,

demonstrating the influence of human action on the distri-

bution of V. reitzii. We believe that we sampled the main lo-

calities where V. reitzii currently occurs. The minimum

distance between populations was approximately 38 km

(CFRS to SFRS), with a maximum of about 360 km (CSRS

to SMPR). Altitudes ranged from 778 m to 1031 m above

sea level (Table 1 and Figure 1). Fresh leaves from 187

flowering or fruiting individuals (approximately 30 per

population) were collected and fast dried in silica gel. Total

genomic DNA was extracted using the cetyltrimethylam-

monium bromide (CTAB) protocol, as described by Doyle

and Doyle (1990). DNA quantification was performed on a
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1% agarose gel stained with GelRed (Biotium, Hayward,

CA, USA), in comparison with � phage DNA.

Molecular markers and genotyping assays

All samples were genotyped for seven nuclear micro-

satellite loci described for different bromeliads species:

e6B and e19, from Tillandsia fasciculata (Boneh et al.,

2003); PaA10, from Pitcairnia albiflos (Paggi et al., 2008),

and VgB10, VgC01 and VgF02, from Vriesea gigantea

(Palma-Silva et al., 2007). We also genotyped VgF05, an

unpublished locus isolated from V. gigantea (primers F:

TGGGATCATTTCCTTGTTCC, R:

CATTCTTGTTTCGCCCAAAT). Amplification reactions

were carried out in a TC-412 Thermal Cycler (Techne,

Burlington, New Jersey, USA), as described by Palma-

Silva et al. (2007). The microsatellite alleles were resolved

on an ABI 3100 DNA Analyzer Sequencer (Applied Bio-

systems, Foster City, CA, USA) and sized against the

GS500 LIZ molecular size standard (Applied Biosystems)

using GENEMARKER Demo version 1.97 (SoftGenetics,

State College, PA, USA).

Data Analyses

The genetic diversity of each population was charac-

terized using the number of alleles (A), number of private

alleles (AP), allelic richness (RS), expected (HE) and ob-

served (HO) heterozygosities, and the inbreeding coeffi-

cient (FIS; Weir and Cockerham, 1984), using the programs

FSTAT 2.9.3.2 (Goudet, 1995) and MSA 4.05 (Dieringer

and Schlötterer, 2003). To examine departures from the

Hardy–Weinberg equilibrium (HWE), exact tests were car-

ried out in GENEPOP 4.0 (Raymond and Rousset, 1995).

The data were also tested for genotyping errors resulting

from stuttering, short allele dominance, and null alleles us-

ing a Monte Carlo simulation of expected allele-size differ-

ences implemented in MICRO-CHECKER 2.2.3 (van

Oosterhout et al., 2004).

Each population was tested for recent population size

reductions (e.g., genetic bottlenecks), using a hetero-

zygosity excess test implemented in the software

BOTTLENECK 1.2.02 (Piry et al., 1999). The analysis was

carried out using a two-phased mutation model (TPM),

with 12% variance and 95% stepwise mutations. Statistical

significance was assessed in 10,000 replicates using a one-

tailed Wilcoxon signed-rank test. In addition, the occur-

rence of a genetic bottleneck was tested by estimating the

M-ratio, the mean ratio of the number of alleles (k) to the

range in allele size (r) using the software ARLEQUIN

3.5.2.2 (Excoffier and Lischer, 2010). This method takes

advantage of the size specificity of microsatellite allelic

states. Significance for each population was assessed by

comparison of M-ratios with the critical values (Mc values)

obtained by simulating the distribution of M-ratios under

specific demographic and mutational conditions using the

software CRITICAL_M.EXE (http://swfsc.noaa.gov/

textblock.aspx?Division=FED&id=3298) according to

Goetze et al. (2016). Population genetic differentiation was

assessed based on FST (Weir and Cockerham, 1984), on the

standardized genetic differentiation measure G’ST (He-

drick, 2005), and on Slatkin’s RST (Slatkin, 1995), which

estimates the contribution of stepwise-like mutations to ge-

netic differentiation. All these parameters were calculated
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Table 1 - Populations of Vriesea reitzii sampled, with their vouchers and geographical parameters.

Population Code Sampling site Voucher State* Coordinates Altitude (m)

SMPR São Mateus do Sul UPCB36191 PR S25°52’ W50°18’ 778

CASC Campo Alegre RB00287263 SC S26°10’ W49°13’ 977

PDSC Papanduva - § SC S26°30’ W50°14’ 790

LGSC Lages LUSC5573 SC S27°47’ W50°21’ 1031

CSRS Cambará do Sul HAS30158 RS S29°08’ W50°05’ 977

SFRS São Francisco de Paula HAS66297 RS S29°26’ W50°36’ 927

*Brazilian Federal States: RS, Rio Grande do Sul; SC, Santa Catarina; PR, Paraná.

§ Unable to retrieve voucher from this population.

UPBC, Herbarium Departamento de Botânica, Universidade Federal do Paraná; RB, Herbário do Jardim Botânico do Rio de Janeiro; LUSC, Herbarium

Lages da Universidade Federal de Santa Catarina; HAS, Herbário Prof. Dr. Alarich Rudolf Holger Schultz, Museu de Ciências Naturais da Fundação

Zoobotânica do Rio Grande do Sul.

Figure 1 - Brazilian map highlighting the southern region with Mixed

Ombrophilous Forest in gray. The six Vriesea reitzii populations sampled

for this study are marked according to legend.



in the FSTAT software. Pairwise comparisons of FST be-

tween populations were carried out using the program

ARLEQUIN. The partitioning of genetic diversity within

and among populations was examined by Analysis of Mo-

lecular Variance (AMOVA; Excoffier et al., 1992) imple-

mented in the software ARLEQUIN. The hypothesis that

populations are differentiated because of isolation-by-dis-

tance (Wright, 1965) was tested by calculating the correla-

tion between geographic and genetic distance matrices

(FST), with a standardized Mantel test (Sokal and Rohlf,

1995) using GENEPOP. We also used a Bayesian assign-

ment approach to investigate the population structure of V.

reitzii, using STRUCTURE 2.3.4 (Pritchard et al., 2000),

aiming to assign individuals to genetic clusters (K) and to

estimate admixture proportions (Q) for each individual.

The proportion of membership for each cluster was calcu-

lated without the consideration of sampling localities. The

analyses were carried out under the admixture model as-

suming independent allele frequencies and using a burn-in

period of 250,000, run lengths of 106 and 10 iterations per

K, for K ranging from 1 to 8, to confirm stabilization of the

summary statistics (Pritchard et al., 2000). To determine

the most likely number of clusters (K), we used the method

proposed by Evanno et al. (2005), which is based on an ad

hoc measure of �K that evaluates the second-order rate of

change of the likelihood function with respect to K. The cal-

culation of �K was done with STRUCTURE HARVES-

TER version 0.6.94 (Earl and von Holdt, 2012).

The effective number of migrants (Nem) between

pairs of populations was estimated using a coalescent the-

ory and maximum-likelihood-based approach using

MIGRATE 3.0.3 (Beerli and Felsenstein, 1999), as de-

scribed by Barbará et al. (2007). Computations were car-

ried out under both the infinite allele model (IAM) and the

Stepwise Mutation Model (SMM), and mutation rates (�)

for each locus were estimated from the data.

Results

Relatively high levels of genetic variation were found

in V. reitzii populations (Table 2). The number of alleles at

each locus ranged from 28 to 43, and the allelic richness

ranged from 3.589 to 5.531, both in SMPR and CASC, re-

spectively. The observed heterozygosity ranged from 0.411

to 0.499, with the expected heterozygosity ranging from

0.452 to 0.629. With the exception of PDSC, all popula-

tions had private alleles. Inbreeding coefficients ranged

from 0.089 to 0.310, and with the exception of SMPR, all

populations departed significantly from HWE with an ex-

cess of homozygotes (Table 2). Micro-Checker analysis de-

tected the presence of null alleles at six loci in different

populations (data not shown). No signs of reduction in pop-

ulation size were detected by any of the methods used (Bot-

tleneck analysis and M-ratio) for any of the populations

investigated.

Moderate levels of genetic differentiation were de-

tected among V. reitzii populations (FST = 0.123, G’ST =

0.120 and RST = 0.096). The pairwise FST values also sug-

gest low to moderate structure between pairs of popula-

tions, and geographical proximity does not seem to be the

main factor determining the FST (e.g., CASC and PDSC

showed a significant FST = 0.100 (P < 0.001) and are

108 km apart, whereas SMPR and CSRS showed a non-

significant FST = 0.030 and are 360 km apart (see Figure 1

and Table 3). Accordingly, the Mantel test revealed that

geographical distances were not significantly correlated

with genetic differentiation as estimated by r2 = 0.0001 (P =

0.364), suggesting the absence of isolation-by-distance.

AMOVA results indicated that the largest percentage

of variation (87.42%) was attributed to the within popula-

tions component and only a small portion of the genetic

variance (12.58%) was attributed to the between popula-

tions component (P < 0.0001).

Bayesian analysis confirmed that a model of K = 3

groups best captured the variation in the data from V. reitzii

(Figure S1). The admixture proportions (Q) for each indi-

vidual are shown in Figure 2. The number of migrants per
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Table 2 - Characterization of genetic variability in six populations of Vriesea reitzii.

Population N M-ratio1 A AP RS HO HE FIS

SMPR 31 0.732 28 1 3.589 0.411 0.452 0.089

CASC 31 0.732 42 4 5.531 0.438 0.629 0.310*

PDSC 30 0.729 31 0 3.846 0.360 0.504 0.286*

LGSC 32 0.733 43 6 5.307 0.499 0.533 0.019*

CSRS 32 0.733 38 1 4.955 0.493 0.571 0.137*

SFRS 31 0.732 40 3 5.100 0.419 0.515 0.167*

N, number of individuals; M-ratio, mean ratio of the number of alleles to the range in allele size; A, number of alleles; AP, number of private alleles; RS,

allelic richness; HO, observed heterozygosity; HE, expected heterozygosity; FIS, inbreeding coefficient.
1 population is considered to have undergone a bottleneck if its M-ratio value falls below the threshold of critical M-ratio calculated (0.61). No bottlenecks

were detected in the six populations.

* Inbreeding coefficient (FIS) which departed significantly from Hardy–Weinberg equilibrium (HWE) at the P < 0.001 level.



generation in V. reitzii populations varied from 0.145 to

2.671 (Table 3), with approximately half of the compari-

sons between populations pairs exceeding 1, which is equi-

valent to > 1 migrant per generation. The minimum migra-

tion required for maintaining species cohesion has

traditionally been regarded to be one migrant per genera-

tion (Morjan and Rieseberg, 2004). Confidence intervals

for the effective number of migrants (Nem) are presented in

Table S2.

Discussion

Genetic diversity within populations

We investigated the genetic diversity and population

structure of V. reitzii, a species endemic to the MOF, by us-

ing nuclear microsatellite markers. Mountains, islands and

even forest fragments are often rich in endemism, but these

habitats are commonly at risk of depauperization, causing a

reduction of genetic diversity of its populations (Krucke-

berg and Rabinowitz, 1985). According to Furtado and

Menini-Neto (2015), the particular features of mountainous

regions confer them high indices of species richness and

cause them to harbor important forest remnants in the form

of vegetation islands. However, these ecosystems can be

very sensitive to anthropogenic disturbances (Zhao and

Gong, 2015). Here, despite the fact that V. reitzii is endemic

to the southern region of Brazil and restricted to the MOF, a

highly particular mountain environment with high anthro-

pogenic influence, we did not find low levels of genetic

diversity in the populations sampled across its geographical

range. Our results revealed that the levels of genetic diver-

sity in this species are relatively high (Table 2). Although a

direct comparison of genetic diversity levels between spe-

cies is complicated by the use of different methods, the lev-

els of diversity found for V. reitzii can be considered high

when compared to other studies on Bromeliaceae that are

based on many of the same SSR loci (Table S1) used in the

present study (Palma-Silva et al., 2009; Zanella et al., 2011,

2016; Cascante-Marín et al., 2014; Lavor et al., 2014;

Goetze et al., 2015, 2016). The genetic diversity encoun-

tered within V. reitzii populations suggests that these popu-

lations have not yet been impacted by habitat fragmenta-

tion, and genetic drift has not yet decreased

within-population genetic diversity. Therefore, although

the MOF has suffered a long history of natural fragmenta-

tion (Fonseca et al., 2009), V. reitzii populations have been

able to maintain a moderate to high genetic diversity.

Many recent studies have demonstrated that the rarity

or endemicity of a species is not necessarily synonymous

with low genetic diversity. Instead, genetic diversity can be

influenced by species life-history traits, such as a recent ori-

gin from widespread congeners, hybridization, mainte-

nance of genetic diversity within refugial populations, as

well as ecological traits, habit and mating system (Torres-

Díaz et al., 2007; Ægisdóttir et al., 2009; Hardcastle and

Gentry, 2009; Eliades et al., 2011; Goetze et al., 2015;

Turchetto et al., 2016). The relatively high genetic diversity

found in populations of V. reitzii (RS = 3.589-5.531 and HO

= 0.360-0.499) may be related to its life history, such as

clonality and an outcrossing reproductive system. Out-

crossing plants generally have high within-population ge-

netic diversity (Hamrick and Godt, 1996), and clonal prop-

agation can increase the longevity of genets (Orive, 1993;

Goetze et al., 2015). The combination of genet longevity

and outcrossing may maintain genetic diversity in frag-

mented populations (Xiao et al., 2015). The reproductive

biology of V. reitzii and its breeding system have not yet

been studied. However, we assume that it has a mixed mat-
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Table 3 - Pairwise genetic divergence (FST) below the diagonal and num-

ber of effective migrants (Nem) per generation above the diagonal, for

Vriesea reitzii populations based on seven microsatellite loci.

SMRS CASC PDSC LGSC CSRS SFRS

SMRS 0.377 0.145 1.161 0.748 0.933

CASC 0.097 1.605 1.103 2.541 2.671

PDSC 0.044 0.100 0.663 0.584 0.741

LGSC 0.129 0.015 0.150 1.611 1.200

CSRS 0.030 0.029 0.039 0.048 0.923

SFRS 0.066 0.129 0.106 0.169 0.043

FST values in bold were significant at P < 0.001.

Figure 2 - Population structure in Vriesea reitzii using Bayesian assignment analysis for a K = 3 population model based of seven nuclear microsatellite

loci. See Table 1 for population identification.



ing system, like most Vriesea species studied to date (Za-

nella et al., 2012; Lavor et al., 2014). We also presume that,

like its sister species V. phillipocoburgii and V. altoda-

serrae, it is pollinated by hummingbirds (Machado and

Semir, 2006). Moreover, although the species’ clonality

has not yet been formally studied, we observed evident

clonal reproduction on our field trips.

Another factor potentially explaining the occurrence

of high levels of genetic diversity in this mountain species

is that its population may have been founded by multiple

genetically diverse individuals. This initial diversity may

have been maintained in the stable mountainous conditions

throughout the Quaternary glacial/interglacial cycles

(Behling and Pillar, 2007), thanks to a combination of rela-

tively large population sizes and recurrent interpopulation

gene flow, as reported in the terrestrial orchid Oreorchis

patens from the Korean mountains (Chung et al., 2012).

Since V. reitzii is highly associated with the Araucaria for-

est, the expansion of the Araucaria forest over the Southern

Brazilian Highlands from the late Quaternary until

~1500–1000 years ago (Behling et al., 2004) might have in-

creased population connectivity, thereby representing one

possible reason for the great allelic richness encountered

here.

Despite their high levels of genetic diversity, almost

all populations significantly departed from HWE. Hetero-

zygote deficiency may result from many factors, such as

genetic drift and inbreeding. Alternatively, it can occur due

to the presence of null alleles (Lavor et al., 2014; Turchetto

et al., 2016). We found null alleles at all loci in different

populations; however, to relate the excess of homozygotes

to biparental inbreeding or drift, we would need to have ac-

cess to demographic data of the populations. Assuming that

V. reitzii has a mixed mating system, as many other species

of the genus Vriesea (Paggi et al., 2007; Lavor et al., 2014),

mating among relatives may potentially occur within popu-

lations. In the only existing record on ecological and demo-

graphic aspects of V. reitzii, Favretto and Geuster (2012)

report that the species is rare in environments with very

dense vegetation, but abundant in places with more dis-

persed trees, and that it is one of the few species that colo-

nizes Araucaria angustifolia in the region of Joaçaba, Santa

Catarina, Brazil. In the same study, the authors describe the

occurrence of 360 individuals across 2000 m2, demonstrat-

ing that, wherever they occur, V. reitzii populations are

abundant; this is consistent with our own observations.

High population densities may influence the amount of pol-

len available for outcrossing in mixed mating species and

may have an affect on the rate of selfing and inbreeding

(Duminil et al., 2016). In the congener V. minarum, an ex-

cess of homozygotes has been attributed to selfing or

biparental inbreeding, since that species has a mixed repro-

ductive strategy (Lavor et al., 2014). Considering that simi-

lar results had been found in many species studied so far,

Lavor and colleagues also speculated that their findings

might reflect a general pattern characteristic of the family.

It would be interesting to compare the patterns of di-

versity found in the present study with those of other spe-

cies endemic to the MOF, however, our exhaustive search

turned up very few studies with a genetic focus, and most of

these were on Araucaria angustifolia (Auler et al., 2002;

Bittencourt and Sebbenn, 2007; Medina-Macedo et. al.,

2015). Dicksonia sellowiana is a species of the MOF whose

populations were severely reduced due to direct exploita-

tion. Montagna et al. (2012) compared the genetic diversity

of populations from conservation units to that of popula-

tions outside conservation units and found a significant dif-

ference in Ho between these two groups. Martins et al.

(2015) studied populations of Ocotea spp. in protected and

unprotected areas of the MOF and found high Ho indexes

and a small heterozygous deficit. However, none of the

studies focused on understanding the dynamics and genetic

structure of populations from the mosaic landscape charac-

terizing the MOF, highlighting the importance of the pres-

ent work in contributing to an improved understanding of

the dynamics of MOF species.

Genetic differentiation among populations

Mountainous and fragmented environments are char-

acterized by landscape heterogeneity, with the mountain

ridges or mosaic formations expected to represent major

barriers to gene flow among populations (Zhan et al., 2009;

Frei et al., 2010). However, against this expectation, we ob-

served an average FST of 0.123 and an average RST of

0.0964, indicating only a moderate differentiation among

V. reitzii populations (Balloux and Lugon-Moulin, 2002).

The similarity between FST and RST estimates suggests that

drift and mutation are jointly responsible for the observed

level of population differentiation (Balloux and Lugon-

Moulin, 2002). The results of studies on differentiation

among populations in this kind of landscape can vary wide-

ly from species to species (Byars et al., 2009). In the Bro-

meliaceae, various studies have estimated the variation

among populations from outcrops and inselbergs. Domin-

gues et al. (2011), Barbará et al. (2009) and Boisselier-

Dubayle et al. (2010) found a high level of population

structure in several bromeliad species. Other authors have

reported moderate indices of genetic structure, similar to

our results for V. reitzii (Ribeiro et al., 2013; Lavor et al.,

2014).

No correlation between genetic and geographic dis-

tances was detected by the Mantel test (r2 = 0.0001, P =

0.364), indicating an absence of isolation-by-distance a-

mong V. reitzii populations. Furthermore, Bayesian analy-

sis revealed that V. reitzii comprises three genetic groups

(Figure 2 and Figure S1). These did not correlate to the ge-

ography of sampling localities, and we could find individu-

als with a predominance of the three genetic components in

almost all populations (Figure 2). An evaluation of the re-
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gion’s topography did not reveal any obvious features that

could have led to the formation of the groups found. The

next step will be to use plastidial markers in a phylo-

geographic approach to assess the historical structure of the

populations and indicate possible vicariance events under-

lying the observed pattern. The weak genetic structure be-

tween groups, paired with the high number of migrants per

generation found in at least half of the population pairs (Ta-

ble 3), points towards reasonable levels of gene flow among

localities. In order to explain this moderate structure and

the estimated effective number of migrants, it is possible to

relate them to ancient and contemporary factors.

Concerning contemporary gene flow, to date, there

are no studies on the pollinator and seed dispersal mecha-

nisms of V. reitzii. However, if the species is pollinated by

hummingbirds, an effective contemporary gene flow a-

mong the populations sampled may occur. Hummingbird

behavior varies between species, but some species can mi-

grate up to 2000 km, enough to cover the inter-population

distances of V. reitzii, which range from 38 km to 360 km

(Berthold et al., 2013). Furthermore, V. reitzii has plumose

seeds (LES personal observation; Leme and Costa, 1991),

which is characteristic of the subfamily Tillandsioideae

(Benzing, 1990) and can facilitate seed dispersal by wind

over long distances. In a study of the bromeliad V. gigantea,

an epiphyte inhabiting the understory of the Atlantic Forest,

Paggi et al. (2010) showed that seed dispersal occurs over

short distances, although the species’ seeds are plumose

and wind-dispersed, as they probably are in V. reitzii. On

the other hand, Lavor et al. (2014) reported that seed dis-

persal in V. minarum is more effective and not directly

comparable to the results of Paggi et al. (2010). Vriesea

minarum is restricted to rocky systems in open environ-

ments, where the high incidence of winds can enhance seed

dispersal. In addition, the usually low stature of the ru-

picolous vegetation poses fewer obstacles to dispersal than

a forested area.

With regard to ancient patterns of gene flow, the cur-

rent design of genetic structure may have been modeled by

past events, such as the expansion of the Araucaria forest

during the Holocene (Behling and Pillar, 2007) that may

have contributed to decrease the distance between popula-

tions and increase the gene flow between them. Chung et al.

(2012), studying orchids of the genus Oreorchis, suggested

a scenario of high levels of historical gene flow among

neighboring populations along the main mountainous

ranges in the Korean Peninsula. In a study on the altitudinal

gradients of Silene ciliate, García-Fernández et al. (2012)

proposed that the high genetic similarity among popula-

tions from different mountains may be due to historical

population movements related to glacial contractions and

expansions throughout the Quaternary period. Many mon-

tane-adapted species exist as isolated populations under

todays relatively warm climate; during cooler glacial cy-

cles, these species would have experienced range expan-

sions, increasing population connectivity and gene flow

(Devitt et al., 2013). Moreover, both the results of the

heterozygosity excess test (Bottleneck program) and the

M-ratio found here indicate that V. reitzii populations did

not suffer a bottleneck or reduction of genetic diversity (Ta-

ble 2), emphasizing that factors involved in the evolution-

ary history of the MOF might have significantly contrib-

uted to genetically homogenize the populations. In this

context, it would be interesting to collect data from addi-

tional species from the MOF in order to further investigate

this hypothesis.

Therefore, the current genetic pattern of V. reitzii

populations may have been shaped by a range of factors, in-

cluding the mosaic landscape of alternating grasslands and

forests. The Araucaria Plateau, where we sampled V. reitzii

populations, is formed by lightly to markedly undulating

terrain at altitudes between 600 and < 1400 m. The MOF’s

current mosaic landscape has been shaped by the phases of

forest expansion and retraction resulting from climatic

changes during the Holocene (Calegari et al., 2017). Cou-

pled with the intense fragmentation of this environment in

the twentieth century (Fonseca et al., 2009), the patchwork

pattern of this landscape may have influenced the current

patterns of diversity and population structure found in V.

reitzii. In summary, the moderate structure encountered in

V. reitzii may be due to ancient gene flow, facilitated dis-

persal mediated by the mosaic landscape of the MOF, or a

combination of these two factors.

Implications for Conservation

Vriesea reitzii populations showed high genetic di-

versity and moderate genetic structure, indicating no immi-

nent threat to this bromeliad. However, as an epiphyte, this

species is highly associated with the MOF, and the conser-

vation of this landscape is therefore paramount for the spe-

cies’ maintenance. Only 12.6% of the Araucaria Forest’s

original cover remains, and those remnants are mostly dis-

tributed in small fragments amid various anthropogenic

habitats, such as pasture, agriculture and exotic tree mono-

cultures of Pinus and Eucalyptus (Ribeiro et al., 2009;

Emer and Fonseca, 2011). The Araucaria Forest should

therefore be considered as critically threatened.

Despite the moderate levels of genetic differentiation

between V. reitzii populations, almost all have private al-

leles (Table 2), emphasizing the importance of the conser-

vation of this genetic diversity. The CASC and LGSC

populations have four and six private alleles respectively;

they therefore deserve special attention in any conservation

measures.

If the mixed mating system in V. reitzii is confirmed,

with at least partial dependence on pollinators, strategies

for the maintenance of gene flow among forest fragments

should be put in place. Studies on reproductive biology and

pollination will be essential to paint a complete picture of

the biology of this species.
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