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1 Introduction

Breathing is a deceptively simple yet remarkable behavior in vertebrates [T]. It is one of the most
vital processes of our bodies, ocemrring contimmously and antomatically from the time we are
born until the day we die.

The pre-Bitzinger compler (preBot(C) is a site in the ventrolateral medula which is believed
to play an important role for controlling the respiratory rhythin in mammnals. especially the
mspiration process [9]. The importance of the preBotC is supported by experiments i vivo and
in vitro, in rats, showing that any damage to the preBotC canses disturbances in the inspiratory
phase of breathing. Diseases which attack the neurosystem responsible for breathing. in lnnnmans.
include: Parkinson’s disease, multiple syndrome atrophy and amvotrophie lateral selerosis [2, 1].

As observed in experiments in vitro, during inhalation, eells in the preBotC are in their acfive
phase and during exhalation. cells go silent. These alternating phases of activity and silence form
a rhvthm called bursting. During each active phase, cells experience two or more abrupt changes
in the membrane potential (that is. the difference in charge across a cell’s membrane) followed
by a period of recovery (where we do not see any activity) . Each of these abrupt changes is
called a spike.

The inspiration process is connected to svnchronized oscillatory bursting behavior of the
preBotC cells. Butera ef al [4, 5] develop a nonlinear differential equation model network of
cells based on the Hodglin and Huzley formalism [8] exhibiting synchronized bursting activity
consistent with that observed experimentally in respiration. Simulations show that some of
the mechanisms that confer such adaptability are coupling and heterogeneity. complying with
experiinents in vitro.

Best et al [3] explores a network of a single self-coupled cell and a model network with two
coupled identical cells from the preBotC. based on the Butera model. In their work. they found
regions for some key parameters, namely g.,, and gi.,,. where the cells are either silent, bursting
or contimiously spiking (tonically active). In an experiment. these gquantities can be changed
and can affect the dvnamic behavior of the network.
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The role of heterogeneity and coupling in the pre-BdtC. is studied by means of simulations of
a minimal two cell network to isolate key mechanisims of the full system. Although, mumerically
we can see how heterogeneity and coupling change the behavior of the network, the specific
mechanisms through which these effects ocenr remain to be understood. Using fast/slow de-
composition and bifurcation analysis (same used in [3]), munerical analvsis was performed by
perturbing slightly the degree of heterogeneity of the sodimm current. namely 4. across the
two cells and analvzing the behavior of the network. In this heterogenecous context. each of
the cells may be engaged in a different activity pattern. To the best of our knowledge. this
tvpe of behavior has not previously been analvzed in the study of small neural networks in the
brainstenn.

2 Model Equations

In this section, a sligth modification of the Butera’s minimal model [4, 5] of a network of
preBotC cells modeling the inspiratory phase of respiration. Butera’s model followed the usual
Hodgkin-Huxley formalisi [8] using voltage-gated variables to account for the different behavi-
ors. Butera’s munerical results are consistent with what has been seen in experiments in vitio
[4. 5].

The set of equations describing the dynamics of a small network of preBotC cells using
voltage-gated variables is given by [3, 4. 5]
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where ' is the capacitance of the cell : v; is the membrane potential of the cell: i, and n, are
inactivation and activation variables. respectively: s; is the synaptic coupling: 7, is a positive
time constant and € is a small and positive constant. The right-hand side of (1) is the sum of
all inward and outward currents and their expressions are given below:
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Above, En,. Ey. Ep, and E, are resting potentials for the sodinm. potassimm. leakage and
svnaptic currents, respectively: Gyap. Gna: G- G Gron 8a1d G are the maximal conductances
for the persistent sodinm. sodimmn. potassivmn, leakage. tonic and synaptic eurrents. respectively.,
Their values with respective units are given in table 1. Finally,
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for i = 1. 2. where yoo(v;) with y € {m.n.h. s} are steady-state voltage-dependent functions and
Tn(v;) and 7(v;) are voltage-dependent time constants. Also 2 = 10000msec. For more details

I

about the connection with biological experiments. see for example [4].
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Tabela 1: Values of some parameters as given in [3] with respective units

For the 2-cell coupled case. i = 1.2 and j = 3 — i. In this model. bursting can be started
and terminated through fast activation and slow inactivation of the {y,p current. In this work.
we used a slicht different model by means of the change of variables { = 107, » = 100V, and

gt = U—”\—- (maximal conductances) applied to the original set of equations (1)-(4).
YNa * : S J

3 Some Numerical Results

In this section, we show the effect of having gy.p different for the two cells. say gn,p, and
gnap,- In the two cell case with the two cells with the same parameters, [3] determined all
possible regimes and transitions on the (g, Gion ) parameter space. Here for fixed g, and
0 =28 —gnup, = GNap, — 2.8 with d > 0 and 2.8 the baseline value of gy,p [4]. we will see
how the dynamies of the cell changes with (g;,,.9) and we will compare our results to [3]. In
this set up. 4 measures the level of heterogeneity present in the network.

All the analysis done here includes computing the averaged nullelines

1 “Tulhy ha)
Ny Do) = 7/ gi{v;)de =il 2 (5)
T.»; |\.rl?. 1- !?.2_}
where g,(v;) = € 7 and Ts(hy. ho) is the period of the fast subsystemn periodie orbit being

Th (Vi)
averaged for each fixed (hy. he) inside the oscillatory region O(active phase).

The goal here is to determine from the homogeneous case (studied by [3]) how the dyvnamic
range of bursting is affected by heterogeneity in gy.p. Based on the confiouration of the nulleli-
nes. on whether the averaged mllclines intersect inside (0 and on the stability of any resulting
fixed points inside the O, we will determine changes in the dynamical behavior for different
gnap- Numerical results (not shown here) that an increase in & implies that both averaged
nullelines move to the right and down. The overall etfect of inereasing § is to move the nullelines
to larger values of fiy and lower values of hs.

3.1 Classifying dynamic regimes

In order to possibly determine boundaries for the transition between different regimes similar
to the bellyeurve in [3], we fixed g, and varied g, and d.

3.1.1 Different regions of bursting and spiking for g, =3

Before proceeding firther. let us set up some notation and make some connections to the ho-
mogeneons case. In the homogeneous case. the averaged nullelines can intersect 1 or 3 times
in O depending on the value of the parameters. Moreover, a pitchfork bifurcation of periodics
oceurs as the parameter g, is increased, due to the symmetry of the fixed points on the (., hy)
plane. In the heterogeneous case, it is possible to have 1, 2 or 3 intersections of the nullelines
inside 0. and each possibility will lead to a different hf.\hm-'u:rr. The fixed points will be defined
as follows: f;’ denotes a fixed point near the line iy = ha; f},f denotes a fixed point for fry > ho
and f2 denotes a fixed point for ho > hy.

In fisure 1. a cartoon shows a generic result of symmetry breaking applied to a pitchfork
bifurcation when different levels of heterogeneity are applied to this small network for g.,, = 3
and gy, as a bifurcation parameter. Next, consider munerical results to assess the details of the
transitions in the heterogeneous case.
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Fioura 1: Cartoons representing pitchfork bifureation for the cells in the homogeneons and
heterogeneous cases.

In figure 2 (Left). we show numerically how varying gy, and é with g, = 3 affected the
dyvnamics of the 2 cells. In this picture. 8 = 0 represents the homogeneons case and gy,
0.856 and ¢, = 0.898 represent the values for the transition from AB to AS and AS to SS.
respectively. For 4 = 0. the transitions between different regimes were determined as follows.
Fixing 6 = 0.01, we systematically varied gy, from lower to higher values and for various initial
conditions. If 2 consecutive values of g, were giving completely different results on the (V). 1).
(Vo.t) and (hy, ko) planes, then the boundary for the transition from one regime to another was
determined.
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Figura 2: Left: Different types of bursting and spiking for g.,, = 3. Csn is a curve of saddle
node points and Cy indicates that a fixed point enters the oscillatory region. Right: Cartoon
showing all possible different types of bursting and spiking for g.,, = 3.

In figure 2 (Right). a more complete description of the different regimes we expect to find
for geym = 3. based on the numerical results presented on the figure 2 (Left) and munerical
simulations for various gy, and 6 nusing XPP/AUTO [6].

Now. let’'s describe what each of the regions presented on figure 2 represent for increasing
Gton -

1. region Q: represents the values of g4, and 0, on the (g, d) plane so that the two cells are
silent. For 4 £ 0, the boundary of Q (dark blue curve) moves slightly to the left indieating
that the transition from quiescence to bursting will oceur for a lower value of g, as we
increase 9.
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region SB: Cells are bursting. For all initial conditions trajectories of the full systemn
approach reasonably elose to the identity line and deviate from the identity line at the end
of the active phase (figure not shown). Average nullclines are inside the oscillatory region.

region AB: trajectories of the full system may approach one of two different solutions in
the (hy.hs) plane. depending if we start below or above the identity line. Presence of the
averaged nullelines inside the oscillatory region intersecting at a single (unstable) fixed
point near the identity line. Transition from SB and AB when averaged nullelines enter
oscillatory region.

region BS. System is bursting. As in figure 3(B) there are 2 fixed points in O. If we
start with hiy << /iy, then trajectories of the full system exit the boundary £, If iy < b,
trajectories of the full systemn cross (1 at some point above the line iy = fiy (figure not
shown). Transition from AB to BS happens with an unstable fixed point entering O for
fry = ho through €. There are other possibilities of transition which have to be further
explored.

=]

Fapecones ful system

Figura 3: Solution on region BS with g4 = 0.84 . g4y = 3 and § = 0.01. (B) Boundary
of osecillatory region € with averaged nulldlines hy and hs showing two fixed points in O, with
trajectories of the full system plotted together.

r

=1

(o8

region BS: There are 2 fixed points inside O and system is bursting or spiking depending
on initial conditions. If one starts above ha = hy. with hs > by then trajectories of the
full system (1)-(4) leave the oscillatory region above the identity line and system bursts.
Otherwise. the system spikes. In figure 4. a plot is shown for a representative of this region
displaying the boundary of the oscillatory region ) and the averaged nullelines along with
the locations of the two fixed points and the trajectories of the full system for different
initial conditions. Note also in figure 4, the presence of a new region 0. This region on
the (k. ho) parameter space correspond to pairs (f11. /o) for which the fast subsystem has
B

region Bg: For g, = 3 and 4 > 0.03 system is bursting, for any initial condition. Our
conjecture is that the averaged nullelines do not intersect inside the oscillatory region. In
this region. for any initial condition trajectories of the full system leave O through £ above
the identity line. We believe that the transition from BS and By occurs through a saddle
node bifurcation.

region AS: System is tonicallv spiking with three fixed points: two inside O and one in O
(figure H(Left)). Starting above k| = hy line, then the system goes to upper fixed point.
otherwise goes to the lower fixed point. For low values of 4, the transition from BS to AS
will take place through Cy; when a (stable) fixed point enters O. Transition from AS to
B, when upper fixed point exits at the eusp through O and the other two fixed points are
lost due to the saddle node (codimension 2 bifurcation).
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Figura 5: Left: Representative of region AS for g, = 0.88, g4, = 3 and 4 = 0.01. along with
the trajectories of the full svstem for initial conditions with hy > 5. Right: Representative of
region AS for g;,,, = 0.88. gs,, = 3 and § = 0.02

8. region AS: System is tonically spiking with one (stable) fixed point., Inside O the 2
mllelines are very close together for some values of /i) and ho (figure 5(Right)). For some
initial conditions the trajectories of the full svstem mayv hang around the two averaged
nullelines for a while bhefore it moves toward the fixed point. This transition from 3 fixed
points to ouly 1 fixed point, i.e.. from AS to AS. can only occur if the system passes
through a saddle node point. Therefore. the crirve C'gn represents a curve of saddle node
points for inereasing 4. Finally, the transition from By to AS oceurs due to a fixed point
entering O thronugh Cyy;. Note that the fixed point f;‘f in AS can. in theory. move to region
0,

3.1.2 Different regions of bursting and spiking for ¢, = 6.9

For gs;, = 6. different regions were characterized which are equivalent to the regions found
in [3] (gure not shown). One important and expected difference of the region found in the
heterogeneous case and the homogeneous case was the fact that the fixed point of the averaged
nullelines did not take place on the identity line as it was happening before (not shown). Some
mumerical diffienlties arose in order to determine precisely the location of each nlleline. althongh
further computation showed us that these nullelines are reasonably positioned (not shown here).

For g.yn = 9. there was no significant difference fund from the transitions for the homogene-
ous case, for the level of heterogeneity applied.
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4 Conclusions

Many differences arose when comparing the homogeneous (gy.p, = gnvap, ) and heterogeneous

{(gnap, F GNap,). First. for the heterogeneous case we could not make the same analysis for
general values of gro, and gay,, as Best ef al [3] did in the homogeneonus case. We had to compute
boundaries of spiking and bursting for particular values of gy, and different values of § when
VArving gion .

For the homogeneous case. we have that for any given value of g, the boundary between
quiescence and bursting had a value of g, that was almost the same for all values of g,
(see [3]). For 8 = 0.1, the transition between quiescence and bursting takes place for some g,
between 0.23 and 0.24. Therefore, the two cells in the heterogeneous case tend to become active
for lower external inputs.

In theory. with increasing of heterogeneity we have chance to have bursting for a bigger
interval of ¢s,,. That is. bursting should start with smaller external inputs applied to the
system. This change in the boundary -SB was observed for g4, = 3 and g4, = 6.

For gy = 3. if we consider all the regions where the cell presents some type of bursting. the
range of g, for which we have bursting is bigger than for the homogeneous case, although we
have some dependency on initial conditions and one type of bursting is transitional. This shows
that heterogeneity increases our chances of having a larger range of parameters where hursting is
possible [5]. This wider range of bursting shows how heterogeneity can help adaptability for the
respiratory system. Therefore, better understanding of this network nsing mathematical models
can be of great help in understanding some of the diseases attacking our respiratory svstei.
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