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Abstract. The fuzzy bag is a hadronic model which has features both of the bag model (energy-momentum
conservation, QCD vacuum energy) and of relativistic potential models (confinement achieved through a
potential). It is also a chiral model, with the unique property that the pion field is suppressed in the
interior of the bag by means of a scalar potential, and yet chiral symmetry is preserved. This scalar
potential allows one to control how far the pion field can penetrate in the interior of the bag. We calculate
the masses of the fundamental baryon octet taking into account the center of mass, one-gluon exchange
and one-pion exchange corrections. We also calculate the nucleon axial charge, charge radii and magnetic
moments including center of mass and recoil corrections. The agreement with experiment is excellent, and
the results indicate that the pion field is suppressed only very close to the center of the bag.

1 Introduction

The fuzzy bag [1–3] is a hadronic model which has ele-
ments both of the MIT bag model and of relativistic po-
tential models. It also has the unique property of preserv-
ing chiral symmetry, although the pion field is subject to
a scalar potential.

In the quark sector, confinement is achieved through
a potential, like in relativistic potential models. Due to
energy-momentum conservation, the bag constant B ac-
quires a radial dependence,B → B(r), which can be deter-
mined without any further assumptions. Unlike the MIT
bag, which has a sharp surface, the fuzzy bag has a sur-
face of finite extent. At the surface, a potential acts on
the quarks, confining them to the bag, and another po-
tential acts on the pions, hindering them from getting to
the interior of the bag.

Prior models have suffered from the fact that the only
way of excluding the pion field from the interior of the
bag was through the use of a step function θ(r −R). But
this is not consistent with relativistic potential models, in
which there is no sharp surface at r = R. The mechanism
through which chiral symmetry is realized in the fuzzy
bag model makes it possible to exclude the pions from
the interior of the bag and at the same time to avoid the
unrealistic sharp surface of the MIT bag.

In the fuzzy bag model, the interior of the bag repre-
sents the perturbative QCD vacuum, where quarks are free
and chiral symmetry is realized in the Wigner mode, so
that pions do not exist there. The exterior of the bag rep-
resents the non-perturbative QCD vacuum, where quarks
do not exist, due to confinement, and chiral symmetry is
realized in the Goldstone mode, so that pions exist there
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and behave as free particles. The surface of the bag repre-
sents a transition region, in which the QCD mechanism of
confinement is substituted by a scalar potential acting on
the quarks, and the QCD mechanism which produces the
change in the realization of chiral symmetry is substituted
by a scalar potential acting on the pions.

In [4], the recoil corrections for many observables were
calculated assuming a Lorentz scalar confining mecha-
nism. However, we assume in our work that the quarks are
subject to a scalar plus vector potential. It can be shown
that the recoil corrections remain valid when a Lorentz
vector interaction is also taken into account. The only re-
quirement is that the energy-momentum tensor be con-
served. More specifically, we have checked that the boost
generator has the correct action on the quark wave func-
tions and that the total energy and momentum of the bag
behave as the components of a four-vector. The consis-
tency of the recoil corrections is based on these two prop-
erties, but their actual forms are otherwise independent
of the type of interaction.

In Sect. 2 we give a brief description of the MIT bag
model coupled to the pion, and in Sect. 3 we introduce
the fuzzy bag. In Sect. 4 we discuss how chiral symmetry
is realized in our model. In Sect. 5 the confining potential
for the quarks and the scalar potential for the pions are
presented and solutions for the corresponding wave func-
tions are obtained. In Sect. 6 we discuss energy-momentum
conservation in the model and determine the radial de-
pendence of the bag constant B(r). In Sect. 7 we calculate
the baryon masses taking into account the center of mass,
one-gluon exchange and one-pion exchange corrections. In
Sect. 8 we calculate, according to the fuzzy bag, the nu-
cleon axial charge, charge radii and magnetic moments. In
Sect. 9 we present our results and conclusions.
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2 The MIT bag coupled to pions

Many of the hadronic models existing in the literature are
based on the static version of the MIT bag model [5] sup-
plemented by a pion field, so as to restore chiral symmetry
in the model. In most of these approaches the pion field
is able to enter inside the bag, and this is allowed mainly
because of technical advantages. As discussed in the in-
troduction, from a more fundamental point of view it is
desirable to consider the pions as Goldstone bosons and
let them exist only in the exterior of the bag, which rep-
resents the non-perturbative QCD vacuum, where chiral
symmetry is realized in the Goldstone mode. Furthermore,
if pions are allowed in the interior of the bag, then the
property of asymptotic freedom is violated by the pion–
quark interaction. The Lagrangian density for a model
which describes a baryon as an MIT bag with pions ex-
cluded from the interior can be written as

L =
[

i
2
(ψ γµ ∂µ ψ − ∂µ ψ γ

µ ψ) −mψψ −B

]
θ(R− r)

− 1
2
ψ ψ δ(R− r) +

1
2
[
∂µφ · ∂µφ−m2

π φ
2] θ(r −R)

− i
2fπ

ψ γ5 τ · φψ δ(R− r) . (1)

In the expression above, ψ(x) is the quark field, m is the
quark mass, R is the radius of the bag, θ(R − r) is a
step function which has value 1 inside the bag and value
0 outside the bag, δ(R − r) is the delta function, φ(x) is
the pion field and θ(r−R) is the step function, which has
value 0 inside the bag and value 1 outside the bag.

The constant B represents the difference between the
energy densities of the perturbative QCD vacuum inside
the hadrons and the non-perturbative QCD vacuum out-
side the hadrons. By requiring the action to be invari-
ant under arbitrary infinitesimal deformations of the bag’s
surface, one finds an equation which relates B with the
quark wave functions,

B = −1
2
∂r

(∑
q

ψqψq

)∣∣∣∣∣
R

. (2)

Contributions from the pion field are usually neglected in
(2). The value for B obtained from (2) is the same as the
one obtained from the more popular procedure of minimiz-
ing the bag’s mass with respect to its radius R. It is also
well known that (2) guarantees the conservation of energy
and momentum (in the quark sector), and some authors
impose energy-momentum conservation as an alternative
criterion to derive (2).

The presence of the step and delta functions in (1) im-
plies an abrupt transition from the interior to the exterior
of the bag. The quark wave functions in the MIT bag do
not vanish at the surface, they are simply cut out by the
step function. A more serious drawback of the sharp sur-
face of the MIT bag is that it makes the quark self-energy
diverge when the pion–quark interaction is turned on and
all quark states are considered [6–8]. This divergence is

not renormalizable, which means that the model is, even
on the phenomenological level, formally inconsistent.

One way of getting rid of the above mentioned diver-
gence is to substitute the MIT bag for a relativistic po-
tential model. But then another problem is encountered,
since the bag radius R appears explicitly in the function
θ(r−R), which is responsible for excluding the pion field
from the interior of the bag. So, in the quest for a satis-
factory hadronic model, it seems that fixing one part of
the model spoils the other part. One possible way out of
this dilemma [2,3] is the fuzzy bag model.

3 The fuzzy bag

As commented in the preceding section, for a hadronic
model to be consistent when quarks are coupled to pi-
ons, the bag surface should not be sharp, but rather must
have a finite thickness. The hadronic model which satis-
fies this requirement and is closest to the MIT model is
the fuzzy bag model. In order to obtain the fuzzy bag, the
sharp functions θ(R − r), δ(R − r) and θ(r − R) in the
Lagrangian density (1) are substituted by smoothed-out
versions, denoted respectively by F (r), G(r) and Fπ(r),

L =
[

i
2
(ψ γµ ∂µ ψ − ∂µ ψ γ

µ ψ) −mψψ −B

]
F (r)

− 1
2
ψ ψG(r) +

1
2
[
∂µφ · ∂µφ−m2

π φ
2]Fπ(r)

− i
2fπ

ψ γ5 τ · φψG(r) . (3)

The functions F (r) and G(r) should be representations of
the distributions θ(R − r) and δ(R − r), so that G(r) is
related to F (r) through

G(r) = −dF (r)
dr

. (4)

Similarly, Fπ(r) should be a representation of θ(r − R).
The form of the functions F (r) and Fπ(r) is displayed in
Fig. 1. The Lagrangian density (3) is not very convenient
to describe the fuzzy bag. By defining the physical quark
and pion fields as

q(x) =
√
F (r)ψ(x) ,

π(x) =
√
Fπ(r)φ(x) , (5)

and and rewriting the Lagrangian density (3) in terms of
q(x) and π(x), one obtains

L =
i
2
[q γµ ∂µ q − ∂µ q γ

µ q] − [m+ Vc(r)] q q −BF (r)

+
1
2
∂µπ · ∂µπ − 1

2
[m2

π + Vπ(r)]π2

− i Vc(r)
fπ

√
Fπ(r)

q γ5 τ · π q , (6)

where the scalar potentials Vc(r) and Vπ(r) are given by

Vc(r) = − 1
2F (r)

dF (r)
dr

(7)
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Fig. 1. The behavior of F (r) (—), Vc(r) (dash), Fπ(r) (dots)
and Vπ(r) (dash-dot)

Vπ(r) =
1

2Fπ

d2Fπ

dr2
−
(

1
2Fπ

dFπ

dr

)2

+
1
rFπ

dFπ

dr
. (8)

Notice that while Vc(r) should confine the quarks inside
the bag, the scalar potential Vπ(r) should hinder the pion
field from entering the bag. It can easily be checked that
Vπ(r) always has this property, independently of the spe-
cific form of Fπ(r): if we assume that Fπ(r) behaves near
the origin as Fπ(r) ≈ arnπ , we find that the dominant
contribution to the pion potential is always repulsive,

Vπ(r) ≈
(
n2

π

4
+
nπ

2

)
1
r2

. (9)

Notice also that expression (6) closely resembles a rela-
tivistic potential model. But by taking the limit in which
F (r) → θ(R − r) and Fπ(r) → θ(r − R), the MIT bag
model is recovered. So the fuzzy bag can be thought of
as a bridge between relativistic potential models and the
MIT bag model.

As is done in relativistic potential models, we add in
the Lagrangian density (6) a constant term V0/2 to the
scalar potential and introduce a vector potential γ0 V (r),
where

V (r) =
1
2
V0 + Vc(r) , (10)

so that we obtain

L =
i
2
[q γµ ∂µ q − ∂µ q γ

µ q] − q [m+ (1 + γ0)V (r)] q

− B(r)F (r) +
1
2
∂µπ · ∂µπ − 1

2
[m2

π + Vπ(r)]π2

− i V(r)
fπ

√
Fπ(r)

q γ5 τ · π q . (11)

In the above Lagrangian density we have allowed for the
MIT bag constant B to have a radial dependence, B →
B(r). This will be justified in Sect. 6, where we consider
the energy-momentum conservation. By analogy with the
MIT bag, we can interpret the product B(r)F (r) as the

vacuum energy density in our model, that is, it represents
the difference between the energy densities of the pertur-
bative QCD vacuum inside and the non-perturbative QCD
vacuum outside the hadrons [3]. The form of B(r) will
be determined in Sect. 6. We also observe that the choice
of the scalar plus vector potential reduces the spin–orbit
splitting, and this seems to be a feature of QCD [9].

4 Chiral invariance

Our model is unique in the literature, in that the pion field
is subject to a scalar potential but still preserves chiral
symmetry. This happens because
(i) we started with the Lagrangian density (1), which is
chiral symmetric up to first order in the pion field (quark
and pion masses assumed to vanish); and
(ii) the final Lagrangian density (11) was obtained by ap-
pling the field transformation (5), which does not do any
harm to chiral symmetry.

In order to understand in more detail how chiral sym-
metry is preserved in the fuzzy bag, let us consider an
infinitesimal chiral transformation of φ(x),

φ′(x) = φ(x) + fπ θ . (12)

For the physical pion field π(x), the corresponding chiral
transformation is given by

π′(x) = π(x) + fπ

√
Fπ(r) θ . (13)

Under this infinitesimal transformation the change in the
field is δπ = fπ

√
Fπ θ. The corresponding change in the

Lagrangian density can be calculated as

δL = fπ

√
Fπ

(
∂µπ − 1

2Fπ
π ∂µFπ

)
· ∂µθ . (14)

We recall the Gell-Mann–Levy equations, which relate the
change in the Lagrangian density to a current and its di-
vergence,

jµAπ(x) =
∂L

∂(∂µθ)
,

∂µ jµAπ(x) =
∂L
∂θ

. (15)

By using the above equations, we see that the axial-vector
current for the physical pion field is conserved and is given
by

jµAπ(x) = fπ

√
Fπ

(
∂µπ − 1

2Fπ
π ∂µFπ

)
. (16)

Now it is clear why the scalar potential Vπ(r) is necessary
for the chiral transformation to be a symmetry of the La-
grangian (11). Because of the presence of Fπ(r) in (13), the
chiral transformation for the physical pion field is always
space-dependent, even if the infinitesimal parameter θ is
a constant. When the chiral transformation is applied to
the Lagrangian density, there will be terms coming from
1
2 ∂µπ ·∂µπ which are compensated by the scalar potential
Vπ(r).
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5 Solutions for the quark
and pion wave functions

We now choose a definite form for the quark and pion po-
tentials. For simplicity, we choose harmonic confinement,

Vc(r) =
λ

2
r2 , (17)

and then it can be seen from (7) that the quark suppres-
sion function is given by

F (r) = e−λ r3/3 . (18)

We have seen that the pion potential Vπ(r) behaves as
(9) near the origin, and we also expect that it vanishes as
r → ∞. We choose then the potential

Vπ(r) =



(
n2

π

4
+
nπ

2

)(
1
r2

− 1
R2

π

)
, r < Rπ ,

0 , r > Rπ .
(19)

The pion suppression function can be obtained by writing
(8) as a differential equation for Fπ(r),

d2
(
r
√
Fπ

)
dr2

− Vπ(r)
(
r
√
Fπ

)
= 0 . (20)

With µ = (nπ + 1)/2 and α =
√
n2

π/4 + nπ/2, we find

Fπ(r) =



Rπ

r

[
Jµ(αr/Rπ)
Jµ(α)

]2
, r < Rπ ,

1 , r > Rπ .

(21)

In Fig. 1 we have displayed the behavior of the suppression
functions F (r) and Fπ(r) and of the potentials Vc(r) and
Vπ(r).

5.1 The quark wave function

Let us now determine the dynamical equation for the
quark wave function. From the Lagrangian density (11),
neglecting the pion–quark interaction, we obtain

i γµ ∂µ q − [m+ (1 + γ0)V (r)] q = 0 . (22)

The wave function q(x) can be written in a separable,
two-component form,

q(x) = e−iEt

(
g(r)

−i f(r)σ · r̂

)
χ , (23)

and the radial wave functions g(r) and f(r) can be written
in terms of the reduced wave function u(r),

g(r) =
u(r)
r

,

f(r) =
1

E +m

dg(r)
dr

. (24)

One finds that the differential equation for u(r) is

d2 u(r)
dr2

+ (E +m)[E −m− V0 − λr2]u(r) = 0 . (25)

This equation can be solved exactly, yielding the solution

u(r) =
Nr

r0
e−r2/2r2

0 , (26)

and the eigenvalue equation for the energy,
√
E +m (E −m− V0) = 3

√
λ , (27)

where r0 determines the fall-off of the quark wave function,

r−4
0 = λ(E +m) , (28)

and we have defined the variables E′ and m′, which in
many cases are more practical to use than E and m,

E′ = E − V0/2 ,
m′ = m+ V0/2 . (29)

The normalization condition for the quark wave function
is ∫

d3r q†(r) q(r) = 1 . (30)

After inserting the expression (23) for the quark spinor
and doing several integrations by parts, the normalization
condition, for a general form of u(r) and V (r), can be
written as

2
∫ ∞

0
dr u2(r) [E − V (r)] = E +m . (31)

With the specific forms of u(r) and V (r) found in this
section, we obtain

N2 =
8 (E′ +m′)√
π r0 (3E′ +m′)

. (32)

5.2 The pion wave function

We have seen that, even neglecting the pion–quark interac-
tion, the pion field is not free in the fuzzy bag: it is always
subject to a scalar potential Vπ(r), which represents some
effects of the QCD vacuum, as was discussed in Sects. 1
and 3. As a consequence, the homogeneous equation for
the pion field is

∂µ ∂
µ π +

[
m2

π + Vπ(r)
]
π = 0 . (33)

Writing the pion field as

π(x) = α̂ e−i ωk t hk(r)
r

Y m
� (θ, φ) , (34)

where α̂ is an unitary vector in isospin space, hk(r) is the
reduced radial wave function, and ω2

k = k2 + m2
π, it can

be seen that for � = 1 we get

h′′(r) +
(
k2 − 2

r2
− Vπ(r)

)
h(r) = 0 . (35)
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By defining the constants

ν =

√
n2

π

4
+
nπ

2
+

9
4
,

β =

√
k2 +

(
n2

π

4
+
nπ

2

)
1
R2

π

, (36)

the solution can be written as

hk(r)=



Nπ

√
βr Jν(βr) , r < Rπ ,

Nπ

√
2
π
kr[Aj1(kr) +B y1(kr)] , r > Rπ ,

(37)

where A and B are determined by continuity conditions
and Nπ is the normalization factor. The normalization
condition for the pion radial wave function is∫ ∞

0
dr hk1(r)hk2(r) = δ(k1 − k2) , (38)

and it implies that the normalization factor Nπ is given
by Nπ = 1/

√
A2 +B2.

6 Energy-momentum conservation

The question of energy-momentum conservation in the
quark sector can be addressed by considering the contribu-
tion of the quarks to the energy-momentum tensor. This
tensor should be written in terms of the field ψ(x) which
appears in the original Lagrangian density (3), but it can
be shown that the same functional form arises when Tµν

is expressed in terms of the physical quark field q(x),

Tµν =
∂L

∂(∂µq)
∂νq + ∂νq

∂L
∂(∂µq)

− gµν L . (39)

This is the usual form of the energy-momentum tensor,
but notice that q(x) is a suppressed field, so the result (39)
is not at all obvious. The criterion of energy-momentum
conservation implies that the divergence of Tµν must van-
ish. After some algebra, we arrive at the condition

∂µ [B(r)F (r)] +
∑

i

qi (1 + γ0) qi ∂µVc(r) = 0 , (40)

where the sum over valence quarks in the hadron is written
explicitly. If B were simply a constant, the above equation
would not be satisfied. This is because the suppression
function F (r) determines the confining potential Vc(r),
which on its turn determines the quark wave functions. So
these three quantities are tied together, and the only way
to satisfy (40) is to let B depend on the radial variable,
B → B(r). In this way we justify the radial dependence
of B which was introduced in the fuzzy bag Lagrangian
(11).

For the ground state, the expression q(x)(1+γ0)q(x) =
g2(r)/2π is independent of the angular variables, and thus

(40) turns into a trivial first order differential equation for
B(r),

d
dr

[B(r)F (r)] = − 1
2π

∑
q

g2
q (r)

dVc(r)
dr

. (41)

Integrating the above equation from zero up to some finite
value of r and setting B0 = B(0), we obtain

B(r)F (r) = B0 − 1
2π

∑
q

∫ r

0
dr′ g2

q (r′)
dVc(r′)

dr′ . (42)

Remembering that the product B(r)F (r) represents the
difference between the energy densities of the perturba-
tive and the non-perturbative QCD vacua, it is natural to
require B(r)F (r) → 0 as r → ∞. In this way we are able
to determine B0. Upon using the reduced wave function
u(r) instead of g(r), the vacuum energy density can be
finally written as

B(r)F (r) =
1
2π

∑
q

∫ ∞

r

dr′ u
2
q(r

′)
r′ 2

dVc(r′)
dr′ . (43)

This formula should be compared to (2), which gives the
MIT value for the bag constant. For the confining poten-
tial of (17) and using the solution for u(r) in (26), we
find

B(r)F (r) =
λ

4π

∑
q

N2
q e−r2/r2

0q . (44)

Notice that there is a steady decrease of B(r)F (r) as r
increases. This represents a smooth transition between the
perturbative and the non-perturbative vacuum of QCD.

7 Baryon masses

Without any corrections, the mass of a baryon is given
simply by the sum of the energy carried by the quarks EB

and the vacuum energy Evac,

M0
B = EB + Evac =

∑
q

Eq +
∫

d3r B(r)F (r) . (45)

By performing integration by parts, we obtain for quarks
in the ground state

Evac =
2
3

∑
q

∫ ∞

0
dr r u2

q(r)
dVc(r)

dr
. (46)

In the specific case of the confining potential (17) and the
solution for u(r) in (26), we find

Evac = 2
[λ (E′

q +m′
q)]

1/2

3E′
q +m′

q

. (47)

The value M0
B is only a “zeroth order” approximation to

the mass of a baryon. In the following we consider the 8
ground state baryons and investigate some standard cor-
rections to M0

B .
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7.1 Center of mass correction

For the center of mass correction, we use the prescription
of [10],

∆Ecm =



(∑

q

Eq

)2

−
∑

q

〈p2
q 〉



1/2

, (48)

with 〈p2
q 〉 denoting the expectation value of the linear

momentum of a quark taken with respect to his wave func-
tion,

〈p2 〉 =
∫

d3r q†(r) p2 q(r) . (49)

By inserting expression (23) for the quark wave function,
performing various integration tricks and using the nor-
malization condition (31), we arrive at the formula

〈p2 〉=E2 −m2 − 4
∫ ∞

0
dr u2(r)V (r) [E − V (r)] . (50)

From this expression it is clear how Einstein’s formula
for a free particle is modified by the potential V (r). We
emphasize that (31) and (50) are not restricted to the
ground state, but are valid for any eigenstate of the form
(23), as long as the potential is of the type (1 + γ0)V (r).
Substituting the wave function given in (26), we get

〈p2 〉 =
(11E′ +m′) (E′ 2 −m′ 2)

6 (3E′ +m′)
. (51)

7.2 One-gluon exchange

The non-perturbative part of the quark–gluon interaction
is modeled by the confining potential Vc(r), which was
introduced in Sect. 3. The perturbative part is taken into
account by adding to the fuzzy bag Lagrangian (11) a
pure glue term and a quark–gluon interaction term, as
prescribed by QCD. Since we are considering only one-
gluon exchange, there are no contributions from gluon self-
interactions. The calculations proceed then much in the
same way as in electrodynamics. The color-electric and
color-magnetic fields are generated by the quark color-
vector currents, which are given by

jµ
aq(x) = qq(x)γ

µλaqq(x) . (52)

It can be checked that the jµ
aq(x) are time-independent,

and this implies that the color-electromagnetic fields are
static. They obey the following Maxwell equations:

∇ · Ea(r) = −g ρa(r) ,
∇ × Ea(r) = 0 ,
∇ × Ba(r) = −g ja(r) ,
∇ · Ba(r) = 0 , (53)

where ρa(r) and ja(r) are the time and the space compo-
nents of jµ

a (r). The total quark current jµ
a (r) is the sum of

the individual currents written in (52). Due to the linear-
ity of (53), one can write the color-electromagnetic fields
as superpositions of the fields generated by each valence
quark and then solve (53) for each quark flavor. The en-
ergy shift due to the quark–gluon interaction is then writ-
ten as

∆Eg = ∆EE
g +∆EM

g ,

∆EE
g =

g2

8π

∑
q,q′

∑
a

∫
d3r d3r′ j

0
aq(r) j

0
aq′(r′)

|r − r′| , (54)

∆EM
g = − g2

8π

∑
q �=q′

∑
a

∫
d3r d3r′ jaq(r) · jaq′(r′)

|r − r′| .

By using the quark wave function (23) and the solution
(26), one can write the one-gluon exchange correction in
the form

∆EE
g = αc (auu I

E
uu + aus I

E
us + ass I

E
ss) ,

∆EM
g = αc (buu I

M
uu + bus I

M
us + bss I

M
ss) , (55)

where

IE
qq′ =

16
3
√
π

1
Rqq′

[
1 − αq + αq′

R2
qq′

+
3αqαq′

R4
qq′

]
,

IM
qq′ =

256
9
√
π

1
R3

qq′

1
(3E′

q +m′
q)

1
(3E′

q′ +m′
q′)

, (56)

and we defined

αq =
1

(E′
q +m′

q)(3E′
q +m′

q)
,

R2
qq′ =

3
(E′ 2

q −m′ 2
q )

+
3

(E′ 2
q′ −m′ 2

q′ )
. (57)

The constants aqq′ are given by

aqq′ = 〈B|
∑

a

λa
qλ

a
q′ |B〉 ,

bqq′ = − 3
16

〈B|
∑

a

λa
qλ

a
q′ σq · σq′ |B〉 , (58)

and their values for the fundamental baryon octet can be
found for example in [11]. We observe that the indices q
and q′ now refer to the quark flavors, and furthermore that
a d quark counts as a u quark, since we assume md = mu.

7.3 One-pion exchange

The pion–quark interaction induces renormalization ef-
fects on the hadronic wave functions, and this should be
taken into account in a fit of the hadronic properties.
The calculations are done in a framework similar to the
Chew and Low model of the nucleon–pion interaction.
This means that anti-baryons are not taken into account
and that hadron recoil is neglected. The starting point of
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Table 1. Renormalization coefficients for one-pion exchange

Baryon N ∆ Λ Σ Σ∗ Ξ Ξ∗ Ω−

aB
513
25

297
25

324
25

180
25

180
25

81
25

81
25

0

the calculation is the Hamiltonian for the pion–bag sys-
tem, composed by the bag energy, the pion field energy
and the pion–bag interaction energy,

H =
∑
B

M0
B B

†B

+
1
2

∫
d3r

(
∂t π · ∂t π + ∇π · ∇π +

[
m2

π + Vπ(r)
]
π2)

+
i
fπ

∫
d3r

V (r)√
Fπ(r)

∑
q

qq γ5 τq · π qq . (59)

Here B† and B are creation and destruction operators
for bag states and M0

B is the bare (unperturbed) hadron
mass calculated in (46). Since the pion field is subject to
a scalar central potential, it is convenient to expand the
quantized pion field in angular momentum modes. With
the exception of this point, the calculation proceeds in a
standard way. Details can be looked up in the literature
[12,13]; we quote here just the final results. The perturbed,
physical baryon states |B̃〉 determined up to one order of
the interaction are given by

|B̃〉 = Z
1/2
B |B〉 − Z

1/2
B

∑
j�m

∑
B′

∫ ∞

0
dk
vBB′

j�m (k)
ωk

×|B′, πj�m(k)〉 . (60)

The probability ZB of finding the bare baryon component
in the physical baryon state is found to be

Z−1
B = 1 + aB f

2
NNπ Zπ , (61)

and the pion contribution to the mass is

∆Eπ = − aB f
2
NNπ δπ , (62)

with the values of aB given in Table 1. The quantities Zπ

and δπ are defined as

Zπ =
∫ ∞

0
dk k2 v

2(k)
ω3

k

,

δπ =
∫ ∞

0
dk k2 v

2(k)
ω2

k

, (63)

where v(k) is the interaction vertex,

v(k) =
20

3
√

3πmπ gA

∫ ∞

0
dr r

V (r)√
Fπ(r)

hk(r) g(r)f(r) .

(64)

8 Nucleon properties

8.1 The axial coupling constant of the nucleon

The axial coupling constant gA is defined as

〈N |σi
N

τN
2

|N〉 gA

= 〈N |
∫

d3r

[∑
q

jiAq(r) + jiAπ(r)

]
|N〉 (65)

and receives contributions from the quarks as well as from
the pions. The axial-vector current carried by the quarks
is given by

jµAq(r) = qqγ
µγ5

τq
2
qq , (66)

and, for quarks in the ground state, the quark contribution
to gA can be written in the form

g0
Aq =

20
9

∫ ∞

0
dr u2(r) − 5

9
. (67)

We should also consider center of mass and recoil correc-
tions to the quark contribution to the axial charge. Ac-
cording to [10], the center of mass correction is given by

gAq = g0
Aq

(
1 +

〈p2 〉
M2

N

)
, (68)

while the recoil correction vanishes [4]. With the explicit
solution (26), we find

g0
Aq =

5 (5E′
u + 7m′

u)
9 (3E′

u +m′
u)

, (69)

and the value of 〈p2 〉 is calculated from (51).
The pion contribution to gA is obtained by inserting

in (65) the pion axial-vector current given in (16). In con-
trast to most hadronic models in the literature, the pion
contribution does not vanish in the fuzzy bag model. We
find

〈N |σi
N

τN
2

|N〉 gAπ = −fπ 〈N |
∫

d3r
π ∂iFπ√
Fπ

|N〉 . (70)

The pion field here is generated by the quarks in the nu-
cleon. It is time-independent, and, by writing it in the
form

π(r) = 〈N |
∑

q

(σq · r̂) τq|N〉 h(r)
r

, (71)

we obtain

gAπ = −40πfπ

9

∫ ∞

0
dr r h(r)

∂rFπ√
Fπ

. (72)

The radial component of the pion wave function obeys the
equation

h′′(r) −
(
m2

π +
2
r2

+ Vπ(r)
)
h(r) =

rV (r)g(r)f(r)
2πfπ

√
Fπ(r)

,

(73)
which is derived from the non-homogeneous equation for
the pion field, obtainable from the Lagrangian density (6).
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8.2 The nucleon charge radius

The charge radius of the nucleon is defined as a derivative
of the nucleon charge form-factor. By using the physical
nucleon states obtained in Sect. 7.3 and using phenomeno-
logical parameters for the pion contribution [14,13,15], we
find for the proton and the neutron respectively that

〈r2〉p = ZN

[
1 +

459
25

Zπf
2
NNπ

](
〈r2q〉 − 3

4M2
N

)

+
54
25
ZNZπf

2
NNπ

(
〈r2〉π +

3
2
Λ2
)
,

〈r2〉n = ZN

[
54
25
Zπf

2
NNπ

](
〈r2q〉 − 3

4M2
N

)

− 54
25
ZNZπf

2
NNπ

(
〈r2〉π +

3
2
Λ2
)
, (74)

where 〈r2〉1/2
π = 0.78 fm is the experimental value of the

root-mean-squared radius of the pion and Λ2 = 2 fm2. The
mean-squared radius of a quark wave function, 〈r2q〉, is es-
timated with center of mass [10] and recoil [4] corrections
as

〈r2q〉 =
(

〈r2q〉0 − 3eN

4〈p2〉
)(

1 +
〈p2 〉
M2

N

)

×
(

1 − 2Eq

MN
+

3E2
q

M2
N

)
, (75)

where eN is the electric charge, and the static value of the
mean-squared radius is

〈r2q〉0 =
∫

d3r q†(r) r2 q(r)

=
2

E +m

∫ ∞

0
dr r2 u2(r)[E − V (r)]

+
3

(E +m)2

∫ ∞

0
dr u2(r) . (76)

Substituting the solution (26) for u(r) we get

〈r2q〉0 =
3
2

(11E′ +m′)
(3E′ +m′)(E′ 2 −m′ 2)

. (77)

8.3 The nucleon magnetic moment

The nucleon magnetic moments are obtained by taking
the limit k → 0 of the magnetic form-factors. By using
the physical nucleon states obtained in Sect. 7.3 and using
phenomenological parameters for the pion contribution as
in the preceding subsection, we find for the proton and
the neutron respectively

µp = 2MNZN

[
1 +

87
5
f2

NNπZπ

]
µq

+
528
25

MNZNf
2
NNπZ2 ,

µn = 2MNZN

[
1 + 18f2

NNπZπ

]
µq

− 528
25

MNZNf
2
NNπZ2 , (78)

where Z2 is defined as

Z2 =
∫ ∞

0
dk k2 v

2(k)
ω4

k

. (79)

The magnetic moment of the quarks is estimated with
center of mass [10] and recoil [4] corrections as

µq = cNµ
0
q

(
1 +

3〈p2〉
2M2

N

)(
1 − Eq

MN

)

+
eN 〈p2〉
2M2

N

+ cN∆µq , (80)

where cN = 1 for the proton and cN = −2/3 for the
neutron, and

∆µq =
∫ ∞

0
dr r2

[
g2(r) − 1

3
f2(r)

]
. (81)

The static value of the magnetic moment can be written
in a simple form as

µ0
q =

2MN

E +m

∫ ∞

0
dr u2(r) . (82)

Substituting the solution (26) for u(r) we get

µ0
q =

4MN

3E′ +m′ ,

∆µq =
5E′ + 7m′

3(3E′ +m′)
. (83)

9 Results and concluding remarks

We adjusted the parameters of the model so that the
masses of the fundamental baryon octet and the nucleon
observables gA, 〈r2〉p, 〈r2〉n, µp and µn were as close as
possible to their experimental values. The optimal set of
parameters was found to be

mu = 80 MeV , ms = 255 MeV , V0 = −158 MeV ,

λ = 1.54 fm−3 , Rπ = 2.16 fm , nπ = 0.14 ,
αc = 0.55 , fNNπ = 0.671 . (84)

The masses of the 8 ground state baryons are given by

M = EB + Evac +∆Ecm +∆EE
g +∆EM

g +∆Eπ . (85)

In Table 2 we show the values obtained in comparison
with experiment and also discriminate the different con-
tributions to the masses. The vacuum energy is seen to
represent about 30% of the baryon masses, while the cen-
ter of mass, one-gluon and one-pion corrections are suffi-
ciently low and can be considered as additive, as in (85).
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Table 2. Baryon masses in comparison with experiment. Also
shown are the different contributions to the masses. All quan-
tities are in MeV

Baryon N ∆ Λ Σ Σ∗ Ξ Ξ∗ Ω−

exp. 939 1232 1116 1193 1385 1318 1533 1672
theory 934 1244 1127 1220 1391 1352 1523 1639

EB 1187 1187 1270 1270 1270 1353 1353 1435
Evac 316 316 312 312 312 307 307 302
∆Ecm −189 −189 −184 −184 −184 −181 −181 −177
∆EE

g 0 0 5 5 5 5 5 0
∆EM

g −95 95 −95 −82 89 −88 83 78
∆Eπ −285 −165 −180 −100 −100 −45 −45 0

Table 3. Nucleon properties in comparison with experiment

gA 〈r2〉p 〈r2〉n µp µn

exp. 1.2573 0.743 −0.119 2.79 −1.91
theory 1.0610 0.760 −0.100 2.95 −1.75

The results for the nucleon properties are presented
in Table 3. As commented in Sect. 8.1, the nucleon axial
charge gA receives contributions from both quarks and
pions. The quark part is obtained from (67), while the pion
part is calculated numerically from (72). Finding gAπ also
involves finding the solution of (73) for the radial part of
the pion wave function. We have found that gAπ is always
negative and of small magnitude. For the specific set of
parameters (84), we obtained

gAπ = −0.0119 . (86)

From Table 3, one sees that the mean-squared radii and
magnetic moments of the proton and of the neutron are
in excellent agreement with the experimental values. The
relative errors for 〈r2〉p, 〈r2〉n, µp and µn are respectively
2%, 16%, 6% and 8%. The greater relative error in 〈r2〉n

is expected, since its magnitude is small in comparison
with 〈r2〉p. The center of mass correction for gA and the
mean-squared radii was 16%, while for the magnetic mo-
ments it was 23%. The recoil correction, which has oppo-
site sign to the center of mass correction, was 31% for the
mean-squared radii and 58% for the magnetic moments.
We have also found that the renormalized pion–nucleon
coupling constant is f (R)

NNπ = 0.307, which is close to the
experimental value 0.283.

The parameter nπ determines both the strength of the
pion potential (19) and the rise of the pion suppression
function (see discussion before (9)). The value we ob-
tained, nπ = 0.14, seems to indicate that the pion field
is suppressed only very near the center of the bag.

We have obtained a very good fit of baryon masses
and nucleon properties. Future plans are to consider two-
pion exchange and to address the magnetic moments of
the baryon octet.

We have also obtained simple expressions for the nor-
malization condition, (31), the average squared momen-
tum of a quark, (50), and the quark contributions to the
axial charge (67), to the mean-squared radius, (76), and
to the magnetic moment, (82). These formulas can also be
used in other relativistic potential models. In particular,
we mention (50), which expresses the expectation value
of the squared momentum in a way that makes clear how
Einstein’s formula for a free particle is modified by a po-
tential V (r) of the form (10).

Acknowledgements. We are thankful to M. Betz for discussions
on the recoil corrections.
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