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Abstract. We study the value of shadowing corrections (SC) in the HERA kinematic region in the Glauber–
Mueller approach. Since the Glauber–Mueller approach was proven in perturbative quantum chromody-
namics (QCD) in the double-logarithmic approximation (DLA), we develop the DLA approach for the
deep inelastic structure function which takes into account the SC. Our estimates show small SC for F2 in
the HERA kinematic region while they turn out to be sizable for the gluon structure function. We compare
our estimates with those for gluon distribution in leading order (LO) and next to leading order (NLO) in
the DGLAP evolution equations.

1 Introduction

We investigate the role of the shadowing corrections (SC)
on the value of the deep inelastic structure functions and
on the scaling violation mechanism in the HERA kine-
matic region, estimating the SC in the Glauber–Mueller
approach proposed in [1–4].

The experimental results from the e(e+) collider
HERA present a steep increase of the proton structure
function F2(x, Q2) in the region of small values of the mo-
mentum fraction x. These data also show a strong scaling
violation, i.e. a strong dependence of F2 on the momen-
tum transfer Q2. In principle, all these experimental fea-
tures can be described in the context of the perturbative
quantum chromodynamics (pQCD) by the DGLAP evolu-
tion equations. In this approach, the small x behaviour of
the parton distributions inside the proton is driven by the
gluon distribution. The number of quarks and antiquarks
is generated by the perturbative QCD transition g → qq̄,
which is the QCD mechanism to describe the scaling vio-
lation in F2. Thus, the increase of the gluon distribution
in the usual DGLAP evolution generates the strong rise
of F2.

Although DGLAP evolution equations can describe
the data, new dynamical effects such as the parton interac-
tion and recombination, which could modify the standard
evolution, are not included in this parton evolution de-
scription. Indeed, as was shown in [2], QCD unitarization

a ayala@ufpel.tche.br
b gay@if.ufrgs.br
c leving@post.tau.ac.il

effects are expected to take place in the small x region.
For instance, the growth of the gluon distribution brings
system to the high-density regime, even in the kinematic
region where αS is small (large Q2 region).

2 The Glauber–Mueller approach for F2

A general approach to describe unitarization effects in
QCD was proposed in [1]–[4]. In this approach, the SC
are described in a Glauber model in QCD. The first step
was the proof of a Glauber formula for QCD in the double-
logarithm approximation (DLA) by Mueller [1]. After
that, the s-channel unitarity constraint was taken into ac-
count in the target rest frame to include unitarity effects
in the high-energy scattering. From this approach, it was
possible to obtain the Mueller formula and to propose a
general eikonal approach to describe the SC.

In this eikonal approach, the deep inelastic scatter-
ing is described as follows. The high-energy virtual pho-
ton splits into a qq̄ pair. This pair suffers multiscatterings
within the target and the overall effect is the suppression
of the γ∗-nucleon cross-section. Thus, the structure func-
tion F2(x, Q2) is given by the eikonal expression [2–4]

F2(x, Q2) =
Nc

6π3

Nf∑
Z2

f

∫ ∞

1
Q2

dr2
⊥

r4
⊥

∫
d2b⊥{1 − e− 1

2 Ω}, (1)

where Q2 is the photon virtuality, Nc is the number of
colours and Zf is the charge fraction of each quark. Nf is
the number of flavours taken into account in the quark–
nucleon scattering and b⊥ is the impact parameter for
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Fig. 1. The evolution of the structure function F2

from the scaling violation mechanism in the DLA as a
function of x. The solid line represents the Born term
and the dashed line includes the SC

the scattering of the quark–antiquark pair with transverse
splitting r⊥ with the nucleon target. The opacity function
Ω is, generally speaking, an arbitrary real function and
should be determined by a QCD-suggested model.

To construct a QCD model for Ω, we took the DLA
limit of perturbative QCD, i.e. the small x and large Q2

region, where we expect Ω to be small. In this region, we
impose that (1) should reproduce the DGLAP evolution in
the same limit. In [1] and [5], it was shown that the impact
parameter dependence can be factorized out. Combining
both results, Ω can be written as

Ω(x, Q2, b⊥) =
4π2αS

3Q2 xG(x, Q2)S(b⊥), (2)

where S(b⊥) is the profile function for a nucleon with ra-
dius R, and is taken as an exponential function, S(b⊥) =
(1/πR2) exp(−b2

⊥/R2), in our calculations. It should be
stressed that the above procedure to obtain (1), with Ω
defined by (2), takes into account the unitarity constraint
in the DLA limit of pQCD and gives the DGLAP evolu-
tion equation [6] in the kinematic region where Ω � 1.
In order to investigate the x and Q2 evolution of the F2
structure function in this approach, in [4] the gluon distri-
bution was taken from the GRV95 set, which is a solution
of the full DGLAP equation. Here, we are interested in de-
veloping a completely DLA formula and to compare this
result with the ones obtained from the leading order (LO)
and next to leading order (NLO) gluon distribution. Thus,
we first develop a completely consistent DLA limit, where
F2 is related, through the scaling violation mechanism, to
the DLA gluon distribution. We estimate the SC in this
approach and, after that, compare the results with the SC
predicted from LO and NLO gluon distribution. We then

compare these results with the prediction of the Glauber
formula for the gluon distribution.

Let us investigate first the role of SC in the completely
consistent DLA limit. We consider the Born term of (1)
with the gluon distribution taken in the DLA limit. Since
the Born term is equivalent to the DGLAP expression for
F2 in the DLA limit, we will take xGDLA as in [7] and [8].
Thus, the gluon distribution reads

xGDLA(x, Q2) = G0I0(y), (3)

where the variables are y = 2γ
√

ln(1/x) ln(t/t0), t =
ln(Q2/Λ2) and t0 = ln(Q2

0/Λ2). The QCD constants are
γ =

√
12/β0, β0 = 11 − (2Nf/3) and Λ = 0.232 GeV2.

The constant G0 plays the role of the flat initial condi-
tion, since the Bessel function I0(y) goes to 1 as y goes
to zero. We disregard the sub-leading corrections to the
DLA gluon proportional to αS lnQ2 proposed in [7]. If we
integrate (1) over b⊥ the Born term then reads

F2 = F2(x, Q2
0) +

2
9π

∫ Q2

Q2
0

dQ′2

Q′2 αS xGDLA(x, Q′2), (4)

where we have taken Nf = 3 and αS as a series. The
expression (4) gives the sea component of F2 generated
by the gluon evolution from the initial virtuality Q2

0 up
to Q2. Going from expression (1) to (4) we have taken
Q′2 = 1/r2

⊥. Thus, the lower limit Q2
0 works as a cut off

for the large distance effects over F2. These effects are
included in F2(x, Q2

0), the value of the structure function
for the virtuality Q2

0. It has a nonperturbative origin and
takes into account the number of qq̄ pairs not generated
by the perturbative transition g → qq̄. We parametrize
the initial structure function by the expression

F2(x, Q2
0) = C0x

−0.08(1 − x)10, (5)
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Fig. 2. F2 evolution from the scaling violation mechanism in the DLA as a function of Q2 (for the scaling violation figures,
the value of i goes from 0 for x = 2.0 × 10−3 to 7 for x = 8.0 × 10−5)

where C0 is a constant that adjusts the nonperturbative
contribution. This expression reproduces the soft pomeron
behaviour (x−0.08 as x → 0) presented by the γ∗–nucleon
cross-section in the low Q2 region [9]. Since we have used
Nf = 3, we should add the charm component F c

2 . This
component is generated perturbatively from the γ∗–gluon
fusion mechanism with the gluon distribution given by the
DLA expression (3). This mechanism is discussed in detail
in [10]. Finally, we obtain the following expression for F2

F2(x, Q2) = F2(x, Q2
0) + FBorn

2,DLA + F c
2,DLA. (6)

To fit the expression (6) to the HERA data, we have taken
the F2 points which lie in the region 1 GeV2 < Q2 <
100 GeV2 and x < 10−2, where we expect that our DLA
approach of SC is valid. The H1 and ZEUS results were
taken from [11] and [12], respectively.

In Fig. 1 we present the fit for a subset of the data.
The parameters used are G0 = 0.136, C0 = 0.273 and
Q2

0 = 0.330 GeV2. The values of the parameters were cho-
sen in such a way to minimize the χ2, which corresponds to
χ2/d.o.f. = 124/222 (where d.o.f stands for degrees of free-
dom). We can see from the figure that the steep behaviour
of the deep inelastic structure function is well described by
the DLA evolution of the gluon distribution, provided we
have included enough nonperturbative qq̄ pairs. With this
set of parameters the Q2 scaling violation of F2 can also
be described, as shown in Fig. 2. Taking a small value for
the initial virtuality we can generate the DLA behaviour
for Q2 ≈ 2 GeV2. A similar result was obtained in [8],
but in an incomplete DLA limit1. It is important to note

1 The authors have taken Pqg = z2 + (1 − z)2 and the sub-
leading factor (t/t0)−δ with δ = (11 + (2Nf/27))/β0.

that our aim is to describe HERA data in a completely
consistent DLA limit, and not to provide an overall fit to
existing high-energy data.

Now, we are able to investigate the number of SC pre-
dicted for F2 in the Glauber–Mueller approach in a con-
sistent DLA limit. For that, we consider the eikonal ex-
pression (1) with the opacity Ω calculated from the DLA
gluon distribution obtained above. In Fig. 1 we present
the results for F2 as a function of x, and in Fig. 2, as a
function of Q2. As we can see, the SC are important only
for very small values of x and moderate values of Q2. We
would like to recall that in (1) we put the upper limit
of integration equal to 1/Q2

0, or in other words we con-
sider only the SC which originate from sufficiently short
distances, namely, r⊥ ≤ 1/Q0 ≈ 0.35 fm. In fact, we do
not take into account the SC at large distances consid-
ering that they have been included in the initial parton
distribution of (5).

Therefore, we are calculating only perturbative shad-
owing. In the kinematic region of the present data, the
corrections lie within the experimental error.

We plot also in Figs. 3 and 4 the SC for F2 predicted
by the Glauber approach taking into account the LO and
NLO gluons. As, in both cases, the gluon distribution does
not present the DLA behaviour in the accessible kine-
matic region (see [4] for details), we have used the modi-
fied Mueller formula discussed in [4]. In this formula, the
Born term is taken in the leading αS lnQ2 aproximation
(LLA(Q2)), while the correction term is taken in the DLA.
For practical purposes, we use the structure function F2,
i.e. the solution of the DGLAP equations, as the Born
term in expression (6). We have taken only the GRV dis-
tribution since those distributions evolve from small vir-
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Fig. 3. The evolution of the structure function F2

in LO and NLO as a function of x. The Born term
(DGLAP evolution) for F2 NLO and LO numerically
coincide for Q2 > 10GeV2
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Fig. 4. F2 evolution from the scaling violation mechanism in LO and NLO as a function of Q2

tualities and can be compared with our DLA approach.
We see from the figures that the LO gluon predicts much
more SC to F2. It means that the scaling violation suf-
fers a stronger modification for the LO gluon than for the
simple DLA gluon and the NLO gluon.

3 Corrections to the Glauber–Mueller
approach

The eikonal approach for F2 taken into account so far
cannot be considered as a full description of the SC in deep
inelastic scattering. That is because it was assumed that
only a quark–antiquark pair embodies multi-rescatterings
with the target and no SC were included in the gluon
distribution. As was shown in [3], [4] and [13] the gluon
rescatterings turn out to be essential. To investigate the
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Fig. 5. F2 evolution from the scaling violation mechanism in DLA with the gluon distribution xGGM given by the Glauber–
Mueller approach
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role of the gluon rescattering we calculate here the Born
term of (1) but given by the expression

F2 = F2(x, Q2
0) +

2
9π

∫ Q2

Q2
0

dQ′2

Q′2 αSxGGM(x, Q′2), (7)

where xGGM is the gluon structure function calculated in
the eikonal (Glauber–Mueller) approach, namely

xGGM(x, Q2) =
2
π2

∫ 1
Q2

0

1
Q2

dr2
⊥

r4
⊥

∫ 1

x

dx′

x′

×
∫ ∞

0
db2

⊥{ 1 − e− ΩG(x′,r2
⊥,b⊥)

2 }, (8)

where the opacity ΩG = 9
4Ω. Expression (8) is the Mueller

formula which was obtained in [4]. When (8) is included
in expression (7), the Born term reproduces (4), since it is
the DGLAP equation in the DLA limit. The other terms
take into account the SC to the gluon distribution. The
results are shown in Fig. 5. Comparing Figs. 2 and 5, one
can see that the SC due to gluon rescattering are bigger
than the corrections due to quark rescattering. However,
both lie within the experimental error.

In order to complete our discussion, we plot in Fig. 6
the DLA gluon distribution given by expression (3) and
the corrected gluon distribution given by the modified
Mueller formula (8). The LO and NLO gluon distribution
given by the parametrization GRV95 are also plotted. As
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we can see, the DLA distribution predicts a number of
gluons closer to the NLO DGLAP evolution. This is not
a coincidence, since both xGDLA and the NLO GRV dis-
tribution have a flat behaviour for Q2 = 0.4 GeV2 while
the LO gluon distribution already has a steep behaviour
in the small x region for this low Q2 value.

4 Conclusions

We can see from the results presented in Fig. 6 that the SC
turn out to be sizable (about 23% for Q2 = 3.5 GeV2 and
12% for Q2 = 8.5 GeV2) in the gluon structure function
but their manifestation in F2 is rather small as we have
already discussed (see Fig. 5). Comparing also Figs. 2,
4 and 5 we can see that the SC for F2 have a strong
dependence on the number of gluons taken into account in
the QCD evolution. This is our main conclusion. It calls
for new measurements in the high-energy kinematic region
that are more sensitive to the value of the gluon structure
function than the measurements of F2.
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