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Abstract 

 

In this work we present a molecular dynamics simulation of a 

polyelectrolyte spherical brush and counterions in a salt-free medium, in 

which the dielectric inhomogeneity between materials is taken in 

consideration. Polyelectrolyte brushes have been studied experimentally 

broadly, having shown a range of different applications such as for 

bioseparation and targeted drug/gene delivery. In spite of that, formal 

simulations and theories explaining its behavior are not as numerous. The 

theory and the work we present are unfold into more details throughout the 

thesis in the form of multiple sections, but the results remain contained to 

the paper annexed1, published in 2017. We start with a brief introduction of 

the work and then present the paper, later on, the theory is further explored 

in the methodology appendix, and we finish with the final considerations for 

the work results and the project conclusion. The project consists of the 

aforementioned simulations with the main purpose of investigating the effect 

of the dielectric discontinuity, between the brush core and its surrounding 

medium, over the dynamics of the system. This is investigated through the 

use of the method of image charges. Properties of the polyelectrolyte brush 

are obtained for different parameters, including valence of the counterions, 

radius of the nanoparticle and the brush total charge. A mean-field theory is 

presented for the comparison with density profiles obtained for monovalent 

counterions, and we finish the paper by presenting the osmotic properties of 

the system.  
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Resumo 

 

Neste trabalho apresentamos simulações em dinâmica molecular de 

uma “brush” de polieletrólitos esférica, cercada de contraíons, em um meio 

livre de sais, onde a heterogeneidade dielétrica entre os materiais é levada 

em consideração. Estes conjuntos de polieletrólitos tem sido estudados 

experimentalmente de maneira ampla, tendo mostrado uma gama de 

diferentes aplicações como o uso para biosseparação e como portadores de 

drogas/genes para transporte controlado. Entretanto, teorias e simulações 

formais que expliquem o seu comportamento não são tão numerosas.  A teoria 

e o trabalho presentes são detalhados nesta dissertação na forma de múltiplas 

seções, mas os resultados permanecem contidos ao artigo anexado1 publicado 

em 2017. Começamos com uma breve introdução do trabalho e então 

apresentamos o artigo, posteriormente a teoria é melhor explorada no 

apêndice da metodologia, finalmente, terminamos com as considerações finais 

para com os resultados do trabalho e as conclusões do projeto. O projeto 

consiste das simulações anteriormente mencionadas, as quais tinham o 

propósito principal de investigar os efeitos da descontinuidade dielétrica, 

entre o núcleo da “brush” e o meio em que está envolta, sobre a dinâmica do 

sistema. Isso é investigado através do uso do método de cargas imagem. As 

propriedades da “brush” de polieletrólitos também são obtidas para diferentes 

parâmetros, dentre os quais, a valência dos contra íons, o raio da 

nanopartícula central e a carga total da “brush”. Uma teoria de campo médio 

é apresentada para comparação com os perfis de densidade obtidos para os 

contra íons monovalentes, e nós terminamos o artigo apresentando as 

propriedades osmóticas do sistema.  
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1. Introduction 

 

The study of polymer molecules and the development of theories 

appraising its dynamics is a fundamental benchmark of sciences in the 

twentieth century. Polymer molecules are present in our daily lives and the 

development of polymer-based technologies is important for an extensive 

range of applications, ranging from clothing and oil industries, to the medical 

sciences. Following the success of these applications, scientists have started 

to study these chain-like molecules in more complex structures, aiming to 

expand their usage. Among the mentioned structures this work focuses on 

polymer brushes. 

In this work we refer to polymer chains as polyelectrolyte, as they are 

composed by charged monomers. Polyelectrolytes represent a broad class of 

materials that are abundant in biological systems. In addition, 

polyelectrolytes, being water soluble, are natural for aqueous environments 

and the two most studied of all biopolymers, DNA and RNA, are 

polyelectrolytes. A large class of synthetic polyelectrolytes exists as well, 

some of these are fundamental industrial chemicals. For example, polyacrylic 

acid is the key ingredient in diapers2. Despite the existence of a considerable 

interest in polyelectrolytes, and the theory of neutral polymer systems being 

well developed3, polyelectrolytes remain one of the least understood subjects 

in the field of condensed matter.4-7  

If long linear polyelectrolyte chains are grafted densely to a solid 

surface, an object known as a polyelectrolyte brush (PEB) results. The process 

usually involves the surface, coated with an initiator, being immersed in a 

monomer solution, this way the polymerization process result in a brush 

directly, alternatively, a solution of pre-synthetized polymers might be used 

as well8. As to the surface form, PEBs have been mainly studied as planar 

brushes, cylindrical brushes and spherical brushes. Therefore, polymer 

brushes can be classified as one-dimensional (1D), two-dimensional  (2D), and 

three-dimensional (3D) brushes, corresponding to polymer chains grafted on 

polymer chains, planar surfaces, and spherical particles respectively (Fig. 1)9. 

Among these, the spherical geometry has been chosen for this work for its 

unique dielectric interface characteristics that will be presented later. In 

terms of chemical composition, polymer brushes can also be classified as 

homo-polymer brushes, when they are composed by solely one polymer type, 

mixed homo-polymer brushes, when they are composed by two or more 

polymer types side by side, and copolymer brushes, when they are composed 

by two or more polymers attached to each other. Here, for simplicity, we 

choose homo-polymer brushes. 
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The interest in the osmotic properties of polyelectrolyte multilayered 

materials such as PEB has been driven by the promise of the development of 

a novel class of biomaterials such as cell scaffold materials10. Depending on 

whether the constituent polyelectrolytes are pH sensitive or not, it was shown 

that the ion pairing density of the scaffold may be fine tuned by changes in 

pH or ionic strength, paramount for successful tissue regeneration. Related 

to PEB we can cite a novel amphiphilic pH-sensitive triblock polymer brush 

that was designed and synthesized successfully, resulting in their self-

assembled polymeric micelles being used as hydrophobic anticancer drug 

delivery carriers to realize effectively controlled release11. These previously 

cited properties were of great motivation for this modelling project, and by 

performing a study on the dielectric inhomogeneity of a PEB-counterion 

system, we hope to better understand the PEB’s behavior in a varying ionic 

strength solution against also varying brush conditions.  

 

 

Figure 1  

Possible brush configurations and geometries. 

 

Traditionally, the problem of dielectric discontinuity has been treated 

by the method of image charges, which is inarguably the simplest one. 

Nonetheless, the real problem arises when we leave the planar geometry 

surfaces and enter the spherical geometry domains, for then the simple use 

of a punctual image charge for the calculation of the total electric potential 

produced by the surface polarization becomes insufficient. Across Section 2, 

we will explain a method developed by Levin and co-workers12 based on a 

paper by Norris13 that is able to deal with the calculations in an optimum 

manner. However, it is still worth remembering that the field is vast and 

other methods that will not be covered here, for reasons that are explained 
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ahead, are available since the subject was studied extensively in the past. 

Among these methods: Legendre polynomials,14,15 and a variational 

formulation that is a more general method for the solution of the Poisson 

equatio16,17. The former is similar to the method utilized in this work, but has 

a big disadvantage in comparison to our choice. This will be further discussed 

later on.  

Therefore, our simulation model is composed by a spherical core 

nanoparticle of colloidal dimensions with polyelectrolyte attached along its 

surface forming the spherical brush. The brush is immersed in a counterion 

solution that neutralizes the system charge depending on the number of 

monomers composing the polyelectrolytes. Everything lie inside a spherical 

cell. With this setup we hope to test the osmotic and dynamic properties of 

the brush and its surrounding solution, such as to better understand how the 

dielectric discontinuity affects the system against a number of parameters, 

e.g., size of the nanoparticle, number of monomers per polyelectrolyte and ion 

valence. 

Regarding colloids and polymers simulations, we had two choices for 

the brush modelling, Monte Carlo or Molecular Dynamics (MD) simulations; 

in consideration to the difficulty of applying the first to this subject, we choose 

the latter. This process involved utilizing the polymer bead-spring theory for 

the polyelectrolyte modelling, a hard spheres potential type for the volume 

exclusion of the solution, plus a stochastic and a friction term present on the 

final Langevin equation representing the Brownian motion. A simple 

Coulomb potential is utilized for the non-image electrostatic interactions 

while the most complex part of the simulations, the image charges originated 

from the dielectric inhomogeneity, are solved by the method previously cited 

that will be explained later. The theory section describes the mean field 

theory that is presented for comparison with the model results.  

 This dissertation is based on a paper published by us in 15 of 

September of 2017 in the Journal of Chemical Physics (showed in its entirety 

below). It will consist of the paper itself and a couple of annexes with the 

objective of further detailing the methodology used in the paper. The only 

results showed will be the ones present in the paper and, in the end, we will 

present a conclusion referring to new prospects and possibilities of the work 

discussed in the dissertation.  
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2. Methodology Appendix 

 

    In this section, we further explain the methodology applied in the paper, 

which has not been discussed in detail in the original publication.  

 

2.1 Polymer Model 

 

When we consider a real polymers molecule with covalent bonds 

linking its monomers it is known that the conformational states that 

characterize this molecule are susceptible to entropic barriers imposed by the 

interaction of individual monomers with each other. These conditions that 

limit the range of configurations that can be assumed by a molecule are 

explained by a range of effects, among which is the correlation of bound 

angles. To overcome this we use the concept of an ideal chain. By applying 

the work of De Gennes18 we rely on the concept of scale to fulfil the mentioned 

condition. Consequently, our model monomers, that will compose each of the 

polymer arms in the brush model, have to represent hundreds or thousands 

of real monomers in each model monomer to fulfil this scale conditions.  

By analyzing the polymer arm at longer distances all its torsion and 

bond angles become equally probable, this enables us to treat the polymer 

arms as freely jointed chains. The best and most utilized method to model this 

type of polymer arms is the bead-spring model. In this model springs are used 

to represent chemical bonds and beads to represent monomers, see Fig. 2, 

thus we had to choose a proper energy potential to represent the spring19:  

 

 

The bead-spring model is used to represent real polymer chains. 

𝑈𝑏𝑜𝑛𝑑 =  ∑
𝐴

2
|𝒓 −  𝒓𝟎|2

𝑎𝑑.𝑚𝑜𝑛.  ,                                 (1)  

Figure 2 
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where 𝒓 =  |𝒓𝒊 −  𝒓𝒋| is the distance between adjacent monomers i and j. The 

sum is made over all adjacent monomers of the same polymer chains, A =

 0.9𝑘𝐵T  and  𝑟0 = 5𝐴̇. We choose this non-linear potential to better represent 

the elastic nature of the spring representing the bonds, in contrast with the 

harmonic oscillator, where the elasticity is represented by a linear equation. 

From this, we can easily calculate the elastic force acting over adjacent 

monomers of the same chain by taking Eq. (1) position derivative.  

 

2.2 Image Charges in a Dielectric Sphere 

 

The idea of an electric image charge in a conducting sphere was 

introduced by Kelvin and developed by Maxwell20 and Jeans21.  The method 

of image charges is considered the main solution to the problem of a single 

charge, placed inside or outside a spherical/planar boundary between two 

materials of different dielectric constant, when combined with fields due to 

the charges induced on the boundary. The spherical and planar geometries 

have the advantage of disposing of exact analytical methods for the problem’s 

solution whereas more complex geometries may rely only on numerical 

solutions.  

The first to calculate the analytic solution for the image magnitude was 

Norris22, he considered a source charge placed outside a spherical boundary 

of radius 𝑎 with different dielectric constants inside and outside the sphere 

(𝜖𝑖 and 𝜖0 respectively). Starting from Maxwell’s boundary conditions: fields 

parallel to the interface (either side) are equal, and the field normal to the 

inner face is 𝜖𝑖/𝜖0 times that on the outer face, expressing the fact that the 

electric displacement is continuous across the boundary. He expressed the 

fields due to the source charge and the surface charges as a series of Legendre 

polynomials and matched the fields associated with each Legendre 

polynomials at the surface. He then showed that the fields due to the surface 

charge can be expressed as due to image charges as described in Fig. 3. In the 

case of an external source charge 𝑄, the field outside the sphere created by 

the charges induced on the surface of the sphere is equal to the field generated 

by a point image inside the sphere 𝑄′ at the inversion point, 𝒓′𝒊 =  𝒓𝒊𝑎2/𝑟𝑖
2, 

and a distributed charge that stretches from the inversion point to the center 

𝜆(𝑟). The magnitude of the image punctual charge is equal (but of opposite 

sign) to the total charge in the distributed part, so that the sphere as a whole 

appears neutral. 
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The distributed image charge (counterimage), its potential and the 

potential generated by the point image charge are described by Eq. (2), (3) 

and (4) respectively: 

Explanation of the image charge composition for the spherical geometry. 

 

𝜆(𝑥) =  −
𝑄′(1+ 𝛾)

2𝑟𝑖
(

𝑥

𝑟𝑖
′)

𝛾−2

2
,                                           (2) 

 

𝜙𝑐𝑖(𝒓; 𝒓𝒊) =  
𝑎2

𝜖0𝑟𝑖
∫ 𝑑𝜁

1

0

𝜆(𝜁
𝑎2

𝑟𝑖
)

|𝒓−𝜁
𝑎2

𝑟𝑖
2𝒓𝒊|

 ,                                    (3) 

 

𝜙𝑖𝑚(𝒓; 𝒓𝒊) =  
𝑄′

𝜖0|𝒓−
𝑎2

𝑟𝑖
2𝒓𝒊|

 ,                                           (4) 

 

here, 𝑟𝑖 is the charge distance, the magnitude of the point image charge is 

𝑄′ =  𝛾𝑄𝑎/𝑟𝑖 where 𝑄 =  𝛼𝑞 is the source charge given by the valence 𝛼 times 

the elementary charge 𝑞, and 𝛾 =  (𝜖0 −  𝜖𝑖)/(𝜖0 +  𝜖𝑖). 

Following this work, it was shown23 that the integration on Eq. (3) 

(which cannot be performed exactly) can be simplified by considering that the 

dielectric constant inside the boundary is much smaller than the dielectric 

constant of the surrounding medium. Fortunately, this is the case for colloids 

where the dielectric constant of the colloid (usually silica) is much smaller 

than the dielectric constant of its surrounding medium (usually water). This 

Figure 3 



  

VINICIUS BELTRAM TERGOLINA – PPGFIS/UFRGS 18 

 

leads to 𝛾 ≈ 1, and in this case, the counterimage charge is uniformly 

distributed 𝜆̅(𝑥) =  −𝑄′/𝑟′𝑖, and the mentioned integral can be performed 

exactly resulting in the exact potential for the counterimage: 

𝜙̅𝑐𝑖(𝒓; 𝒓𝒊) =  
𝑄

𝜖0𝑎
𝑙𝑜𝑔 (

𝑟𝑟𝑖 − 𝒓. 𝒓𝒊

𝑎2 − 𝒓. 𝒓𝒊 + √𝑎4 − 2𝑎2(𝒓. 𝒓𝒊) + 𝑟2𝑟𝑖
2

),       (5) 

   

where the over-bar is used to denote the uniform line-charge approximation. 

The ion self-counterimage interaction potential when 𝒓 = 𝒓𝒊 reduces to a 

simpler equation: 

 

𝜙̅𝑐𝑖
𝑠𝑒𝑙𝑓

(𝒓; 𝒓𝒊) =  
𝑄

𝜖0𝑎
𝑙𝑜𝑔 (1 − 

𝑎2

𝑟𝑖
2)                          (6) 

 

Both this expressions were imperative for the development of our simulations 

as they allowed us to obtain the force over the polymer-ion system due to the 

dielectric inhomogeneity between the colloid, the central piece of the 

polyelectrolyte brush, and the surrounding medium.  

 

2.3 Polyelectrolyte Brush Model 

 

 After explaining the theories behind our simulation, we can now 

explain how they assemble to form the Langevin equation, which is the core 

equation for the calculation of the steps in the Brownian-dynamics 

simulation. Our configuration is illustrated by Fig. 4 (also present in our 

paper). 

 The polyelectrolyte brush is composed by a central colloid nanoparticle 

with 14 charged polymers chains tethered to it. The number of counterions 

was varied as to neutralize the charge of the 14 polymers. The number of 

monomers composing each polymer was variable but they were always 

monovalent whereas the counterions could have higher valences. The total 

energy of the system includes the spring interaction between monomers 

described in section 2.1, the electrostatic interactions described by: the colloid 

surface polarization effect of section 2.2, and a simple Coulomb potential. 

Despite that the self counterimage potential Eq. (6), which only applies to the 

charged particle that generates it, the counterimage potential Eq. (5) of each 

charged particle applies to all particles. This makes simulations including the 

dielectric inhomogeneity effect more costly in computational time.  
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The total electrostatic potential that applies for all particles is: 

 

𝜙(𝒓; 𝒓𝒊)  =   
𝑄

𝜖0|𝒓−𝒓𝒊|
 +  𝜙𝑖𝑚(𝒓; 𝒓𝒊)  +  𝛾𝜙̅𝑐𝑖(𝒓; 𝒓𝒊)  ,             (7) 

 

here the first term accounts for the Coulomb interaction between particles, 

the second and the third terms refer to the image and counterimage charges 

potentials, respectively. In the third term, it is used the condition of charge 

neutrality to correct the ion-counterimage interaction from Eq. (5) by 

including a prefactor 𝛾. This, then, is the Green function for the present 

geometry. Therefore, the total electrostatic energy for a system of N particles 

is given by: 

 

𝑈𝑒𝑙𝑒𝑐 =  ∑ ∑ 𝑞𝑗𝜙(𝒓𝒋; 𝒓𝒊)

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

+ ∑ 𝑈𝑖
𝑠𝑒𝑙𝑓

𝑁

𝑖=1

,                        (8) 

 

𝑈𝑖
𝑠𝑒𝑙𝑓

=  
𝛾𝑄2𝑎

2𝜖0(𝑟𝑖
2 − 𝑎2)

+ 
𝛾𝑄𝜙̅𝑐𝑖

𝑠𝑒𝑙𝑓
(𝒓𝒊)

2
,                       (9) 

Figure 4 

Snapshot of the simulation representing the model. 
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where 𝑈𝑖
𝑠𝑒𝑙𝑓

 is the interaction energy of the ion 𝑖 with its own image and 

counterimage charges.  

 Eq. (8) represents the total interaction energy of the counterions, the 

monomers of the polymer chains have their interaction energy represented 

by Eq. (8) plus Eq. (1), the elastic bond energy. The energies by specific 

specimen (monomer or counterion) have their negative derivative taken for 

each of the tri-dimensional Cartesian coordinate  𝐅𝒊𝒐𝒏  =  −∇𝑟𝑖𝑜𝑛
 (𝑈𝑒𝑙𝑒𝑐 )  or  

𝐅𝒎𝒐𝒏𝒐𝒎𝒆𝒓  =  −∇𝑟𝑚𝑜𝑛𝑜𝑚𝑒𝑟
 (𝑈𝑒𝑙𝑒𝑐 + 𝑈𝑏𝑜𝑛𝑑 )  resulting in the total interaction force 

over an individual specimen. The Brownian-dynamics forces will be discussed 

in the next session.  

 

2.4 Numerical Solution of the Model 

 

After obtaining the interaction force on each of the individual particle 

of the system we can assemble a generalized Langevin equation to describe 

their motion on each of the MD simulation steps: 

 

𝑚𝑣̇𝑖(𝑡) = 𝐹𝑖(𝑡) − 𝜁𝑖𝑣𝑖(𝑡) + 𝑅𝑖(𝑡)                           (10)                       

 

The equation describes the acceleration 𝑣𝑖̇(𝑡) of a particle 𝑖 with mass 𝑚𝑖, 

under a force 𝐹𝑖(𝑡), friction coefficient 𝜁𝑖 and stochastic force 𝑅𝑖(𝑡). The friction 

here is present to maintain the temperature of the system constant. Following 

Einstein relation, 𝑅𝑖(𝑡) has to respect the relation 〈𝑅𝑖(𝑡)𝑅𝑗(𝑡′)〉 =

2𝜁𝑖𝑘𝐵𝑇0𝛿𝑖𝑗𝛿(𝑡 − 𝑡′) 24. 

In Eq. (10), a constant temperature consistent with the canonical 

ensemble is maintained by balancing the dissipative effect of the frictional 

terms with a stochastic force due to thermal noise. Consequently, we utilized 

this constant temperature thermal bath condition in our simulations, 

allowing us to rely on a well-known numerical method to solve Eq. (10). We 

employ a velocity Verlet method that follows a standard protocol for solving 

non-linear differential equations of the type given by Eq. (10). The equations 

of motion from this can be obtained by integrating the following expressions 

over the interval (𝑡, 𝑡 + Δ𝑡) 25.   

 

𝑥(𝑡 + Δt) = 𝑥(𝑡) + 𝑐1𝑣(𝑡)Δt + 𝑐2

𝐹(𝑡)

𝑚
Δ𝑡2 + 𝛿𝑟𝐺 ,                    (11) 
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𝑣(𝑡 + Δt) = 𝑐0𝑣(𝑡) + (𝑐1 − 𝑐2)
𝐹(𝑡)

𝑚
Δt + 𝑐2

𝐹(𝑡 + Δt)

𝑚
Δt + 𝛿𝑣𝐺 ,    (12) 

 
where: 

 

𝑐0 = 𝑒−𝜁Δt,                                                       (13) 
 

𝑐1 = (𝜁Δt)−1(1 − 𝑐0),                                               (14) 
 

𝑐2 = (𝜁Δt)−1(1 − 𝑐1),                                               (15) 

 

𝑐3 = (𝜁Δt)−1 (
1

2
− 𝑐2).                                             (16) 

 

 
In these equations, the stochastic integrals of 𝑅𝑖(𝑡) are 𝛿𝑟𝐺 and 𝛿𝑣𝐺, are 

sampled from a bivariate Gaussian distribution of zero mean: 

 

𝛿𝑣𝑖𝛼 = 𝜎𝑣 (𝑐𝑟𝑣𝜂1 + √(1 − 𝑐𝑟𝑣
2 )) 𝜂2 ,                                    (17) 

 

𝛿𝑟𝑖𝛼 = 𝜎𝑟𝜂1 ,                                                           (18) 

 

𝜎𝑟
2 =  〈(𝛿𝑟𝑖𝛼

𝐺 )〉 =
𝑘𝐵𝑇

𝑚

1

𝜁Δt
 [2 −

1

𝜁Δt
(3 − 4𝑒−𝜁Δt + 𝑒−2𝜁Δt)] ,          (19) 

 

𝜎𝑣
2 = 〈(𝛿𝑣𝑖𝛼

𝐺 )〉 =
𝑘𝐵𝑇

𝑚
(1 − 𝑒−2𝜁Δt)  ,                                 (20) 

 

𝑐𝑟𝑣 =  Δt
𝑘𝐵𝑇

𝑚

1

𝜎𝑣𝜎𝑟

1

𝜁Δt
(1 − 𝑒−𝜁Δt)

2
 ,                             (21) 

 

here 𝜎𝑟
2and 𝜎𝑣

2 are the variances of 𝛿𝑟𝐺 and 𝛿𝑣𝐺 and 𝑐𝑟𝑣 their correlation 

coefficient. 𝜂1 and 𝜂2 are two independent random numbers with Gaussian 
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distribution of zero average and unit variance, easily obtainable by the use of 

specific functions of any programming language library.  

 Finally, by applying the mentioned equations we were able to develop 

an algorithm that solved Eqs. (11,12) for each time step Δ𝑡 of our simulation 

for each Cartesian coordinate (x, y, z), separately, resulting in a precise 

description of the system for x(t), y(t), z(t), 𝑣𝑥(𝑡), 𝑣𝑦(𝑡), 𝑣𝑧(𝑡)  for every Δ𝑡. 

This algorithm also included a particle overlap prevention mechanism in the 

form of a hard-sphere potential, plus appropriate spherical reflections on the 

cell inner and outer boundaries.  It is important to state that by dividing all 

measures of - position, particle radius, cell size - by the Bjerrum length  𝜆𝐵 =

 𝛽𝑞2/𝜖0  = 7.2 𝐴̇, we are able to work with only dimensionless quantities, 

allowing us to drop 𝑘𝐵, 𝑇, 𝑚 and 𝑞 (we work only with the valence 𝛼) from the 

equations. This way we have only 𝑟𝑚, the monomer radius,  𝑟𝑐 the counterion 

radius, 𝑎 the colloid radius, 𝑁𝑚 the number of monomers, 𝑁𝑐 the number of 

counterions, 𝛼 the counterions charge valence, 𝛾, 𝜁 and Δt as the input 

parameters of our algorithm. This allowed us to tune the system parameters 

in the search for interesting conditions in our study. 

 

2.5 Poisson-Boltzmann Equation 

  

The Poisson-Boltzmann (PB) equation describes a model for when a 

charged surface comes in contact with an ionic solution. It is of great practical 

and theoretical importance. The PB equation is the most widely used 

equation26 that describes the distribution of electrical potential involved in 

the interaction between colloids, polymers and the ionic solution.  The Poisson 

equation for the electrostatic potential of the counterions in the solution is 

described by:  𝛻2Φ =
−4𝜋𝜌

𝜖0
, where 𝜌 is the charge density and Φ the 

electrostatic potential.  

Our model has to include the charged monomers in this equation, their 

position is described in Fig. 4, there we have 14 polymers spread through the 

colloid’s surface, one on each pole and 12 spaced throughout the body. In order 

to mathematically express this we use the Dirac delta function representing 

each of the 14 polymers and their individual monomers. Therefore the Poisson 

equation for the system is expressed by: 

 

𝛻2Φ(𝑟) =
−4𝜋𝑞

𝜖
[∑ 𝜎𝑖𝛿(𝑟 − 𝑟𝑖) − 𝛼𝜌(𝑟)

𝑁𝑚

𝑖=1

] ,                    (22) 
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here 𝜎𝑖 are the charge densities of the corresponding layers of monomers given 

by 𝜎𝑖 = 𝑁𝑝/4𝜋𝑟𝑖
2,  𝑁𝑝 being the number of polymers, 𝑟𝑖 = 𝑎 +  𝑟𝑚 + (𝑖 − 1)2𝑟𝑒𝑓, 

representing the distance of each monomer shell to the center of the 

coordinate system as a sum of the colloid radius 𝑎, the monomer radius 𝑟𝑚 

and 𝑟𝑒𝑓 = 0.75 𝑟𝑚, to account for bending of the chains.  𝜌(𝑟) is the local  

 

Figure 5 

Graphical representation of the PB-Equation setup. 

 

density of counterions at a distance r from the center of the system (Fig. 5), 

this is given by the Boltzmann distribution. We use a mean field 

approximation setting the potential of mean force as the mean electrostatic 

potential of all ions, finishing with the PB equation: 

 

𝜌(𝑟) =  𝑁𝑐

𝑒−𝛽𝛼𝑞Φ(𝑟)

4𝜋 ∫ 𝑑𝑟′ 𝑟′2𝑒−𝛽𝛼𝑞Φ(𝑟′)
  ,                           (23) 

 

where 𝛽 is the inverse of the Boltzmann constant times the temperature of 

the system. The bottom part of Eq. (23) is calculated over the limits of the 

colloid and the boundary of the spherical cell. 

This is an approximation, which is expected to work only when the 

correlations between counterions is small. The reason for that is in the mean 
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field approximation we use, we do not account ions positional correlations in 

opposition to the original Boltzmann distribution that would require this for 

an exact calculation. The consequence is that the theory is limited to 

monovalent ions at room temperature in water, namely weak coupling regime 

(as showed in the aforementioned paper), for their correlations are smaller 

when compared to the correlations between ions of higher valences.  

 

2.6 Numerical Solution of the PB Equation 

 

The solution of the PB differential equation was achieved numerically 

via an iterative process. Therefore, it is convenient to rewrite the electrostatic 

potential in terms of the electric field  𝑬(𝑟) = −𝛻Φ(𝑟), inserting this in Eq. 

(22) we get: 

 

𝛻. 𝑬(𝑟) =
4𝜋

𝜖
[∑ 𝜎𝑖𝛿(𝑟 − 𝑟𝑖) − 𝑞𝛼𝜌(𝑟)

𝑁𝑚

𝑖=1

]                     (24) 

 

By integrating the divergent of electric field, we find that the 

𝑟 component of the electric field 𝑬(𝑟) satisfies an integral equation 

expression27: 

 

𝜃(𝑥) =  
1

𝑥2 [∑ 𝜎𝑖 − 𝛼𝜒(𝑥)𝑁𝑚
𝑖=1 ]                                    (25)                                       

 

With  𝑥 =
𝑟

𝜆𝐵
,  𝜃(𝑥) =  𝛽𝑞𝜆𝐵𝐸(𝑟), 

 

𝜒(𝑥) = 𝑁𝑐

∫ 𝑑𝑥′𝑥′2𝑥

â̂+𝑟𝑐̂
𝑒𝑥𝑝 [−𝛼 ∫ 𝑑𝑥′′𝜃(𝑥′′)

𝑥′

â̂+𝑟𝑐̂
]

∫ 𝑑𝑥′𝑥′2𝑅̂

â̂+𝑟𝑐̂
𝑒𝑥𝑝 [−𝛼 ∫ 𝑑𝑥′′𝜃(𝑥′′)

𝑥′

â̂+𝑟𝑐̂
]

   ,                    (26) 

 

where  𝑎̂ + 𝑟̂𝑐 = (𝑎 + 𝑟𝑐)  𝜆𝐵⁄   and  𝑅̂ = 𝑅 𝜆𝐵⁄ . 

The zero of the electrostatic potential Φ(𝑅) = 0 is taken at the cell 

boundary. The electric field inside the cell is calculated by an algorithm which 
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iterates Eq. (24) starting with an arbitrary function satisfying the boundary 

condition 𝐸(𝑅) = 0 until it achieves convergence. The solution of the equation 

is important because it allows us to generate the density profiles of the 

counterions showed in the paper, this way we could better compare the theory 

to our computational simulations. 
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3. Final Considerations 

 

  

Throughout this work we were able to obtain a range of different 

results in the form of density profiles, brush radii and the system’s osmotic 

coefficients. The density profiles were able to illustrate that the difference in 

separation between the nanoparticle and the counterions, propelled by their 

repulsion to their images of equal charge, was not very significant when 

compared to the image free simulations. This is also true for the monomers 

and for the brush radius, with the exception of the trivalent counterion cases, 

when we can see a more relevant difference between both cases, which could 

be taken into consideration in the future for projects relying on a precise 

measurement of these parameters.  

 Utilizing a nanoparticle radius of 100𝐴̇ and longer polymer chains, the 

divergence between the studied cases increases, This is expected from the 

point image charge equation 𝑄′ =  𝛾𝑄𝑎/𝑟𝑖 since it is shown that the magnitude 

of this charge is directly proportional to the nanoparticle radius. This 

represents that the difference in cases could be further explored since we 

know that colloid particles typically range from 10𝐴̇ to 10000𝐴̇ in size, leaving 

us something to keep in mind for future works of this nature. The remaining 

results regarding the density profiles and the brush radius were as expected, 

the stronger bending of polymer chains in the multivalent counterion cases, 

resulting in a stronger confinement of those, and a smaller brush radius, have 

been studied previously28-30. These were in agreement with ours.  

 Finally, the mean-field PB theory presented here matched the results 

for the monovalent counterion cases, but it was not able to represent with 

precision the multivalent ion cases. This was expected as the PB theory is 

historically considered accurate for weak electrostatic couplings, for the 

reasons expressed in section 2.5, but poorly matched with cases where there 

are strong electrostatic couplings. The osmotic coefficients studied in regards 

to the system’s volume fraction were the final results presented and they 

showed that increasing the polymer chain’s length decreases the osmotic 

coefficients, which is in agreement with experimental measurements31. 

Physically this means that the absorption of counterions by the brush is 

inversely linked to the osmotic coefficient since the increase in polymer 

chain’s length leads to increase in ion absorption.  These last results also 

clarified that the decrease in nanoparticle curvature, represented by its 

increase in radius, would truly only affect the polarization effect if the volume 

fraction was not maintained constant in the process. However, similar volume 

fractions with a significant difference in nanoparticle radius could still show 

a considerable impact in the nanoparticle polarization.  
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4. Conclusion 

 

During this work we took advantage of our previous knowledge in 

polymer sciences, acquired in my undergraduate thesis in polymer 

translocation, to fulfil a more complex work, this time with polyelectrolyte 

brushes. Initially we built a program that could simulate a neutral polymer 

brush where the only interactions between particles were the bond between 

monomers and a Lennard-Jones potential. Gradually, we added the 

electrostatic interactions, solving the computational problems that appeared 

along the way, we adapted the image potentials from my advisor previous 

works with colloids and we swapped the Lennard-Jones potential for a 

simpler hard spheres potential, for the reasons expressed in the paper. After 

this, we tested the program by comparing the results of the simulation 

conditions, without the polymers, to previous works of colloids immersed in 

electrolyte solutions. We then tested the complete brush against our PB 

theory for the brush (with a separate program for the theory calculations), 

concluding that the program was ready to obtain the simulation data for the 

work we planned.           

 The data was further analyzed by an algorithm that generated the 

density profiles and average brush radius, these were the main results for the 

discussion of the differences between the brush dynamics with and without 

consideration for the dielectric inhomogeneity. This discussion was the focus 

of the paper and our main objective, and in this we consider ourselves 

successful. The results obtained showed to which extent the polarization of 

the central nanoparticle in spherical PEBs can affect the equilibrium state of 

said brushes, which was shown to be small for most of the chosen parameters. 

However, further prospects can yet be achieved using the methods and 

modelling explained in the previous sections.  

 We found that the method chosen for the calculation of the 

polarization resulting of the dielectric difference from the central 

nanoparticle and its surrounding medium was an outstanding match for the 

work. The computational time added by the necessity of the image charge 

calculations was considerable, in reference to the image free cases it almost 

doubled. Nonetheless, the other methods for this purpose, which were 

mentioned in the paper, were shown to dawdle in comparison. Although the 

use of parallel programming was tried in the middle of the project, the 

calculations were not so numerous as to require its use, and because of this 

we ended-up only needing to use the C language, for a non-compilable 

language would not be optimized enough for the project.  

 For the prospects of the project we could cite the further exploration of 

the nanoparticle curvature and osmotic properties of the system in the 

polarizations studies. The current parameters of the simulation were chosen 

not only to match the experimental ones32 but also to build a feasible 

modelling, a higher number of particles - something that could be used to 

better represent the polymer chains, the ionic solution, and allow a bigger 
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central particle – would result in higher simulations times. Higher simulation 

times make programming mistakes very costly, and they would undoubtedly 

happen being this the first time we perform a simulation of this type. Other 

possibilities of future work are in the use of a salt solution in addition to the 

ionic already present as to have a measure of the brush properties versus the 

solution concentration. The possibility of a moving brush or a shear flow is 

also being considerate because of the possibility of it better representing the 

brush dynamics inside the human body against blood flow, since one of the 

purpose of the synthetization of these brushes is as drug carriers.  

 

 Finally, the knowledge acquired throughout this project was enormous 

making it extremely compensating, not only for the opportunity to publish it, 

but for the treasured experience.  
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