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Abstract

In this work we present a molecular dynamics simulation of a
polyelectrolyte spherical brush and counterions in a salt-free medium, in
which the dielectric inhomogeneity between materials 1s taken in
consideration. Polyelectrolyte brushes have been studied experimentally
broadly, having shown a range of different applications such as for
bioseparation and targeted drug/gene delivery. In spite of that, formal
simulations and theories explaining its behavior are not as numerous. The
theory and the work we present are unfold into more details throughout the
thesis in the form of multiple sections, but the results remain contained to
the paper annexed!, published in 2017. We start with a brief introduction of
the work and then present the paper, later on, the theory is further explored
in the methodology appendix, and we finish with the final considerations for
the work results and the project conclusion. The project consists of the
aforementioned simulations with the main purpose of investigating the effect
of the dielectric discontinuity, between the brush core and its surrounding
medium, over the dynamics of the system. This is investigated through the
use of the method of image charges. Properties of the polyelectrolyte brush
are obtained for different parameters, including valence of the counterions,
radius of the nanoparticle and the brush total charge. A mean-field theory is
presented for the comparison with density profiles obtained for monovalent
counterions, and we finish the paper by presenting the osmotic properties of
the system.
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Resumo

Neste trabalho apresentamos simula¢ées em dinamica molecular de
uma “brush” de polieletroélitos esférica, cercada de contraions, em um meio
livre de sais, onde a heterogeneidade dielétrica entre os materiais é levada
em consideracdo. Estes conjuntos de polieletrolitos tem sido estudados
experimentalmente de maneira ampla, tendo mostrado uma gama de
diferentes aplicacdoes como o uso para biosseparac¢ido e como portadores de
drogas/genes para transporte controlado. Entretanto, teorias e simulagoes
formais que expliquem o seu comportamento nao sdo tdo numerosas. A teoria
e o trabalho presentes sao detalhados nesta dissertacdo na forma de multiplas
se¢Oes, mas os resultados permanecem contidos ao artigo anexado! publicado
em 2017. Comegamos com uma breve introducdo do trabalho e entao
apresentamos o artigo, posteriormente a teoria é melhor explorada no
apéndice da metodologia, finalmente, terminamos com as consideracgées finais
para com os resultados do trabalho e as conclusdes do projeto. O projeto
consiste das simulacgoes anteriormente mencionadas, as quais tinham o
proposito principal de investigar os efeitos da descontinuidade dielétrica,
entre o nucleo da “brush” e 0 meio em que esta envolta, sobre a dinamica do
sistema. Isso é investigado através do uso do método de cargas imagem. As
propriedades da “brush” de polieletrélitos também sao obtidas para diferentes
parametros, dentre os quais, a valéncia dos contra ions, o raio da
nanoparticula central e a carga total da “brush”. Uma teoria de campo médio
é apresentada para comparacio com os perfis de densidade obtidos para os
contra ions monovalentes, e ndés terminamos o artigo apresentando as
propriedades osméticas do sistema.
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1. Introduction

The study of polymer molecules and the development of theories
appraising its dynamics i1s a fundamental benchmark of sciences in the
twentieth century. Polymer molecules are present in our daily lives and the
development of polymer-based technologies is important for an extensive
range of applications, ranging from clothing and oil industries, to the medical
sciences. Following the success of these applications, scientists have started
to study these chain-like molecules in more complex structures, aiming to
expand their usage. Among the mentioned structures this work focuses on
polymer brushes.

In this work we refer to polymer chains as polyelectrolyte, as they are
composed by charged monomers. Polyelectrolytes represent a broad class of
materials that are abundant in biological systems. In addition,
polyelectrolytes, being water soluble, are natural for aqueous environments
and the two most studied of all biopolymers, DNA and RNA, are
polyelectrolytes. A large class of synthetic polyelectrolytes exists as well,
some of these are fundamental industrial chemicals. For example, polyacrylic
acid is the key ingredient in diapers2. Despite the existence of a considerable
interest in polyelectrolytes, and the theory of neutral polymer systems being
well developeds3, polyelectrolytes remain one of the least understood subjects
in the field of condensed matter.47

If long linear polyelectrolyte chains are grafted densely to a solid
surface, an object known as a polyelectrolyte brush (PEB) results. The process
usually involves the surface, coated with an initiator, being immersed in a
monomer solution, this way the polymerization process result in a brush
directly, alternatively, a solution of pre-synthetized polymers might be used
as well8. As to the surface form, PEBs have been mainly studied as planar
brushes, cylindrical brushes and spherical brushes. Therefore, polymer
brushes can be classified as one-dimensional (1D), two-dimensional (2D), and
three-dimensional (3D) brushes, corresponding to polymer chains grafted on
polymer chains, planar surfaces, and spherical particles respectively (Fig. 1)9.
Among these, the spherical geometry has been chosen for this work for its
unique dielectric interface characteristics that will be presented later. In
terms of chemical composition, polymer brushes can also be classified as
homo-polymer brushes, when they are composed by solely one polymer type,
mixed homo-polymer brushes, when they are composed by two or more
polymer types side by side, and copolymer brushes, when they are composed
by two or more polymers attached to each other. Here, for simplicity, we
choose homo-polymer brushes.
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The interest in the osmotic properties of polyelectrolyte multilayered
materials such as PEB has been driven by the promise of the development of
a novel class of biomaterials such as cell scaffold materials1®. Depending on
whether the constituent polyelectrolytes are pH sensitive or not, it was shown
that the ion pairing density of the scaffold may be fine tuned by changes in
pH or ionic strength, paramount for successful tissue regeneration. Related
to PEB we can cite a novel amphiphilic pH-sensitive triblock polymer brush
that was designed and synthesized successfully, resulting in their self-
assembled polymeric micelles being used as hydrophobic anticancer drug
delivery carriers to realize effectively controlled releasell. These previously
cited properties were of great motivation for this modelling project, and by
performing a study on the dielectric inhomogeneity of a PEB-counterion
system, we hope to better understand the PEB’s behavior in a varying ionic
strength solution against also varying brush conditions.

l 1 1
e o PL &
Linear Mixed Block Branched
Figure 1

Possible brush configurations and geometries.

Traditionally, the problem of dielectric discontinuity has been treated
by the method of image charges, which is inarguably the simplest one.
Nonetheless, the real problem arises when we leave the planar geometry
surfaces and enter the spherical geometry domains, for then the simple use
of a punctual image charge for the calculation of the total electric potential
produced by the surface polarization becomes insufficient. Across Section 2,
we will explain a method developed by Levin and co-workers!? based on a
paper by Norris!3 that is able to deal with the calculations in an optimum
manner. However, it is still worth remembering that the field is vast and
other methods that will not be covered here, for reasons that are explained
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ahead, are available since the subject was studied extensively in the past.
Among these methods: Legendre polynomials,1415 and a variational
formulation that is a more general method for the solution of the Poisson
equatiol617, The former is similar to the method utilized in this work, but has
a big disadvantage in comparison to our choice. This will be further discussed
later on.

Therefore, our simulation model is composed by a spherical core
nanoparticle of colloidal dimensions with polyelectrolyte attached along its
surface forming the spherical brush. The brush is immersed in a counterion
solution that neutralizes the system charge depending on the number of
monomers composing the polyelectrolytes. Everything lie inside a spherical
cell. With this setup we hope to test the osmotic and dynamic properties of
the brush and its surrounding solution, such as to better understand how the
dielectric discontinuity affects the system against a number of parameters,
e.g., size of the nanoparticle, number of monomers per polyelectrolyte and ion
valence.

Regarding colloids and polymers simulations, we had two choices for
the brush modelling, Monte Carlo or Molecular Dynamics (MD) simulations;
in consideration to the difficulty of applying the first to this subject, we choose
the latter. This process involved utilizing the polymer bead-spring theory for
the polyelectrolyte modelling, a hard spheres potential type for the volume
exclusion of the solution, plus a stochastic and a friction term present on the
final Langevin equation representing the Brownian motion. A simple
Coulomb potential is utilized for the non-image electrostatic interactions
while the most complex part of the simulations, the image charges originated
from the dielectric inhomogeneity, are solved by the method previously cited
that will be explained later. The theory section describes the mean field
theory that is presented for comparison with the model results.

This dissertation is based on a paper published by us in 15 of
September of 2017 in the Journal of Chemical Physics (showed in its entirety
below). It will consist of the paper itself and a couple of annexes with the
objective of further detailing the methodology used in the paper. The only
results showed will be the ones present in the paper and, in the end, we will
present a conclusion referring to new prospects and possibilities of the work
discussed in the dissertation.
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In this paper we perform molecular dynamics simulations of a spherical polyelectrolyte brush and
counterions in a salt-free medium. The dielectric discontinuity on the grafted nanoparticle surface
is taken into account by the method of image charges. Properties of the polyelectrolyte brush are
obtained for different parameters, including valency of the counterions, radius of the nanoparticle,
and the brush total charge. The monovalent counterions density profiles are obtained and compared
with a simple mean-field theoretical approach. The theory allows us to obtain osmotic properties of
the system. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.5002526]

l. INTRODUCTION

The study of polyelectrolyte chains grafted to surfaces in
a structure known as polyelectrolyte brush (PEB) has acquired
substantial interest recently, as covered by many reviews.'”’
With the development of experiments with DNA molecules
outside of the intracellular environment, the study of cell-free
gene expression has brought a new horizon for biotechnology.
Examples go from double-stranded DNA brushes® to a single-
step photolithographic biocompatible DNA mono-layer,” both
on a biochip. In addition to these, it is also valid to refer to other
applications for the synthesization of PEBs such as protein
absorption,'? bioseparation,'! and targeted drug/gene deliv-
ery.'> When referring to the term brush we assume that the
grafting of the chains is dense enough in a way that the linear
dimensions of the polyelectrolyte chains are much larger than
the average distance between two neighboring charged poly-
mers on the surface.® Previous studies'3~'® have shown that
an essential property of a PEB is in its capability to confine
a major quantity of counterions in a way to compensate its
electrical charge, resulting in high osmotic pressure govern-
ing its stretching dynamics. Besides their extensive range of
applications, PEBs have been studied in a range of different
configurations as well, they can be generated either by graft-
ing polyelectrolyte chains to planar'’-*! or to strongly curved
systems as, for example, cylinders or spheres,”>>’ the last
being the focus of our present work. Recently, different types
of neutral polymer brushes with interesting properties com-
posed by dipolar ions called zwitterions?®*?° in the form of
polyzwitterions, have attracted attention and deserve citation.

In relation to spherical PEB, we can elicit their main struc-
ture as being formed by an inorganic core nanoparticle and
an organic layer/shell in the form of polyelectrolyte chains
grafted to its surface. As a result of their mechanical stabil-
ity, high surface area, and ease of synthesis, silica/polymer
hybrid nanoparticles have been studied more extensively.'!-"

“Electronic mail: alexandre.pereira@ufrgs.br
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Spherical PEBs also carry a number of advantages in compar-
ison with planar ones. They can be studied by a wide variety
of distinct methods coined for colloidal particles investiga-
tion, from scattering methods®!'=3* to, more recently, dielectric
spectroscopy.®® Furthermore, the colloidal dimensions of the
spherical PEB may be used to create well-defined surfaces of
the order of many m? that can be used for nanoparticle/protein
immobilization,*®3” and they can also be viewed as models
for the study of carboxylated latex particles that constitute a
major industrial product.’®

Amongst previous works, we can cite efforts to theo-
retically describe PEBs.***! Regarding molecular dynamics
(MD) simulations of spherical PEBs we can cite, as few exam-
ples, studies on the dependence of the brush thickness due
to different parameters and conformations,*>** studies on
brush size as a function of chain lengths, salt concentrations*
and grafting densities—these accompanied by comparisons
to mean field or self-consistent field theories.***’ The effect
of multivalent ions on brush conformations was also exten-
sively studied.'>*%-50 Nevertheless, MD simulations of PEBs
that take into account the dielectric discontinuity between the
grafted nanoparticle and surrounding medium are unprece-
dented so far, to the best of our knowledge. In spite of the
preceding statement, the problem of charged particles in het-
erogeneous dielectric media has been broadly studied resulting
in the coinage of different methods. Among those, we refer to
treatments that can be applied in the spherical geometry for
applications in colloidal science. Even if the computational
cost is high, one can use Legendre polynomials®'-? to perform
MC or MD simulations. A variational formulation has gained
attention lately as a more general method for the solution of the
Poisson equation treating the local polarization charge density
as a dynamic variable.”*>* A more efficient method considers
the images and uniformly distributed counter-image charges
inside the dielectric void as an approximation that works very
well for low dielectric constants.>>*3° In this work, we intend
to include nanoparticle polarization using the previously men-
tioned method and perform MD simulations of a PEB in a
salt-free suspension. In addition, a simple Poisson-Boltzmann

Published by AIP Publishing.
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114103-2 V. B. Tergolina and A. P. dos Santos

(PB) theory is presented in order to account for the counterions
concentration in mean-field regime.

In Sec. II, we explain the model and simulation method
followed by the presentation of the theory developed for weak
electrostatic coupling. The results are presented in the sub-
sequent section. In the last section we finish describing the
conclusions of the present work and general perspectives.

Il. MODEL AND SIMULATION METHOD

We follow a standard coarse-grained model for the poly-
mer chains and counterions confined in a spherical cell of
radius R. The N, = 14 chains are represented by N,, charged
hard spheres (monomers) of radii r, =2 A and charge +g¢,
where ¢ is the proton charge. The first monomers of the chains
are grafted to the surface of a sphere of radius a and relative
dielectric constant €., representing the nanoparticle base par-
ticle. The first monomers are all uniformly distributed on the
nanoparticle surface, grafted at distance r,, from it. The N,
counterions are modeled as hard spheres with effective radii
re = ry and charge —agq, where « is the valency. The number
of counterions is defined as N. = N,N,,/a in order to keep the
system with zero total charge. The medium in which the poly-
electrolyte is immersed is represented by structureless water
with relative dielectric constant €,, = 80. The Bjerrum length,
defined as hg = qz/ewk;, T,is 7.2 A, the value for water at room
temperature.

Following a method previously developed,’ we investi-
gate the influence of the nanoparticle polarization by means
of image charges. The calculation of image charges for the
spherical geometry is not as straightforward as for the planar
geometry. The continuity of the tangential component of the
electric field and of the normal component of the displacement
field across the nanoparticle-water interface, requirements of
the Maxwell equations boundary conditions, give rise to a
counter-image line charge in addition to the punctual image
charge that is the usual requirement for planar geometry.’’
The electrostatic potential at an arbitrary position r produced
by the arbitrary charge g; located at r; outside the nanoparticle
is approximated by

qi Y4qia 761,
P(r;r;) = + 5 log
Calt =11 eyrir— Zr,| * €ud
rs
1
P =TT
X - : . (D)
a-r-ri+ \/a“ —2a%(r - 1) + rZr,.2
where r; = Ir;l, r = Irl, and y = (e, — €.)/(€y + €.). This

expression is valid® for €,, > €. The total electrostatic energy

is
N-1 N
Uclec = Z Z qj¢(rj;ri)

i=1 j=itl

N_yq; log(

N B X
7(1 a e
+ —. (2)
Zl: sz(r = a ; 26(11“

The two last terms above are the ionic electrostatic self-energy.
The elastic bonds between adjacent monomers of the same
chain in the brush are modeled by the following nonlinear

J. Chem. Phys. 147, 114103 (2017)
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FIG. 1. Representation of the spherical PEB. Darker spheres represent
monomers, while lighter spheres represent counterions.

energy potential %!

A 2
Upona = —(r—ro)7, 3

bond m;’mm 2( 0 (3)
where r =Ir; — r;l is the distance between adjacent monomers
i and j. The sum is made over all adjacent monomers of the
same polymer chains, A = 0.9kgT and ro = 5 A, following the
aforementioned Ref. 61.

The total force acting on the charged specie & is

Fy = _Vrk(Uelec + Upona)- “4)

The molecular dynamics simulations were performed for
constant time steps by means of a well-known Langevin
equation,®?

p/(1) = Fi(r) - Tp;(1) + R (1), (5)

where p;(7) is the momentum of particle i at time 7, F;(¢) is
the force felt by this particle, I' is the friction coefficient,
and R;(7) is the stochastic force acting on particle i, which
satisfy the fluctuation dissipation relation. The Verlet-like
method developed by Ermak® is used to solve the previous
equation.

The mechanism chosen to avoid the superposition
between all particles and surfaces is a hard sphere potential.
This was preferred over a caped Lennard-Jones type poten-
tial for the reason that the latter was tested showing little to
no difference from the hard spheres potential while requir-
ing time steps much smaller to advert simulation crashes. In
Fig. 1, asnapshot of MD simulations after equilibrium is shown
for monovalent counterions.

lll. THEORY

At room temperature, electrostatic correlations between
monovalent ions can be neglected.®® A mean-field PB equation
is used to obtain the density profile of counterions. We do not
consider the dielectric discontinuity on the nanoparticle-water
interface because this effect is very small in this regime, as
it will be shown in the Results section. Also, the qualitative
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results obtained with the present method allow us to consider
this approximation. However, it is important to mention that
this effect can be important when more accuracy is necessary
in the study of the electric double layer.>>-°

The charge distribution of PEB is constructed as if all the
monomers are aligned with the nanoparticle center, with effec-
tive distance between them equals to r,; = 0.75r,, to account
for the bending of the chains. The modified PB equation takes
the form

m

N,
245 = A P ST
V() = - ;m(r ri) —qap(r)|, (6)

where ¢(r) is the mean electrostatic potential, o; are the charge
densities of the corresponding layers of monomers, given by
gi =N, /47rr,.2, where r;j =a+r,;, + (i — 1)2r¢r. The counterions
density profile is given by

e—B‘nld’(")

p(r) = N¢ =5
4 [l BT

(7

The solution of Eq. (6) is performed by Picard iterative
process.

IV. RESULTS

The results are presented in the form of average particles
concentration profiles and average effective PEB radius (the
distance between the center of the grafted nanoparticle and the
more distant monomer), see Fig. 2. We start by studying the
effect of the dielectric discontinuity on the counterion distri-
bution around the PEB, see Fig. 3. We choose the following
values for the nanoparticle relative dielectric constant, €, = 2
and €, = €,. Whereas in the first choice we choose the typ-
ical dielectric constant value of silica, in the second case, we
ignore the dielectric discontinuity by having the nanoparti-
cle represented by the same material as the medium in which
it is inserted, water. Silica nanospheres coated with polymer
brushes have already been used for effective separation of
glycoproteins.'!

FIG. 2. Definition of effective PEB radius, Rp.

J. Chem. Phys. 147, 114103 (2017)

0.0001 . 1 ;
\{}"g,‘
% o € =¢
Y c W
Y € =2
LY C
o %
« 3
= 5e-05[ AN d
= W
[=% ‘\\L
o
h
\\\
I I \\‘T::';:
% 80 120 160
r[A]

0.0001}

<

E 5e-05 1

L ® SC e\\’
0.0001}- - |
C
< -
< 5e-05 -
% =120

r[A]

FIG. 3. Density profiles of counterions obtained for @ = 1,2, 3, from top to
bottom, respectively. Polyelectrolyte brush individual chains with N, = 30
and nanoparticle radius a = 40 A.

The influence of the dielectric discontinuity on monova-
lent ions is very small and most of the pattern we see is caused
by osmotic pressure inside the brush, which tends to repel
counterions. Similar brush configuration has been extensively
explored before without consideration for dielectric disconti-
nuity so that the results showing that multivalent counterions
are more deeply absorbed are expected. Although the den-
sity maximum concur for both distributions of multivalent
ions, we find that the polarization of the silica nanoparti-
cle tends to broaden their distributions since they feel more
repelled by their image charges. Also, the effective brush
radius, Rp, tends to be higher due to image charges of chains,
which can affect the ionic distribution far away from brush.
For charged nanoparticles and surfaces, the consequence of a
dielectric discontinuity in ionic distribution is very local, near
surfaces.* %% The importance of the polarization effect for
the trivalent case can also be observed in the density profiles
of monomers, see Fig. 4.
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FIG. 4. Density profiles of monomers obtained for a@=1,2,3, circles,
squares, and triangles, respectively. Full symbols represent €. = €,,, while
open symbols €. = 2. The parameters are the same as in Fig. 3.

Moving further, we study the brush behavior over dif-
ferent number of monomers and different counterion valence
by calculating Rp, see Fig. 5. We define the PEB radius,
Rp, as the average distance between the center of grafted
nanoparticle and the more distant monomer. Here we con-
firm that image charges have little to no influence over the
brush diameter for monovalent counterions. This is not the
case for larger brushes composed by 30 and, more explicitly,
42 monomers, surrounded by multivalent ions. In this case we
can find a considerable increase in Rp when accounting for
the dielectric discontinuity when compared with the homo-
geneous case. The polyelectrolyte chain total charge is high
for a sufficient number of monomers and they are, by con-
struction, near the nanoparticle surface. This means that image
charges play an important role in the brush radius value when
this value is sufficiently small. The difference in both approx-
imations can achieve 9% for the discussed parameters. The
smaller values obtained for Rp in the case of multivalent ions
are in agreement with experiments that relate the collapse of
the spherical PEB with the addition of multivalent ions in
solution,'>-63

The density profile for a special case in which the brush’s
nanoparticle is relatively big (a = 100 A) is shown in Fig. 6.
The polarization of the nanoparticle undoubtedly has a strong
influence over the trivalent counterions profile, showing that
the role played by nanoparticle polarization is not only to fur-
ther fend the colloid and the counterions but also to spread
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FIG. 5. PEB average effective radius as a function of N,, for a = 40 A and
a = 1,2,3, from left to right panels, respectively. The circles represent the
case, which € = €, while squares, €. = 2.
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FIG. 6. Density profiles of counterions obtained for @ = 3 for two rela-
tive dielectric constants of the nanoparticle. Polyelectrolyte brush individual
chains with N, = 30 and grafted nanoparticle radius a = 100 A.

their distribution, in comparison with the unpolarized nanopar-
ticle. It is also worthy to remark the double peak pattern
present in the €. =2 curve, much more protruding than in
the €. = €, curve, indicating two clear preferred regions for
the trivalent counterions. This is a competition between the
electrostatic interaction of multivalent ions with the entire
brush and with their local chain, see also Fig. 3, bottom
panel. The polarization of the nanoparticle separates more
explicitly these regions as a result of the shifting of the ionic
distribution.

In order to measure the effect of nanoparticle polarization
on counterions distributions as a function of nanoparticle cur-
vature, we calculate the relative difference between profiles

\/ff dr{pa(r) = pe, (N

I drpe, (r)
counterion profile for €, = €, and p,(r) for €, = 2. We take

the cases of Fig. 3 and similar ones except for the parame-
ters @ = 80 A and R = 500 A for comparison. We set these
lengths in order to maintain constant volume fraction in the
comparison. The volume fraction is defined as ¢y = a’/R3.
For @ = 1, we obtain for A the values 0.0041 and 0.0032. For
divalent @ = 2 sets, we obtain 0.0115 and 0.0166. The val-
ues found for @ = 3 were 0.0265 and 0.0252, all numbers for
a =40 A and a = 80 A, respectively. These results show us
that there is no influence of the nanoparticle curvature in the
polarization effect on the counterions distribution for constant
PEBs volume fraction. However, if we take for comparison two
sets with the same cell radius R but with different nanoparti-
cles radius a, the curvature can decrease the effect of dielectric
discontinuity on the counterions distribution. We take the triva-
lent case of Fig. 3 and the set of Fig. 6. The parameters are
the same with the exception of the nanoparticle radius, which
is 40 A and 100 A, respectively. We then obtain the values
0.0265 and 0.0424, respectively, for the relative difference of
the profiles, showing that the decrease in curvature enhances
the aforementioned effect.

We move further in the results section by comparing
simulations with the present theory for monovalent ions, see
Fig. 7. The theory is not able to describe properly the monova-
lent counterions structure around the brush, except for shorter
chains. However, the agreement is very good in the region far
from nanoparticle surface, for the studied chain lengths. The

defined as A =

, where pe, (r) is the
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FIG. 7. Density profiles of counterions obtained for @ = 1, a = 40 A and

various number of monomers, N,,. The lines represent the results of the present
theory, while symbols represent the results of simulations. The inset shows
the solutions of PB equation if all the charged monomers are located on the
nanoparticle surface, for the same parameters and the same x and y axis scales.

present method allows us to quantitatively account the adsorp-
tion of monovalent counterions, which means that osmotic
properties of a brush suspension can be studied using the
present method. We can define, for example, effective charges
of PEBs, as the subject for a future work. It is important to
mention the interesting effect that the boundary ionic concen-
trations are not saturated with the increase in the macropar-
ticle charge as it is observed in colloidal suspensions; see
the inset of Fig. 7. This saturation observed in colloidal sus-
pensions reflects the independence of the colloidal effective
charge with the colloidal charge.®®%’ This is not the case for
PEBs as can be seen in Fig. 7. For multivalent counterions,
as expected, the theory is not able to describe the asymp-
totic curve, as can be seen in Fig. 8, not even by reasonably
decreasing the value of r,s. The counterion-counterion and
counterion-monomer electrostatic correlations take place and
the present mean-field theory is not able to account for these
effects.

As an application of the method for monovalent counteri-
ons, we calculate the osmotic coefficient, which is defined as
the fraction between the pressure and ideal pressure given by
Dosm = Pbulk/ Pid>» Where ppui 1s the counterion bulk concen-
tration and p;; = N./V, where V is the volume accessible to
the N.. counterions.%® In Fig. 9, we show the curves of ¢, ver-
Sus ¢ for the same parameters as in Fig. 7 obtained with the

T T T T
o o=2
A S 0L=%
o= }
0.0001 «_4:!3?.' e
3] e,
N el
BS, 8‘\\\
> * N
S le-06 LI -
....‘.. _________
TR L [ T PSRN
!

le-08G6—%0 120 160 200 240
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FIG. 8. Density profiles of multivalent counterions obtained for N, = 30 and
a =40 A. The lines represent the results of the present theory, while symbols
represent the results of simulations.
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FIG. 9. Osmotic coefficient versus volume fraction for the same parameters
of Fig. 7.

present theory. For longer chains, we can observe a minimum
in the curve. Also, by increasing the length of grafted chains
we obtain a smaller osmotic coefficient that is in agreement
with experimental measurements.®

V. CONCLUSIONS

In this work we have performed MD simulations of a
spherical polyelectrolyte brush in a salt-free solution. The
dielectric discontinuity in the grafted nanoparticle surface is
taken into account. We observe that for monovalent counteri-
ons at room temperature, the grafted nanoparticle polarization
is not mandatory to describe the ionic structure around the
brush. Also, the effective polyelectrolyte brush radius is not
very affected for the studied parameters apart from the cases
with trivalent counterions and longer chains, in which, the dif-
ferences can achieve ~ 9%. Furthermore, in these cases, the
concentration profiles of counterions and monomers are con-
siderably different comparing both approximations. We also
present a mean-field Poisson-Boltzmann theory for low elec-
trostatic coupling regime. This method allows us to obtain
quantitatively the asymptotic counterionic concentration, lead-
ing us to calculate the osmotic coefficients of PEBs suspen-
sions. The effective charges of brushes are going to be studied
in a future work. We have observed that the nanoparticle curva-
ture influences the polarization effect for constant cell radii. In
this comparison the volume available to counterions is in prac-
tice the same. However, if we keep the PEB’s volume fraction
constant in the comparison, the effect of the curvature is negli-
gible. In this comparsion the volume available to counterions is
very different. This suggests that the effect of the polarization
depends also on the ionic strength of the solution.
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2. Methodology Appendix

In this section, we further explain the methodology applied in the paper,
which has not been discussed in detail in the original publication.

2.1 Polymer Model

When we consider a real polymers molecule with covalent bonds
linking its monomers it is known that the conformational states that
characterize this molecule are susceptible to entropic barriers imposed by the
interaction of individual monomers with each other. These conditions that
limit the range of configurations that can be assumed by a molecule are
explained by a range of effects, among which is the correlation of bound
angles. To overcome this we use the concept of an ideal chain. By applying
the work of De Gennes!8 we rely on the concept of scale to fulfil the mentioned
condition. Consequently, our model monomers, that will compose each of the
polymer arms in the brush model, have to represent hundreds or thousands
of real monomers in each model monomer to fulfil this scale conditions.

By analyzing the polymer arm at longer distances all its torsion and
bond angles become equally probable, this enables us to treat the polymer
arms as freely jointed chains. The best and most utilized method to model this
type of polymer arms is the bead-spring model. In this model springs are used
to represent chemical bonds and beads to represent monomers, see Fig. 2,
thus we had to choose a proper energy potential to represent the spring!?:

Figure 2

The bead-spring model is used to represent real polymer chains.

A
Upona = Zad.mon.glr - T0|2 ’ (1)

1
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where r = |rl- — r]-| 1s the distance between adjacent monomers 1 and j. The
sum 1s made over all adjacent monomers of the same polymer chains, A =
0.9kzT and 7, = 5A. We choose this non-linear potential to better represent
the elastic nature of the spring representing the bonds, in contrast with the
harmonic oscillator, where the elasticity is represented by a linear equation.
From this, we can easily calculate the elastic force acting over adjacent
monomers of the same chain by taking Eq. (1) position derivative.

2.2 Image Charges in a Dielectric Sphere

The idea of an electric image charge in a conducting sphere was
introduced by Kelvin and developed by Maxwell20 and Jeans?!. The method
of image charges is considered the main solution to the problem of a single
charge, placed inside or outside a spherical/planar boundary between two
materials of different dielectric constant, when combined with fields due to
the charges induced on the boundary. The spherical and planar geometries
have the advantage of disposing of exact analytical methods for the problem’s
solution whereas more complex geometries may rely only on numerical
solutions.

The first to calculate the analytic solution for the image magnitude was
Norris?2, he considered a source charge placed outside a spherical boundary
of radius a with different dielectric constants inside and outside the sphere
(¢; and €, respectively). Starting from Maxwell’s boundary conditions: fields
parallel to the interface (either side) are equal, and the field normal to the
inner face is €;/€, times that on the outer face, expressing the fact that the
electric displacement is continuous across the boundary. He expressed the
fields due to the source charge and the surface charges as a series of Legendre
polynomials and matched the fields associated with each Legendre
polynomials at the surface. He then showed that the fields due to the surface
charge can be expressed as due to image charges as described in Fig. 3. In the
case of an external source charge Q, the field outside the sphere created by
the charges induced on the surface of the sphere is equal to the field generated
by a point image inside the sphere Q' at the inversion point, r’; = 1ja?/r;?,
and a distributed charge that stretches from the inversion point to the center
A(r). The magnitude of the image punctual charge is equal (but of opposite
sign) to the total charge in the distributed part, so that the sphere as a whole
appears neutral.
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The distributed image charge (counterimage), its potential and the
potential generated by the point image charge are described by Eq. (2), (3)
and (4) respectively:

Source image charge Q

ointimage
charge Q'

Figure 3

Explanation of the image charge composition for the spherical geometry.

y-2

_ _ea+p(x\2
Alx) = o (Ti') ) (2)
aZ
Gei(r;Ty) = %fo d¢ ( a2> ’ 3)
0f1 |r— ?r,-
Pim (1) = ——2, 4)
€0|r—?ri

here, r; 1s the charge distance, the magnitude of the point image charge is
Q' = yQa/r; where Q = aq is the source charge given by the valence a times
the elementary charge q, andy = (€5 — €;)/(€o + €)).

Following this work, it was shown?23 that the integration on Eq. (3)
(which cannot be performed exactly) can be simplified by considering that the
dielectric constant inside the boundary is much smaller than the dielectric
constant of the surrounding medium. Fortunately, this is the case for colloids
where the dielectric constant of the colloid (usually silica) is much smaller
than the dielectric constant of its surrounding medium (usually water). This

1
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leads toy = 1, and in this case, the counterimage charge is uniformly

distributed A(x) = —Q'/r';, and the mentioned integral can be performed
exactly resulting in the exact potential for the counterimage:

_ Q rr —r.r;
¢ei(r;r) = —log (a > ()

€@ 2 —r.ri+Jat — 2a2(r.r;) + r2r?

where the over-bar is used to denote the uniform line-charge approximation.
The ion self-counterimage interaction potential when 1 = r; reduces to a
simpler equation:

self 2

Bei™ (rir) = Llog(1- %) ©®)

Both this expressions were imperative for the development of our simulations
as they allowed us to obtain the force over the polymer-ion system due to the
dielectric inhomogeneity between the colloid, the central piece of the
polyelectrolyte brush, and the surrounding medium.

2.3 Polyelectrolyte Brush Model

After explaining the theories behind our simulation, we can now
explain how they assemble to form the Langevin equation, which is the core
equation for the calculation of the steps in the Brownian-dynamics
simulation. Our configuration is illustrated by Fig. 4 (also present in our
paper).

The polyelectrolyte brush is composed by a central colloid nanoparticle
with 14 charged polymers chains tethered to it. The number of counterions
was varied as to neutralize the charge of the 14 polymers. The number of
monomers composing each polymer was variable but they were always
monovalent whereas the counterions could have higher valences. The total
energy of the system includes the spring interaction between monomers
described in section 2.1, the electrostatic interactions described by: the colloid
surface polarization effect of section 2.2, and a simple Coulomb potential.
Despite that the self counterimage potential Eq. (6), which only applies to the
charged particle that generates it, the counterimage potential Eq. (5) of each
charged particle applies to all particles. This makes simulations including the
dielectric inhomogeneity effect more costly in computational time.

1
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Figure 4

Snapshot of the simulation representing the model.

The total electrostatic potential that applies for all particles is:

o(r;ry) = L+ Gim (1) + v (i) | (7)

€olr—Til

here the first term accounts for the Coulomb interaction between particles,
the second and the third terms refer to the image and counterimage charges
potentials, respectively. In the third term, it is used the condition of charge
neutrality to correct the ion-counterimage interaction from Eq. (5) by
including a prefactor y. This, then, is the Green function for the present
geometry. Therefore, the total electrostatic energy for a system of N particles
is given by:

N-1 N N
l
Uelec = Z Z Qj¢(rj;ri)+ zUisef' (8)
i=1

i=1 j=i+1
— If
U.self — VQZa VQd)cise (ri) (9)
' 26(r7 — a?) 2 ’
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where Ul.s ¢/ is the interaction energy of the ion i with its own image and
counterimage charges.

Eq. (8) represents the total interaction energy of the counterions, the
monomers of the polymer chains have their interaction energy represented
by Eq. (8 plus Eq. (1), the elastic bond energy. The energies by specific
specimen (monomer or counterion) have their negative derivative taken for
each of the tri-dimensional Cartesian coordinate Fijop, = =V, (Ugec) or
Fronomer = —Voonomer (Uetec T Upona ) resulting in the total interaction force

over an individual specimen. The Brownian-dynamics forces will be discussed
in the next session.

2.4 Numerical Solution of the Model

After obtaining the interaction force on each of the individual particle
of the system we can assemble a generalized Langevin equation to describe
their motion on each of the MD simulation steps:

mv;(t) = F;(t) = G (0) + Ri (1) (10)

The equation describes the acceleration v,(t) of a particle i with mass m;,
under a force F;(t), friction coefficient {; and stochastic force R;(t). The friction
here is present to maintain the temperature of the system constant. Following
Einstein relation, R;(t) has to respect the relation (R;(t)R;(t)) =
20ikpTo6;;0(t —t') 24,

In Eq. (10), a constant temperature consistent with the canonical
ensemble is maintained by balancing the dissipative effect of the frictional
terms with a stochastic force due to thermal noise. Consequently, we utilized
this constant temperature thermal bath condition in our simulations,
allowing us to rely on a well-known numerical method to solve Eq. (10). We
employ a velocity Verlet method that follows a standard protocol for solving
non-linear differential equations of the type given by Eq. (10). The equations
of motion from this can be obtained by integrating the following expressions
over the interval (t,t + At) 25.

F(t)
x(t+ At) = x(t) + c;v(t)At+ ¢,

At? + 876, (11)

1
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F(t F(t + At
()At+c2¥At+5vG, (12)

v(t + At) = cou(t) + (¢; — ¢3)

m
where:

¢y = e~0t (13)

¢ = ((A0)1(1 - ¢p), (14)

¢ = (CAD)1(1 - ¢y), (15)

¢y = (CAD1 (% - c2>. (16)

In these equations, the stochastic integrals of R;(t) are 6r% and §v¢, are
sampled from a bivariate Gaussian distribution of zero mean:

Vg = 0y (Crvnl + 1- Crgv)) N2, (17)

5ria = 0yN1, (18)
kT 1 1
2 — Gyy — B _ _ A.—(At —Z(At]
o, ((6132)) 7at [2 At (3 —4e +e )1 (19)

0,2 = ((6vE)) = %(1 — e72%AY) | (20)

Crp = Atk L 1 1 _e—ZAt)Z , (21)

m o,0, (At

here o,2and 0,2 are the variances of §r% and §v¢ and c,, their correlation

coefficient. n; and 7, are two independent random numbers with Gaussian

1
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distribution of zero average and unit variance, easily obtainable by the use of
specific functions of any programming language library.

Finally, by applying the mentioned equations we were able to develop
an algorithm that solved Eqs. (11,12) for each time step At of our simulation
for each Cartesian coordinate (X,y,z), separately, resulting in a precise
description of the system for x(t), y(t), z(t), v (t), v, (¢t), v,(t) for every At.
This algorithm also included a particle overlap prevention mechanism in the
form of a hard-sphere potential, plus appropriate spherical reflections on the
cell inner and outer boundaries. It is important to state that by dividing all
measures of - position, particle radius, cell size - by the Bjerrum length Az =
£q%/e, = 7.2 A, we are able to work with only dimensionless quantities,
allowing us to drop kg, T, m and q (we work only with the valence a) from the
equations. This way we have only 7;,, the monomer radius, 7. the counterion
radius, a the colloid radius, N,, the number of monomers, N, the number of
counterions, a the counterions charge valence, y, { and At as the input
parameters of our algorithm. This allowed us to tune the system parameters
in the search for interesting conditions in our study.

2.5 Poisson-Boltzmann Equation

The Poisson-Boltzmann (PB) equation describes a model for when a
charged surface comes in contact with an ionic solution. It is of great practical
and theoretical importance. The PB equation is the most widely used
equation?6 that describes the distribution of electrical potential involved in
the interaction between colloids, polymers and the ionic solution. The Poisson
equation for the electrostatic potential of the counterions in the solution is

described by: \726D=$, where p is the charge density and & the
0

electrostatic potential.

Our model has to include the charged monomers in this equation, their
position is described in Fig. 4, there we have 14 polymers spread through the
colloid’s surface, one on each pole and 12 spaced throughout the body. In order
to mathematically express this we use the Dirac delta function representing
each of the 14 polymers and their individual monomers. Therefore the Poisson
equation for the system is expressed by:

N
V2d(r) = # Z g;6(r—mr) —ap(r)], (22)
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here o; are the charge densities of the corresponding layers of monomers given
by 0; = N,/4nr?, N, being the number of polymers, r; = a + 7, + (i — 1)27,,
representing the distance of each monomer shell to the center of the
coordinate system as a sum of the colloid radius a, the monomer radius r,
and 7,r = 0.75 13,, to account for bending of the chains. p(r) is the local

Figure 5

Graphical representation of the PB-Equation setup.

density of counterions at a distance r from the center of the system (Fig. 5),
this is given by the Boltzmann distribution. We use a mean field
approximation setting the potential of mean force as the mean electrostatic
potential of all ions, finishing with the PB equation:

o—Baq®(r)

41 [ dr'r'2e—Baa®(’) ’

p(r) = N, (23)

where B is the inverse of the Boltzmann constant times the temperature of
the system. The bottom part of Eq. (23) is calculated over the limits of the
colloid and the boundary of the spherical cell.

This is an approximation, which is expected to work only when the
correlations between counterions is small. The reason for that is in the mean

1
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field approximation we use, we do not account ions positional correlations in
opposition to the original Boltzmann distribution that would require this for
an exact calculation. The consequence i1s that the theory is limited to
monovalent ions at room temperature in water, namely weak coupling regime
(as showed in the aforementioned paper), for their correlations are smaller
when compared to the correlations between ions of higher valences.

2.6 Numerical Solution of the PB Equation

The solution of the PB differential equation was achieved numerically
via an iterative process. Therefore, it is convenient to rewrite the electrostatic
potential in terms of the electric field E(r) = —V®(r), inserting this in Eq.
(22) we get:

41 i
7.E() = —| ) i8(r = 1) — qap(r) (24)

By integrating the divergent of electric field, we find that the
r component of the electric field E(r) satisfies an integral equation
expression27:

0(x) = = [Zmm oy — ax(x)] (25)

x2

With x = ﬁ 0(x) = BqAgE(r),

[ dx'x"% exp [—a fxx’A dx"@(x”)]
X0 = Ne caw— (26)
fgwAC dx'x'2 exp [—a fgwAC dx"6(x )]

where @+ 7, = (a+ r.)/ Ag and R = R/2;.

The zero of the electrostatic potential ®(R) = 0 is taken at the cell
boundary. The electric field inside the cell is calculated by an algorithm which
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iterates Eq. (24) starting with an arbitrary function satisfying the boundary
condition E(R) = 0 until it achieves convergence. The solution of the equation
is important because it allows us to generate the density profiles of the
counterions showed in the paper, this way we could better compare the theory
to our computational simulations.
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3. Final Considerations

Throughout this work we were able to obtain a range of different
results in the form of density profiles, brush radii and the system’s osmotic
coefficients. The density profiles were able to 1llustrate that the difference in
separation between the nanoparticle and the counterions, propelled by their
repulsion to their images of equal charge, was not very significant when
compared to the image free simulations. This is also true for the monomers
and for the brush radius, with the exception of the trivalent counterion cases,
when we can see a more relevant difference between both cases, which could
be taken into consideration in the future for projects relying on a precise
measurement of these parameters.

Utilizing a nanoparticle radius of 1004 and longer polymer chains, the
divergence between the studied cases increases, This is expected from the
point image charge equation Q' = yQa/r; since it is shown that the magnitude
of this charge is directly proportional to the nanoparticle radius. This
represents that the difference in cases could be further explored since we
know that colloid particles typically range from 104 to 100004 in size, leaving
us something to keep in mind for future works of this nature. The remaining
results regarding the density profiles and the brush radius were as expected,
the stronger bending of polymer chains in the multivalent counterion cases,
resulting in a stronger confinement of those, and a smaller brush radius, have
been studied previously2830, These were in agreement with ours.

Finally, the mean-field PB theory presented here matched the results
for the monovalent counterion cases, but it was not able to represent with
precision the multivalent ion cases. This was expected as the PB theory is
historically considered accurate for weak electrostatic couplings, for the
reasons expressed in section 2.5, but poorly matched with cases where there
are strong electrostatic couplings. The osmotic coefficients studied in regards
to the system’s volume fraction were the final results presented and they
showed that increasing the polymer chain’s length decreases the osmotic
coefficients, which is in agreement with experimental measurements3!,
Physically this means that the absorption of counterions by the brush is
inversely linked to the osmotic coefficient since the increase in polymer
chain’s length leads to increase in ion absorption. These last results also
clarified that the decrease in nanoparticle curvature, represented by its
increase in radius, would truly only affect the polarization effect if the volume
fraction was not maintained constant in the process. However, similar volume
fractions with a significant difference in nanoparticle radius could still show
a considerable impact in the nanoparticle polarization.
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4. Conclusion

During this work we took advantage of our previous knowledge in
polymer sciences, acquired in my undergraduate thesis in polymer
translocation, to fulfil a more complex work, this time with polyelectrolyte
brushes. Initially we built a program that could simulate a neutral polymer
brush where the only interactions between particles were the bond between
monomers and a Lennard-Jones potential. Gradually, we added the
electrostatic interactions, solving the computational problems that appeared
along the way, we adapted the image potentials from my advisor previous
works with colloids and we swapped the Lennard-Jones potential for a
simpler hard spheres potential, for the reasons expressed in the paper. After
this, we tested the program by comparing the results of the simulation
conditions, without the polymers, to previous works of colloids immersed in
electrolyte solutions. We then tested the complete brush against our PB
theory for the brush (with a separate program for the theory calculations),
concluding that the program was ready to obtain the simulation data for the
work we planned.

The data was further analyzed by an algorithm that generated the
density profiles and average brush radius, these were the main results for the
discussion of the differences between the brush dynamics with and without
consideration for the dielectric inhomogeneity. This discussion was the focus
of the paper and our main objective, and in this we consider ourselves
successful. The results obtained showed to which extent the polarization of
the central nanoparticle in spherical PEBs can affect the equilibrium state of
said brushes, which was shown to be small for most of the chosen parameters.
However, further prospects can yet be achieved using the methods and
modelling explained in the previous sections.

We found that the method chosen for the calculation of the
polarization resulting of the dielectric difference from the central
nanoparticle and its surrounding medium was an outstanding match for the
work. The computational time added by the necessity of the image charge
calculations was considerable, in reference to the image free cases it almost
doubled. Nonetheless, the other methods for this purpose, which were
mentioned in the paper, were shown to dawdle in comparison. Although the
use of parallel programming was tried in the middle of the project, the
calculations were not so numerous as to require its use, and because of this
we ended-up only needing to use the C language, for a non-compilable
language would not be optimized enough for the project.

For the prospects of the project we could cite the further exploration of
the nanoparticle curvature and osmotic properties of the system in the
polarizations studies. The current parameters of the simulation were chosen
not only to match the experimental ones32 but also to build a feasible
modelling, a higher number of particles - something that could be used to
better represent the polymer chains, the ionic solution, and allow a bigger
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central particle — would result in higher simulations times. Higher simulation
times make programming mistakes very costly, and they would undoubtedly
happen being this the first time we perform a simulation of this type. Other
possibilities of future work are in the use of a salt solution in addition to the
1onic already present as to have a measure of the brush properties versus the
solution concentration. The possibility of a moving brush or a shear flow is
also being considerate because of the possibility of it better representing the
brush dynamics inside the human body against blood flow, since one of the
purpose of the synthetization of these brushes is as drug carriers.

Finally, the knowledge acquired throughout this project was enormous
making it extremely compensating, not only for the opportunity to publish it,
but for the treasured experience.
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