
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE ENGENHARIA DE COMPUTAÇÃO

ANDRÉ SALDANHA OLIVEIRA

Pattern Classification for Layout Hotspots

Work presented in partial fulfillment
of the requirements for the degree of
Bachelor in Computer Engineering

Advisor: Prof. Dr. Ricardo Reis
Coadvisor: Dra. Carolina Metzler

Porto Alegre
January 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lume 5.8

https://core.ac.uk/display/293607221?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Rui Vicente Oppermann
Vice-Reitora: Profa. Jane Fraga Tutikian
Pró-Reitor de Graduação: Prof. Wladimir Pinheiro do Nascimento
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do Curso de Engenharia de Computação: Prof. Renato Ventura Henriques
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

ABSTRACT

The final objective of an integrated circuit design is to produce a layout, that is, a geo-

metrical representation of the circuit where the geometrical shapes correspond to patters

that will be formed by layers of metal, oxide, and semiconductors. These patterns are

essentially descriptions that will be used to print the circuit through chemical, thermal

and photographic processes.

To ensure the layout can be used to print the circuit with no defects, it is necessary to run

design rules check. This verification searches for patterns that violate design rules, which

makes it impossible to guarantee defect-free printing. However, some layout patterns may

present printability problems even when design rules are respected. To solve this prob-

lem, physical verification flows are applied to the layout with the objective of detecting

and treating such patterns. The sheer number of these layout printability hotspots and the

fact that they are sometimes similar to each other suggests that the physical verification

flow can be sped up by clustering together similar patterns.

In this work, we address the problem of complex shape partitioning, incorporating an al-

gorithm with complexity O(n5/2) into the layout hotspot clustering flow, which allows

for clustering of hotspots in benchmarks with complex polygons. Furthermore, a study of

the viability of a machine learning flow for incremental clustering is conducted, covering

the choice of features and analysis of candidate models.

Keywords: Physical Design. Verification. Machine Learning. Layout. EDA. Partition-

ing. Microelectronics.

RESUMO

O objetivo final do fluxo de projeto de um circuito é produzir um leiaute, uma rep-

resentação geométrica do circuito, onde as formas geométricas correspondem aos padrões

que serão formados por camadas de metal, óxido e semicondutores. Esses padrões são

essencialmente descrições que serão usadas para imprimir o circuito através de processos

químicos, térmicos e fotográficos.

Para garantir que o leiaute possa ser usado para impressão de um circuito integrado sem

defeitos, é necessário executar verificações de regras de projeto. Essa verificação en-

contra padrões que violam regras que inviabilizariam a garantia de impressão sem de-

feitos. Porém, alguns padrões do leiaute podem apresentar problemas na impressão

mesmo quando a checagem das regras de projeto não encontra erros. Para solucionar

esse problema, fluxos de verificação física são aplicados no leiaute com o objetivo de de-

tectar e tratar tais padrões. A grande quantidade de regiões com problemas de impressão

e a similaridade entre elas sugere que o fluxo de verificação física pode ser acelerado ao

se agrupar padrões similares.

Neste trabalho, o problema de particionamento de polígonos complexos é abordado, e

um algoritmo de particionamento de complexidade O(n5/2) é incorporado ao fluxo de

classificação e agrupamento de regiões de interesse, permitindo que casos de teste com

polígonos complexos tenham suas regiões de interesse agrupadas. Além disso, um estudo

sobre a viabilidade de um fluxo de aprendizado de máquina é conduzido, cobrindo a es-

colha de atributos e a análise de diferentes modelos candidatos.

Palavras-chave: Verificação. Síntese Física. Aprendizado de Máquina. Leiaute. EDA.

Particionamento. Microeletrônica.

LIST OF ABBREVIATIONS AND ACRONYMS

CAD Computer Aided Design

EDA Electronic Design Automation

DRC Design Rule Check

ICCAD International Conference on Computer Aided Design

UFRGS Universidade Federal do Rio Grande do Sul

VLSI Very Large Scale Integrated

SVM Support Vector Machine

RF Random Forest

NN Neural Network

CONTENTS

LIST OF FIGURES ...7
LIST OF TABLES ...8
1 INTRODUCTION...9
1.1 Problem Formulation ...9
1.1.1 Area Constrained Clustering..11
1.1.2 Edge Constrained Clustering ...12
1.2 Complex Polygons...13
1.3 Machine Learning Incremental Flow..14
2 CLUSTERING FLOW ...15
3 COMPLEX POLYGON PARTITIONING ..18
3.1 Introduction...18
3.2 State of the Art ..18
3.3 Implementation ...21
4 IMPROVED FLOW..24
4.1 Introduction...24
4.2 Methodology ..25
4.3 Results ..26
4.4 Conclusion ...29
5 MACHINE LEARNING FLOW ...30
5.1 Introduction...30
5.2 Feature Extraction ..30
5.3 Model Choice...32
5.4 Implementation ...33
5.5 Results ..34
6 CONCLUSIONS ...37
REFERENCES...38

LIST OF FIGURES

Figure 1.1 Structure of a hotspot in the layout..10
Figure 1.2 Example picture of a layout with clips. ...11
Figure 1.3 Geometric XOR example. (a) and (b) are two clips, and (c) is the result

of the geometric XOR between (a) and (b)...12
Figure 1.4 Edge displacement example. (a) and (b) are two clips. (b) differs to (a)

in edge displacement, showed by the arrows. ...13

Figure 3.1 Polygon being partitioned by (OHTSUKI, 1982)’s algorithm.19
Figure 3.2 Intersection graph for the polygon in figure 3.1. ...20
Figure 3.3 Example of a complex polygon and its horizontal complexity relevant

points...20
Figure 3.4 Flow diagram of the parsing, including the partitioning script call...............22
Figure 3.5 Three complex polygons and their partitioning...23

Figure 4.1 Graph showcasing the size progression of the benchmarks.25

Figure 5.1 Artificial clip consisting of a horizontal strip of material crossing the
middle of the clip. ...32

Figure 5.2 Artificial clip consisting of a vertical strip of material crossing the mid-
dle of the clip. ...32

Figure 5.3 Feature importance for the dataset with repetition.35
Figure 5.4 Feature importance for the dataset without repetition.36

LIST OF TABLES

Table 4.1 Statistics of the four benchmarks. ...24
Table 4.2 Cluster count results. ...26
Table 4.3 Results of maximum cluster size...27
Table 4.4 Runtime results in ms on all benchmarks and configurations.28

Table 5.1 Results for each model on the dataset with all instances.34
Table 5.2 Results for each model on the dataset with no repeated instances..................34

9

1 INTRODUCTION

While the semiconductor design shrinks, the whole physical design flow grows

more dependant on lithography constraints. The main pattern printing process still uses

193nm lithographic process (SHIN; LEE, 2016), even though the patterns drawn are much

smaller. The techniques that allow such thin patterns to be drawn can disturb patterns

in the surroundings. In order to detect the patterns that could suffer lithographic print-

ing problems, also called lithographic hotspots or simply hotspots, the standard typically

flow uses optical simulations. This technique has great hotspot detection, but it requires

high computational costs to be spent in the optical simulation. As the authors describe

in (SHIN; LEE, 2016), the geometric verification methods have been introduced as an

alternative. In their work, they use the layout image as input to a convolutional neural

network in order to detect hotspots.

Regardless of how the hotspots were detected, in order to continue the flow, any pat-

tern with a detected layout printability problem is marked in the layout. Because of the

large number of problematic patterns found in general, classifying the patterns based on

geometrical similarity has an important role in determining the efficiency of hotspot de-

tection. In the hotspot pattern classification flow, similar hotspots are classified into a

cluster based on geometrical similarity (CHEN et al., 2017).

1.1 Problem Formulation

The tool developed follows the problem specification from 2016 CAD contest at

ICCAD for pattern classification(TOPALOGLU, 2016). The contest provides as input a

circuit layout. The layout, following the contest definition, has two relevant layers. The

first layer has the metal polygons. The last layer contains polygons that represent mark-

ers, but have no physical meaning. The markers are generally small polygons on which a

pattern where a layout printabilty problem has been detected. These markers are simply

small rectangles that point where a layout printability problem was detected. In an area

centered in any point within these markers, a rectangle is created, and the shapes that are

contained within this rectangle are cut. The result of this extraction is called a clip. The

clip contains only the part of the shapes that intersects with its boundary. This clipping

process is illustrated in figure 1.1, where a clip is being extracted with its center point

10

in a marker. The two metal rectangles have their area that is contained within the clip

extracted and added to the clip. In this particular example, both metal rectangles are cut,

and only a sub-rectangle of each is added to the actual clip. The clip can be centered in

any point inside the marker.

Figure 1.1: Structure of a hotspot in the layout.

The program input also specifies the width and height of the clip. Given a marker,

one can choose a point contained in it and generate a clip centered in such point with the

given dimensions. Figure 1.2 shows this exact process. The white canvas represents lack

of any material. The yellow polygons represent metal, and the purple polygons are the

clips. Note that the clips are centered in the markers. The main objective is to provide a

reduced set of representative layout clips contained on these markers. The tool developed

that implements the clustering flow is described in Chapter 2.

11

Figure 1.2: Example picture of a layout with clips.

To perform the pattern classification two parameters are selected by the user: (A)

Area match constraint that selects the clustering by area constraint and (B) Edge dis-

placement constraint that performs the clustering by edge constraint. The objective of

clustering is to provide sets of clips (clusters) that resemble each other according to these

parameters.

1.1.1 Area Constrained Clustering

In area constrained clustering (ACC) mode, a topological classification is per-

formed based on the area match constraint parameter α. This parameter defines the max-

imum area match percentage. The overlap area between any clip of a cluster (A) and the

representative clip of a cluster (B) must satisfy this parameter, as shown in the equation

1.1, bellow. In Figure 1.3 a graphical example is provided. In the figure, there are two

clips (a) and (b) that need to be compared in terms of area. The result of the geometric

XOR applied upon them is represented in the resulting clip (c).

12

[Area(XOR(A,B))]

w ∗ h ≤ (1− α) (1.1)

The Area() function gives the total area of the polygons and the XOR gives the

geometric difference between the clips A and B. And (w, h) are the dimensions of the

clip.

Figure 1.3: Geometric XOR example. (a) and (b) are two clips, and (c) is the result of the
geometric XOR between (a) and (b)

1.1.2 Edge Constrained Clustering

The edge constrained clustering (ECC) mode receives a parameter e in nanometers

that indicates how much the edge will be shifted, the shifting can be in both directions:

inward and outward. This parameter e defines the tolerance that the clip pattern can shift.

Figure 1.4 shows an example of the edge being shifted. Multiple edges can shift by

different amounts since it is limited by e value.

Edges only shift in orthogonal projections and the representative clip of a cluster after the

shifting becomes another clip of the same cluster.

13

Figure 1.4: Edge displacement example. (a) and (b) are two clips. (b) differs to (a) in

edge displacement, showed by the arrows.

1.2 Complex Polygons

During the layout hotspot clustering flow, the presence of complex polygons in

some layouts pose a problem. Efficient clip extracting and clip comparison algorithms

require all polygons in the layout and within each clip to be a rectangle. For that reason,

classifying a polygon as complex in this context means that it isn’t a rectangle. In order

to make possible for the flow to support layouts with complex polygons, there is the need

of an algorithm capable of dividing a complex polygon into a set of rectangles.

The complex polygon partitioning problem is addressed in Chapter 3. In order to better

understand the problem of complex polygon partitioning, Section 3.2 presents a study of

the literature. Since there are multiple applications for complex polygon partitioning that

extend beyond the domain of VLSI, the problem is well known and has efficient solutions

in the literature. The incorporation of an efficient algorithm to the flow is described in

Section 3.3.

The improved flow and the results obtained in the 2016 ICCAD contest benchmark suite

(TOPALOGLU, 2016) are shown in Chapter 4. First, in 4.1 the benchmarks are analyzed

in order to obtain relevant statistics such as the number of clips. Then, in Section 4.2 the

methodology used is described. The results and their interpretations are in Section 4.3

and the conclusion of the experiment is in Section 4.4.

14

1.3 Machine Learning Incremental Flow

Another idea suggested by looking into the particularities of the problem, such

as the high similarity between clips within the same cluster and the strong emphasis in

geometrical characteristics of the comparison process, is the development of a machine

learning flow for incremental clustering. Given an initial clustering, a classifier could be

trained to cluster any additional clip into its most probable cluster. If such an incremen-

tal flow were to be implemented, after a database of clustered clips was generated, there

would be no need to run the clustering flow again for a new layout. All clips extracted

from the new layout would be assigned to its cluster in constant time after the feature

extraction.

The machine learning flow study will be addressed in Chapter 5. Section 5.2 describes

how information relevant to classification was extracted from the clips, and Section 5.3

how the model choice was made. Finally, the results of the experiments and the conclu-

sion are discussed in Section 5.5.

15

2 CLUSTERING FLOW

The clustering flow described in 1.1 has been implemented in a tool. The tool

starts by parsing the input layout file, where it finds the markers and initializes its layout

data structure with the material polygons. The markers are provided as an input and since

they are not points, but shapes, the clip centering can be arranged in order to reduce the

number of clusters. In this situation, given the layout in GDS file containing the mark-

ers and the clip size, the clips are centered in the midpoint and for each marker a clip is

created. The extraction of the clips uses the points of the shapes instead of a grid matrix.

Our flow targets a fast and accurate solution.

In order to achieve competitive runtime, we implemented a greedy algorithm to cluster

the clips together. The list of clips are shuffled, then the first unclustered clip is selected

as a representative of a new cluster. This representative is compared with every other

unclustered clip in the list, and if there is a rotation or mirroring of the second clip that

satisfies the constraint the clip is added to the cluster. This is repeated until every clip is

clustered, and the list of clusters is returned. The clips’ total material area is compared

before considering a full comparison, because if the material area of the two clips is too

different there is no reason to compare all different configurations because they will not

be compatible regardless of the rotation. The clustering pseudo-algorithm 1 shows the

algorithm used for clustering. The function needs to receive a list of the previously ex-

tracted clips, the constraint and the operation mode. For example, it could run on area

mode with a constraint of 0.95, or 95%, or edge mode with a 2nm constraint.

The algorithm first shuffles the list of clips to obtain a new order. It also initializes

an empty list of clusters to be populated during the algorithm. These two initialization

steps can be seen in the lines 2 and 3 of the algorithm.

In line 4, the algorithm starts iterating through the clips. For each clip it iterates through,

if the clip is already part of a cluster it is skipped, as seen in lines 5 and 6. If not, a new

cluster is created, the current clip is clustered in it and is set as the cluster’s representative,

all of which is done in lines 8 to 10.

From line 11 to 18, all clips starting from the next in the list of clips are compared to

the representative. The function compare_clips() in line 12 performs the comparison. It

keeps the first clip constant and generates all possible arrangements applying rotations and

mirrorings on the second clip and then performing the comparison, returning the smallest

16

Algorithm 1 Greedy clustering algorithm.
1: procedure CLUSTER(list_of_clips, constraint,mode)
2: clips← shuffle(list_of_clips)
3: clusters← {}
4: for all clip in clips do
5: if clip.get_clustered() then
6: continue
7: else
8: new_cluster ← create_cluster()
9: new_cluster.representative← clip

10: clip.set_clustered()
11: for all other_clip in clips do
12: difference← compare_clips(clip, other_clip,mode)
13: if difference > constraint then
14: continue
15: else
16: new_cluster.add_clip(other_clip)
17: other_clip.set_clustered()
18: end if
19: end for
20: clusters.add_cluster(new_cluster)
21: end if
22: end for
23: return clusters
24: end procedure

17

difference possible. In area mode, a geometric XOR is applied between the first clip and

all the arrangements of the second clip, and the smallest difference is returned. In the

edge mode, the biggest edge difference of the best rotation is returned. If the difference is

smaller than the constraint requires, the second clip is added to the cluster.

Finally, the cluster being generated, it is added to the list of clusters. After all the clips

have been iterated through, the list of clusters is returned.

18

3 COMPLEX POLYGON PARTITIONING

3.1 Introduction

As previously stated in Chapter 1, efficient clip extraction and comparison requires

all polygons in the layout to be rectangles. Furthermore, it is required that the rectangles

have two sides aligned with the y-axis and two sides aligned with the x-axis. However,

some of the benchmarks, namely testcase3 and testcase4, have complex polygons. The

specifics of each benchmark will be discussed in Section 4.1.

As defined in Chapter 1, a complex polygon in this context is any polygon that is not a

rectangle. These polygons need to be partitioned into rectangles before the clip extraction

takes place. This process is called Rectilinear Polygon Partitioning.

Efficient rectilinear polygon partitioning is a quite difficult problem, even if intuition says

otherwise. The objective of the partitioning is to generate as few rectangles as possible.

As a secondary objective, the runtime of the partitioning may also be important, but in

this context it is not the main objective since we consider the polygon partitioning as a

pre-processing of the layout and time performing the partitioning isn’t taken into account

for runtime metrics.

3.2 State of the Art

In his work, (OHTSUKI, 1982) has proposed an algorithm with complexityO(n5/2),

where n is the number of vertices of the polygon. One of the main contributions of the

work is the use of both vertical and horizontal cuts. Their algorithm runs in three steps:

1. Find all chords - line segments contained within the polygon - that connects two

covertical or cohorizontal concave vertices. The chords are then used to create

a graph, where each node is a chord and there are connections between any two

chords that intersect. Figure 3.1 (a) shows all of these chords.

2. Compute the maximum independent set of this graph, and all chords belonging to

this set are drawn, cutting the polygon. Figure 3.1 (b) shows the polygon with these

chords drawn, cutting the polygon.

19

3. From each of the concave vertices from which a chord was not drawn in step 2 draw

a maximum length vertical line that is wholly within the smaller rectilinear polygon

created in step 2 that contains this vertex. Figure 3.1 shows the final partitioning.

Figure 3.1: Polygon being partitioned by (OHTSUKI, 1982)’s algorithm.

Note that any horizontal (vertical) chord is independent of all other horizontal (vertical)

chords. The graph produced in step 2 is, therefore, a bipartite graph. Figure 3.2 is the

graph generated from 3.1 (a). The left vertices of the graph are the horizontal chords, and

the right vertices are the vertical chords. As stated in step 1, a connection between two

nodes in this graph means the two chords intersect each other in the original polygon.

20

Figure 3.2: Intersection graph for the polygon in figure 3.1.

In their work, (NAHAR; SAHNI, 1988) defined a measure for polygon complex-

ity. This measure uses the number of inversions, denoted by k. It is defined by the

number of inversions of a polygon while walking along its sides. For example, on fig-

ure 3.3, when starting on vertex W and walking counterclockwise, the horizontal di-

rection changes from right to left on vertex X, back to right on vertex Y and back to

left on vertex Z. This means the number of horizontal inversions is 4, and therefore

kh = Horizontal_Inversions/2 = 2. The vertical complexity is calculated analo-

gously, and the vertical complexity kv = 1. The polygon’s complexity is then defined by

k = min{kh, kv}. The number of inversions of the polygon on figure 3.3 is, therefore, 1.

Figure 3.3: Example of a complex polygon and its horizontal complexity relevant points.

21

The authors went further and analyzed 2896 polygons from VLSI mask data, pro-

vided by Sperry Corporation, and calculated the statistics in regards to tje number of

inversions. They found out that 99.4% of the polygons had a k smaller than 4, 86% of

the polygons having a k of 1, which leads to the conclusion that most polygons found in

practice have a small number of inversions.

(WU; SAHNI, 1994) proposes two algorithms for rectilinear polygon partitioning. The

complexity of the two algorithms are O(nk) and O(n log k), where n is the number of

vertices of the polygon and k is the number of inversions as defined previously. With

some very complex polygons, where k is a linear function of n, the worst case complexity

is O(n2). However, as (NAHAR; SAHNI, 1988)’s analysis found out, for most practical

polygons k is small, thus making the algorithm quite fast in practice. Their work de-

scribes a way of classification of some sides of the polygon as support or reflex edges.

An edge is called a support edge if its two vertices are both convex, and it’s called a

reflex edge if both vertices are concave. Using these definitions, the authors prove that

kh = number_of_right_support_edges + number_of_left_reflect_edges. Analo-

gously, it can be proved the same for the number of vertical inversions. Polygons with

k ≤ 3 are partitioned using an algorithm with complexity O(n). When k > 3, the poly-

gon is decomposed into 2k subpolygons with k = 1, thus the complexity of O(n log k).

3.3 Implementation

The algorithm proposed by (OHTSUKI, 1982) has been implemented by (LY-

SENKO, 2014) and published on GitHub, licensed under MIT. This implementation was

incorporated into the flow because of the lack of a good implementation of a better algo-

rithm, such as (WU; SAHNI, 1994)’s. Since the code was developed in JavaScript, the

actual integration into the flow is more difficult.

The flow that was implemented was quite convoluted, integrating code in three different

languages in order to achieve the final objective. Figure 3.4 shows the new parsing flow.

The C++ code reads the GDSII input file and uses our own GDSII library to read the poly-

gon descriptions. If the polygon is a rectangle, it is directly added to the list of shapes of

the layout. If it’s complex. the complex polygon is translated into a string representation

and a pipe is opened to call the partitioning script. The script then outputs its own string

representation of the rectangles. The rectangles are read and added to the layout’s list

22

of rectangles, and an entry is created in the mapping file. This mapping file contains all

complex polygons and the rectangle partitioning that was applied by the script. Using this

file, the secondary flow can be optionally run. In this flow, the mapping file is processed

by a Python script. This script uses (HUNTER, 2007)’s library to translate the points

into a polygon and finally generate a file containing the graphical representation of all

complex polygons alongside the partitioning that was previously generated. This optional

flow allows for verification of the partitioning algorithm’s correctness and analysis of the

complex polygons of the layout.

Figure 3.4: Flow diagram of the parsing, including the partitioning script call.

Figure 3.5 contains three examples of the output of the second flow. Figure 3.5 (a)

contains a polygon with 30 vertices and k=4, (b) contains a polygon with 20 vertices and

k=2, and (c) contains a polygon with 14 vertices and k=2. In fact, as observed by (WU;

SAHNI, 1994), these polygons have a relatively low k when compared to the number of

vertices, and, therefore, would allow for near linear complexity.

23

Figure 3.5: Three complex polygons and their partitioning.

24

4 IMPROVED FLOW

4.1 Introduction

With the incorporation of a polygon partitioning algorithm in the flow, the tool

can now run on layouts with complex polygons. The benchmark suite used was obtained

from 2016 CAD contest at ICCAD for pattern classification(TOPALOGLU, 2016). There

are four different benchmarks, which have their statistics are shown in table 4.1. Only

testcase3 and testcase4 have complex polygons.

Table 4.1: Statistics of the four benchmarks.
Benchmark Number of Clips Number of Complex Polygons Number of Rectangles in Layout

testcase1 16 0 93

testcase2 200 0 1045

testcase3 5068 2256 20311

testcase4 264824 1400 843618

The number of rectangles in the layout is counted after the complex polygons are

partitioned. From this table, it can be seen that testcase3 and testcase4 are dramatically

larger than testcase1 and testcase2. In order to illustrate this increase, figure 4.1 shows a

plot of the number of clips and number of rectangles.

25

Figure 4.1: Graph showcasing the size progression of the benchmarks.

The two tendency lines seen are approximations of the size progression. The green

tendency line maps to the number of rectangles, and is defined by the equation Nr =

2.26 ∗ e3.89x and the red tendency line maps to the number of clips, and is defined by the

equation Nc = 15.2 ∗ e3.64x, where x is the benchmark index in both equations. To put

into perspective, if the trend continued and there was a fifth benchmark, its number of

clips and rectangles would be 1.3 ∗ 107 and 3.2 ∗ 107 respectively. Even though it is not

expected that layout sizes would scale according to these equations, this example is used

to showcase the sheer size of the last two test cases, specially testcase4.

4.2 Methodology

The methodology used had as an objective achieve 95% confidence interval with

5% significance. This means 95% of all sets of independent experiments have the results

within a 5% range of the result obtained. The tool executions were all done completely

independently, and the time measurements were done with microsecond resolution. The

machine used has 48GB of RAM. Its processor is an Intel R©i7-3930K that runs at a fre-

quency of 3.2GHz. The operating system used is Ubuntu 16.10.

In order to achieve target confidence level of 95% with a significance of 5%, all bench-

marks with all their configurations were first run 10 times. From this experiment, we

26

calculate the number of experiments necessary in order to achieve the confidence interval

desired. The tool was then executed this number of times for each configuration.

4.3 Results

Table 4.3 shows the results with respect to maximum cluster size, table 4.2 shows

the number of clusters obtained for each benchmark, and finally table 4.4 shows the run-

times in miliseconds. We compare our results with the top 3 tools in the ICCAD 2016 con-

test and (CHANG et al., 2017) for maximum cluster sizes, and with the top 1, (CHANG

et al., 2017) and (CHEN et al., 2017) for cluster counts.

Table 4.2: Cluster count results.
TOP 1 Chen17 iClaire Ours

testcase1 8 8 8 8

testcase1ap95 4 3 3 4

testcase1e4 5 5 5 5

testcase2 26 20 26 26

testcase2ap95 13 5 11 12

testcase2ap90 7 - 7 8

testcase2e4 18 13 18 18

testcase3 70 70 70 70

testcase3a85 39 15 13 20

testcase3e8 57 51 37 76

testcase4 72 72 72 72

testcase4a99 69 26 24 26

testcase4e2 56 64 46 184

The results obtained with the benchmarks with no complex polygons are all very

similar, except for (CHEN et al., 2017) on testcase2 default, area 95% and edge modes,

where it obtains fewer clusters than the other tools.

On testcase3, all results were the same in the default run. In the area 85% run, our re-

sults were better than the contest winner but worse than both (CHEN et al., 2017) and

(CHANG et al., 2017). In the edge mode run, we performed worse than the other tools.

27

On testcase4, all tools performed the same in the default run. When running in area mode,

our result is almost as good as (CHANG et al., 2017) and ties with (CHEN et al., 2017),

while being much better than the contest winner. Finally, when running on edge mode,

our tool doesn’t perform well, generating many more clusters than the others.

Table 4.3: Results of maximum cluster size.
TOP 1 TOP 2 TOP 3 iClaire Ours

testcase1 5 5 5 5 5

testcase1ap95 6 5 6 9 6

testcase1e4 5 5 5 5 5

testcase2 104 104 104 104 104

testcase2ap95 106 104 106 106 106

testcase2ap90 114 104 111 112 112

testcase2e4 104 138 104 104 104

testcase3 792 792 792 792 792

testcase3a85 2056 2080* 1344 2608 2176

testcase3e8 792 1056* 792* 1056 792

testcase4 193370 193370 192240 193370 193370

testcase4a99 197830 197830 197660 197830 197830

testcase4e2 193370 197830* 192240 193710 192240

In the largest cluster size table, results that was obtained but are invalid are de-

noted by *, and are not used in any comparison. The validity of the runs were obtained

from (CHANG et al., 2017).

Once again, in the benchmarks with no complex polygons, all tools performed similarly.

The only run that stands out is top 2’s run on testcase2 with edge mode, where the largest

cluster obtained was dramatically larger than the other tools’. However, given that this

tool generated invalid results for all edge mode runs except for testcase1’s, this result is

doubtful at best.

On testcase3, the default run’s results were all the same. With area 85% mode, our tool

performed better than every other except for (CHANG et al., 2017)’s. Running in edge

mode, once again our result is only beaten by (CHANG et al., 2017)’s, while we tied with

first place’s tool.

For testcase4, the default run has every tool tied except for the third place’s tool that per-

28

formed slightly worse. In the area mode, our tool ties with the top 1, top 2 and (CHANG

et al., 2017) as best results. For edge mode, our tool is tied with the top 3 as the worst

performance.

Table 4.4: Runtime results in ms on all benchmarks and configurations.
TOP 1 Chen17 iClaire Ours

testcase1 5 10 1 0.165

testcase1ap95 5 10 5 0.057

testcase1e4 5 30 5 0.508

testcase2 10 30 4 4.523

testcase2ap95 12 60 11 5.950

testcase2ap90 11 - 11 6.097

testcase2e4 9 200 11 11.51

testcase3 60 220 60 366.1

testcase3a85 400 370 80 747.6

testcase3e8 70 1340 100 771.0

testcase4 21000 136000 193370 1479178

testcase4a99 268000 152000 197830 1393994

testcase4e2 20000 169000 193710 1044263

The last table showcases the runtimes obtained by the first place, (CHEN et al.,

2017), (CHANG et al., 2017) and ours. For the benchmarks with no complex polygons,

our tool runs beat every other tool except for testcase2 on edge mode, where we are slower

than top 1 and slightly slower than (CHANG et al., 2017).

On testcase3, our runtimes start to ramp up. Our tool is in the order of 10 times slower

than both the contest winner’s and (CHANG et al., 2017) and slower than (CHEN et al.,

2017)’s except when running in edge mode.

Finally, on testcase4, our tool is, once again, one order of magnitude times slower than

both (CHANG et al., 2017) and (CHEN et al., 2017), and two orders of magnitude slower

than the contest winner for the default run.

29

4.4 Conclusion

Based on the runtime results, we can conclude that there are scalability issues that

need to be addressed. The extraction time of clips on testcase3 are very close to the al-

gorithm’s runtime, and the extraction time of clips on testcase4 dominates completely the

runtime, taking on average 70% of the runtime. This is because the clip extraction doesn’t

expect such gigantic number of rectangles, and simply checks for intersections between a

clip being extracted and every rectangle in the layout. This module is a strong candidate

for optimization.

Taking into account only the qualitative results, that is, the number of clusters and maxi-

mum cluster sizes, we conclude that the tool, while performing well, has plenty of room

for improvement. One aspect of the problem that was partially neglected by the algo-

rithm is the choice of a good representative. The first clip inserted in a cluster becomes

the representative, but a clip inserted later could become the representative and make the

clustering better. This problem remains open in our algorithm and could be a source of

improvement of the quality.

30

5 MACHINE LEARNING FLOW

5.1 Introduction

In Chapter 1 it was suggested that a machine learning flow could provide a fast

incremental classification. The interest in such a tool is quite simple. After training a

classifier, new clips can simply be classified into its probable cluster in constant time. Af-

ter building a good database of clusters and clips, the classifier can incrementally classify

the layout hotspot instead of running the whole flow again.

There are advantages to both the standard clustering flow and the machine learning in-

cremental one. If, for instance, a clip that doesn’t belong in any of the clusters appears,

the classifier will classify the clip in one of the existing clusters, potentially causing prob-

lems. Furthermore, after many iterations and new clips being generated, the clustering

could be inefficient or wrong, and the classifier would not be able to even detect such a

problem. Of course, if the classification flow is executed only as an incremental tool, the

main flow can be used again when necessary on the new database and then the classifier

can be trained with the new clusters.

In order to implement the machine learning flow, there are two fundamental steps. The

first is the feature extraction, where information is obtained from the clips in the database.

Second, the machine learning model must be chosen carefully. The details about how

these two steps were approached will be discussed in the Sections 5.2 and 5.3.

5.2 Feature Extraction

Features are individual measurable values of what is being observed (BISHOP;

PARK, 2012). In this context, we are interested in generating values based on the clip

that can be used to classify it. For example, the total area of material in the clip could be

useful because within a cluster all clips are expected to have a similar area of material.

The number of shapes could be useful as well, however, since two clips can be exactly

equal in the context of area/edge clustering but have a different number of rectangles, the

classifier may choose not to take it into account since the gain of information could not be

meaningful. Some models allow for the feature importance to be extracted. This could be

useful in order to reduce the complexity of the flow as a whole, since irrelevant features

31

can be discarded without loss in classification accuracy.

The goal with the feature extraction at this level is to generate enough information for

the model to use. The model will base its classification taking the feature importance

into account during the training. It can be expected that after the training any unimportant

features will have almost no weight in the classification, whereas important features would

have a large impact.

Extracting meaningful information is fundamental in order to create an accurate machine

learning flow. We chose six different features:

• The total area of material.

• The number of rectangles contained within the clip.

• Area of material remaining after geometric Xor with a clip consisting of a horizontal

strip.

• Area of material remaining after geometric Xor with a clip consisting of a vertical

strip.

• Edge displacement difference between the clip and a clip consisting of a horizontal

strip.

• Edge displacement difference between the clip and a clip consisting of a vertical

strip.

The choice of using the comparison between the clip whose features are being

extracted and two seemingly arbitrary clips is used as to generate a measure of the resem-

blance of the two clips. Two clips that have a similar comparison result when compared

with the two stripped clips then they likely belong to the same cluster. The clip consisting

of a horizontal strip is shown in figure 5.1 and the clip with a vertical strip is shown in

figure 5.2

32

Figure 5.1: Artificial clip consisting of a horizontal strip of material crossing the middle

of the clip.

Figure 5.2: Artificial clip consisting of a vertical strip of material crossing the middle of

the clip.

5.3 Model Choice

When choosing a model, we are mainly interested in the power of generalization

of the classifier. The main threat to this is the phenomenon called overfitting. Overfit-

ting happens when the classifier essentially becomes so tuned to the training set that it

can classify it perfectly, but has poor accuracy with other instances. In order to analyze

different models while avoiding overfitting, we utilize a technique called cross-validation

(KOHAVI et al., 1995).

This technique partitions the instances into n disjoint groups. The classifier is trained with

n-1 of these groups, and, after the training, it is tested with the group that wasn’t used for

training. The process is repeated until all groups have been used as the test in one run. If

33

in any set of training data the classifier suffers from overfitting, it will likely be detected

when testing, because in the test set there are instances that the classifier has not seen

during training, and the classifier will have a poor result.

The objective at this stage is merely choosing the model that experimentally had the best

performance on the data that was available. After the best model has been selected, the

training would then done with all the instances in order to produce the final classifier.

5.4 Implementation

The machine learning flow was implemented using Python with the library SciKit-

learn (PEDREGOSA et al., 2011). Three different models were considered: support vec-

tor machines (SVM) (CORTES, 1995), random forests (RF) (BREIMAN, 2001) and neu-

ral network (NN) (HAYKIN, 1994).

An SVM maps the input vector to a very high-dimensional feature space, where linear

decision surfaces are constructed (CORTES, 1995). In this specific application, a gener-

alized model is used to classify into multiple classes, as opposed to the original imple-

mentation that performs binary classification.

An RF is a combination of multiple decision trees, where each tree performs its prediction

based on a sampling of the original attributes. Given the small number of attributes, we

chose the number of trees in the RF to be ten.

Finally, a NN is a network of simple nodes organized in layers, where each layer is com-

pletely connected to the previous and next layer, although the weights of the connections

are generally different. The network computes its classification by propagating the data

through each layer. At every propagation, the nodes sums all the weighted inputs from the

previous layer, applies a sigmoid function and outputs to the next layer. In this experiment

the neural network had five hidden layers, each having two nodes.

The clips used for training and test were extracted from testcase3, running on area mode

with a constraint of 0.85. The number of groups for cross-validation was set to 5. Further-

more, the features extracted were all normalized with the objective of making all features

having the same initial importance regardless of magnitude.

Since the samples were obtained from the benchmarks, many of the clips are equal. It

can, therefore, happen that one instance that is used in training appears also in the test

set. To better compare the models given the particularity of this domain, the flow was

executed once again without any clip repetitions. This is the reason the cross-validation

34

used 5 groups instead of the usual 10 because of the number of samples in the second

dataset, which contained too few samples

5.5 Results

Table 5.1 contains the results of the test for each model. These models were trained

with a total of 5068 instances. Based on this test, we can conclude that the random forest

is the best model of the three, having the very high mean accuracy of 99.51%. Of course,

the number of instances is important, and a database with enough examples would allow

for a model with even higher accuracy.

Table 5.1: Results for each model on the dataset with all instances.
SVM RF NN

Mean Accuracy 94.81% 99.51% 82.67%
Variance 0.03% 0.00002% 0.03%

The second run, where no repeated instances are allowed, the results were differ-

ent. There are 91 unique clips in the 5060 from the dataset. As it can be seen in table

5.2, the accuracy is considerably smaller, and the variance is much higher. This can be

attributed to the considerably smaller number of instances used to train the models and

the fact that there is no chance of an instance appearing in the training set and test set.

Cross-validation with 5 groups was used for this test as well.

Table 5.2: Results for each model on the dataset with no repeated instances.
SVM RF NN

Mean Accuracy 53% 63% 41%

Variance 11.36% 14.76% 11.24%

Both tests indicate that the best model for this domain is random forest, obtaining

a mean accuracy of 99.51% with negligible variance in the test with repeated clips and

63% mean accuracy with 14.76% of variance with no repetitions.

The feature importance has been extracted from the random forest generated for

both datasets. The results for the dataset with repeated instances is shown in figure 5.3

and the results for the dataset with no repetition are in figure 5.4. In both figures, the x

35

axis maps to the feature index in the same order as stated in Section 5.2, and the y-axis

contains the feature importance in percent. Feature 0 is the material area, feature 1 is the

number of rectangles, feature 2 and 3 are area comparisons with horizontal and vertical

stripped clips respectively, and features 4 and 5 are edge comparisons with horizontal and

vertical stripped clips respectively.

Figure 5.3: Feature importance for the dataset with repetition.

From both figures it can be inferred that the total material area of the clips is the

most important feature, scoring 0.39 and 0.33 in the datasets with repetition and no rep-

etition respectively. It can also be observed that in the dataset without repetition, the

comparison with respect to area with both the vertical and horizontal stripped clips pro-

vide substantial information for the model, with 0.27 and 0.19 respectively. In the dataset

with repetitions, the two comparisons score 0.16 for the vertical and 0.14 for ly stripped

clips, which is not as high as it scored in the dataset with no repetitions but it is still non-

negligible.

For both datasets, the number of rectangles and the edge comparisons scored low. For the

no repetition, horizontal (vertical) stripped clip edge comparisons scored 0.05 (0.03), and

the number of rectangles scored 0.10. In the dataset with repetitions, the horizontal (ver-

tical) stripped clip edge comparisons scored 0.06 and 0.14, and the number of rectangles

36

Figure 5.4: Feature importance for the dataset without repetition.

scored 0.08. Even though the vertical stripped clip score is reasonably high, the suspicion

of bias on the dataset could contribute towards deviation of this value. Therefore, it can be

concluded that these three features add little information to the model and their removal

should be considered.

37

6 CONCLUSIONS

The integration of the complex polygon was succesful. With it, the two bench-

marks that contain complex polygons could be used to evaluate our tool’s results. It was

possible to validate the algorithm’s correctness and identify problems with the scalability,

mainly with the clip extraction. As for the quality of the result, the lack of a robust choice

of representative clips caused the edge mode runs to produce unsatisfactory results. In

order to improve the quality, a better choice of representative looks very promising study.

The algorithm used for clip extraction has a complexity ofO(n∗m), where n is the num-

ber of rectangles in the layout and m is the number of markers. This is because all clips

are compared with every rectangle, regardless of how far apart both are. With a better

algorithm, only the polygons that have a chance of intersecting with the clip boundaries

could be considered, speeding up the bigger benchmarks. Also, the clustering algorithm

has a worst case complexity ofO(n2), where n is the number of clips.This makes the very

large benchmark runs to be very slow. A different strategy that sorts the clips first could

be employed, potentially reducing the run times for the larger benchmarks.

The machine learning flow’s results, presented in Section 5.5 were satisfactory. The re-

sults reinforce the idea that this problem is compatible with a machine learning flow. More

features could be tried in the future, as well as other models. As a future work, a further

application of the classifier could be trained with a large benchmark such as testcase4, and

then a whole smaller benchmark such as testcase2 would have its layout hotspots incre-

mentally classified in the clusters obtained from testcase4, but using the machine learning

flow to classify. This experiment is essentially the complete implementation of the incre-

mental flow, whereas in this work the viability of such incremental flow was studied and

validated.

38

REFERENCES

BISHOP, C. M.; PARK, W. S. Pattern recognition and machine learning, 2006. Korean
Society of Civil Engineers, v. 60, n. 1, p. 78–78, 2012.

BREIMAN, L. Random forests. Machine learning, Springer, v. 45, n. 1, p. 5–32, 2001.

CHANG, W.-C. et al. iclaire: A fast and general layout pattern classification algorithm.
In: IEEE. Design Automation Conference (DAC), 2017 54th ACM/EDAC/IEEE.
[S.l.], 2017. p. 1–6.

CHEN, K.-J. et al. Minimizing cluster number with clip shifting in hotspot pattern
classification. In: IEEE. Design Automation Conference (DAC), 2017 54th
ACM/EDAC/IEEE. [S.l.], 2017. p. 1–6.

CORTES, C. Support-vector network. Machine learning, v. 20, p. 1–25, 1995.

HAYKIN, S. Neural networks: a comprehensive foundation. [S.l.]: Prentice Hall
PTR, 1994.

HUNTER, J. D. Matplotlib: A 2d graphics environment. Computing In Science &
Engineering, IEEE COMPUTER SOC, v. 9, n. 3, p. 90–95, 2007.

KOHAVI, R. et al. A study of cross-validation and bootstrap for accuracy estimation and
model selection. In: STANFORD, CA. Ijcai. [S.l.], 1995. v. 14, n. 2, p. 1137–1145.

LYSENKO, M. Rectangle Decomposition. [S.l.]: GitHub, 2014. <https://github.com/
mikolalysenko/rectangle-decomposition>.

NAHAR, S.; SAHNI, S. Fast algorithm for polygon decomposition. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, IEEE, v. 7, n. 4, p.
473–483, 1988.

OHTSUKI, T. Minimum dissection of rectilinear regions. In: Proc. IEEE International
Symposium on Circuits and Systems, Rome. [S.l.: s.n.], 1982. p. 1210–1213.

PEDREGOSA, F. et al. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, v. 12, p. 2825–2830, 2011.

SHIN, M.; LEE, J.-H. Cnn based lithography hotspot detection. International Journal
of Fuzzy Logic and Intelligent Systems, Korean Institute of Intelligent Systems, v. 16,
n. 3, p. 208–215, 2016.

TOPALOGLU, R. O. Iccad-2016 cad contest in pattern classification for integrated
circuit design space analysis and benchmark suite. In: IEEE. Computer-Aided Design
(ICCAD), 2016 IEEE/ACM International Conference on. [S.l.], 2016. p. 1–4.

WU, S.-Y.; SAHNI, S. Fast algorithms to partition simple rectilinear polygons. VLSI
Design, Hindawi Publishing Corporation, v. 1, n. 3, p. 193–215, 1994.

https://github.com/mikolalysenko/rectangle-decomposition
https://github.com/mikolalysenko/rectangle-decomposition

Pattern Classification for Layout Hotspots

André Saldanha Oliveira, Ricardo Augusto da Luz Reis

1Instituto de Informática – Universidade Federal do Rio Grande do Sul (UFRGS)
Caixa Postal 15.064 – 91.501-970 – Porto Alegre – RS – Brazil

{andre.oliveira, reis}@inf.ufrgs.br

Abstract. This work’s objective is to introduce the chosen subject for my gradu-
ation thesis. The chosen topic is within the area of physical verification, specif-
ically classification of layout hotspots. We implemented a greedy algorithm
for hotspot clustering that is competitive with the state of the art algorithms.
Furthermore, we will discuss about the possibility of implementing a machine
learning flow to enable incremental hotspot classification. This work’s results
are validated using the ICCAD 2016 contest’s benchmark suite, and compared
to state of the art works that published results obtained in the same benchmarks.

Glossary
clip set of extracted polygons in a specific area of the layout, typically representing a

hotspot..

DRC Design Rule Check.

hotspot region of the layout where an error detection tool has detected a problem. For
this work, we assume a hotspot if a region with poor lithographic printability..

layout representation of an integrated circuit in terms of geometric shapes stacked in
layers made of different materials..

1. Introduction
The widening gap of the sub-wavelength lithography in advanced process technology
causes unintended distortions on the shape of the printed layout patterns[ITR]. Thus,
there is an increasing interest in the circuit synthesis field for manufacturability-driven
design and physical verification. The urge for scalability and faster run times for tools
keeps increasing, while the size of the designs are getting larger, which presents an even
more challenging task when it comes to keep the tools fast. The heuristics applied by
most of the physical synthesis tools during the flow often disregard some constraints in
order to achieve a good result within reasonable time. Furthermore, the advanced fabri-
cation technology and the process variation brought with it new challenges. Lithography
hotspots, for example, are a set of layout patters with poor printability, even though it
passes DRC[Chen et al. 2017].
The clustering of hotspots - which in this scope are assumed to be lithography hotspots
- has the potential of accelerating other error correction and classification flows. By
clustering together clips based on their geometric similarity, an error correction flow

could merely analyze one clip of each cluster, so called the representative, cluster and
apply any changes to all of the cluster members, resulting in a faster overall flow.
What this work proposes is a flow that, given layout files, generates clusters respecting
the specified constraints. Alongside the clustering flow, we also propose a machine
learning approach for incremental classification. After the initial solution, new hotspots
can be classified into existing groups using a classifier trained using the data from
previous executions of the flow.

2. Problem Formulation
As previously mentioned, the hotspot detection is crucial in physical verification.
We follow the problem specification from 2016 CAD contest at ICCAD for pattern
classification[Topaloglu 2016]. The contest provides as input a circuit layout. The layout,
following the contest definition, has two relevant layers. The first layer has the metal
polygons. The last layer contains polygons that represent markers, but have no physical
meaning. The markers are generally small polygons on which a clip will be centered.
The clip can be centered in any point inside the marker. Figure 1 is an example of this
configuration.

Figure 1. Example picture of a clip configuration in a layout.

The program input also specifies the width and height of the clip. Given a marker,
one can choose a point contained in it and generate a clip centered in such point with the
given dimensions. Figure 2 shows this exact process. The white canvas represents lack
of any material. The yellow polygons represent metal, and the purple polygons are the

clips. Note that the clips are centered in the markers. The main objective is to provide a
reduced set of representative layout clips contained on these markers.

Figure 2. Example picture of a layout with clips.

To perform the pattern classification two parameters are selected by the user: (A)
Area match constraint that selects the clustering by area constraint and (B) Edge dis-
placement constraint that performs the clustering by edge constraint. The objective of
clustering is to provide sets of clips (clusters) that resemble each other according to these
parameters.

2.1. Area Constrained Clustering

In area constrained clustering (ACC) mode, a topological classification is performed
based on the area match constraint parameter α. This parameter defines the maximum
area match percentage. The overlap area between any clip of a cluster (A) and the
representative clip of a cluster (B) must satisfy this parameter, as shown in the equation
1, bellow. In Figure 3 a graphical example is provided. In the figure, there are two clips
(a) and (b) that need to be compared in terms of area. The result of the geometric XOR
applied upon them is represented in the resulting clip (c).

[Area(XOR(A,B))]

w ∗ h ≤ (1− α) (1)

The Area() function gives the total area of the polygons and the XOR gives the
geometric difference between the clips A and B. And (w, h) are the dimensions of the clip.

Figure 3. Geometric XOR example. (a) and (b) are two clips, and (c) is the result
of the geometric XOR between (a) and (b)

2.2. Edge Constrained Clustering

The edge constrained clustering (ECC) mode receives a parameter e in nanometers that
indicates how much the edge will be shifted, the shifting can be in both directions: inward
and outward. This parameter e defines the tolerance that the clip pattern can shift. Figure
4 shows an example of the edge being shifted. Multiple edges can shift by different
amounts since it is limited by e value.
Edges only shift in orthogonal projections and the representative clip of a cluster after the
shifting becomes another clip of the same cluster.

Figure 4. Edge displacement example. (a) and (b) are two clips. (b) differs to (a)
in edge displacement, showed by the arrows.

3. Related Work

As stated in section 2, this work is related to the 2016 CAD contest at ICCAD. There
have been more works published that were developed based on the same contest, these
being [Chen et al. 2017] and [Chang et al. 2017] .

[Chen et al. 2017]’s contributions are very significative. In order to save time, we
consider the center of the marker as the center of the clip, whereas [Chen et al. 2017]
selects a different point within the marker. The candidates generated are more effective in
generating less clusters, results which we will analyze later. Furthermore, they describe
an encoding method to create a string representation of a clip, which could prove useful
for machine learning.

[Chang et al. 2017]’s main contributions are a technique of clip representation
based on topology and density and the proposal of a two-level clustering, where any
identical clips are merged together before considering any comparisons. This idea could
be applied to our tool very easily, and should generate even better runtimes.

[Yu et al. 2015] consists in a very good base for attribute extraction for machine
learning. The authors propose a critical feature extraction and topological classification
that, when combined, allows for their machine learning flow to achieve high accuracy.
However, the objective of their work is not clustering, but rather identify false detections.
For this reason, we do not compare to their results.

[Yang et al. 2017] contributed with an improved distance metric between two
clips, applied to hotspot classification in terms of type. For this reason, we do not
compare to their results. The accuracy achieved by their tool is generally better than the
works it compares itself to. However, their runtime is sometimes too large, especially for
smaller benchmarks. Nonetheless, given that it does scale better than the other works it
cites, it shall be considered for future implementations.

We can compare ourselves with the related work that has published results of runs
on the contest benchmarks. Table 1 contains the information pertinent to the benchmarks.
The first column has the benchmark names, the second column has the total number of
polygons in that benchmark and the third column has the number of markers, which will
become the center of clips.

Table 1. Benchmarks and their characteristics.
Benchmark Polygons Markers
testcase1 77 16
testcase2 845 200

Currently, our tool works on benchmarks 1 and 2 of the contest. In these bench-
marks, our results are quite competitive with [Chen et al. 2017] and [Chang et al. 2017],

as well as the contest winners. In section 6 we will compare the current results with the
related work and the contest winner.

4. Clustering Flow
In this section, we detail our approach to cluster the clips together. Figure 4 shows the
pattern classification flow. The markers are provided as an input and since they are not
points, but shapes, the clip centering can be arranged in order to reduce the number of
clusters. Here, given the layout in GDS file containing the markers and the clip size, the
clips are centered in the midpoint and for each marker a clip is created. The extraction of
the clips uses the points of the shapes instead of a grid matrix. Our flow targets a fast and
accurate solution. But there is space for improvements in scalability and complex shape
partitioning.
In order to achieve competitive runtime, we implemented a greedy algorithm to cluster
the clips together. The list of clips are shuffled, then the first unclustered clip is selected
as a representative of a new cluster. This representative is compared with every other
unclustered clip in the list, and if there is a rotation or mirroring of the second clip that
satisfies the constraint the clip is added to the cluster. This is repeated until every clip is
clustered, and the list of clusters is returned. We also compare the clips total material area
before anything else, because if the material area of the two clips is too different there
is no reason to compare different configurations because they will not be compatible
regardless of the rotation. The clustering pseudo-algorithm 1 shows the algorithm used
for clustering. The function needs to receive a list of the previously extracted clips,
the constraint and the operation mode. For example, it could run on area mode with a
constraint of 0.95, or 95%, or edge mode with a 2nm constraint.

The algorithm first shuffles the list of clips to obtain a new order. It also initializes
an empty list of clusters to be populated during the algorithm. These two initialization
steps can be seen in the lines 2 and 3 of the algorithm.
In line 4, the algorithm starts iterating through the clips. For each clip it iterates through,
if the clip is already part of a cluster it is skipped, as seen in lines 5 and 6. If not, a new
cluster is created, the current clip is clustered in it and is set as the cluster’s representative,
all of which is done in lines 8 to 10.
From line 11 to 18, all clips starting from the next in the list of clips are compared to
the representative. The function compare clips() in line 12 performs the comparison. It
keeps the first clip constant and generates all possible arrangements applying rotations and
mirrorings on the second clip and then performing the comparison, returning the smallest
difference possible. In area mode, a geometric XOR is applied between the first clip and
all the arrangements of the second clip, and the smallest difference is returned. In the
edge mode, the biggest edge difference of the best rotation is returned. If the difference is
smaller than the constraint requires, the second clip is added to the cluster.
Finally, the cluster being generated, it is added to the list of clusters. After all the clips
have been iterated through, the list of clusters is returned.

4.1. Complex Polygons
Some of the shapes in the layout are complex polygons. A complex polygon in this
context is any polygon that isn’t a rectangle. Figure 5 is an example of a complex polygon.

Algorithm 1 Greedy clustering algorithm.
1: procedure CLUSTER(list of clips, constraint,mode)
2: clips← shuffle(list of clips)
3: clusters← {}
4: for all clip in clips do
5: if clip.get clustered() then
6: continue
7: else
8: new cluster ← create cluster()
9: new cluster.representative← clip

10: clip.set clustered()
11: for all other clip in clips do
12: difference← compare clips(clip, other clip,mode)
13: if difference > constraint then
14: continue
15: else
16: new cluster.add clip(other clip)
17: other clip.set clustered()
18: end if
19: end for
20: clusters.add cluster(new cluster)
21: end if
22: end for
23: return clusters
24: end procedure

Figure 5. Example of a complex polygon.

In order go make faster comparisons, the algorithm requires that any polygon that
isn’t a rectangle is divided into a set of rectangles. The current algorithm we use for
this task is based on the concavity of each vertex. First, all horizontal points become
horizontal lines, as seen in figure 6 (a). Then, new points are added in the intersection of
these horizontal lines with vertical lines, just like figure 6 (b) shows. The final result with
the new dummy points is shown in figure 6 (c).

Figure 6. First three stages of polygon division. (a) represents the horizontal
line creation. (b) represents the new points being drawn in the intersections
of vertical and horizontal lines. (c) shows the final image with the dummy new
points.

Finally, the division process starts. All points starting from the bottom left, are
compared in groups of four. Whenever any group that generates a rectangle is found, a
candidate subpolygon is generated. This candidate goes through a process to determine
if it’s a valid part of the original polygon.

Given this new representation of the complex polygon with the dummy points,
the algorithm generates candidate rectangles, that may or may not be part of the final set
of rectangles. Rectangles initially accepted may be removed because they are contained
entirely by another valid rectangle. The rules are as follow:

1. If the polygon is entirely contained by another polygon it is discarded as redun-
dant.

2. If the candidate doesn’t pass the concavity test it is discarded because it covers a
region that isn’t present on the original polygon, and the candidate is marked as
invalid.

3. If the candidate contains any invalid polygon it is discarded.
4. The candidate is included in the set of polygons.

Figure 7 (a) shows a first candidate, which is accepted. Figure 7 (b) shows a
second candidate that is not accepted, because the concavity of the two corners further
to the right aren’t compatible with rectangle. Figure 7 (c) shows a rectangle that would
have been accepted based on concavity, but it is discarded because it contains a part of the
rectangle discarded in Figure 7 (b).

Figure 7. Candidate rectangles generation. (a) represents a valid rectangle can-
didate that is accepted. (b) represents an invalid rectangle that is discarded be-
cause it doesn’t belong to the shape. (c) shows a candidate thas is discarded
because it contains part of the rectngle discarded on (b).

After the shape is split, any intersection between any number of polygons is
treated. Figure 8 shows a case where two valid polygons share some area. In this case,
one of the n intersecting polygons keeps this region and all the other are trimmed. This
is repeated until no polygons are intersecting. The result of this is a set of rectangles that
are equivalent to the complex polygon.

5. Machine Learning Flow
After the initial solution given by the clustering flow has been achieved, we intent on using
a machine learning flow for incremental classification. Figure 9 shows the clustering flow.
The input is the layout file, which is parsed int he first state. The second state, given the
layout, extracts the clips. The final state runs the clustering algorithm and outputs the
clusters. All these steps have been covered previously. What the machine learning flow
can accomplish is an incremental flow after the initial clusters have been generated.

Usually, after a new run, the new clips would be compared to all the representa-
tives and, if the representative isn’t well chosen, one may need to create more clusters.
What we propose is training a classifier with the data acquired from the clusters and the

Figure 8. Example of two rectangles overlapping with each other.

Figure 9. clustering flow.

clips they contain and make a classifier capable of assigning new clips to existing clusters
in a very short time. The drawback is the training time of the classifier. However, once a
good classifier has been trained, the complete flow never needs to be run again. Further-
more, depending on the attributes of the clips given to the classifier, it may be no longer
necessary to divide complex polygons into rectangles.
The machine learning flow is illustrated briefly in figure 10. The initial state is fed with
the clusters generated by the clustering flow. Each observation is a set of attributes, for ex-
ample, the number of polygons, and the expected result. Some of the observations aren’t
used in training, but rather on testing the model. This is to check if the model is suffering
of overfitting, where the classifier essentially memorizes the training set but isn’t useful
at classifying new observations.
Once the classifier is properly trained and tested, a classifier is generated, and it can be
used to classify any new clip into a cluster.

Figure 10. Machine learning flow.

6. Conclusion

The developed tool is compared with the related work discussed in section 3 and the
contest winners. The configurations of the runs are showed in the first column. For
example, testcase1ap95 means the benchmark used was the testcase1, and it was run with
an area constraint mode of 95%, and testcase2e4 means the benchmark used was the
testcase2, and it was run with an edge constraint mode of 4 nanometers.

Table 2 shows the results in terms of runtime. In all cases of benchmark 1, our
tool outperforms every other tool, except iClaire and only for the case of no constraint.
As for testcase2, our tool is slightly slower than top 1, except for edge constriant mode,
where it performs slower. When compared to iClaire, our tool is outperformed slightly in
all configurations. The tool is faster than Chen for every configuration.

Table 2. Runtime Results (ms)
TOP 1 Chen17[Chen et al. 2017] iClaire[Chang et al. 2017] Ours

testcase1 5 10 1 3
testcase1ap95 5 10 5 3
testcase1e4 5 30 5 3
testcase2 10 30 4 11
testcase2ap95 12 60 11 13
testcase2ap90 11 - 11 13
testcase2e4 9 200 11 19

Tables 3 and 4 showcase the quality of the results rather than the runtime. On
table 3, our results are almost equal to the top 1 in all configurations, we generating one
less cluster on testcase2 with area 95% and their tool generating one less on testcase
2 with edge 4nm. The results are also very similar to iClaire’s, generating the same
results except for testcase1 95% area, testcase2 95% area and testcase2 90% area, where
it generates one less cluster. Chen generates less clusters for most configurations, and

clearly outperforms the rest of the tools.

Table 3. Cluster Count Results
TOP 1 Chen17[Chen et al. 2017] iClaire[Chang et al. 2017] Ours

testcase1 8 8 8 8
testcase1ap95 4 3 3 4
testcase1e4 5 5 5 5
testcase2 26 20 26 26
testcase2ap95 13 5 11 12
testcase2ap90 7 - 7 8
testcase2e4 18 13 18 18

Finally, on table 4, we can see the number of clips that were clustered in the
largest cluster. All tools generated a very consistent result, with small variations. The
most notable variations are iClaire generating a cluster with 9 clips for testcase1 area
95% while the second best had 6. Also, top 2 managed to generate a cluster with 138
clips while every other tool had 104.

Table 4. Maximum Cluster Size Results
TOP 1 TOP 2 TOP 3 iClaire[Chang et al. 2017] Ours

testcase1 5 5 5 5 5
testcase1ap95 6 5 6 9 6
testcase1e4 5 5 5 5 5
testcase2 104 104 104 104 104
testcase2ap95 106 104 106 106 106
testcase2ap90 114 104 111 112 112
testcase2e4 104 138 104 104 104

Given the results in comparison to the related works and contest winners, we
conclude that the results are quite promissing, We perform a competitive clustering in all
configurations for the benchmarks stated.
For the final version of this work, we will study different approaches to the representative
generation and polygon division.

References
International technology roadmap for semiconductors, available at http://www.itrs2.net/.

Chang, W.-C., Jiang, I. H.-R., Yu, Y.-T., and Liu, W.-F. (2017). iclaire: A fast and general
layout pattern classification algorithm. In Design Automation Conference (DAC), 2017
54th ACM/EDAC/IEEE, pages 1–6. IEEE.

Chen, K.-J., Chuang, Y.-K., Yu, B.-Y., and Fang, S.-Y. (2017). Minimizing cluster number
with clip shifting in hotspot pattern classification. In Design Automation Conference
(DAC), 2017 54th ACM/EDAC/IEEE, pages 1–6. IEEE.

Topaloglu, R. O. (2016). Iccad-2016 cad contest in pattern classification for integrated cir-
cuit design space analysis and benchmark suite. In Computer-Aided Design (ICCAD),
2016 IEEE/ACM International Conference on, pages 1–4. IEEE.

Yang, F., Sinha, S., Chiang, C. C., Zeng, X., and Zhou, D. (2017). Improved tangent
space-based distance metric for lithographic hotspot classification. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 36(9):1545–1556.

Yu, Y.-T., Lin, G.-H., Jiang, I. H.-R., and Chiang, C. (2015). Machine-learning-
based hotspot detection using topological classification and critical feature extraction.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
34(3):460–470.

	Abstract
	List of Abbreviations and Acronyms
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem Formulation
	1.1.1 Area Constrained Clustering
	1.1.2 Edge Constrained Clustering

	1.2 Complex Polygons
	1.3 Machine Learning Incremental Flow

	2 Clustering Flow
	3 Complex Polygon Partitioning
	3.1 Introduction
	3.2 State of the Art
	3.3 Implementation

	4 Improved Flow
	4.1 Introduction
	4.2 Methodology
	4.3 Results
	4.4 Conclusion

	5 Machine Learning Flow
	5.1 Introduction
	5.2 Feature Extraction
	5.3 Model Choice
	5.4 Implementation
	5.5 Results

	6 Conclusions
	References

