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1M Introduction 

The aim of this paper is to present and discuss some old and new 

results about the measurement of the latent variable when fitting a 

single latent variable logit-probit model to binary response data. 

Consider the response function for the logit or logit-probit model 

given by 

( 1) 

where z-W 1 (y) is 1ogistic or normally distributed and Y is uniform1y 

distribtuted in (0,1). 

Mode1s of this type for binary response data were popu1arised by 

Bartholomew (1987). Properties o f these models were extensively 

investigated by Albanese (1990). 

We start by given the main results about scaling the latent variable 

ifl a logit model given by Bartholomew (1980, 1981, 1984). After this, we 

present some new theoretica1 resu1ts about the relation between the 

posterior density h(zlx), its mcan E(ZIX) and thf! component score 

Some findings complcmcnt and others contradict 

of the &i 1 's. 
' 

Bartholomew' s resul ts, depending on the pattern 

Finally we investigate the shape of the posterior density h(z IX) 

when at 1east one of the Ô:i 1 is very large, and we suggest a cluster 
' 

analysis in the latent-space based on h(zlx). A shorter version of the 

main new results is given by Knott and Albanese (1991). 

2- Theoretical results for the relation beéween posterior mean 

E(Zix) and component score ~ ai, 1xi 

We shall suppose that n individuals respond O or 1 (nojyes, 

disagreejagree, for example) to each of p items designed to measure a 

sing1e 1atent variab1e. The response of individual j on item i is 

written Xij· Individual j has a va1ue z for a latent variable Z, and we 

suppose that the values Z are drawn independently from a function p(z). 

The response function for individual j on item i is given by 

r.i(z) 



where 

and Z "" H- t (Y} is a logistic function in a logit model and a standard 

normal function in a logit-probit model; Y is uniform in (0,1). 

It is nssumed that the latent variable Z explains completely the 

association between responses for an individual, in the sense that the 

pt·obability of , the response pattern 

individual j with latent variable value z is 

g(Xj IZ) -
p 
n 

i=l 
(1 -

for 

Another assumption is that the response function ~i(z) is monotonic 

nondecreasing in the latent variable (ai 1 >0). 
' 

This means that 

i~creasing any z, the probability of a positive response does not 

decrease. 

The difficulty par ame ter O' i, 0 and the discrimination par ame ter Cli, 1 , 

i~1,, ... , p are estimated by marginal maximum likelihood using a modified 

E-M procedure (Bock and Aitkin,l982) available as Fortran programs 

FACONE (Shea (1985)) and TWOMISS (Albanese and Knott (1991)). 

According to Bartholomew (1980,1981) the scaling of the latent 

variable Y should be dane via the posterior density of y given the 

response pattern x. Thus, for example, he suggests the mean E(Yix) (ar 

E(Zix)), which may not be particu1arly appropriate when the posterior 

density h(ylx) is highly skewed. 

Bartholomew (1984) shows that E(~(y)lc 1 (x)) is a nondecreasing 

function of the component score c 1 (x) = 2 ai, 1xi for every nondecreasing 

function of tll(y). In particular, E(Yic 1 (x)) ar E(Zic 1 (x)) is an 

increasing function of c 1 (x). This means that the component score 

induces a stochastic ordering of the posterior distributions. Thus, for 

example, the rank of individuais given by the component score c,(x) is 

Efi~ Safue ãà given by the posterior means E(Yix) and E(Zix). Therefore, 

if We üf~ bhl)' intere!3ted in the ranking of the individuais on the 
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latent scale, we can use any one of these three measures, from which the 

component score is the easiest to be obtained. 

Bartholomew pointed out that for the logit model E(YJx) is an 

approximately linear function of the component score c 1 (x) -L ai, 1xi, 

which can be justified by a Taylor expansion if all ai 1 'sare small. At 
• 

the same time, when all ai 1 's are equal to 1 and ri's are equal to 0.5 
• 

then the exact value of E(YJx) is ( 1 + c 1 (x) )J( 2 +A), where 

A = ))t'i, 1 . He also found out from empirical work that the relationship 

between E(YJx) and c 1 (x) is approximately linear well outside the range 

of the V<llidity of this later result. We show that this is often false 

when at least one of the &i 1 is large (say :;, 3/u, where u is the 
• 

standard deviation of the latent distribution). 

For the logit model, Barthclomew (1984) shows that when 1ri and ai, 1 

are fixed, the posterior density h(yJx) depends on x only through the 

component score c 1 (x). And therefore, under this conditions c
1 

(x) is a 

Bayesian sufficient statistic o f y. This property is not shared, for 

example, by the probit model used by Bock and Liberman (1970). We shall 

show that h(ylx) is a function of x only through 2. ai,txi if no ai,t is 

infinity. 

Now we give three results, which summarise Albanese(l990, Chapter 7) 

findings and they are valid for both logit and logit-probit models. 

Result 1 

If no ai i is infinity and two response patterns have the same 
• 

posterior mean E(Zlx) then they have the same component score 

2. ai 1 xi and the same posterior density h(zJx) . 
• 

g(xJz) h(z) 
Let h(z IX) = 

f(x) 

tlieH 

.• 



p 
n 

i=l 

p 
n 

i=l 

p 
11 

i=l 

[ 
'~~"i(z) r [ 1 - 'i(z) l 

?ri(z) 
]] } Xi [ 1 - <i(z) J 

[ 1 · <i(Z) l 

exp(c 1 (x)z) exp(c 0 (x)) f(o,z) 

where 

f(x) 

p 
co(x) = 2 ai,o xi 

i=l 

And thus 

and 

f(x) ~ f(O) exp(c 0 (x)) M (c,(x)) 
ZIO 

p 
c,(x) = 2 ai,, Xi· 

i=l 

where M (c 1 (x)) is the moment generating function of the 
ZIO 

latent variable Z given a zero response on all items c 1 (x). 

Substituting (4) in (3), we obtain that the posterior density 

of z given the response pattern X is 

exp(c 1 (x)z) h(zlo) 
h(ZIX) = for every response patt·ern x. 

M (c 1 (x)) 
ZIO 

From (5) and for every response pattern x, th~ moment 

gene~ating function of the posterior distribution of Z given x is 

-6-

.. 
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( 3) 

(4) 

( 5) 



M (c 1 (x)+t) 
ZIO 

( 6) 

Therefore from (6), the posterior density h(zlx) is a function of x 

only th!=ough the component score c 1 (x), if no O'i 1 is infinity. This 
' 

result was first given by Bartholomew (1984), when assuming r.i and O'i,l 

are fixed for the logit model. 

Furthermore from (6) 

E(ZJx) 

M ' (c 1 (x)) 
ZIO 

M (c 1 (x)) 

a 
[ log M (c, (x)) ] 

ZIO a t 
ZIO 

And therefore 

a 

I E(ZJX) ~ --- K ZIO(t) a t t=c 1 (x) 

and 

()' 

I t-0 
Var(ZIX) .:. --- K (c, (x)+t) 

a t' ZIO 

where K 
ZIO 

is the cumulant generating function of ZJO 

p 
c 1 (x) = ). O'i, 1 xi. 

i=l 

But 

a t' 

., 

E(eZt) E(z2 eZt) ~ E(z eZt) E(z eZt) 

E.(eZt) 2 

and 

> o 

(7) 

( 8) 

(9) 



Since E(eZt)2 >O and from the Cauchy inequality 

since Z is a random variable. 

p 
It follows from (6) that E(Ztx) is increasing in L a1, 1 xi. 

i-1 

Therefore if ,for two response patterns x 1 and x 2 

( 8) 
E(Ztx1 ) = E(Ztx2) ====9 

since E(ZIX) is increflsing i_n c 1(x). 

Finally, result l follows from (6) and (7). 

Result 2 

If the posterior density h(ztx5 ) is normal, then its mean E(Ztx5 ) is 

linear in thc component score c 1 (x5 ). 

I f the mean E(Ztx5 ) is linear in the component score c 1 (x5 ), then 

the posterior density h(ztx5 ) will be close to the normal distribution. 

Proof: 

If h(ztx5 ) is normal then the mean E(Ztx5 ) is linear in the 

component se ore c 1 (x5 ) from (7). 

If, on the other hand, the posterior mean is linear in the component 

score, then for some fixed a 0 and a 1 , 

E(Zixs) = a 0 +a 1 c 1 (xs), so from (7) for al.l response patterns xs 

a 

" . 
.• 

K .,.<t) I 
-8-



For typical choices of the parameters ai, I this will mean that 

there are distinct values t 5 , s-1, ... ,2P for which 

a c 
K (t) I· 

z I o t-ts 

This does not quite amount to the property of linearity in t which 

would imply a normal distribution for the posterior h(z 1x5 ), but it 

comes as close as is possible to that with K z 1 0(t) determined only at a 

finite number o f values. Fixing K' z 1 0 (t 5 ) leads to Kz 1 0 (t5 ) having the 

value appropriate for a normal distribution, for all s. If p is large, 

the posterior distribution is therefore · constrained to be close to the 

normal distribution. 

Bartholomew(1984) shows that if Z has a standard logistic 

distribution, then in some circumstances the relation between the 

posterior mean and the component score is linear. He conjectures that an 

aP.proximate linear relation is often valid for such prior distribution 

of z. The results here show that one may think of normality of posterior 

distributions instead of linearity. 

An application of this result can be seen when fitting a 

logit-probit model to the Law School Admission Test, section 6, (LSAT 

VI), as shown below. 

Law Scbool Admission Test, Section VI 

bSA!f Vi êt>nsists of 5 items taken by 1000 individuais designed to 

ffiêã§tifé á §ingie latênt variable. 

-9-
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Table 1 - Frequency distribution and scores obtained 

by fi tting the logit-probit model to the Law School 

Admission Test Section VI data. 

Response Frequency Total Posterior 

pattern observed expected score mean 

00000 3 2.3 o -1.90 

00001 6 5.9 1 -1.48 

00010 2 2.6 1 -1.46 

01000 1 1.8 1 -1.43 

10000 10 9.5 1 -1.37 

00100 1 0.7 1 -1.32 

00011 11 8.9 2 -1.03 

01001 8 6.4 2 -1.01 

10001 29 34.6 2 -0.94 

10010 14 15.6 2 -0.92 

00101 1 2.6 2 -0.90 

HOOO 16 11.3 2 -0.90 

00110 3 1.2 2 -0.88 

10100 3 l1 , 7 2 -0.79 

01011 16 13.6 3 -0.55 

10011 81 76.6 3 -0.48 

11081 56 56.1 3 -0.46 

00111 4 6.0 3 -0.44 

11010 21 25.7 3 -0.44 

01101 3 4.4 3 -0.42 

01110 2 2.0 3 -0.40 

10101 28 25.0 3 -0.35 

10110 15 11.5 3 -0.33 

111bo 11 8,4 3 -0.30 

HOii 173 173.3 4 0.01 
01111 15 13.9 lo 0.05 
1()111 80 83.5 4 0.12 
íüoi 61 62.5 4 0.15 
iilió 28 29.1 4 0.17 

iiili 298 296.7 5 0.65 

-10-
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The fit of the logit-probit model provided a goodness of fit measure 

x 2 equal to 15.30 on 13 degrees of freedom, which indicates a very 

satisfactory fit. We may conc1ude that the items are measuring a single 

1atent variable. The par ame ter estimates Ôi 1 , i-1, ... , 5, are equal to 
' 

0.83, 0.72, 0.89, 0.69 and 0.66, respGctively. 

This data is also well fitted by the Rasch mode1 (Rasch(1960)), 

using RASCHMIS program (A1banese and Knott (1991)). The Rasch mode1 is a 

specia1 case of a the logit-probit model when a11 ~i 1 are equa1. 
' 

Figure 1 be1ow shows c1ear1y that the posterior mean E(Z!x) is a 

linear function o'f the component score c 1 (x) = )~ cvi, 1 xi. 

'1 ,0 -

o 5 -

o.o -

-0.5 -

·-10-

-2 o -. I I I I I I ' I 
00 o.~ 1 o 1.5 2.0 2.ó 3.0 3.5 4.0 

Figure 1- Re1ation between E(Ztx) and 2 O' i, 1 X i when fitting a 

logit-probit model to the LSAT VI. 

From Figure 1 we can see that the response patterns are distributed 

into 6 groups along the line -1.92 + 0.67 c 1 (x). Table 2 shows that they 

correspond to the 6 different va1ues assumed by 2 xi. As the number of 

positive responses increases by one unit, both posterior means, E(Zix) 

and E(Ytx), and the component score c 1 (x) jump to higher values. 

-11-
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Table 2- Estimates of E(Ytx), E(Zrx) and the component score 

2: O'i, ,xi when fitting a logit-probit model to the LSAT VI. 

group E(Yrx) E(Zrx) 2 D'i ,xi 
' 

2 Xi 

1 0.007 -1.90 0.00 o 
2 O. 12 to 0.15 -1.47 to -1.32 0.66 to 0.89 1 

3 0.21 to 0.27 -1.03 to -0.79 1. 34 to 1.72 2 

4 0.33 to 0.41 -0.55 to -0.30 2.07 to 2.44 3 

5 0.50 to 0.55 0.01 to 0.17 2.89 to 3.13 4 

6 0.69 0.64 3.79 5 
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Figure 2- Posterior densities h(z IX) when fitting a logit-probit model 

to the LSAT VI, for the response patterns 1 00000 1 
, '01000' , '00101 1

, 

'01101', 1 10111' and '11111'. 

As E(Zrx) is a linear function of c 1 (x) then from result 2 and for 

every response pattern x 5 , s=l, ... ,32, the posterior density h(zrx5 ) is 

approximately normal. Besides as the discrimination parameter estimates 

&i 1 are nearly the same for all items, the posterior distributions have 
' 

a.ppto::dmately the same variances (Fipure 2). 



Result 3 

For the logit-probit (or logit) model the posterior 

p 
density h(ZIX) is not a function of x through 2 

i=l 
O:' i 1 x1 i f at 

' 

least one of the ai, 1 's is equal to infinity. 

Proof: 

Assume that 0:' 1 , 1 is equal to infinity so that 

•,(z)- [ 

o 

1 

Then 

p 
g(XIZ) = 1T 

i-1 

1-x· 
[1-•i(z)] 1 

p 
rxi n [ 1ri(Z) 1 Xi [ 1 - ?ri(z) * i=l 

Pro1n (l), g(xlz) catt aiso be writtetl ns 

-13-
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1 

o 

1 

[ z ' z, and x 1=1 
if 

z > z, and x 1=0 

[ z ' z, and x 1=0 
i f 

z > z, and x 1=1 

[ 

z ~ z 0 and x 1=1 
i f 

z > z
0 

and x
1
=0 

[ 

z ~ z 0 and x 1=0 
i f 

z > z 0 and x 1-l 

(10) 



g(XIZ) h(z) 
Substituting g(xlz) given by (10) in h(ZIX) = ------------

f(x) 

p 
it follows that h(zlx) is ~a function of x through 2: ni, 1 xi 

i=l 

i f nt least one of the ni, 1 's is equal to infinity. 

3- Applications showing the relaLion beLween E(Zix) and ~ ai 1x1, 
• 

when aL leasL one of the â1, 1's is large 

One of the consequences of result 3 is that the re1ation between the 

posterior mean E(Zix) and the component score c 1 (x) may not be linear, 

if at least one of the cri, 1 's is 1arge (say ~310", where (Tis the 

standard deviation of the 1atent distribution). This situation is 

illustr<lted using two tests with 18 to 40 items, and different number of 

large lh 1 • 
• 

3. 1- Test 12 

This test was applied by the National Foundation for Educacional 

Research in arder to measure the reading ability of Eng1ish, Welsh and 

Irish children aged 11 in 1983. Test 12 consists of 18 items and it was 

answerd by 502 children. This data set is reasonable fitted by a 

logit-probit model with parameter estimates given in Tab1e 3 below. 

-14-
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Table - F'ar-a.meter- estimates and asymptotic st.:;nda[d ·-· 
deviations fl~om f:.':ting :, lcgi t/p:--obi t u~odel to - . .es .... . -i..:.... 

Item i Ó:i , i S;) ( & i , i) ({, 
• , o SD <&i , o ) 1ti 

1 L 17 o. 18 2. 34 o. 19 0.91 

2 1. 62 o. 19 L 11 o. 14 o. 75 

3 1. 26 o. 1.5 o. 0.5 o. ' 1 0 . .51 

4 L 61 o. • o 
>w 0.95 o. 14 0.72 

o -· 2.08 o. 23 0.45 o . • o . _, 0.61 

6 1.:'·4 o. 17 -0.88 o. 13 0.29 

7 1. 49 (' _,. i7 0.36 o. 12 o. 59 

8 2.20 0.26 2. 18 0.23 o. 90 

9 1. 49 o. 17 0.84 o. 13 o. 70 

10 o. 87 o. !' ·-· -o. n o. 10 0.47 

1 1 0.62 o. 12 -o. 35 o. 10 0.41 

12 2.02 o. 22 0 •. 62 o. 15 0.65 
·• ..,.. 1. 24 o. 18 -1.58 o. 16 o. 17 i·-' 

14 i. 65 o. -- • 76 o. 18 o. 15 L·-' - .. 
15 4.50 0.83 3.72 0.51 0.98 

16 4.37 0.70 2.51 0.40 .-, Q'"? u. '..:. 

17 !. 75 0.20 1. 55 o. 17 0.82 

18 1. 58 o. 18 0.66 o . . ,, .L·-' o. 66 

15 
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24 -

1.8 o 

i .2 -

0.6 -

o.o 

-0.6-

-1.2 -

-1.8 -

·-2.4 -~-,~-----,-------,--------~------~,-------.,-------, 
o 6 12 1 a 24 3o 36 

Figure 3- Relation between E(Zix) and )~ Cl'i, 1 Xi when fitting a 

logit-probit model to Test 12. 

Table 4- Estimates of E(Yix), E(Zix) and the componGnt score 

2 ai, 1 xi when fitting a logit-probit model to Test 12. 

E(YJx) 

[0.02;0.10) 

[0.10;0.20) 

[0.20;0.30) 

[0.30;0.40) 

[0.40;0.50) 

[0.50;0.60) 

tíi:6à:o:ídi 
[0.7~;0:80) 

[b:só;o.9o) 
[6,9B;6,§§j 

.. 

E(ZIX) 

[-2.26;-1.35) 

[-1.35;-0.90) 

[-0.90;-0.55) 

[-0.55;-0.26) 

[-0,26; 0.00) 

i 0.00; 0.27) 

0.27; 0.57) 

0:57; 0.94) 

0.94: 1.48) 

1.48; L91} 

') o:· x· 
·-· l. ' 1 l. 

I o.oo; 4.65) 

[ !1.65;10.91) 

[10.91;13.36) 

[13.36;19.13) 

[19.13;21.16) 

[21.16;22,97) 

[22.97;25.30) 

[25.30;27.22) 

[27.22;30.91) 

[30,91;32.88] 

-16-

y x· 
'-. l. 

O to 4 

3 to 7 

5 to 10 

6 to 12 

9 to 12 

10 to 14 

12 to 15 

14 to 16 

15 to 17 

17 to 18 

n (%) 

51 (10) 

55 (11) 

25 ( 5) 

71 (14) 

45 ( 9) 

34 ( 7) 

77 ( 15) 

65 (13) 

67 (13) 

12 ( 2) 



Figure 3 shows that the relation between E(Zix) and c 1 (x) is linear 

on1y for a partition of E(Zix) in 5 specific sections. Each one of the 

first 4 sections corresponds approximate1y to the first 4 interva1s for 

E(Zix) given in Table 4. 

In the first interval (-2.26 ,.: E(ZIX) < -1.35) we observe that 98% 

of the individuais have answered '0' to both items 15 and 16. 

In the second and fourth intervals, there is a greater change in 

component score c 1 (x) than in posterior mean E(Zix), which is shown by 

two s1ightly flat sections. The highest proportion o f answers to items 

15 and 16, in the second interva1 52.71% to '00', while in the fourth 

interva1 is 70.4% to '11'. 

In the third interva1, all individu~1s answered '1' to at 1east one 

of the items 15 and 16, and the higher proportion of patterns is 44% to 

I 11 I • 

Considering a11 the interva1s together, fo·r which E(Zix)~-0.26 or 

c 1 (x)~l9.13 the re1ation between these two measures is linear and 98.3% 

of the individuais have answered '11' to items 15 and 16. 

From these results we can conclude that the non-1inearity between 

the posterior mean E(Zix) and the component score c 1 (x) over all values 

assumed by them is due to the whole response pattern, instead of on1y 

due to the items with large ni, 1 (1=15, 16). 

Consider that the actual values of &15 1 and & 1 6 1 are infinity, and 
' ' 

therefore, g(xlz) can be written as (9). Now Figure 4, instead of Figure 

3, shows thé relation between E(Zix) and the component score, which is 

also not linear. 

Figure 4 shows roughly three curves, which one corresponding to an 

specific pattern for 'x 15x 18 ', the answers to the items with ai 
1 

equa1 
' 

to infinity. From the top to the bottom, the first curve is given by the 

359 response patterns with 'x15x 16 ' = '11', the second one by the 39 and 

2 response patterns with '10' and 

the 106 patterns with '00'. 

-ll-
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1,2 

0.6 

o.o 

-0 6 

-1.8 

-2.4 
I 

i2 
I 
I~ 

I 
I à 

I 
21 

o 

I 
24 

Figure 4- Relation between E(Z I x) and 2: Ct'i, 1 xi, assuming 0' 1 5 , 1 and Q 1 6 , 1 

equal to infinity, when fitting a logit-probit model to Test 12. 

Gompnrlne, Fi_gun~s 3 :md t, Wt' can conelude that for a specific answer 

to the items with l'l'i, 
1 

equal to infinity, the relation between E(ZIX) 

and the component score c 1 (x) is closer to linearity than when taking 

c 1 (x) over all items and ai, 1 's not equal to infinity. 

3.Z- Test 13 

Test 13 was also applied by the National Foundation of Education 

Research in arder to measure the reading ability of pupils of aged 11 in 

1983. The sample size was 498 and the test length 40 items. The 

distribution of the discrimination parameter estimates Ct'i, 1 , i=l,.,. ,40, 

when fitting a logit·probit model may be given by 

' 
O' i' 1 

count 

[0,31; LOO) 10 

[LOO; 2,00) 20 

[2.00; 3,00) '• 
> 3,00 6 

-18-
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Therefore the fitting of a logit-probit model to Test 13 (length 40) 

provides six parameter estimates âi 1 bigger than 3.0 . 
• 

2.4 -· 

., 2 -

0.0 -

-1.2 -

-2.4 

·-3.ó -+,---r,---,, ----,.,---,,---,-----,-----1 
o 1 o 20 30 40 50 60 70 

Figure 5- Relation between E(Zix) 
,. 

and !... ai, 1Xi when fitting a 

Iogit-probit model to Test 13. 

Figure 5 shows that the reiation between E(Zix) and the component 

score c 1 (x) is not linear. As in Figure 3, the dark parts of the curve 

represent great concentration of individuais with different response 

patterns in_ a small range of E(Zix) and c 1 (x) vaiues. 

Table 5 beiow was constructed in such way that it reflects the 

different aspects of the relationship between E(ZIX) and 2 ai,,Xi 

displayed in Figure S. Thus, for example, the second and fourth 

intervals represent the two flat parts of the curve, in which E(ZIX) 

remains approximately constant, while c 1 (x) increases significantly. In 

the second interval, for 2I individuais with different response 

patterns, E(Zix) ranges oniy from -1.18 to -1.09, while c 1 (x) increases 
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significantly from 15.72 to 26.42. In the fourth interval, for a large 

number of individuais (75) with different response patterns, E(Zix) 

rem~ins almost constant (-0.40 to -0.38), while c 1 (x) increases from 

34.61 to 46.86. 

Table 5- Estimates of E(Ylx), E(Zix) and the 

when fitting a logit-probit model to Test 13. 

E(Yix) 

10.005;0.120) 

10.120;0.11o3) 

10.143;0.346) 

10.346;0.353) 

10.353;0.400) 

10.400;0.510) 

10.510;0.601) 

10.601;0.701) 

10.701;0.801) 

10.801;0.900) 

10.900;0.982] 

E(ZIX) 

[-2.87;-1.18) 

1-1.18;-1.09) 

I -1.09; -o. 40) 

1-0.40;-0.38) 

l-0.38;-0.26) 

1-0.26; 0.02) 

I 0.02; 0.26) 

I o.26; o.56) 

0.56; 0.92) 

0.92; 1.42) 

1.42; 2.43] 

[ 1.02;15.72) 

115. 72;26.lo2) 

[26.42;34.61) 

[34.61;46.86) 

146.86;50.49) 

150.49;52.71) 

[52. 71; 5LI, Ci?.) 

[54.62;60.26) 

160.26;62.56) 

162.56;65.10) 

[65.10;68.53] 

component score L ai 1 xi 
• 

1 to 13 

9 to 18 

13 to 21 

17 to 30 

21 to 30 

22 to 27 

:u, to 2/ 

25 to 32 

30 to 36 

31 to 37 

34 to 39 

n (%) 

30 ( 6) 

21 ( 4) 

21 ( 4) 

75 (15) 

15 ( 3) 

20 ( 4) 

1 o ( 2) 

118 (24) 

85 (17) 

63 (13) 

40 ( 8) 

The curve also changes its slope significantly, but is less flat 

than in thé SeCond ànd foUrth interva1s, when E(ZIX) ranges from 0.26 to 

O. 56 áritÍ é j éx) froril 54. 62 to 60. 26. In this interval, there is a great 

coriéeritídtion of individuais (24% against the expected 10%), all of them 

with diffe=re.nt tespotise patterns, 

Ths :i.nvestigation of reasons why f1at parts occur 1ed us to look at 

thé relation between the distribution of the number of positive 

respcmses given to the 6 items with 1arge ô-1 , 1 (;-3.0) and the slope of 

the curve. A selection of the results is displayed in Table 6. 

-20-
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Table 6- Frequency distribution o f the number o f positive responses 

given to the six items with âi 1 ~3.0 for some intervals of E(Zix). 
' 

E(Zix) o 1 2 3 4 5 6 total 

1-2.87;-1.18) 25 5 30 

1-1.1.8;-1.09) 9 8 3 1 21 

1-1.09;-0.40) 5 4 2 9 o 1 21 

1 -0.40; -0.38) o 3 4 49 4 9 6 75 

I 0.26; 0.56) o o o 2 21 44 51 118 

Table 6 shows that there is a great combination of possible results 

for the 6 items with large âi 1 , even in the flat parts of the curve. 
' 

Thus, for example, where 75 response patterns have approximately the 

same E(ZIX), -0,40 to -0.38, the only possible result that does not 

happen is all 6 items answered '0'. This means that the response 

patterns are not concentrated on a specific configuration for the items 

with large âi 1 • 
' 

Moreover, in the flat parts of the curve we found response patterns 

wit-h the SilliH' l"Qsponse to thc 6 itcms with large í'Yi, 1 , have component 

sig,nifit.::mlly Fot: cxwnpie, two response 

patterns, in which all these 6 items were answered 'O', were associated 

to either a component sco1.·e equal to 15.71 o r 24.77 for nearly the same 

expected value (-1.18 and -1.14). 

This implies, that at least for these response patterns, the 

greater relative difference between the component scores than between 

the posterio_r means E(Zix) is not due to the items with large &i 1 • 

' 

For an expected number of individuais equal to lO% and E(Zix) 

between 0.26 and 0.56, it was observed 23.7% of the sample, of whom 

90.5% have answered '1' to five o r to the six items with large &i 
1

• 

' 
From this point E(Zix) and 2: CYi,txi increases faster and most of the 

individuais have answered '1' to the 6 items with large ai,t· 

These results combined with those from Table 6 indicate that when 

at least one of the âi 1 's is very large, for some response patterns it 
' 

may occur that the posterior mean practically does not change while the 

component score increases significantly, even when the response to the 

items with large ni,1 is fixed. -21-
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4- Dís~ribu~ion of ~he individuals on the latent scale 

according ~o ~he pos~erior densi~y h(zlx) 

Very often, in practice, we are not only interested in the ranking 

of the individuais, which is obtained either from the component scores 

ar from the posterior means E(Zlx) or E(Ylx). Thus, for exampie, in 

Educ.'ltional Testing, we may be interested in comparing the lower with 

t·hf' hi1~lwr r~hitity 1~roup of individuals. The cri terion for the 

distribution (aiiocation) of the respondents in groups is usually based 

on an arbitrary percentage, for example 20%. 

If we know the distribution of the individuais aiong the latent 

scale, then we can use this information to partition the sample in 

groups. One way to do this is to use the information given by the 

posterior density h(zJx) or even the mean E(ZJx). 

If we intend to use the mean E(ZIX) as the measure of comparison 

between the position of the individuais on the latent scale then we must 

have information about the shape of h(zlx), at Ieast in terms of 

skweness and spread. 

Let us consider two individuais with different response patterns x 1 

and x 2 and the posterior densities h(z1x 1 ) and h(z1x 2 ), which are not 

slww :tnd lt:tv(• rtea1·l_y tlw S/1111(' diSJH·r·~;ion. Jf h(:-:1x 1 ) nnd h(:-:1x 2 ) have 

roughiy the same mean then x 1 and x 2 lead to the same beliefs about the 

value of Z. 

In these situations the mean E(ZJx) is a reliable measure to compare 

individuais according to their position on the latent scale. 

The main goal of this section is to present the resuits from the 

investigation of the shape of the h(zJx) we have found so far in 

practice. This wiil be dane using two real data sets for tests with I8 

and 40 items, for which the fittings o f a logit-probit model yieid two 

and six Iarge &i 1 's (bigger than 3.0). 
' 
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4.1- Test 12 

Test 12 has 18 items and was answered by 502, which have provided 

417 different response patterns. Therefore for each one of these 417 

response patterns there is one posterior density h(zlx). 

In arder to investigate the shape of the posterior densities h(ztx) 

and how they are distributed along Z, we have we have selected a 

representative sample of observed h(zlx)'s, from which we have chosen to 

display here the fol1owing three sets (Figures 6 to 8). 

q, -
,. 
1·· . . , 

"~ 
i 

"i 
j 
'' 

" . 

" i' 

''" '., •.•, ''· 

Figure 6- Posterior densities h(zlx) for the first ten different 

response patterns of test 12, for which -2.26 ~ E(zlx) ~ -1.67. 

Figure 6 disp1ays the posterior distributions h(z IX) for the first 

10 different response patterns with the sma1lest E(Ztx) (or E(YIX)). For 

these sets of h(ZIX), the mean E(Zix) assumes va1ues from -2.26 to -1.67 

while E(Yix) ranges from 0.02 to 0.06. For these response patterns most 

of the items were answered '0', including items 15 and 16 for which &i, 1 

are large. 
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The continuous line representa h(zlx) when an individual has 

answered •o• to all items and corresponds to the lowest observed 

ab;i.lity. It also presents the biggest dispersion and is skewed to. the 

1éfto As E(ZIX) increa.ses, h(ZIX) b&comes less skew, less spread and 

s.i.mUar po&tHHtiüt' meãftB rapt'esent individuais with nearly the same 

h(zlxL 

'·' 
,, 

•• 
,. 

,, 

j.~ 
oo+---... 

Figure 7~ Posterior densities h(zlx) for some response patterns of Test 

12, for which ~0.81 < E(Zix) < ~0.66, 

Figure 7 displays the h(z IX) for ten different response patterns, 

for which E(ZIX) assumes values from ~0.81 to ~0.66 (or E(Yix) ranges 

from 0.22 to 0.27). The normal probability plots have shown that 

h(~fX)'s are approximately 

disp-ersion. 'rhis i~p~ies tflat 

normal distributions with the same 

the dífference betweén h(z IX) is 'only in 

terms of loc:atiO'n and these individuais lead to approximately the sáme 

~)'eiie:fs · about the value of Z. This was also found to be true for 

tfé·sptmá~ patterns with similar posterior means, but which are not 

ÍO'é.d:e·d fn the ten higher observed positions on the latent scale. 
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" 

" 

Figure 8- Posterior densities h(zrx) for the last ten different response 

patterns of Test 12, for which 1.39 ~ E(Zrx) ~ 1.90. 

Figure 8 displays the ten observed response patterns, which provide 

the ten different largest posterior means (1. 39~E(Z rx) o;;;l. 90 and 

0.89~E(YIX)(0.9S), For these response patterns most of the items were 

ansW~:feà 1 1; 1 :i.nóhtd::i.rtg s.s éxpected the items with 

poStetiot densit::i.ss h(Zix) are slightly skew to 

diSp~tSi~h iS ::i.rtcteàsirtg as E(Zix) in~reases. 

larga âi 1 • Now the 
' 

the right and the 

From Figures 6 to 8 and many others not represented here, we can 

conclude that the means E(Zrx) (or E(Yrx)) represent very well the 

position of the individuais on the latent scale, since the posterior 

distribution is approximately normal. There are some restrictions on the 

@Xti?êiiié!§ 1 Whêt'é h(z IX) is 

ãep@fiàtng an ~he tesportses 

slightly skew to the left or to the right 

to the items with large âi 1 • 

' 
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These results lead us to conclude that we do not need to determine 

all the h(z IX)' s to have a clear idea 'about the distribution o f h(z IX) 

along Z. Instead, we can select a representativa sample of h(ZIX) ,· 

selecting x so that the whole set of values assumed by the E(YIX) (or 

E(ZIX)) is covered. Using this criterion we shall determine the h(ZIX) 

for the two response patterns, which provi de the observed lowest and 

highest position on the latent scale and for those which corresponds 

E(YJx) equal to 0.10, 0.20, .... ,0.90. 

Figure 9 displays a representativa collection of the 417 observed 

posterior densitfes h(z IX), Based on this figure we detect groups of 

response patterns (or individuais) who have nearly the same posterior 

densities h(ziX), differing only on the location parameter. 

Thus, for example, the position on the latent se ale o f individual 

with E(ZJx) from -1.35 to 0.00 can be measured more precise1y than those 

with E(ZJx) ranging from -2.26 to -1.35 or from 0.57 to 1.91. 

Therefore if we desire to make groups of individuais according to 

their distribution on the 1atent se ale, we can combine the information 

obtained from Figure 9, which gives the shape of h(zJx) and its location 

along Z, with the results from Table 4, which providas the observed 

frequency distribution of those h(zJx). 
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Figure 9- Representative collection of posterior densities h(ZIX) for 

the observed response patterns of Test 12. 
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4. 2- Test 13 

As described in the previous section, Test 13 has 40 items and the 

fitting by a 1ogit-probit mode1 yie1ded 6 items with &i, 1 ~3.0, The 498 

individua1s who answered the test provided 488 different response 

patterns to which one corresponds one posterior density h(zrx). 

As for Test 12, we have determined the posterior densities h(zrx) 

for a significant number o f observed response patterns, so that the 

E(Z!X)'s are distributed along the whole latent scale Z. More precisely, 

for each interval of E(Zrx) in Table 5 we have se1ected at least 10 

different response patterns and we have determined their h(zrx)'s. 

The r"esults agree with those from Test 12 in terms of 

(1) the equivalence between similar E(Zix)'s (or E(Yrx)) and nearly 

equal h(zrx)'s. Similar E(Zrx)'s (or E(Yrx)'s) come from nearly equal 

h(z IX)' s, specially for those individuais who are not located in the 

e~trems left and right of the latent scale; 

(2) representativity of the whole set of h(z IX) through few h(z r :X:), 

taking into account the two response patterns which are in the lowest 

and highest position of the latent scale and at least 9 response 

patterns, for which their E(Yrx) are distributed a1ong (0,1). 

Figure 10 disp1ays a representativa co1lection of observed 

posterior densities h(zrx) for Test 13, for which E(Yrx) are equal to 

0.05, 0.10, .0.20, 0.35, 0.40, 0,50, 0.60, 0.70, 0.80, 0.90 and 0.98 or 

E(Zrx) are equal to -2.97, -1.35, -0.90, -0.38, -0.25, 0,00, 0.25, 0.56, 

0.92, 1.42 and 2.43. 

;Looking at Figure 10 we can see how h(z rx) changes in terms of 

shape and dispersion along Z. It a1so provides a measure of precision 

for comparing individuais located in different points of along the 

latent scale Z. 

In Figure 10, although most of the consecutiva means E(Yrx) are 

equidistant, the posterior densities h(zrx) corresponding to E(Yrx) 

equal to 0.60 is closer(more similar) to that with mean 0.50 than 0.70. 
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Figure 10~ Representativa collection of posterior densities h(z IX) for 

the tibservêd response patterns of Test 13. 
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Furtherinore, combining the information given in Table 5 and Figure 

10 we will be able to make groups using the information given by the 

h(zlx)'s. Thus, for example, the 21 (or 75) individuais who have E(Yix) 

between -1.18 and -1.09 (or -0.40 and -0.38) should belong to the same 

group, since they have nearly the same h(zlx) and therefore they lead to 

the same beliefs about the latent variable. 

We have also look at diagrams like Figures 9 and 10 for many tests 

with smaller number of items (lO or less), which yielded one or two 

large âi 1 (>3.0) when fitted by a logit-probit model. The posterior 
' 

densities tend to be skew to the left or to the right depending on the 

responses to the items with large ai, 1 and the variances of the 

distributions differ. When the are close to each other the 

posterior distributions are approximately normal distributed, which 

confirm result 2. 

5- Conclusions 

The investigations carried out in this paper for the logit à.nd 

logit-probit models lead to the following conclusions: 

(1) If no ai 1 is infinity and two response patterns have the same mean 
' 

E(Zix) then they have the same component score 2: ai, ,x1 and the same 

posterior density h(zlx). 

(2) 'If the posterior density h(zlx) is normal, then its mean E(Zix) is 

linear in the component score c 1 (x), If the mean E(Z!x) is linear in 

c 1 (x), then the posterior density h(z1x) will be close to the normal 

distribution. 

(3) The posterior density h(z IX) is not a function of x through the 

component score c,(x) if at least one of the a· 's is equal to , ' ' 
infinity. 
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(4) The relation between the posterior mean, E(YIX) or E(Zix), and the 

component score is unlikely to be linear when at least one of the âi 1 • 
is large (say >31 u, where u is the standard deviation o f the latent 

distribution). This may be due to the fact that the componen_t scores are 

strongly dependent on the values of ai, 1 while E(YJx) (or E(ZIX)) 

deperids on ~i• which is nearly the same for all âi,t~3Ju, independently 

of âi, 0 • 

(5) The greater the test length, the greater the possible number of 

different response patterns and configuration o f &i, 1 ' s can occur and 

the less likely the linearity between the posterior mean and the 

component score seems to be. 

(6) Significant differences between component scores do not always 

reflect different positions on the latent scale, according to the E(Yix) 

or E(Zix). They are shown through flat sections or jumps in the curve 

obtained when plotting the component scores against the means E(YJX) (or 

E(Zix)), 

(7) The occurrence of flat sections seems to depend on the number of 

items with large &1 1 • 
the effect of 2 large 

and test length. At the same time, we expect that 

âi 1 in a test with 40 items is smaller than in a 
• 

test with 20- items. Usually, they do not present a specific pattern for 
' the items with large O'i,t· 

( 8) Consider a test for which the sample size not small compared with 

the number o f items, for example Test 12 and 13. It seems that even 

though when fitting logit-probit model items h ave large ' a some O' i' 1' 

similar E(Z'IX) 1 s (or E(YIX)'s) come from nearly e qual h(ZIX)'s, which 

are approximàtely normal distributions, specially for those individuais 

who are not located ât the extreme left and right of the latent scale. 

Fot à s~ailet tiumber of items, h(zJx) tends to be skew to the left or to 

the right depending on the responses to the items with large &1 1
, and 

• 
the variances are different. 
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Therefore the general pattern that emerges is that as the number of 

items increases, the posterior distributions look more normal and less 

skew, though with different variances. This is even true i f there are 

several a 1 , 1 •s estimated as large, and the relation between the 

posterior means and the component scores is far from linear. This 

implies that in general the posterior mean is a reliable measure of the 

latent variable, and it has better behaviour than the component scores. 

(9) We do not need to determine all the h(z IX)' s to have a clear idea 

about the distribution of h(ziX) along the latent scale Z. Instead, we 

can select a re'presentative sample of h(ziX), selecting the response 

pattern x so that the whole set of values assumed by E(Yix) (or E(Zix)) 

is covered. 

(10) If we desire to make groups of individuais according to their 

distribution on the latent scale, we can combine the information 

obtained from the shape o f h(z IX)' s for all x (Figure 10, for example) 

with the observed frequency distribution o f these h(z IX) (Table 5, for 

eKample). 
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