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Abstract

Necessary and sufficient conditions are given in order that an in-
terval exchange map satisfying Keane’s infinite and distinct orbit con-
dition be uniquely ergodic. This is done through the development of
a theory for interval exchange maps that parallels the classical theory

of continued fractions.



1 Introduction

In this paper we give necessary and sullicient conditions for an interval ex-
change map satisying Keane’s infinite and distinct orbit condition, i.d.o.c.,
to be uniquely ergodic. To this end we develop a theory for interval exchange
maps paralelling the classical theory of continued fractions which might be
of independent interest.

An interval exchange map T = T(w,a) of the hall open interval [0,1)
is defined by a permutation x of the set {l,...,m} and a column vector
a = (ay,...,a,)" in the simplex:

Sn={a€eR™|> a;=1and a; >0 fori=1,..,m}

i=1

as follows:

Decompose [0,1) in sucessive half-open intervals I,...,I,, of lengths re-
spectively aj....,a,,. T is a translation in each of this intervals and permutes
them in such a way that T(I;) = #(i)-th permuted interval; i=1,...,m. Thus
T is continuous but for the extremes of the intervals I;. where we assume it
is only right continuous.

Interval exchange maps were first defined and studied by Keane [2].

From now on we will fix the permutation 7 and identify the interval
exchange map T = T(7,a) with a € §,, = S,u(7).

T satisfies the infinite distinct orbit condition, i.d.o.c. if the T—-orbit of the
T-discontinuities are infinite and distinct. Keane [2] has shown that except
for maps lying in a denumerable set of hyperplanes, all interval exchange
maps satisfy i.d.o.c. and that i.d.o. interval exchange maps are minimal
meaning by this that the positive orbit of every point is dense. It is clear
that an interval exchange map T preserves Lebesgue measure on [0,1); if this
is the only Borel probability preserved by T we say T is uniquely ergodic.

It 1s obvious that unique ergodicity implies minimality but the converse
does not hold, Keynes and Newton [4], however it is true that for T in a set of
full Lebesgue measure in §,, T is uniquely ergodic, Mazur [6] and Veech [8].
Boshernitzan has found sufficient conditions for a minimal interval exchange
map to be uniquely ergodic, (1].

The main idea behind our characterization of the uniquely ergodic i.d.o.
T’s center around an analogy with the theory of continuous fractions and the



quality of rational aproximation to irrational numbers, the part of rational
numbers being played by the primitive interval exchange maps T 1.e. the
ones such that every orbit is periodic and the T-orbit of 0 hits every T-
discontinuity, Keane and Rauzy [3]. These maps have a hall open-periodic
interval whose orbit sweeps out the entire [0,1) interval.

To get all primitive interval exchange maps T, we fix n > 0, its period,
decompose n as a sum of m non-negative integers ay,....a,, and define the
permutation Il on the set {0,...,n — 1} using = as we did in the definition of
the interval exchange map T(x. a). If Il is a cycle then T = (ay,...,a.,,)/n is
a primitive interval exchange map. In this case all entries of a are rational
numbers a; = p;/¢; with p;,¢; > 0 and (p;.¢;) = 1 for i=1,...m.

The theory of partial fractions can be developed throught the concept of
Farey series and mediants as indicated in Khinchin [5, pages 13-15] and that
is the point of view more akin to the one we take here.

We say S is a proper approximant to T of order n > 0 if S is primitive
and the record of the visits that the orbit of 0 makes to the intervals I; up
to the time n is the same for T and S. More precisely:

T*(0) € I(T) < S*(0) € Ii(S) (1)

for any z € {1,...,m} and k € {0,...,n}.

We call the set of S’s satisfying condition (1) above the Farey cell of order
n around T, F,(T). F,.(T) is a convex polyhedron whose vertices in S,, are
primitive interval exchange maps but, in general, at most one of these vertices
is in F,(T) and are thus proper approximants to T. We call the vertices of
Fu(T) the improper approximants or, more simply, approximants of order
n to T. Using these concepts we prove that an i.d.o. T is uniquely ergodic
iff its n-th order approximants converge to T as n — oc in other words
Fau(T) — T as n — oo.

We will show that there is a finite set of bounded polvhedra, the abstract
Farey cells of type 7:

{C}nea 5 €, C REM=D

such that for every i.d.o. T, F,(T) is projectively isomorphic to some C,,y €
A, if n is great enough.

By a projective isomorphism we mean a bijection L which can be ex-
pressed as L(z) = L(z)/||L(z)||. where L:RY — RM is linear, 2 € RN
and ||yl| = =X, |yl for y € RM. In this case we say L is the projective map
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induced by L. We call the vector § = y/||lyl| the normalized of the veetor
y € RY thus projective maps are normalized linear maps.

To explain how we get the isomorphism between a Farey cell and its
abstract model we need more definitions.

We say n > 0 or, more properly, T"(0) is a critical iterate of T if from
T"(0) we can sec a discontinuity of T without the interference of previous
T-iterates of 0 or, more precisely, if there is a discontinuity of T, D;(T) for
i € {1,...,m} such that one of the intervals [T"(0), D:(T)) or [D:;(T). T"(0)]
only intercepts {T*(0)}}_, at T"(0).

If there is only one discontinuity satisfying this condition we say ¢ is the
type of the critical iterate and call the iterate left or right critical iterate
accordingly to its position with respect to the discontinuity. If the condition
above holds true for p > n that is, one of the intervals [T"(0), D,(T)) or
[D;i(T), T"(0)] only intercepts {T*(0)};_o at T"(0), we say n remains critical
up to the order p.

Finally define the distribution vector of T between the iterates n and p,
n < p, as the column vector whose i-th entry is the number of times T*(0)
hits I; as k runs from n to p — 1.

Using these concepts we can characterize the uniquely ergodic i.d.o.’s
T = T(7, a)’s as the ones which have the sequence of normalized distribution
vectors between fwo consecutive critical iterates converging to «a.

We say a Farey cell F; is small if the set {T*(0)}i_,, for T € F,. has at
least a point in each one of the intervals I;(T) and T(I;(T)), i = 1,...,m.
Now, given a small Farey cell F; and n > s, the next critical iterate of
the interval exchange map in the interior of Fj, we are able to define the
projective isomorphism between F; and its abstract model C,,.

This isomorphism is induced by the m x 2(m — 1) matrix (A", p"), the
distribution matrix of F,, whose first m — 1 columns AT are the distribution
vectors of T between the critical left iterated of type j that remains critical up
to the order n and the next remaining left critical iterate; y = 1,...,m—1, and
whose last m — 1 columns p7; j = 1,...,m — 1, are defined similarly using the
right eritical iterates that remain up to the order n, where T € interior(F;).

On C = 3, c4C, where ) denotes disjoint union, we define a map G,
the Gauss map, which dynamically generates the approximants. G is a 2-1
onto map and the two branches of G=! defined on an abstract Farey cell are
projective isomorphisms onto their images which, in their turn, abstractly
represent the "next” Farey cell.



To see how G generates the approximants to an i.d.o. T, take the first
small Farey cell around T, F,,. This arey cell is isomorphic as described
above to an abstract Farey cell C,,, 70 € A. We call C,, the integral cell
around T, v € A the integral tvpe of T and Pg', the isomorphism C,, —
Fo- the integral part of T.

Using this definitions we can write:

a = Pg'(ro)

for some uniquely defined ry € C,;. We call rg the fractional part of a. Now,
using G, we can write:

a = Pg'(ro) = Pg'(65,'(9(r0))) = Pg' (95, (65, (G%(r0)))) =

= e =P By (il (D))

where ; is defined by G'(rg) € C,, for i = 1,...,n and G ! is the branch of
G~ which takes C., into C,,_,.
We call the expansion:
a=Pg' og,;l’ o ,;21 0..G.!
the generalized continued fraction expansion of « associated to .

Given a we get this expansion by following the G-orbit of the fractional
part of T. Using the expansion we get the n-th order approximants by trun-
cating the expansion at level n, substituting the remainder G"(rq) for the
vertices of C,, and carrying the indicated operations. Thus we can decide
if an i.d.o. T is uniquely ergodic by looking at its generalized continued
fraction expansion. In the opposite direction, under mild conditions, each
sequence in the space of the subshift of finite type in the simbols A with a
transition from 7; to 9; allowed iff G(C,,)NC,, # 0, gives the expansion of
at least one i.d.o. uniquely ergodic T. If we fix the integral part, this T is
unique.

To finish this picture we give a description of the matrices (A", p") which
occur as integral parts of maps T with a specified integral type v € A.

The techniques used in this paper are elementary and the only difficulty
that might came in the way of an interested reader is the notation employed.
Since the naming of things is unavoidable if we are bound to speak about



them, it seems convenient to work now, though in a sketchy way, the case
m = 2, in order to keep in mind a simple example of what goes on.

If m = 2 then 7 is the transpositon (2, 1) and compactifying [0,1) to the
circle

sl={c*|0€e[0,1)}CC

we see that T = T(x, a) is conjugated to the rotation
p=p(T):z € §* s ™25 ¢ S}

where a = (ay,a3)".

Identifying rotations with exchange maps of two intervals, we see T sat-
isfies i.d.o.c. iff the rotation is irrational and T is primitive iff the rotation
is rational.

To get the n-th order approximants to S € S, we start with T = S and
move T in the interval S; to the left and then to the right watching for the
first T such that the distribution of the piece of T-orbit {T#(0)}7_, on the
intervals I;, 2 = 1,...,m changes. This change is only possible if one iterate
T*(0), k € {0,1,...,n} crosses the discontinuity o of T and it is clear that
the first iterate that crosses the discontinuity must be one of the two critical
iterates that remain up to the order n. Thus, without loss of generality, we
can take n a critical iterate of T. Take ! and r in {0,...,n — 1} given by:

T!(0) = max{T*(0) < ay | k=0,...,n — 1}

and
T7(0) = min{T*(0) > ay | k=0,...,n — 1}

and define the intervals L = [T/(0), D;(T)) and R = [D,(T),T7(0)]. If
we stack the intervals I = [T%(0),T?(0)], ¢ # j and 4,5 € {0,1,...,n},
int(I) N{T*(0)};; # 0, by putting I, on top of I iff T(I,) = I, we see these
intervals fall into two stacks that partition the set {I}. These stacks have in
their tops a pair of contiguous intervals with T"(0) as their common vertex.
The union of these tops is L|{J R and, as for their bottons, we have: T?(L)
1s the botton of the right stack and T(R) of the left stack. Note that all
intervals of each stack have the same length.

We will use these stacks to parametrize the Farey cell F;, where s =
max{l, r}, since it is clear that once we have a pair of stacks, specified by the
lengths of the intervals I and R and their heights, specified by the number
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of slices I in each stack, we can reassemble [0,1) by putting one slice next
to the other and recover T € F, by moving up in each stack. On the other
hand, once we have these two stacks we can easily construct the next pair
accordingly to R > L or L > R, where we are denoting the lengths of the
intervals L and R also by L and R, respectively.

In fact, if R > L the next pair will have a left stack of width R — L and
the same height as the initial left stack and a right stack with the same width
L as the initial right stack but height the sum of the previous two heights.
If L > R the next pair will have a right stack of width L — R and the same
height as the initial right stack and a left stack with the same width R as
the initial left stack but height the sum of the previous two heights.

Normalizing the lengths of these intervals by the requirement L + R = 1
and using this equality to eliminate R we get the Gauss map G:[0,1) —
[0,1), which is the map that takes a pair of stacks to the next pair, defined
for 2 = L by:

£ if0 <z <

oty =4 %,

= if%S:E(l.

2 Farey Cells

Fix an integer m > 2 and a permutation 7 of the set {1,2,...,m}. For each
m rows columm matrix a = (@1,..., &%) € S, where

Sy = {Q-ER’"']ZQ-;z land a; >0 fori=1,...,m}

1=1

7 induces a bijection T = T(w,a) of the unit half-open interval [0, 1) called
the interval exchange map induced by 7 using a as follows:

Starting at zero, partition [0,1) into m half-open intervals of lengths
Q1,...,Qp, respectively. Next permute these intervals using #, that 1s, in
the first place put the #=(1)-th interval, in the second place put the #='(2)-
th interval and so on and so forth .... Finally put the permuted intervals
back, one next to the other, in order to reassemble [0,1). T is the map that
takes each inicial interval onto its permuted through a translation.

More precisely, given a € §,,, we define D; = D;(a); 1 = 0,...,m as
Dy = 0 and D; = EL, ap and the intervals I; = L(a);z = 1,...,m, by
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L = [Di-1, D,). Thus {I;}1X, is a partition of [0,1) and length(L;) = a;.
Now, using 7, define ;i = 1,...,m as af = a,-1(;) and, as before, the cor-
responding DI (a) = Di(a™);i = 0,...,m and IT(a) = L(a™);i = 1,...,m.
T = T(#, a) 1s given by :

T(2)=a—Di_1 + D;“)_l forzel,andi=1,...,m

As we will fix 7 [rom now on, we are going to identily T with a via the
map a — T(7,a). Thus §,, = §.(7), the space of interval exchange maps
(induced by 7), has a topology and an affine structure induced from R™ and
we are allowed to make convex linear combinations of interval exchange maps
(induced by 7) and still get interval exchange maps (induced by 7).

As T takes I; isometric and increasingly onto I7,; ¢ = 1,...,m, T is
continuous, but for points in {D;}, where it is right continuous.

To ensure that T is discontinuous at the set {D;} and we have actually m
intervals permuted we suppose from now on that = is discontinuous, meaning
by this that:

m(1)+1#x(1+1);e=1,...,m—1

Another restriction we are going to make on = is that = be irreducible which
means:
T4 2y cmatf =l ensifand I Sidm=si=m

This is not a serious restriction since clearly the dynamics of an interval
exchange map induced by a non-irreducible permutation can be decomposed
and analysed in terms of maps induced by irreducible ones.

If T = T(=,a) is an interval exchange map, T~! is a map of the same
kind. T-' is induced by =~! using a™ € S,,. It is also ecasy to see that
T", n # 0, is an interval exchange map and the extremes of the permuted
intervals lie in the T-orbit of the T-discontinuities. Using this fact and noting
that a bijection T:[0,1) — [0,1) is an interval exchange map if and only
if its graph is made of a finite number of half-open intervals parallel to the
graph of the identity, we see that if an interval exchange map T has a periodic
point p of period n then p lies in maximal half-open interval of periodic points
with the same period n and the extremes of this interval are in the T-orbit
of the T-discontinuities. Thus if T has at least one positive dense orbit, say
the positive orbit of 0, then T is free of periodic orbits. As a matter of fact,
much more is true: in this case T is minimal which means that every positive
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orbit is dense, Keane [2]. On the other hand a suflicient condition for T to
be minimal is that T satisfies Keane's infinite and distinct orbit condition,
i.d.o.c., already defined in the introduction as the condition that the T—orbit
of the T-discontinuities be infinite and distinct.

Finally, a sufficient condition for i.d.o.c. is that a be irrational which

means that:
m

z no;=nfornn, €Z—=—=n;,=nWi

i=1
Following Veech [7] we define the skew-symetric matrix L = L™ as L =
E — II'EIl where E is a m X m matrix with zeros on and bellow the main
diagonal and ones above and II is the matrix of the permutation = given by:
II;; = din(jy where 8y32,7 = 1,...,m are the entries of the m x m identity
matrix. L is defined so that:

Tl2)=s¥eglo;e€ Landi= 1. ..,m.

holds true, where e; = i-th row of the m x m identity matrix.
Defining Lllt"i‘ m columns row matrices T%: &k = 0,1,2,... by 7% = 0 and
TP =@l | THNEL; 05§ <k)ii=1...mand k= 12,... wesee
that, for ¥ > 0 and : = 1,...,m, we have:
TH _Tr =g e= TFO) € L,
Lemma 2.1 T*(0) = T*La; £=0,1,...

Proof: Induction on & > 0. For k = 0 the lemma is clear. Suppose
T*10) = T* Lo for k > 1. Let i € {1,...,m} such that T*1(0) € L.
Using we have

T*(0) = T(T*7}(0)) = T*7(0) + eiLa =

T"'La+ejLa = (T*! + ¢;)La = T*La

which proves the lemma.
Let F = E + Id where Id is the m X m identity matrix. Using E and F
we can write:
T*0) € I; < ¢;E'a < T*Lo < ¢;Fla

for-k 2 Dand i = L,....0m. Thus

(T P e < T o [T — TP



for k> 0and T = T(7,a).

Interval exchange maps are closely related to measured foliations on sur-
faces. To every interval exchange map T = T(x, a) we are going to associate
a Riemann surface R and a quadratic differential w = w(7T) on R whose
vertical foliation,V = V(T), when conveniently oriented, induces T as a first
return map on the essentially unique non-singular horizontal leave. To get
R start with the rectangle [0,1]* in the complex plane z = = + iy € C
and decompose [0,1] x {0} in the intervals closure(I]) and [0,1] x {1} in
the intervals closure(X;);i,j = 1,...,m. We get R from [0,1]* identifying
through a translation the interval closure(I;) with the interval closure(I7 ;)
for 2 = 1,...,m and the interval {0} x [0.1] with the interval {1} x [0, 1].
It is clear that R has a conformal structure induced from C and that dz
goes down to a holomorphic differential whose square we denote by w. The
vertical (horizontal) straight line segments of [0,1]? go down to form the ver-
tical (resp.horizontal) leaves of w and the set of points D; = D7, contains
the set of zeros of w and therefore the set of singularities of its vertical and
horizontal foliations.

Using % Z ) to orient the vertical (resp. horizontal) foliation of w we
look at the first return map induced by V on the horizontal leaf at height
y = 1/2. This map is well defined except at the meeting points of this leaf
with the separatrices of the singularities. Extending this map by demanding
right continuity at these points we get the interval exchange map T. Using R
we see that xy = T(xo) iffl the union of segments of [0,1]?, (zo+ 3, Zo+1] and
(21,21 + 2], go down in R to make a connected subset of a union of vertical
leaves and singularities and the set {0,T(0),...,T*(0)} is represented by a
union of n + 1 vertical segments that go down in R to make up a closed
connected graph which is a union of singularities and segments of vertical
leaves with total length n, starting at i and ending T"(0) + 3.

For each n > 0 define the equivalence relation ~ on S,, as follows:

T A Siff T0) e I(T) < S*(0) € Li(S); k=1,...,nand i=1,....,m
The Farey cell of order n > 0 around an interval exchange map T =
T(m,a), F, = F.(T), is defined as the equivalence class of T under ~.

Thus:

F.={S(B) | T*(0) e ,(T) & S*(0) e Ii(S); k=1,...,nandi = 1,...,m}
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Using the remark following the preceeding lemma have:

S(f) € FiT) & (TH — THE'F < T*LB < (T — THF'8

for k =0....,n and conclude that F,, is a convex polyhedron of §,,.

Thus, to get all the Farey cells of order n > 1 without talking about
interval exchange maps we have to find all the sequences &,... &4 €
{e1,....€m}, & = €1, such that the set of diophantine inequalities :

k
ér1Ela < (Z&-)LQ' < &Fla

1=1

k =1,...,n, have a solution in the cone of positive a = (ay,...,a,, )" If this
is the case, the set of positive solutions of these inequalities in S, 1s F,(T),
where T = T(«) and a is any solution of the above system in §,,. If this is
the case T* = Ztk=1 ook =L syttt

Two distinct Farey cells F,, and F,, are either disjoint or one, say F, ,
is contained in the other, F,,, and in this case we have n; > n,.

Proposition 2.1 The interior of a Farey cell F,, in S,, is non-empty.

Proof: Take T = T(a) € Sn. If a & interior(F,(T)) we have T*(0) =
D;(a) for some k € {1,...,n} and 7 € {1,...,m}. We will show that for
€ > 0 small enough

g — € Qs Qo
l—¢'l—¢""""1-

a = () € interior(F,)
To see the truth of this assertion we will make use of the Riemann surface
R(T). the quadratic differential w = w(T) and the vertical foliation V(T)
induced by w. Denote by F' the union of segments of leaves and singularities
of V representing the T-positive orbit of 0 up to the n-th iterate and take a
point x +¢e+1 € [0,1]? where a,¢ > 0 are so small 2 +¢ < D; and there is no
point of {0, T(0),...,T"(0)} in the interval (0, 2+¢). Consider the polygonal
line through the sequence of points & + ¢ +4; @ + ¢ + 4; Dy tat+et £
and D7, + @ + € and the polygonal line through the sequence of points
we get by dropping the summand ¢ > 0 in the above sequence. These two
polygonal lines cut the square [0,1]? in four components, two of them are
2

rectangles of width e > 0; one, R', above the line y = 3 the other, R”,
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bellow. If we cut these rectangles from the square, push to the left the
remaining right connected component and make the obvious identifications
in the rectangle thus obtained we get a Riemann surface R which is R with
the horizontal lengths scaled by a factor of 1 — e. Now, the effect of this
cutting and gluing on I is to displace by € to the right each crossing of this
set in the interval [2 4 ¢+ ?;'.i, D;’( -1 Fz+e+ %i], which includes at least the
crossing corresponding to T(0). Thus if we choose ¢ > 0 small enough we
can prevent I in R from hitting any D; = D iy as we increase the widths of
the rectangles R’ and R” from 0 to €. Since a horizontal scaling of 1 — € does
not destroy these relationships we see that if ¢ > 0 is small enough a € F,
and, on account of this right displacement of F' starting at T(0), we have in
fact & € interior(F,), proving the proposition.
It is easy to see that the map:

ke {0,...,n}— T*0) € [0,1)

is injective, for every T € interior(F,) and, using the proposition, we see
that the map:
T € F,. — T*0) € [0,1)

k=1,...,n+4 1 is the restriction of a non-trivial linear functional.
Proposition 2.2 Let S and T be in the interior of a Farey cell F,, then:
S*(0) < S'(0) <= T*(0) < T'(0) for k and I € {0,...,n}

Proof: To get a contradiction, suppose there are k and [ for which our
hypothesis does not hold. Take & and [ such that & + [ is minimum with
this property. Without loss of generality we can suppose S*(0) < S/(0) and
T*(0) > T'(0). But then T*(0) > T!(0) otherwise 0 is T-periodic and we
would have T7(0) = D,-1()—i(e) for some j € {1,...,n} contradicting the
fact that T € interior(F,). We can also suppose that S¥1(0) < S=1(0)
and we have by the minimal property of k and I, T*(0) < T'-'(0). By
hypothesis S¥71(0) € L(3), T*(0) € L(a), and S'71(0) € L;(8), T-'(0) €
Ii(a)fori, j € {1,...,m}. As S¥71(0) < S'~1(0) wesee that i < j,buti=j
is an absurd since, using the fact that T is order preserving in I;(a), we would
have T#(0) < T'(0). Thus 7 < j. Now S*(0) € I7»(B) and S'(0) € I7 ) (5)

and since S¥(0) < S'(0) we see that I7(B) is bellow I7,(5); but T and S
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are induced by the same permutation m and therefore the same relation holds
between the intervals I7 (o) and I7 (a) but then T (0) < T!(0), again a
contradiction which proves the proposition.

This proposition shows that il we fix a Farey cell F,,, the order induced on
the set {0,....n} by the natural order on [0, 1) via the injection &k ~— T*(0)
1s independent of T € interior(F,) and that the bijective correspondence:

T*(0) «— S*(0) and D;(T) «— D;(S)

for k€ {0,....n},7€ {0,...,m} and T, S € interior(F,) between the sets
{T50)}7_o U{D:i(T)} 7y and {S*(0)}i_o U{D:i(T)}1, is order preserving.

We say n > 0 or, more properly, T"(0) is a critical iterate of T if there
is a discontinuity of T, D;(T), i € {1,...,m}, such that one of the intervals
[T"(0), D;(T)) or [D;(T), T"(0)] only intercepts {T*(0)}%_, at T"(0).

If there is only one discontinuity satisfying this condition we say 7 is the
type of the critical iterate and call the iterate left or right critical iterate
accordingly to its position with respect to the discontinuity. If the condition
above holds true for p > n that is, one of the intervals [T"(0), D;(T)) or
[D;(T), T"(0)] only intercepts {T*(0)}}—o at T™(0), we say n remains critical
up to the order p.

The reason why we need the notion of critical iterates can be seen in the
next proposition, but before we state and prove this proposition we will show
that an interval exchange map has plenty of critical iterates.

Lemma 2.2 An interval exchange map T € S, has arbitrarily large critical
iterates.

Proof: If 0 is T-periodic the result is clear. To get a contradiction suppose
that there is s > 0 such that n is not critical for n > s. Take 7 € {1,...,m}
such that T**1(0) € L. If { < m using that T**'(0) is not a critical iterate,
there is 0 < k < s such that T**'(0) < T*(0) < D;(T). We can suppose:

T*(0) = min{T'(0) | T'(0) > T***(0) and k € {0,...,s}}

Consider the interval I = [T*+!(0), T*(0)]. T*(I) is an interval for every n >
0 otherwise we would have a first n > 0 such that T*(1) N{D,;(T)}7:5" # 0.
Lot ¥ € lsoces m} be such that D;(T) € T*(). Since T**"*1(0) is not a
critical iterate we can get 0 < p < s+ n such that T?(0) € interior(T™(I)).
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Decrease n il necessary in such a way that n is the first integer such that
there is 0 < p < s+ n with T?(0) € interior(T™(7)). But then T?~'(0) €
interior(T"'(I)) which is only possible if p = 0 and this is an absurd
since then we would have 0 = T?(0) € interior(T"(1)). Thus we must have
T"(7) an interval for every n, but that is an absurd also since the sequence of
intervals I, T!(1), T?(I),...,1 = s—k+1 is an infinite sequence of contiguous
non-trivial intervals in [0,1). If ¢ = m we can use the discontinuity D,,_,(T)
to get T (0) > T*(0) > Dy—1(T) and repeat the above argument to get a
contradiction. This concludes the proof of the lemma.

If F, is a TFarey cell then ¢ = ¢(F,) = the greatest T-critical iterate not
greater than n is independent of T € interior(F,) since this integer only

depends on the order induced on the set {T*(0)}7_, U{D:(T)}™, by [0,1).

Proposition 2.3 F,, = F,(T) = F(T), for ¢ = ¢(F,) and every T €
interior(F,).

Proof: It is clear that F,,(T) C F.(T). We will prove that F,(T) 2 F.(T)
for every T € interior(F,(T)) by induction on n. For n = 0 the statement is
trivial. Suppose, to get a contradiction, that the statement is true for orders
< n but F, # F.(T) for some T € interior(F,). Since F(T) = Fp—1(T)
we have F,,(T) C Fn-1(T) but Fu(T) # Fr-1(T). Take V € F,,_1(T) but
V & F.(T) and consider the closed interval [T, V] C F,_,(T) oriented from
T to V. Let S be the supremum of the points U € [T, V] such that U € F,
and takez € {1,...,m} such that T"(0) € L. Since V € 7, but V € F,_;(T)
we have V*(0) < D;_1(V) or D;(V) < V*(0). In the first case, since n is not
critical for T we can find 0 < | < n such that D;_;(T) < T*(0) < T*(0) and
considering the linear maps U + U'(0)—D;_;(U) and U +— U™ (0)—D,_,(U)
on [T, V], we have:

0 < U'(0) = Di-1(U) < U*(0) = D;—4(U)

for U € [T.S) and U*(0) — D;_1(U) < 0 for U = V which is only possible
if S'(0) = D;_4(S) and therefore U'(0) < D;_,(U) for U very close and
after S, a contradiction with S'(0) € L(U) since S € F,_;(T). In the
second case, since n is not critical for T we can find 0 < & < n such that
T™(0) < T*(0) < D;(T) and considering the linear maps U + U*(0)— D;(U)
and U — U"(0) — D;(U) on [T, V], we have:

U™(0) — D;(U) < U¥0) — D;(U) < 0

13



for U € [T,S) and 0 < U"(0) — D;(U) for U = V which is only possible if
S*(0) = D;(S), a contradiction with S¥(0) € I;(U) since S € F,_,(T).

Now, fix a Farey cell F,,, take T € interior(F,) and define [; = ;(T),...,
bt = g (X)) iand 73 = #1(T)svesPriat =Fm=i(T) by

T5(0) = max{T(0) < D;(a) |0 < ¢ < n}
T™(0) = min{T?(0) > Di(a) |0 < ¢ < n}

In other words, {; and 7). are, respectively, the critical left and right iterates
that remain up to the order n;j,k = 1,....m — 1. It is clear that these
definitions are independent of T € interior(F,) and we can write, in fact,
L= UGi(F,) and vy = rilFy)-
We saw above that a Farey cell F, is defined by a set of inequalities on
T € S,.:
Di a(T) € TO) < Bi{T): k= 1uum

where the i;.'s are chosen in {1,...,m}.
We can rewrite these inequalities more conveniently as:

0 < T*(0) — D;,_1(T) and T*(0) = D; (T) <0for k=1,...,n (2)

The same kind of ideas that lead to the proof of our last result can be used
to prove the next proposition.

Proposition 2.4 The set of inequalities defining F,, is equivalent to the sub-
set:

0 < T"(0) — D;(T) and T(0) — Di(T) <O0fori=1,....m—1 (3)

Proof: Start by removing one by one the inequalities of 2) that are not in 3)
and are redundant. Reasoning by absurd, suppose that after the completion

of this process there remains an inequality not in 3):

T*(0) — D;(T) < 0 for k # I; (4)
or

0 < T*(0) — Di(T) for k # r; (5)

This means there is a point S € S,,, not verifying (4) or (5) but verifying
all other remaining inequalities, which includes (3). Take U € interior(F,).
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Let 'V be the point of intersection of the interval [U.S] with the hyperplane
T#(0) = D;(T). We have [U,V) C interior(F,). I S does not verify we
have 0 < S§*(0) — D;(S). Using that & # [; we have:

T*(0) — D;(T) < T%(0) — Di(T) < 0 for T € [U,V)

and therefore, observing the linear maps T + T"(0) — Di(T) and T
T*(0)— D;(T) on the interval [U,S], we get 0 < §%(0)—D;(S) a contradiction
since S satisfies all inequalities (3). If S does not verify (5) we have S*(0) —
D;(S) < 0. Using that k # r; we have:

0 < T™(0) — Dy(T) < T*(0) — D;(T) for T € [U, V)

and therefore, observing the linear maps T +— T™(0) — D;(T) and T —
T*(0) — D;(T) on the interval [U,S], we get S™(0) — D;(S) < 0 again a
contradiction since S satisfies all inequalities (3). The proposition is proved.

We finish this section recalling a definition from the introduction. A Farey
cell F,, is called small iff each interval I;(T) (I7(T)),z = 1,...,m has at least
one point of the set {T*(0)}7_, for some (and therefore all) T € interior(F,).

It is clear that given an i.d.o. T the Farey cell around T, F,(T), is small
if n is great enough. In the next section we give a description of the small
Farey cells.

3 Stacks

In this section we give a combinatorial description of the small Farey cells
and show that they belong to a finite set of projective types.
Given 7 a permutation of {1, ...,m} irreducible and discontinuous, define:

[ = flm): 40, 0m =1} = {1, .}

(1) -1, iy
f(g) = {m, if 7=a"Ym);

7Y w(j) +1) =1, otherwise.



il w(m)+ 1 =#x(1) and

(1) = 1, if §=0;
ne, if j =7""(=(1) — 1);
7l (m(m) +1) = 1, il j =7""(m);

7 Y x(j)+ 1) =1, in the remaining cases.

i

)=

if #(m) +1 # =(1).
It is easy to see that f is bijective.
Now, using [ define the set A = A(7) of pairs v = (¢,G') where:

¢:{0,...om—=1} = {1,...,m —1}

and
G:{l,...,m} — {1,...,m—1}
satisfy:
1.
g=Gof (6)
2

{9(0), 6(0), -, g™ (0)} = {1,2,.om — 1} =
{G(m),G *(m),..,G ™ (m)} and f(g""(0)) # G "(m) ()

3. C,. the convex subset of R*™1) = {0} x R"~! x R™""! x {0} C R*™
given by the column matrices (Lo, L1, ..., Lim—1, R1, R2, ..., Ry )* satisfy-

mg:
(a)
L;4+ R = z L}'-}-Rﬂj}; t=1...;m~—1 (8)
7€97 (1)
(b)
Gy o Dand 20 = Lt =1
(c) ]
Y. Li+R)=1 (9)
i=1
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has dimension m — 1.

We call the convex set (', the abstract Farey cell of type .

It follows from (7) that g and G are onto and there is precisely one
io € {1,...,m — 1} such that #¢7 (i) = #G'(t0) = 2. We say that 7y is the
type of 7 or, by abuse of language, the type of ¢ (or ().

Note that we can also write (8) as:

Li+R; = Z Licvgpy+ R ; 1=1,...,m—1

keG=1 (i)
or, more simetrically :
Li+ Ri = Lyiy+ Rg-1iy 1 1 =1, Lm—1 and © # 1

LTIIJ + Rio = I"Q—I[t‘o} 'i' RG—I["OJ + Lgm-—‘l[g] + H’.Gm—] (m)

Where ¢7'(G™1) is the unique right inverse of g (resp. G) which misses

g™ 1(0) (resp. G™ '(m) ) in its image.

We are going to prove that, given a small Farey cell 7, there is v € A
such that F,(T) is projectively isomorphic to some C,, which implies the
‘asymptotic’ finiteness of projective types of Farey cells around any i.d.o..
Recall from the introduction that by a projective isomorphism we mean a
bijection £ which can be expressed as L(z) = L(a )/||£()||, where L is
linear, x € R™ and ||z|| = /%, |@i; in this case we say L is the projective
map induced by L.

Now, fix T an interval exchange map and n > 0 such that:

{T*(0)}roo [ D:(T)} 2" (10)
Then we have that 0, T(0), T?(0),...,T"(0) are all distinct and
{TH0)}ico MUDT (TN = {T(0)} = { D7) (T)}-
Using T and n we define the set T = Z(T,n) = {I} given by:
1. Iis a non-degenerate closed interval with extremes in {T*(0)}}_,.

2. the only points of I in {T#(0)}}_, are its extremes.
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Observe that if D,(T) € L.+ € {l...., m — 1}, then D;(T) € interior(I)
and if DI(T) € I. ¢ € {1,...,m — 1} then D7(T) € interior(I) unless
DT =T(0]:

On Z define the relation <== (T, n):

I, KL iff I, = L, or there are ¢ > 1 and I°,I',...,I¢ € {I} such that
P=LTF=Iand T(I'!)=T forr=1,...,q. It is easy to see that < is
an order relation.

We are interested on subsets P C {I} which are totally ordered by the
relation < and maximal (with respect to set inclusion) with this property.
These sets we call stacks. Stacks are disjoint and given a stack P we denote
by ¢(P), the top of P, its last element and by b(P), the botton of P, its first
element. Denoting by [I) the half-open interval we get from I by dropping
its last extreme we can write:

0,1) =3 Y[ + (M, 1) (11)

P IeP
where, ¥ and + denote disjoint union, and M = max{T*(0) | k= 0,...,n}.

Lemma 3.1 Let T be an interval exchange map and n > 0 such that holds
and take T = I(T,n) and == (T, n) as defined above. Let I be the interval
[T%(0), T(0}] , 0 Lk < n.

1. I=1U(P) for some stack P iff either I contains a discontinuity of T or
b=norli=n

2. 1= b(P) for some stack P iff k=0 orl =1 or T**(0) € interior(I)
or I has a discontinuity DY of T~ for some i = 1,...,m — 1, i #
w(l)—1.

Proof: 1) To get a contradiction suppose I = {(P) but IN{D;(T)}25' =
p and k,l < n. Then T(I) = [T*1(0), T*'(0)] and since I = (P) we
must have T?(0) € interior(T(I)) for some 1 < p < n but then T?71(0) €
intertor(I) which contradicts I € 7.

Coonversely, take P the stack containing L. 1f D;(T) € Ifori € {1,...,m—
1} then D; € interior(I) and T(I) is not an interval and therefore T(I) & T,
from which we get I = ¢(P). We can suppose then that IN{D;}727' = 0
which implies T(I) = [T*+'(0), T*'(0)]. By hypothesis we have k = n or
| = n. If T(I) € T we have T"*(0) = T?(0) for some 0 < p < n which

18



means that T"77*(0) = 0 or T*7(0) = D,sigy—y for 0 < n—p < n, a
contradiction with (10). Thus T(I) € 7 and again we get I =1(P).

2) Suppose we have I = b(P), but Iﬂ{Df(T]}}’;{,li;&:m_] =0, k>0
and { > 1. Then T=Y(I) = [T*"'(0), T*'(0)] even if DIy, (T) = T(0) € I
because in this case this discontinuity is the left extreme of the interval I.
But then we must have T~}(I) € T since I = b(P) and this means there
is T?(0) € interior(T1(I)) for 0 < p < n and then T?*(0) € interior(X)
which is possible only if p = n.

Now, going in the opposite direction, take P the stack that contains I.
If DI(T) € Li € {l,...,m —1} and i # =(1) — 1 then DF(T) # T*(0)
for if D7(T) = T*(0) we have k > 0 and D -1341)-1(T) = T*1(0) from
which we get 771(i + 1) =1 =0or ¢ = (1) — 1. Thus D7(T) # T*(0) and
therefore T~'(I) ¢ Z since T~'(I) is not an interval and we have I = b(P).
We can assume from now on that I does not contain discontinuities of T!
other then D7,y ,(T) = T(0). If { =1 then again T~'(I) is not an interval
and therefore I = b(P) thus we can assume also that [ > 1, but then we
have T~Y(I) = [T*'(0),T"-'(0)]. If £ = 0 then T~}(I) ¢ T and thus
I = b(P). If k > 0 we have by hypothesis T**1(0) € interior(I) which
implies T"(0) € interior(T~(I)) and again T~}(I) ¢ Z and I = b(P) thus
proving the lemma.

For the next three lemmas take F; a small Farey cell with s > 0 critical
iterate and fix T € interior(F,). For n the first T-critical iterate after
s it follows that any T € interior(F,(T)) satisfies (10) above. Fix T €
interior(F,(T)). From the lemma and definitions above it follows that T =
Z('T,n) has m stacks which we will index as Py, ..., P,,—; in such a way that
DT(T) € b(P;) holds fori = 0,.. ., m — 1. Since F; is small, n > s has a type

io and the tops of the stacks are given by [T(0),T™(0)] ;i = 1....,m — 1,

have then:
T!'U(U) < T"(0) < T"{0)

mi—1

The natural order of the set {/;}75" induces, via the map j — [;, an
order on the set {I,...,m — 1}. To this ordered set add 0 as a first el-
ement and define ¢ = ¢(T):{0,1,...,m — 1} — {l.....m — 1} taking
each point to its sucessor and the last one to iy, the type of n. Define
G =G(T):{1,2,...,m} — {1,...,m — 1} analogously using the r's instead
of the I's and adding m as a first element.
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‘=1

T O i P It

m—=1

R: _(T) be the left and right intervals defined by:
Li = [T"(0), Di(a)) (12)
R = [D;(a), T™(0)] (13)
o8 § = Dso s m—1

Lemma 3.2 Leti € {1,...,m — 1} then:

L.
T(R) = [DZ41)-1(@), TF(0)] € b(Priigr)-1)

857

T(LY) = [T"*(0), D75 (@))

and either #(i) # m and T(LE] C (Pxzy) or w(2) = m and T(L:) .
[T442(0), D2yy(@)) € H(Pri) with TH(0) = max{T?(0) | p =
L —

Proof: 1)Take R} = [Di(a),T"(0)]. R! C Li.i(a) by the definition of r;
and since each interval I; has at least a point of {T*(0)};_,. Thus T(R!) =
[DF(i41)-1(a), T+1(0)] and T(R}) N{T*(0)}i, = {T"+(0)}. If 0 € T(R;)
then DZ,,,y_(a) = 0 and we have i = 77'(1)—1 from which we get T(R)) =
b(Py). 1f 0 & T(R!) then 0 < Dl is1)-1(@) or (i +1) —1 > 1 and there is £k,
0 < k < n, such that T*(0) < D7 (;41y-1(a). Taking the greatest &k with this
property we see that T(RY) C [T*(0), T"*+(0)] € {I} and, by the preceeding
lemma. this last interval is the botton of Py(i41)—1. This completes the proof
of 1).

2)Let L; = [T%(0), Di(a)) be a left interval. As above, it is clear that
T(L:) = [T"*1(0), DZ; (a)) and this set has no points in {T*(0)}7_, besides
T4+1(0). If 7(é) # m then #(z) < m or DI;(a) < 1 and it follows that
there is a least one T*(0), 0 < k < n, such that T*(0) > D::;(f)(n). We have
then T(LE) C [T"*+1(0), T*(0)] =: 1 € {I} and I = b(Py(;y). If #(i) = m then
T(LY) = [T+%0),1) C L.(a) and T"+(0) = max{T*(0) | k = 0,...,n}.
Applying T again to T(LE] we have T?(L%) = [T4+%(0), Drmy) and ;+2 < n
otherwise [;41 = n, but this lead us to conclude that T"(0) is a critical iterate
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of T and T™(0) = max{T*(0) | k = 0, .5, n} which contradicts the fact that
F.issmall. T?(L?) doesn’t contain points of {T*(0)}7_, besides T*+%(0) and
m(m) < m or, which is the same, D;(,)(a) < 1 and arguing as we did before
we get k € {0,...,n} such that T?(L}) C [T"*2(0), T*(0)] = b(Pr(m)) thus
proving the lemma.

Now define the intervals L7 and Riforj=0,....m—land k=1,...,m
by:

TQ(J'J) if0<j<m-—1and n(j) = m; (14)
0, it § =0
R = T(RL), if1<k<m
PR, k=

b=
with these definitions we have the following description of the bottons of
the stacks:

{T(L;). if0<j)<m-—1and =(j) #m;
L} =

(15)

Lemma 3.3 1.

b(Fo) = [0, T @-171(0)] = L) + R xpqy4

2
L;-i{m) + RE’H =
b(Px1)-1) = [’Ih"',_u...1+2(0)aT!’(0)], if #(m) = =(1) — 1;
Sr=Ha(1)=1) + Rm =
[sz—lml)—1;+1(0)~,T(U)], if #(m) #w(1) — 1.
8.

Li?-“'(m) + Ri—l{ﬁi)—l =
bP;) = [T'=1m*2(0), Tr=us0=141(0)],  if j = m(m);
o fii + Rb )
“w=i() T S (j41)-1
(T (0), T osim ¥ (0)]. if j # m(m).
FE { Lyunoy m—1} and j # 7(1) — 1.

Proof: 1)We have:

L:’:. + Ri—l(;j-a = j{:——‘(l]—! = T(R; -1(:)—1) ==
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[D(a), T a-1+1(0)] € b(Py)

which implies L} + H:_l(”_! = b(Po).
2)If w(m) = w(1) — 1 we have:

Lyospmy + By = TA(L -1 y) + {T(0)} =

m

[T *%(0), D7, (@)) + {DIy-1 ()} =
[T em*2(0), D311 ()] € b(Priy-1)
and thus, as before, the equality must hold. If w(m) # #(1) — 1;

L s (a1y-1) + Bop = T(Ls (ry-1y) + {T(0)} =

(Tt r-0*(0), Dy (@) + {T(0)} = [T+ (0). T(0)

which is contained, and therefore is equal to, b(Pr1)-1).
3)Take j € {1,...,m — 1} and distinct from #(1) — 1. If 7 = m(m) we
have:
) T [ T
Llar*l{rn] + R:“‘l (j+1)-1 — [T % I{"']+2(0)‘- Dr{m}(a})'l'

[D;(m](a)aTrw—l(1+])_]+1(0)] = b(PJ)
If, on the other hand, j # m(m),

!..:,—1 () + R?‘."[j-f‘l)——l = [Ti”"’(a‘)q'l([]). D:(O))+

(D (@), T usn=+1(0)] = 4(P,)
and the lemma is proved.
Lemma 3.4 Tukei€ {1,...,m —1}:

1. Ifi # ig the type of T"(0) and P is the stack such that t(P) = L% + R

i
we have:

(P) = Ly-s(iy + Ry = Li=1(g-10y) + Ro-1¢s)

S
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9, If1 =1 and {{P,)) 4+ {(Ps) = L,:h + fi’fo. where lhe stacks Py and Py are
indexed in such a way thal t(Py) is to the left of 1(Py), we have:

b(Py) = L + Rigmi () and 0(P2) = Lim-1 () + Rj,
where kg and jo are given by:

97" (io) = {jo. g™ '(0)} and G7'(do) = {ko, G ™7} (m)}

Proof: Take P any stack. By the preceeding lemma we have b(P) =
L%+ Rl}m for some j € {0,...,m —1}.

1) Suppose {(P) = L: + H.? for 1 # 1. 1If we look at the T-iterates
of the left extremum of LE} = left extremum of 6(P) and pay attention to
the definitions of the [;'s the first description of b(P) follows. The second
description of b(P), the one using G, follows if we look at the T-iterates of
the right extremum of b(P).

2)We just have to recall that T (0) < T"(0) < T™(0) and T (0) <
D;y(a) < T (0) from which we get ¢(P;) = [T (0), T™(0)] and

t(P;) = [T"(0), T (0)]. The lemma follows as in 1) by the definition of
glor ) since lgm-1(g) (resp. rg m-1(g)) is the greatest [; (resp. ;).

These last results show that given a small Farey cell 7, with s > 0
critical then n, the next T-critical iterate after s, and 7o the type of T"(0) are
independent of T € interior(F,) and therefore F; is divided into exactly two
Farey cells of order n, these two cells being defined accordingly to T"(0) € R,
or T"(0) € Lfo and separated by the hyperplane T"(0) = D;,(T). In fact
we can give a description of n and 7y that depend only on the order of the
points {T*(0)}:_o U{Di(T)}™, in [0,1) which, as we know, is independent
of T € wnterior(F;).

To see this. start by noting that s = maxXi<i<m-1{li,7i} and since F,
is small s has a type jo € {1,...,m — 1}. Suppose s = [;, which means
T*(0) is the left extremum of L. Then T**'(0) (or T**2(0)) is the left
extremum of L% C b(Py,) for ko = 7(jo) (or ko = 72(jo)). Take T*(0), t =1
or I € {r; + 1}, the other extreme of b(Py,) and T*(0), u € {r;}1%;" the
point of {(Py,) lying above T*(0): ig is given by u =r;; and n = s +u — 1.

The case s = rj, is similar, the key observation being again that the
intervals L', R*, L’ and R’ depend only on the order induced on the set

{T*(0)}3= by [0.1).
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A consequence of these observations is that ¢ = ¢(T') and ¢/ = G(T) are
also independent of T € interior(F,).

Now that we have completed the description of the stacks of an interval
exchange map T it will be useful to interpret these objects geometrically on
R(T). the Riemann surface associated to T. To this end it is more convenient
to think of T as the first return map induced by V(T) on the union of leaves
and singularities given by y = 0. If we do this it is clear that to each stack
P is associated a rectangle rec(P) C R(T) with vertical sides on the graph
associated to the piece of orbit 0, T(0),..., T"(0), tops on the union of leaves
and singularities y = 1, bottons on y = 0 and having the intervals I € P as
horizontal equally spaced by 1 slices. To the rectangles rec(P(T)) we add
the rectangle [maxock<,{T(0)}, 1] x [0,1] and get a decomposition of R(T)
as a union of rectangles with disjoint interiors; the interior of these rectangles
are embbeded disks in R(T).

Recall the definition of the distribution matrix of a Farey cell F,, from
the introduction. This is the m x 2(m — 1) matrix (A", p") whose first m — 1
columns A} ; j=1,...,m —1 are given by:

A% =number of times T"'(Li‘;-) intercepts I; as & runs from 0 up to the time
just before T“’(Lﬂ) hits the next ¢(P).

and whose last m — 1 columns p} ; j =1,...,m — 1 are given by:

p%; =number of times Tk(Rﬂ) intercepts I; as & runs from 0 up to the time
just before T"‘(Ri) hits the next {(P).

It is easy to see that these definitions are independent of T € interior(F,).

We are ready to show that every small Farey cell has the projective type
of an abstract Farey cell. To this end take F, a small Farey cell with s > 0
critical and take n > s next critical iterate of the elements of interior(F;);
take I; = {{(F.); % =0l Fe); £ = 1ot — L. g = g(F,) 60d G = G{F,) and
define the linear map:

O — (Lo(ﬁ.), L](O’). Zhieg Lm—l(ﬂ)-. Rl(ﬂ'), ey Rm_1(a], .Rm({}'))‘

where L;(a) = D;(a)—T"(0) and R,(a) = T"(0)—D;(a) fori =1..... m—1,
Lo =R, =0and T = T(r, a).

Theorem 3.1 v = (¢,G) € A and P the projective map induced by the

linear map a — (R) is a projective isomorphism of Fy onto C,.

24



Proof: We start by showing that ¢ = G o [. Take j € {0..... m — 1}.
g(j) # 1o then j = ¢ '(g(y)) and from 1) in the preceeding lemma we have
L'+ j'f(;l = [" =i T B G110y from which we get f(j) = G~ Ya(7))
or G(f(7)) = g(;] If g(7) = 10 we have, using the notation of the preceeding
lemma, _j' = jo or j = ¢"™ '(0) and from 2) of the same lemma we have
WPy) = L% + Rimi(py, and then f(jo) = G ™ '(m) which means that
G([(jo)) = G ™(m) = io = g(jo). Starting with b(Py) = L}m_s (o) + R}, we
have f(¢g"™~'(0)) = ko and again G(f(¢g™'(0))) = G(ko) = 1. These last
results also show that f(¢™~'(0)) = ko # G ™ '(m). From the definitions of
g and G it is clear that (7) of the definition of 4 holds.

Take (L, R)! = P(a) where (L, R)' = (Lo, L1,...,Lim—1, Ry, Ry, ..., Ry
It is clear that L; > 0 and R; > 0 and as length(t(P)) = length(b(P)), (8)
follows from the preceeding lemma so that all that remains to be proved is
dimension(C,) = m — 1. Now, this dimension is < m — 1 for the equations
in (8) are dependent since they add to the trivial equation 0 = 0 and, using
(9) we have C., defined by at most m — 1 linearly independent equations. To
prove that dimension > m — 1, and finish the proof of the proposition all we
have to do is show that P is a projective injection onto F,,. Start by noting
that L and R are linear in a and thus P is projective. In fact, we have:

Li(a) = Di(a) — T%(0 Z ar — T"La (16)
R;(a) = T"(0) — Di(a) =T"La — ch;_. (17)
h=1
for i=1..004 m— ]
Now, using (11) we can write:
a=0m () (18)

Using this equality we can get a left inverse for P given by the projective

é) — a where a = (A", p™) (é) Since clearly P(F;) C

C,, this inverse shows that P is injective and that the dimension of C, is
m — 1. Thus all we need to finish the proof of the theorem is to show that
P is onto. Take (L, R)" € C, and construct a set of closed disjoint intervals
J distributed into m disjoint subsets {P,}L, satisfying:

map induced by (

o
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I. Every interval of Py has the same length Ly + R b=1,...,m.
2. The cardinality of Py is given by:

TG(k) — Tks it k£GP m) and & # m
H1Pi) =< Taimys i k=
n = tomosgmys if k= G"1(m).

To this collection of intervals add a half-open interval J of length L.-1();
call the set of intervals thus obtained 7. We linearly order each set Py,
name these sets abstract stacks and carry the top, botton terminology to
this abstract context. .

Now, index the right extremes of the intervals in 7 distinct from J,
{re,}7_, and the left extremes of the intervals in 7, {le,}7_, in such a way
that:

1. The maps re, — u and le, — u are order preserving whithin each
stack.
2. The index of the right extreme of {(P}) is

rewy, i k#GmH(m);
n, i k=G Hm).

fork=1,....m.

3. The index of the left extreme of ¢(Py) is

lagy, ik # f(g"1(0)):
n, if k = f(g™0)).

fork=1,...,m.

It is clear that there is only one way to index the extremes of the intervals
satisfving the three above requirements.

Now glue the left and right extremes of the intervals in J identifying the
extremes with the same index le* = re*, u = 1,...,n. After this identifica-
tion we get an interval which, after a proper normalization, we can assume to
be [0,1) and a sequence of n + 1 distinct points ¢ := le* =re*, u=1,...,n
and {°:=0in [0,1). Using these points define:
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I. The points d; € [th, "], i=1..... m — 1 such that d; = t" + L; where

Li=Lif || Al and A= () 7):

S

The intervals Lf and RY, i = 1,...,m — 1 defined as in (12) and (13)
using 1* and d; instead of T*(0) and D,(T), respectively.

3. Theintervals L}, and R}, k = 1,...,m~—1 such that b(Py) = Lj’“'{k] + R,

where Li}"‘l(k] is half-open of length L -1y and R is closed of length
Ry.

The definition of 7 such that P(r) = (L, R)" and finishes the proof of the
theorem should be obvious by now:

7 translates each point in an interval of a stack one interval up in the same
stack; points in the the top intervals are mapped in such a way that (14) and
(15) hold true for 7 in place of T and, finally, T(j) == Li—l(m}-
We call P defined above the canonical isomorphism of F; onto C,.

The next lemma describe the vertices of an abstract Farey cell and will

help us in the understanding the approximants to an interval exchange map

i

Lemma 3.5 X° = (L9,..., L% | R°,...,R%) is a vertex of C., v = (g,G)
iff X0 = X° || X®|| where X° = (L% R°) satisfies :

1. (L° R%) is a non-trivial solution of the system (8).
2. L], Rle{0,1}; i=1;...,m

3. If we define the support of L°, supp(L®) as supp(L°) = {i | L°® # 0}
and, analogously, supp(R"), then these supports must be disjoint and
the function ¢ defined on supp(L°) U supp(R®) by ¢ |supp(zo)= g |supp(L9)
and ¢ |yppny= G |supp(roy must be a cycle on the union of the supports
supp(L°) U supp(R?).

Proof: Take (LY, ) satisfying the three conditions above and let X? =
(L, R?); p=1,2, LT and RY >0, ¢ = 1,...,m, non-trivially satisfying the
equations (8) and such that X is the mid-point of the interval [X!, X?]. We
are going to prove that X7, p = 1,2 are multiples of X therefore conclud-
ing that X° is a vertex of C,. It is clear that supp(L?) C supp(L°) and

]
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supp( ) C supp( RY), p = 1,2 since we are dealing with non-negative quan-
tities. Thus, to prove the sufliciency of the conditions it is enough to show
that X[ = X7 i € supp( LY Usupp(R?) and p = 1,2, The ¢(i)-th equation
of (8) is:

Legiy + Begiy = L= (i) + fo-1c0))

or
Legiy + Retiy = Lg=1(e(iy) + Lgm=1(0) + Ha=1(e(iy) + Llg m=1(m)

In any case if we substitute (L° R°) in this equation we see, by the disjoint-
ness of the supports of L and R°, that the left hand side of has exactly one
non-zero summand; L. if ¢(i) € supp(L®) or Ry if ¢(i) € supp(R®). Now,
from 2), it is clear that the same situation must hold on the right hand of
this expression. In other words exactly one summand of the right side must
be non-zero; Lg-1(iy) or Lyn-i(g) il ¢(i) = g(i) or Rg-1(ciy) or R m=1(m) if
c(i) = G(i1) and in any case these equations say that X?{i} = X2. Using
our observation above on the supports of X' and X? we see that the same
relations must hold between the entries of X' and X? or . ,f(f) =Xp=1,2
thus proving the sufficiency of the conditions.

To show that the conditions are necessary let, X° = (L° R°) a ver-
tex of C,. X°is a non-trivial solution of (8) and E?,ﬁ? > 0. It is clear
that if 7 € supp(L)Usupp(R) then g(z) or G(i) € supp(L)supp(R) and
thus, reasoning by induction, we can construct a cycle ¢ with domain D C
supp(L)Usupp(RR) such that ¢(z) = g(i) or ¢(2) = G(i) for ¢ € D. Let
X' = (L', R") be given by X} =1ifi € D and X! = 0 otherwise. X! >0
and. it is easy to see, X! satisfies the system (8) and therefore the same
holds for tX* + X° where t € (—¢,¢) and € > 0 is small enough. But, by
hypothesis, X° is an extreme point of C, and this forces X° be a multiple
of X' proving the lemma since then D = supp(L)Usupp(R) and thus all
entries of X° must be equal.

Recall from the introduction that we call the vertices of F,(T) the ap-
proximants to T.

Theorem 3.2 Lel F, be a Farey cell with n critical, then the vertices of F,
in 8, are primitive interval cxchange maps.

Proof: Take S vertex of F,, in §,,. By the preceeding lemma P(S) = X0
is a vertex of C, where v € A is the abstract type of F, and P is the
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canonical isomorphism F,, —s C,. This means X0 = XY/ | X°| where X
satisfies 1), 2) and 3) of the preceeding lemma. Take T € interior(F,) and
R(U), the Riemann surface associated to U € [T, S). R(U) is decomposed
into rectangles associated to the stacks of U. As we move U from T to S
the rectangles whose basis are not in supp(L°) U supp(R°) will colapse into
graphs but since ¢ . which maps the botton of a rectangle to its top, is a
cycle on supp(L°) U supp(RY), we see that S is primitive and this proves the
theorem.

4 Unique Ergodicity

As before we fix 7 an irreducible and discontinuous permutation of the set
{1,...,m}, m > 2, and identify @ € &,, with the interval exchange map
T = T(n, ) induced by 7 using a.

We want to consider now the Borel probabilities on [0, 1) that are invari-
ant by T. Since T is a translation on each interval I;(a) it is clear that
the Lebesgue measure on [0,1) is T-invariant. If p is a T-invariant Borel
probability (i.e. p(T~'(B)) = u(B), for every Borel subset B C [0,1)),
consider ¢ = ¢,:[0,1) — [0,1) its probability distribution given by ¢(z) =
w([0,2)),2 € [0,1). ¢ is non-decreasing, left-continuous and, in fact, if T is
minimal, an homeomorphism of the interval [0,1). Indeed, if ¢ has a jump
this is due to a point p € [0,1) which has positive measure, an atom of .
But p({p}) = p({T™(p)}).n > 0 thus p must be T-periodic since yu is finite
and we have a contradiction with the minimality of T. This proves that ¢ is
continuous. If, on the other hand, ¢ is not injective, ¢ is constant in an open
interval which has then g-measure zero. Let {X'} be the set of open intervals
that are maximal with the property of having zero p-measure. Since

T-H(X) € {X} il closurer(X)({Df(a)}, =

and there are only a finite number of intervals X not satisfying this last
property (as a matter of fact, at most 2m of them), we see that the set
{X} is finite. In fact, T has no periodic points, preserves the Lebesgue
measure and it cannot take an arbitrary ammount of T-iteration to hit the
T-discontinuities. Taking in account that T has dense orbits we see that
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the complement of |J.X must be a finite set of points which is a contradic-
tion since, as ¢ continuous, this implies g = 0. Thus ¢ is an increasing
homeomorphism.

Let 8: = Bi(p);i = 1,...,m be given by 8; = u(L;) = o(D;) — $(Di-1)-
It is clear that f € S, Thus S = S(u) = S(w, 3) is a well defined interval
exchange map. An easy computation shows that ¢ conjugates T and S or.
more precisely, SoT = T o S, Veech [T7].

The above considerations show that, if T is minimal. we have a map:

P(T) — C(T) C Sp; pr— S(m, B(1))

where P(T) is the set of T-invariant Borel probabilities on [0,1) and C(T) is
the conjugacy class of T in the space of §,,. We will only consider conjugacies
by increasing homeomorphisms but refer to them simply as conjugacies.

Lemma 4.1 (Veech) Let T be a minimal intlerval exchange map, then the
map p+— S defined above is an affine bijection of P(T) onto C(T).

As a corollary of the lemma we see that T is uniquely ergodic iff its conjugacy
class in §,, is trivial.

In what follows we relate the conjugacy class of T, C(T), to the Farey
sequence of cells around T, F,(T).

I T = T(#,a) and S = S(x,) are two interval exchange maps and
¢ conjugates S and T, ¢ o T = So ¢, then ¢ takes T-discontinuities onto
S-discontinuities and as ¢(0) = 0, we see that :

T*(0) € Ii(a) < S*(0) € I(B)

for & = 1y cxth and & 2 0.

Thus C(T) C N, interior(F,(T)).

Theorem 4.1 If T satisfies Keane’s i.d.o.c. then

C(T) = () interior(Fa(T)).
n=0
We just saw that C(T) C ;L intertor(F,(T)). To show the other inclusion

and finish the proof the theorem we need some preliminary results.
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Lemma 4.2 Let T and S be interval cxchange maps induced by = and sal-
isfying:

a)The positive T-orbil of zero, {T"(0)}5L,, s densc in [0,1).

b)For k and | > 0 we have: T*(0) < T'(0) iff S*(0) < S'(0).

Then there exits ¢:[0,1) — [0,1) increasing and right continuous such
that o'T =S o ¢.

Proof: Given z € [0,1) define ¢(z) as follows: choose n; > 0, increasing
such that T"(0) | a (i.e. T™(0) > T™+1(0) > 0 and T"(0) — =z as
k — o0). By b) we have §™(0) > S"+1(0) so that S™(0) is decreasing and
therefore converges to some y € [0,1); take ¢(z) := .

To prove that ¢ is well defined take T™%(0) | @ and S™*(0) | = and, to
get a contradiction, suppose that y < z. We have:

S™(0) < §™0(0) < z < S™(0)

for some kg big enough and any [ and k& > k. Again by b) we have T™(0) <
T (0) < T™(0). If we make k — oo we have z < T™0(0) < T™(0) and
now making [ — oo we get < z, an absurd.

To see that ¢ is increasing and right-continuous is equally easy. Now, take
x € [0,1) and T™(0) | =. Since T is right-continuous we have T™*!(0) |
T(z), and, by definition, S™*1(0) | ¢(T(x)). But then:

o(T(2)) = JE]; S§™+(0) = S(JiIEGS“*(U)) = S(¢(z))
by the right-continuity of S. This proves the lemma.

Using that ¢ is increasing and right -continuous we can write [0,1) —
Image(o) = 3 N where ¥, as before, denotes disjoint union, and {K} is
the family of intervals K = [lim,y,, ¢(2), ¢(x0)); @0 a discontinuity of ¢,
K = [supo,1) or K = [0,6(0)). From ¢oT = S o ¢ we conclude that
S(Image(@)) = Image(¢) and thus that S(3"K) =Y K.

Lemma 4.3 Let T ,S ¢ be as in the preceeding lemma and let {K'} be as
above:

a)If closurer (K ) {DU(B)}S" = 0 then:
S(K) € {K} and S(K) = [S(inf K), S(sup K))
bIf closurer(K) N{ D (B)}i' = 0 then:
S™YK) € {K} and SV (K) =[S (inf K),S " (sup K))
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Proof: The proof of a) is clear since by hypothesis the closure of K is
contained in an open interval where S is continuous; the same idea holds for

b).

Lemma 4.4 Let T, S, ¢ and {K} be as in lhe preceeding lemma. [f T
salisfies i.d.o.c. then {N'} is finite.

Proof: Fix an interval A and suppose closureg (S™(K)) {D:(B)} 2" =
(0, for every n > 0. By the preceding lemma we we have that S™"(KL') € {K}
for every n > 0 and since the family {/K'} is disjoint and S preserves the
the Lebesgue measure there are 0 < n; < ny such that S™(A') = S™(K) or
S™=" (LK) = K which implies that K is made of S-periodic points and
therefore is contained in a maximal interval M of S-periodic points. If
inf M < inf K there is a @ such that ¢(z) € M which implies that z is
T-periodic a contradiction with the fact that T isi.d.o.. If inf M = inf K we
gel again a contradiction since the extremes of M under iteration by S hit
the set {D;(p)}7". All these contradictions prove that we must have a first
n > 0 such that closurer (S™(#)) N{Di(B)} 25" # 0. Now the set of K’s with
a D;(/3) in its real closure is finite and it can not take an arbitrary amount
of iteration to hit {D;(8)}]" since S preserves the Lebesgue measure and
this proves the lemma.

Using the fact that {A'} is finite and that the half-open intervals are a
semi-algebra it follows that we can write Image(¢) = [0,1) — 3° K" as a finite
disjoint and non-contiguous set of half-open intervals {L}. It is clear also
that a result analogous to Lemma 4.3 holds for the family {L} instead of the
family {A'}.

Lemma 4.5 Let T S [0 and {K\'} be as in the preceding lemma and lel
{L} be as above. Suppose thal the image of ¢ meets every interval I(3) and
I7(B); : = 1,...,m, then:
{o(Di(a)}3' = {Di(3) | Di(B) € Image(d); : =1,....,m —1}+
{¢(x0) | 2o is a discontinuity of ¢ & {D;(8)}1;" ﬂ[l_iim o(a). olxg)) # 0}

Proof: Let M be the half-open interval obtained translating the the intervals
L and laying then one next to the other starting from zero and without
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changing their order. Let o: M — Image(') be the translation by parts
that put the L’s back to their original position, let S=1"'oSoy be the
map induced by S on M and h =~ 0 ¢.

But for its domain, which can be different from [0, 1), S is an interval
exchange map and h is an increasing homeomorphism that conjugates S 1o
T. Thus S is discontinuous at the points {h(D;(a))}%;' from which we
have: ¥(discontinuities of 5) = {¢(D;(a))} 3" so that to prove the lemma
we have to show that:

P(discontinuities of S) = {D;(B) | Di(B) € Image(¢); i =1,...,m — 1}
+{é(20) | 20 is a discontinuity of ¢ & {D;(B8)}iZr! [H1m é(2), d(ao)) # 0}

and, considering that these sets have m — 1 elements since no interval A" can
contain an interval I;(/3), we only need to prove the inclusion of the right
hand side of the equality in the left hand. To do this take B; = D;(3) €
Image(¢) and let L be such that B; € L. If B; > inf L it is clear that
¥~ B;) is a discontinuity of S since there is I7(8) € [limyp, S(2),S(B)))
and Image(¢)N17(3) # 0 which implies lim,;5, S(z) < S(B;).

If, on the other hand, B; = inf L, take the interval I;(8) = [D;_;(3), B;).
By hypothesis this interval also meets Image(¢) from which it follows that
there is an interval Ly C I'mage(4) immediately before L and again we see
that 1= (B;) is a discontinuity of S since limy 5, S(z) < S(B;). Now, let ag be
a discontinuity of ¢ such that the interval N = [limzq,, ¢(x), ¢(z0)) contains
the (necessarily ) unique S-discontinuity, B; = D;(8). We have to prove that
S is discontinuous at ¥~ ¢(xg)). As Image(d) intercepts L(8) and I;,(3)
there are intervals L; and L, that meet these intervals and, respectively,
precede and follow N. These two intervals will came together when we make
up M and S will be discontinuous at '¢J_](¢(;rg)l_si1'lce ¢(xo) = inf Ly and, as
before, there is an I(3)-interval between lim,g, S(x) and S(B;), thus proving
the lemma.

Lemma 4.6 Let T .S ,¢0 . {K} and {L} be as in the preceeding lemma then
@ 1s conlinuous.

Proof: Suppose, to get a contradiction, that xq is a discontinuity of ¢. Take
K = [lim,q,, o(2), ¢(xp)). Reasoning as in lemma we can get a first n > 0
such that closurer(S"(K))N{Di(8)} %' # 0 and for this n we still have
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BME) = ), 8" (sup N)) € {N}. I S*(K)N{Di(#)} 1Ly # @ then by
the previous lemma thereis g € {1,..., nm—1} such that S"(sup K') = ¢(D;,)
for D, = D, (o). But S"(sup ') = S"(é(xe)) = ¢(T"(xp)) from which
we gel T"(xo) = Di,. If S"(K)N{D:(B)}2%" = 0 we have sup(S“(K)) -
{Di(B)}s". but sup(S"(K)) = S"(sup(K)) = S“(q‘; (z0)) = ¢(T"(20)) and
we (()l](]ll(](. again by the previous lemma, that T"(xo) = D,,(a) for some
o € {1,..., m—1}.

Now start moving I backwards using S. There must have a first [
0 such that closurer(S'(K))N{DF(B)}25" # 0 and, as before, S'(K)
[S'(inf 1), S'(sup K)) € {K}. We have again two possibilities, either

() (DB # 0

and, in this case, by the previous lemma, we have S~ (sup(K)) = ¢(D;,(@))
(or S""%(sup(K)) = é(Dj,(a)) ) for some jo € {1,...,m—1} from which we
get T'"Y(zo) = Dj,(a) (or T"%(zq) = Dj,(a) ) or

S UDPI(B)E =0

A

and in this case sup(S'(X')) = D7 (f) for some jo € {1,...,m — 1} and we
conclude in a similar way that Tl7 fzo) = Dile) {or T" 2(:::0) =D (a) )
Summing up the two conclusions T"(x) = D;y(a) and T (z0) = Dj, (@) (
or T%(ap) = Dj,(a) ) for 0 > ! and n > 0 and ¢y and jo € {1,...,m — 1}
we get a contradiction with the fact that T satisfies i.d.o.c.. This proves the
lemma.

Proof of Theorem 4.1: All we have to do is collect the above lemmas
together: if the orbits of 0 under iteration by T and S hit corresponding
intervals at the same time Lemma 4.2 shows that the map T"(0) — S™(0) is
order preserving and we can construct ¢. The following lemmas show that
¢ is continuous so that all that remains to be proved is that ¢ is onto or,
which is the same, that the intervals [0,inf ¢) and [sup ¢, 1) are empty. Now,
7 is irreducible, thus these intervals must be transposed by S but this is
impossible for it would imply that I,(3) = [0,inf ¢) and I,(3) = [sup &, 1).
The theorem follows.

Corollaly 4.1 Let T be an inlerval exchange map satisfying i.d.o.c. and

ik =1,...,a,, be ils n-th order approximants, n > 0, then, T is uniquely
ergodic .g{f for every choice of approvimants v to T, n > 0, we have
Bt pa S8 =2k

34



Proof: If, for cach n > 0, we choose v¥* such that:

d. :=sup{|| B—a || | B € Fu} =] vin —a ||

it is clear that if d, — 0 as n — oo, {T} = N, interior(F,) and T is uniquely
ergodic. Suppose now that d,, > ¢ > 0 for n; — oo. We can suppose that
a choice of 'uﬁ:" satisfying || v::" —a ||= d,, converges to 3 € closure(S,,),
B # a. Let us show that v = ";’ﬂ € conjugacy class of T, thus proving that
T is not uniquely ergodic and completing the proof of the Corollary. Suppose
v & conjugacy class of T. This means that there is a n > 0 such that 4 such
that v & F,,, but a € conjugacy class of T and this means that a and 3 are
in opposite sides of H, an hyperplane obtained by substituting one of the
inequalities defining F, by an equality. If we let ¢ be great enough such that

ky, > n and v:-i:" and f# are in the same side of H, we have a contradiction
considering that H enters in the definition of F,, C F,.

Fix now @ € [0,1) and two sequences of integers np and Ny such that
limy_., Ny — ny = oo and consider the Borel probabilities j; given by:

I Ni—=1
=N 2 bria)

i=ng
where &, is the Dirac Borel probability concentrated at y € [0,1).

Lemma 4.7 [f T satisfies i.d.o.c. and is uniquely ergodic then p; converges
weakly to the Lebesgue measure on [0,1). In particular if we take 2 = 0,
ny = k-th T-critical iterate and N = k + 1-th T-critical iterate we see thal
the scquence of the normalized distribution vectors between two consecutive
critical iterales converge to a.

Proof: Compactifying the interval [0,1) by identifying the extremes of
the interval [0, 1]. we see that p has a subsequence ji, that converges weakly
to a probability . We have to prove that y is the Lebesgue measure. To keep
the notation simple let us assume the sequence . itself converges weakly to
. This means:

Ni=1

. 1 i
/f dp = Jﬂim Z [(T(z))

I=ny,
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for every real continuous function on [0, 1) satislying
J(0) = lim f{1) (19)

An easy compulation shows that [ foT du = [[fdp if [ and fo T are
continunous and both satisfy (19). Using this equality we see that u(T~(1)) =
p(1) for every interval 7 C [0,1) whose real closure doesn’t meet the set of
discontinuities of T=1. In fact, it is easy to construct a uniformly bounded
sequence f; satisfying the above requirements such that f; — x;, as [ — oo,
where yy is the characteristic function of /. We have then by Lebesgue’s
theorem:

wW(T™H(T)) = /J\; oF dp = !I'EE‘/f;o T dp =

Ilim’ /_f; dp = /,\-,« dp = p(1)

If we bear in mind that T has no periodic points, it is easy Lo conclude that
if ¢ has an atom p the backward T-orbit of p must hit the set {D7(a)}27".
Thus if u has atoms it has one atom, p, in the set {D7(a)}727'. Now, using
an argument analogous to the one used to prove the T-invariance of the p-
measure of intervals disjoint from { D7 (a)}™7!, we see that p is in a finite set
F. F C{D7(a)}2;" such that u(T(F)) = pu(F) from which we conclude
that p has an atom also in the set T~'(F) C {D;(a)}7;". This atom, in its
turn, as we saw above, by backward iteration using T must hit {D7 (o)}
and this contradicts Keane’s condition. This contradiction proves that T has
no atoms and thus u(T~'(7)) = pu(I) for every interval 7 C [0,1). But this
means that g is T-invariant and, by the unique ergodicity of T, it follows
that g is the Lebesgue measure, proving the lemma.

Theorem 4.2 The necessary and sufficient condition for an i.d.o. interval
exchange map T to be uniquely ergodic is that the sequence of its normalized
distribution vectors belween two conseculive critical iterates converge to a.

Proof: The preceeding lemma shows the necessity of the condition. To
show the sufficiency, start by noting that if the sequence of normalized distri-
bution vectors between two consecutive critical iterates converges to a then
the sequence of normalized distribution vectors between two consecutive right
(left) critical iterates also converges to a since the normalized distribution
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vector between two consecutive right (left) critical iterates ny and n, is a con-
vex linear combination of the normalized distribution vectors between two
consecutive critical iterates that lie between ny and n,. But this means that
the normalized column vectors of the distribution matrices of T, (A", p"), go
to v as n — oo and from this we get that the approximants also go to a since
these, by Lemma 3.5, are again convex linear combinations of the normalized
columns of (A", p™). This finishes the proof of the theorem.

5 Gauss Maps

In this section we define the Gauss map G = G(r):C — C where C =
disjoint union of C,, v € A and show how it generates the approximants
to an i.d.o. T € S,,.(7).

We start by defining two maps £ and R : A — A as follows L(v) = v
where v = (¢.G) and v¢ = (¢, G*) is given by:

o= 90), il #97(g(5)) =1o0rj=g"""(0);
§°G) = {gz(j), otherwise.

£

and G* = g“o f7'. As to the definition of R we have R(7) = 7 where
v = (¢9,G) and 4® = (¢®,G®) is given by :
roo _ [GU). i #GNGG)) =1 or j = G (m);
G (J) = ~2 .
(7). otherwise.

and ¢g® = GR o f. It is easily seen that v¢ and 4% satisfy (6) and (7) above.

Now, fix v € A and consider the hyperplane R;, = L m-1(0) + R(m-1(0))
where 79 is the type of 5. This hyperplane divides the polyhedron C, into
two polyhedra:

Cj:z - {Riu Z )(.«ym—l[[)} - R“gm—lto))] ﬂC.,

Cr = {Ri, < Lgm-1(0) + Ry(gm-10p} Cs

with non-empty interiors. .
In fact, using the notation of Lemma 3.5, it is clear that the vertices X'
and X? of C, given by R' = 0 and supp(L') is the g-orbit of iy and L? = 0
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and supp(R2?) is the G-orbit of iy, are in opposite sides of the hyperplane
j{'f.ﬂ — L_{)"”_](U) + fﬂf(gm—l (U”

The set of equations (8), which define the support of the cone with vertex
0 spanned by C, can be written:

L; + Rt = Lg-l{g} -+ Rf(g—a{g}}, if 2 ;'é ig 4 _{}(?"0);
‘rr"’f-'(f'ta) * RQUD) = L;, + Rf{fnlf il 7 = g(io):
Liy + Ry, =
Ly=1(io) + Bs(g=10o) + Lym=1(0) + Bygm=1(oy if 7 =t0.
T = e oy m—1, ot
Li+ R = Ly-13) + Ry(g-1(i)): il 7 # 10, g(io);
Lg(io) + Bytio) = Lig — (Ly=1(ig) + Ry(g=1(io))) +
Riiig) + Lg=1(i0) + By(5- (io))s if 7 = g(io);
Lig — (Lg=1ig) + Byig-1(i0))) + Biy =
it AR o if i = do.

t=1,....,m~1.
Now, restricting ourselves to (L, R) € C% and defining Lf and Rf by
Rf = R; fori=1,...,m and:

IE = {Lio = (Lg=1(ig) + Ry(g=1(i0)))s i ¢ = to;

L;, otherwise.
and substituting in the above equalities we get:

ffi + Rf j Ly iy + -1y if 7 # 40 5 g(%0);
Ligio) T Byt = i o

L‘ig * Rgso} +;’*g~l(m ¥ jjf{y—l(fu)}’ if 2 = g(io);

Ly + Ry, = Lﬂ’"_l{U} + Rf(y'""(ﬂ))‘ it =gy
t = 1,...,m — 1, which is precisely the set equations defining the support
of the cone spanned by Cg(,). This shows that £() is in A and that the
projective map induced by L(v): (L, R) — (L*, R*) is an isomorphism be-

tween C& and Cg(y). A similar argument shows that R(v) is in A and that
R(%): (L, R) — (L™, R?) given by:

LR =L fori=1,...,m (20)
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and:
- }1’ v |L’ =1 _+‘ )“{ m—1 ). 1{. !; = l’ by
R? = { g — \ig™m—i(0) flg™=1{0)) 05 21
: i, otherwise. (1)
induces an isomorphism between Cff and Cr(,). The Gauss map @ is defined
by G |ce= L(v) and G |cz= R(y) for v € A. We sum up our conclusions in
the next theorem.

Theorem 5.1 The Gauss map G:C — C is a 2-1 map thal establishes a
projective isomorphism CF — Cr(y) and CE — Ce(y) for cach v € A. Lel
Fo C 8, be a small Farcy cell with s critical, n be the next critical ilerate of
Fs, and P: Fy — C,, be the canonical isomorphism, where v is the abstract
type of Fs. Take T € F, and r € C, given by r = P(T). Lel é be such that
G(r) € Cs and denote by g;‘ the branch of G defined on Cs. We have then:

a)P~1(G; 1 (Cs)) is the next Farey cell around T, F,(T).

b)Q = GsoP: F,,(T) — Cs is the canonical isomorphism between F,(T)
and its abstract type Cs.

Proof: We have already shown that G |cz and G |cr are projective isomor-
phisms.

Suppose r € CX. The case r € CX is analogous. Using the notation of
Theorem 3.1 we have r = (L, R)* where L and R are defined by (16) and
(17). Using the observation that follows Lemma 3.4 we see that F,(T) =
P~1(CR) = P~1(G;'(Cs)) which proves a) of the theorem. To show b) start

by using (18) to write a = (A" p™) (ﬁ%) = (A" p" MM (J{%) where (A" p™)

is the distribution matrix of F; and M is the matrix of the linear map defined
by (20) and (21). The matrix (A p) = (A" p")M ™! is equal to the matrix
(A" p™) but for two columns; the ¢™~!(0)-th column of A and the f(¢™1(0))-
th column of p for which we have:

Agm--llg) = ’\;”‘"’[Uj + p:; 'd-]lf] pf[g”'"'l{(_l}} = P?{ym—ltgn 'l' P:’U (22J

Now, this is precisely the distribution matrix of F,(T) since the stacks asso-
ciated to F,(T) are the same as the ones associated to F(T) except for two
stacks which will account for the changes (22) in the distribution matrix. To
see this, observe that the stack P of F, with botton [.-:”}’"._1(“} 2 f.'}(gm_xm}}
should now be moved to a position bellow R at the botton of the stack
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Q of F,(T) which has botton I‘}"lllol + Ht,-'o. This because the top of P is
contained in /2, which is mapped by T onto R; . P with the right slice of Q
of width Lym-1(g)+ Rj(gm-1(0)) o0 its top is a new stack of F,(T); the other is
the remaining of the stack Q after the slicing. This shows that Q™' oGs0oP is
the identity on F,(T) where Q is the canonical isomorphism F,(T) — Cs
and completes the proof of the theorem.

Using this theorem we can construct the generalized continued fraction
expansion of an i.d.o. T € §,, as described in the introduction.

We start with the integral cell around T, F,,(T), and its integral part
Pyl:C,, — Fpny(T), where g is the integral type of T. We can write T =
P5'(ro), where 7o € C,, is the fractional part of T. Now using Theorem 5.1
repeatedly we have:

a =Py G (...G2 (1))

where the remainder r, is equal to G"(ry) and g;l 1s the }Jl'al}cll of G™!
taking C,, into C,,_,. C,,, in its turn, is defined by requiring that G'(ro) € C.;
e .

We use the formal expansion

_p-1,.0-1, 01 -1
a=Pg 0G "0G "0..0 "0..

to indicate the above construction.

[t is clear from Theorem 5.1 that we get the n-th order approximants to T
by truncating the above expansion at level n, substituting the remainder r,
for the vertices of C,,, and carrying the indicated operations. Thus, bearing in
mind Corollary 4.1, we see that just by looking at the generalized continued
fraction expansion of an i.d.o. T we are able to decide if it is uniquely ergodic
or not.

Theorem 5.2 Let T = T(a,w) be an i.d.o.c. interval exchange map and

o= Py

1 =1 . 7] x|
5 0G>" 067" 0.0 0

2 m

its generalized conlinued fraction expansion associated to 7, then T is uniquely
ergodic iff its approvimants, compuled as described above, converge lo «.

On the other hand, if we ask for the conditions under which an expansion

P;'0oG " 0G " 08, 0. (23)

~¥n
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is the generalized continued lraction expansion of an uniquely ergodic T we
must first construct the space of the one-sided subshift of finite type on the
set of simbols A and with a transition 4, to 4, allowed il G(v2) N # 0 or,
which is the same, iff there is a branch of G=' mapping 4, into v, .

This is the space Sshift = Sshift(x) ol sequences (7,)02,, 7. € A such
that G(vue1)Nyn # 0 for n = 1,2,.... We say that the allowed transition
71 to 42 in Sshift is a left transition if the branch of G=' on 4, is given by
L~"'(92) and right transition if the branch of G™' on 4; is given by R™! (7).

It is clear that the sequence of 4,’s in a generalized continued fraction
expansion of an i.d.o. T is in the space of the subshift but that is not enough
to guarantee the convergence of the approximants to an interval exchange
map. Clearly the conditions that:

a) the limit of the diameters of the set of n-th order approximants goes
to 0 as n goes to oc and

b) for every integer n > 1 there is p > n such that every p-th order ap-
proximant, is in the interior of the convex hull of the n-th order approximants

are sufficient to guarantee the existence of an unique interval exchange
map T with the given expansion (23), however this map can fail even to be
minimal. We can get a condition sufficient for the minimality of the map
by watching in the sequence (7,)3%,, the types ig € {1,2,...,m — 1} of the
abstract cells 4, which come from a right transition and are followed by a
left transition or vice-versa. We call these cells the transition cells of (7,)52,.
The condition we are seeking is that:

¢) each type 7p occurs infinitely often as a type of a transition cell in the
sequence (v,)0%,.

Before proving the sufficiency of the condition note that now the n-th or-
der approximants can be found only by truncating the expansion (23) at level
n, substituting the remainder for the vertices of the corresponding abstract
IFarey cell and carrving the indicated operations.

Theorem 5.3 Lef
Py ol 007 0wl 0 (24)

[t

n=

be a gencralized continued fraction capansion where (7,)
in the space Sshift, then conditions a), b) and ¢) above are sufficient in
order thal the approximants defined by the expansion converge lo an unique

1 s a Sequence

uniquely ergodic interval exchange map T = T(w,a). In this case

s o y =
a=P; og_n oG 0L B,
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is the gencralized continued fraction cepansion of T.

Proof: It is obvious that the expansion (24) defines a unique interval ex-
change map T = T(x, ) as the limit of its approximants and that (24) is the
generalized continued fraction expansion of T. We claim that the T-orbit of
0 is dense in [0, 1). In fact, from the stacks parametrization of the Farey cells
it is clear that, as we move forward with the Gauss map G starting at T,
each time we hit a transition cell 4, of type 25 the number of intervals in the
stack C,, containing Dy, in its top increases. Thus, using ¢), we see that the
number of intervals in the stacks of C,, go to oc as n — oo and this forces
the width of these stacks go to 0 as n — oo proving the claim.

Now, using Keane’s minimality condition, Keane [2], we conclude that T
is minimal and, since C(T) C ML, interior(F,(T)) if T is minimal, we have
T uniquely ergodic which proves the theorem.

We give now a combinatorial description of the distribution matrices (A, p)
associated to small Farey cells of a fixed type v = (¢,G) € A. Using this
description we are able to construct the integral parts of interval exchange
maps in S,,(7) that have integral type 4. To this end we will transform the
problem of finding the distribution matrices into the problem of finding the
cycles in the set of permutations I, = I, (7, ¢,G, hg, ..., hn_1) constructed
from ¢, G and m non-negative integral parameters, hq, ..., hy,—1, by a proce-
dure to be defined bellow. To motivate the definition of Il; suppose we have
F, a small Farey cell of type 4 where s is critical. Take n the next critical
iterate of F; and h;; j = 0,...,m — 1, the number of of intervals in the stack
P; of F, where P; is such that b(P;) = L + R‘}m. Each iterate of {T*(0)}7_,
except 0 = T°(0) and T™**(0) = max{T*(0) | k =0,...,n} occurs twice as
an extreme of the intervals in Pj; first as a left and then as a right extreme.
If we define Il taking the order of iteration of a left extreme of an interval to
the order of iteration of the right extreme of the same interval and max — 0
we have a cycle on {0,...,n}.

Reversing the direction of our considerations we start with the &;’s, the
heights of the stacks and use (¢.() to define 11, without reference to the
interval exchange map. This is done as follows. take ho....,lip—1, m non-
negative integers and define Hy = hj-yyy, k=1,...,m and n = Z}":_DI Figs
The permutation 1T, on {0,1,...,n} is defined as follows:

I (Xohy) = 0 for j € {0,...,m — 1} such that ¢/*'(0) = #~'(m) and,
to define IT; on {0,...,n} — {3/, h:}. subdivide this set into m sucessive
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intervals hg, hyy. ... hgm-1) of lengths hy, by, .-, h.ym..:{u] respectively

of lenghts H,,. Hgmy, - - He m=1(my respectively: 11 maps the j-th inter-
val, hy, ), increasingly onto the A-th interval, Hgk(g), where k is given by
G*(m) = f(g'(m)).

As explained above, we must require that 11, so defined be a cycle which
we will assume from now on.

Define the quantities ry, for k =0, ..., mand l;, forj =1,...,masrg =10

and the set {1...., n} into m sucessive intervals H,,. Heginy, - - - He m-1()

and rgk(m) = maxHge-1(,,y, for £ = 1,...,m, and [, 0) = maxhg-i.
These quantities play the role of the order of the remaining critical iterates.
For z = 1,....m, define the set i;, which will represent the set of iterates of
the interval exchange map T in the interval I;(T), as follows:
1; is the set of iterates Il (r;_1) for ¢ running from 0 to the time just before
1% (r;_1) hits the set {ry}p' again.

With those representations in mind it is clear that, if the order of the
points [y (o) and rgi(,) in the cycle Il starting at 0 is correct, we get a
distribution matrix by taking:

Ai; = the number of points ¢ in i; as ¢ runs from /; up to the time just before
q enters {l;}"L; again, and
pir = the number of points ¢ in i; as ¢ runs from r; up to the time just

before ¢ enters {ry}ix, again, for j and k=1,...,m — 1.

We finish this section and this paper using the above theory to construct
an example of an uniquely ergodic interval exchange map. It is clear that the
ideas used in this construction can be used to give a wide class of examples
of uniquely and non-uniquely ergodic maps, a matter that will be pursued
elsewhere.

As explained in the introduction, maps exchanging m = 2 intervals can
be considered as rotations on the circle and i.d.o.c iff irrational rotation iff
uniquely ergodic. The study of maps exchanging m = 3 intervals can also be
reduced to the case of rotations by looking at the induced map on a suitable
subinterval. Thus our theory is really useful for m > 4.

If m =4 we have seven irreducible and discontinuous permutations:

(2,4,1,3), (2,4,3,1), (3,1,4,2), (3,2,4,1),

(4,1,3,2), (4,2,1,3), and (4,3,2,1)



here, and in what follows, we denote a map I’ defined on an interval of
integers bk + 1.k +2....,k+ 1 by the l-th uple

(F(k+1), F(k+2),...,F(k+10).

We take = = (2,4.3,1) to construct our example. In this case [ = f(7x) =
(3.2,4,1) and A has also seven elements:

1 = ((1,3,1,2),(2,3,1,1))s7%2 = ((1:2,3,2), (2, 2, 1,3)),
Gy ((]1‘3-21 2)1 (213- 1,2)),’)’4 = ((2131 ]_’2): (2133 2$ l))
IJ5 = ((113:312)1{213! 133])176 = ((2133 113)1 (31 3,2, 1))3

and v; = ((3,3,1,2),(2,3,3,1))
where, as before, the first entry of the pair 4; denotes ¢ and the second G. The
vertices of the corresponding abstract Farey cells C, are given, respectively,
by the normalized columns of the matrices

/00 011 0 0 0 1)
001 01 01 1 1
s |2 100 1], 0 0 1
P11 B 1 @ @2 | L d 8|
1 1000 1 0 00
\1 0 0 1 0 01 0 1)
/0 0 0 1 000 1 1)
0010 05 L 1 4
|01t o0f {01001
“Tlr a0 8™ |8 h Lo ol
1 100 110 0 0
\1 0 0 1 1 001 0/
000 0 1 00 0 1)
00 1 1 0 00 1 1
o101 0 o1 0 0
=110 1 80| |0 01 @
1 1000 1 000
\1 0 1 0 1 1 0 1 1)
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and v- =

o

o - o =
oo
oo o = — —

The transition matrix

7,={} if G(C,,) NGy, # 0

0, otherwise.

i.j=1,2,...,7,is given by:
/6 01 0@ © 1
0 1001 00
001 0100
T7=|10 0 0 0 1 0},
1 1.0 0 0 00
0001 010
\G 0 01 0 0 1/

and is the sum of the left and right transition matrices

/00 000 0 1) 00100 0 0)
0000100 01 00000
0010000 0000100

cT=|1000000|andRT=|00000 10
0100000 1 00 0000
0000010 0001000
\0 070 L 0 0 0 koooonou

The matrices inducing the branches of the inverse of the Gauss map are:

1 00000 1 00000
01000 1 01000 0
00100 0 ] 00100 0

MAED=10 0010 0" M>3V=]000 100
000010 000010
00000 1 0100 0 I
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where M(7, ) induces the branch of G~ mapping 5, into 5,.
The first small Farey cell of type 7, has the distribution matrix

100000
~_ |1 10110
P=le 0101 0

01 0 0 0 1

and vertices given by normalizing the columns of

D.Ul =

—_—— N O
o =D
= O N O
—_— D — =
T =

Computing the product
M= M(1,3).M(3,5).M(5,2).M(2,5).M(5,1).

M(1,7).M(7,4).M(4,6).M(6,4).M(4, 1),

which is a sequence allowed by T, we get

1 0110 1
1 1.2 21 2
1 0431 2
M=1:19238123
1 1. 3 3 2 2
01 11 0 2

This matrix has characteristic polinomial
I — 13X + 44X —64X° + 44X — 13X° + X©
=(=14+X)%(1 - 11X +21X* - 11X° 4+ X%,

and exactly one eigenvalue with modulus greater then one

G U0 4 i (A 4
2

= 8.7396813132. ...




This cigenvalue has multiplicity one, the associated eigenspace hits C,, at

0.0660453933 . ..
0.1729090847 . . .
0.2275346295. ..
0.1952496795 . ..
0.2498752244 . ..
0.0883859882. ..

A=

and. it is easy to see, M contracts C,, to A.
Using D as integral part we see by Theorem 5.3 that T = T(=, ), for

0.0443606097 . ..
0.4594 745664 . ..
0.3206611563 . . .
0.1755036674 . . .

1s uniquely ergodic with periodic fractional expansion
=1 =1 -1 =1 -1 =1
G710 G5! 0G5l 0G5l 0G5l 0 Gito

= =1 -1 =1 —1 -1
-G‘H 9 g‘rs 9 g"ﬂ < g"h o g’)‘s Q g"!’b Qe
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