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Abstract 

Necessary and suffi cient conditions are given in order that an in ­

terval exch a.nge map satisfying Keane's infinite a.nd di stinct orbit COll ­

dition be uniquely ergodi c. T hi s is don e through the dcvelopment o f 

a t heory for interval exchange maps thai parallcls the classical th cory 

of continued fractions . 



1 Introduction 

Jn this papcr we give necessary aud sufllcient. condit.ions for an intcrva.l ex­
change m <lp satisying Keane's in fin ite anel dislind orbit. condition, i .d.o.c. , 
to be uniquely crgodic. To t.his cnd wc devclop a Lh eory for int.erva l exchange 

maps paralelling Lhe cla.ssica.l theory of conLinued fra.ctions which might be 
o f independcnL interest. 

An inf.ervél.l cxcba.ngc map T = T (rr ,a) of t.hc half open interval [0,1) 
is dellncd by a permuLation r. of the sct { 1, ... , m} a.nd a column vector 

o: = ( a 1 .... , O.m ) 1 in t he simplex: 

as follows: 

m 

Sm = {o.: E Rm I I:a; = 1 anda; > O for i= l, .. . ,m} 
i = l 

Decompose [0,1) in sucessive half-open intervals I t, ... , Im of lengths re­
s pectively a 1 .... , O'm · Tis a translation in each of this in tentais and permutes 
them in such a way that T (I ;) = 1r(i)-th permuted interval; i=l , ... ,m. Thus 
T is continuous but for Lhe extremes of the intervals I ;, where we assume it 
is only r ight. continuous. 

Interval exchange maps were first defined and studied by Keane [2] . 
From now on we will fix the permutation 1i anel ide ntify Lhe interval 

cxchange m a.p T = T( 7f, c1') wi th a E Sm = Sm (r.) . 
T satisfies the infinite distinct orbit condition, i .d.o.c. if the T-orbit of the 

T -discont.inuities are infini te and disLinci. I\.eanc [2] has showu that cxcept 

for maps ly ing in a denumerable set of hyperpla.nes , a li interval exchange 

maps satisfy i.d.o.c. and that i.d.o. interval exchange maps are mínima] 
meaning by this that the posiLive orbit of every point is dense . It is clear 
t ba.t an in ten·al exchangc map T preser v<'s Lebesgue measure on [0,1) ; if t his 
is t he only Borel probability prcservccl by T we say Tis uniquely ergodic. 

It is obvíous that unique ergodicity implies min imality bu t tbe co nverse 
does not. hold, 1-.:cynes anel Newton [4], however i t is true that for Tin a sct of 
full Lebesgue measure in Sm T is uniquely crgodic, !vlazur [6] a nel Veech [8]. 
Boshcrn it zan has found suffi.cient condi t ions for a. min imal intentai excha nge 
map to be uniquely ergodic, [1]. 

The ma,in idea bchind our chantcLerizal.ion of the uniquely ergocli c i. d .o . 
T 's center around an a.nalogy with the Lheory of continuous fractions anel the 



quaJit~· uf ral ÍonaJ aproximaLÍOII to Írrat ionaJ llllllliWrs. til<' part of raLÍOIJéiJ 
lllllllhcrs bcing played by Lhe primit.i,·e inten·al exrhang<' maps T i.e. thc 
ones such lhat. cvery orbit is pcriodic anel Lh<> T -orbit of O hits every T­
discont.inu ity, Keane and Rauzy [3] . Thcsc maps have a half open-periodic 
inte rval whose orbit sweeps out the entire [0,1) in terval. 

To get a li primitive intervaJ exchange ma.ps T , we fix n > O, its period, 
decompose n as a sum of m non-ncga.t.ive in tegers o·1 , ••• , om anel define Lhe 
pcrmuLa.t ion ll on the set {0, ... ,71 - 1} using 1r as we did in t he definition o[ 
the interval exchange ma.p T(1r , o). If fl is a cycle thcn T = (o1 , .. . , o:m)/n is 
a. prirnitive interval exchange rna.p. In th is ca.se a.l l entries of a are rat ional 
numbers o:i = 7Jd Cfi with Pi, qi > O and (ZJi, CJ.i) = 1 for i= ! , .... n1. 

The theory of partial fractions can be developcd throughl the concept of 
Farey series and mediants as indicated in Khinchin [5 , pages 1:3- 15] anel that 
is the point of view more akin to the onc we take here. 

Vle sa.y S is a proper approximanl, to T of order n ~ O if S is primitive 
and the record of the visits that the orbit of O makes Lo Lhe intervals l i up 
to thc time n is the same for T anel S . More precisely: 

(!) 

for any i E {l, ... ,m} anel k E {O, ... ,n} . 
We call the set of S 's sa.tisfying condition (1) above ~he Farey cell of order 

n around T , Fn(T ). Fn(T ) is a convex polyhedron whose vertices in S m are 
primitive in terva.l excha.nge maps but , in general, at most one of these vert ices 
i ~ in Fn(T ) and are thus proper approximants to T. We ca ll t.he vertices of 
Fn(T ) t.he improper approximants or, more simply, a.pproxima.n ts of order 
n to T. Using these concepts we prove that. a.n i.d.o. T is uniquely ergodic 
iff iL~ n-th order approximant~ converge to T as 1l ---1 oc in other words 
Fn(T ) -r T as n -r co. 

We wi ll show tha.t. Lhere is a fin ite setor bounded pol .,·heclra., Lhe abst.ract 
Prtrcy cells of type 1r: 

{c } C C R 2(m-1) 
-, -,EA · -, -

such that for every i.d.o. T , F n(T ) is projcctively isomorphic t.o some C-r,1' E 

A , if n is great enough. _ 
By a projective isomorphism we mean a bijection L which can be ex­

press<"d as L (x) = L(x)/IIL(:I:)II · where L:RN --. R M is linear, x E R N 
a.nd IIYII =L~~ ~ IYd for y E R M. In this cas<" we say li~ th(' projective map 
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induccd by [.. We cal! til(' veclor y = v/IIYII tlw 1/0/'/JJillir.· ·d or t.lw \ ' (•("1(11' 

y E Ri\/ thus projective maps are normalized linear maps. 
To cxplain how we gei Lhe isomorphism between a Farey ccll and i ts 

a bstracL model we necd more dcfiniiions. 
vVe say n 2:: O or, more properly, T n(O) is a criticai iíeratc of T if from 

T n(O) we can sec a discontinuity of T without the interference of previo11s 
T -iteraics of O or, more precisely, if there is a discontinuiLy of T , D;(T) for 
i E {1, .. . , m} such that one of the intervals [T 11 (0), D;(T)) or [D;(T), T " (O)J 
only intercepts {Tk(O)}k=0 ai T 11 (0). 

If therc is only one discontinuity sa.tisfying Lhis condition we sa.y i is the 
type o[ íhe critica.J iíera.te anel call the iterate lefí or right criticai iícra.ie 
accordingly to its position with respect to the discontinuity. If thc coudilion 
above holds true for p > n tbat is, one of the intervals [T11 (0), D;(T)) or 
[Di(T ), T n(O)] only intercepts {T k(O) }f=0 at T 11 (0), we say n rema.ins critica./ 
up to the order p. 

Finally define the distribution vector of T between Lhe iteratcs n anel p, 
n < p, as Lhe column vector whose i-th entry is the number of times T k(O) 
hits I ; as k runs from n to p- 1. 

Using these concepts we can charaderize the uniquely ergodic i.d.o. 's 
T = T( 11, a)'s as the ones which have the sequence of normalized distribution 
vectors bctwecn two conseçutive criticai itera.tes converging to er. 

\Ve say a Farcy cell Fs is sma.Jl if the set {T k(O) }k=1 , for T E :F5 , has at. 
least a point in ea.ch one of the intervals l ;(T ) and T(I ;(T )), i = 1, ... , m. 
Now, given a small Farey ccll F.~ and n > s, the next. criticai iterat.e of 
t.he interval exchange map in the interior of Fs, we are able to define t!Je 
projective isomorphism between :Fs anel its abstract model C1• 

This isornorphism is induced by the m x 2(m- 1) matrix (,.\'\ pn) , tbe 
disíribuíion matrix of Fs, whose first m- 1 columns >.j are the distribution 
vectors of T between the criticalleft iterated of type j that remains criticai up 
to the ordcr n anel the next remaining left criticai iterate; j = 1, ... , 1n-l, and 
whose last m- 1 columns pj: j = 1, ... , m. -1. are defined simila.rly using the 
rigln criti ca.! ilcrales that. rcmain up to t.he arder n, where TE interior(:Fs)· 

On C = L:.., E.A C.., wherc L: denotes disjoint union, we define a map Ç, 
Lhe Gauss ma.p, which dyna.mically generates the approximant.s. Ç is a 2-1 
onto map and the two branches of ç-t defined on an abstract Farey cell are 
projective isomorphisms onto their images which, in their Lurn, abstra.ctly 
represent the " next." Farey cell. 
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To sC<' how Ç gcncral<>s l he approximanls lo an i.d.o. T , Lakc Lhe firsl 
small Fnrey cell nround T , :F710 • This Farey cell is isomorphic as describcd 
a.bovc to a.n absLrnct Farey ccll C1 .0 , / 'u E A. We caJI C,.0 the integral cell 
a round T , lo E A the in ~egral type of T a.nd P õ1

, lhe isomorphism C,o -----+ 

F no : the in tegral par& of T . 
Using this defi nitions we can wri tc: 

for some uniquely defined .,.0 E C1.0 • We call 7'o the fractionaJ part of a . Now, 
using Ç, we can write: 

a= P õ1 (ro) = P õ 1(9_;.1 (9(7·o))) = P01 (9;.1 (Ç~1 (92 (r0)))) = 

= ... = P õ1(9;.1( ... Ç_;,,l (Çn(7'o)) ... )) 

where /i is defined by Çi(1·0) E C,., for i = 1, ... , n and Ç~ 1 is the branch of 
g-1 which takes c,., into c,.,_l. 

We cal! the expansion: 

P -1 g-1 ç -1 g-I 
O' = O O 1'1 O 1'2 O • • • 'i'n O • • ' 

the generalized contiJJUed fraction expansion of a associated to 1r. 

Given O' we get this expansíon by following Lhe 9-orbit of the fractional 
part of T. Using the expa.nsion we get the n-th order approximants by trun­
cating the expansion a.t levei n , subst ituting the remainder Ç"(1·0) for the 
vert ices of C'~'" and carrying Lhe indica.ted operations. Thus we can decide 
if an i.d.o. T is uniquely ergodic by looking at its generalized continued 
fraction expansion. In the opposite direction, under rnild conditions, each 
sequence in the space of the subshift of finite type in thc simbols A with a 
t ransi tion from / 'i to /j allowed iff Ç(C'i'J nc'i'J :f; 0, gives the expansion of 
a.t least one i.d.o. uniquely ergodic T. If we fix the inLegral pa.rt , t his T is 
U111que. 

To finish this picture we give a descript ion of the matrices p.n, pn) which 
occur a.s integra.! parts of ma.ps T wi t h a specified integral type / ' E A. 

The techniques used in this pa.per a re elementa.ry anel the only diffi culty 
that. might ca.me in the way of a.n interested rea.der is the notation employed. 
Since the naming of things is una.voida.ble if "''e are bound to speak abou t 
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them, it scems convcnicnt to work now, though in a skdclty way, the case 
m = 2, in ordcr to keep in mind a simple exa mplc of what gocs on. 

Jf m = 2 then 1r is thc transposit;on (2, 1) and compact ifying [O, 1) to the 
circle 

S1 = { e2r.iO I o E [0, 1)} ç c 
we see thal T = T (t. ,o') is conjugaied to t.l1 e rotaLion 

where a = ( o-1 , o-2 )
1

. 

ldentifying rotations with exchange maps of two intervals, we see T sat­
isfies i.d.o.c. iff the rotation is irrational and T is primitive iff the rotation 
is rational. 

To get the n-th order approximants to S E S2 we start with T = S and 
move T in the interval S 2 to the left and then to the right watching for the 
first T such that the distribution of the piece o[ T -orbit {Tk(O)}k=O on the 
intervals I ;, i= 1, ... , m changes. This cha.nge is only poss ible if one iterate 
T k(O), k E {0, 1, ... , n} cresses the discontinuity o-1 of T a.nd it is clear that 
the first iterate tha.t cresses the discontinuity must be one of the two criticai 
iterates that rema.in up to the order n. Thus, without loss of generality, we 
can take na criticai iterate of T . Take l and r in {0, .. . , n- 1} given by: 

T 1 (O) = max{T k(O) < O't I k = O, ... , n - 1} 

and 
T r( O) = min{T k(O) > O't I k =O, ... , n - 1} 

and define the intervals L = [T 1(0), D1(T )) and R = [D1 (T ) , T r(O)]. If 
we sta.ck the intervals I = [T i(O), T i(O)], i f; j and i,j E {O ,l, ... , n}, 
int(l ) n{T k(O)} k=l f; 0, by putting 12 on top of 11 iff T (It) = 12 we see these 
intervals fa.ll into two stacks that pa.rtition the set {I }. These stacks ha.ve in 
their tops a pair o[ contiguous inten ,als with T n(O) as their common vertex. 
The union of these tops is LU R and, as for their bottons, we have: T 2(L) 
is the botton of the right stack and T (R) of the left stack. Note that a li 
intervals of each stack have the same length. 

Vle will use these stacks to parametrize the Farey cell Fs , where s = 
max{ i , r}, since it is clear that once we have a pair of stacks , specificd by the 
lengths of the in terYals L and R ~ncl their heighls, specified by the numbcr 
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of slices I in cach stack, wc ca.n rcasscmble [O, l) by putiing onc slice ncxt 
Lo lhe other and recover T E Fs by moving up in each stack. On the other 
hand, once wc have these two stacks we can easily construct thc next pa.ir 
a.ccordingly to R 2 L or L > R, where we are denoting the lcngths of the 
interva.ls L and R also by L and R., respectively. 

In fa.ct , if R 2 L the next pair will have a left stack of width R- L and 
the same hcight as the ini t ialleft stack anda right stack with the sa.me width 
L as the initial right stack but height the sum of Lhe previous two heights. 
If L > R the next pair will have a right stack of width L - R and the same 
height as the initia.l right stack anel a left stack with the same width R as 
the initialleft stack but height the sum of the previous two heights. 

Normalizing the lengths of these intervals by the requirement L+ R= 1 
and using this equality to eliminate R we get the Gauss map Ç: [0, 1) ~ 
[0, 1), which is the map that takes a pair of sta.cks to the next pair, defined 
for x = L by: 

2 Farey Cells 

if 0 ~X< ~; 
if t ~X < 1. 

Fix a.n integer m 2: 2 anda permutation 7i of the set {1, 2, ... , m,}. For each 
nt rows columm matrix a = ( a- 1 , ••• , am)i E Sm, where 

n 

Sm = {O' E R m I L O' i = l and O:i > O for i = 1, ... , m} 
i=J 

7i ineluces a bijection T = T(1r,a:) o[ the unit half-open interval [0,1) called 
the interval excha.nge map induceel by 1r using a as follows: 

Starting at zero, partition [0, 1) in to m half-open intcrvals of lengths 
o. 1 , .•. , O'm , respcctively. Next permute these intervals using 1r, that is, in 
Lhe first place put the 1r- 1(l)-th interval, in the second pla.ce put the ?r-

1(2)­
th interval and so on anel so forth .... Finally put the permuted intervals 
back, one next to the other , in order to reassemble [O, 1). T is the map that 
takes each inicial interval onto its permuted through a translation. 

More precisely, given a E Sm , we define Di = D;(a); i = O, ... , m as 
D0 = O anel Di = L:t=l ak and the intcrva.ls li = I ;( a); i = 1, .. . , m, by 
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I; = [Di- J, 0,). Thus { Idi~l is a parlition or [0,1) anel length( l ;) = Oj . 

Now, usi ng 1r, dcfi nç a~; i = 1: ... , rn as o; = o"-' (i) and, as before, the cor­
rcsponclillg Di(o:) = Di(o-.,..);i = O, ... , m anel l f(a-) = l ;(or.);i = l , ... ,m. 
T = T ( 1r, o-) is given by : 

T(:-~:) =:r- Di-1 + o;(í)-l for X E I ; anel i= 1, .. . , m 

As we wi ll fix 1r from now on, we a re going to ielcntify T with n via t,he 
mapa 1--7 T (r;,o). Thus Sm = Sm(r.), thc space o[ interval exchange maps 
(inelucecl by 1r), h as a topology anel an affine structure ineluceel from R m anel 
we are alloweel to make convcx linear combinations of interval exchange maps 
(ineluceel by 1r) anel still get interval exchange maps (ineluceel by 1r) . 

As T takes I; isometric anel increasingly onto I;( i); i = 1, ... , m, T is 
continuous, but for points in {Di}, where it is right continuous . 

To ensure that T is eliscontinuous a t the set { Dí} anel we have actually m 
intervals permuteel we suppose from now on that 1r is discontinuous, meaning 
by this that: 

1r(1) + 1 =J 1r(l + l);i = 1, ... , m - 1 

Anothe r restridion we are going to make on 1r is that 1r be irreducible which 
means: 

1r { 1 , 2, . .. , i} = { 1, ... , i} a.n d 1 ~ i ~ rn ==? i = m 

This is not a serious restriction since clearly the dynamics of an interval 
exchange map induced by a non-irreducible permutation can be clecomposed 
anel analysed in terms of maps induced by irreelucible ones. 

If T = T ( 1r, o) is an inte rval excha.nge map, T-1 is a map of the same 
kind. T- 1 is induced by 1r- 1 using a:r. E Sm· H is also easy to see that 
T ", n =/= O, is an interval exchangc map and the extremes of the pernJUtcd 
intervals lie in the T -orbit of the T -discontinuities . Using this fact a.nd noting 
that a bijection T : [O, 1) ----. [0, 1) is an interva.l cxcha.ngc map i f anel only 
if its graph is made of a. ftnite number of half-opcn intervals para llel to the 
graph of the identiLy, we see that if an interva.l exchange ma.p T has a periodic 
point p of perioel n thcn plies in maximal balf-open interval of perioeli c points 
with the same perioel n anel the extremes of th is interval are in the T -orbit 
of the T -discontinuities. Thus if T has at leasi onc positive dense orbit, say 
the positive orbit of O, tbcn T is free of pcriodic orbits. As a matter of fact, 
much moreis t rue: in this case Tis m inimal which means t hat every positi ve 
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orbi t is dcnsC!, 1\.caJJC [2]. On t,lt r. other ha.JJd (t suflicietll. ('Olldi t ion ror T lo 

be minimaJ is tha.t, T sa.Lisfies 1\ca.ne's infinite a.nd distin ct. orhil. condiíion , 
i.d.o.c. , a.lrcady defined in the introduction as the conditiou that Lhe T -orbit 
of Lhe T -discontinuilies bc infini tc and dislind. 

Finally, a sufficient cond it,ion for i.d.o.c. is that, a bc irrat.ional which 
mcans that; 

m 

2:::::: n;o·; = n for n, n; E Z ==* n; = n, \:li 
i=l 

Following Veech [7] we define thc skew-symetric maLrix L = V ' as L = 
E - IVED where E is a. 1n x rn rnatrix with zeros Oll anel bcllow Lhe ma.in 
diagon al and ones above and I1 is the matrix of the pcrn11üat ion r. given by: 
Il1j = Ôitr(j) where 8k1; i,j = 1, ... , m. are the entries of the m x 1n iclentity 
matrix. L is defined so that: 

T (x) = x + eiLo:; x E I; and i = 1, ... , m . 

holds true, where e; = i-th row of Lhe m x m identity matrix. 
Defining Lhe rn columns rovv matrices Tk; k = O, 1, 2, ... by 1'0 = O and 

T/' = #{j I T i(O) E I;; O:::; j < k}; i= l, ... ,rn anel k = 1:2, ... we see 
that, for k ~ O anel i= 1, ... , m, we have: 

Tk+ 1 - Tk = e; <::::==} T k(O) E I; 

Lem ma 2.1 T k( O) = TkLa; k =O, 1, ... 

Proof: Induction on k ~ O. For k = O the lemma is clear. Suppose 
T k- 1(0) = Tk- 1Lo: for k ~ 1. Let i E {l, .. . ,m} such that T k- 1 (0) E I ;. 
Using \\'C ha.ve 

T k(O) = T(Tk- 1 (0)) = T k- 1 (0) + e;Lo: = 

Tk-t Lo:+ e;La = (Tk- t + e;)Lo: = Tk Lo: 

\\·hich proves the lemrna. 
Let F = E+ ld where l d is the m. x m iclenti ty matrix. l'sing E and F 

\\'e can w ri te: 
Tk(O) E l i <::::==} eiEta:::; TkLo: < eiFto: 

for k ~ O and i = 1, ... , m. Thus: 

(Tk+I - Tk)Eta:::; Tk Lo: < (Tk+1 - Tk)Fto 
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for k 2: O a 11d T == T (;r, o). 
l11 tervaJ cxchange maps are close ly relatcd Lo mca.sured foliatious on sur­

faccs. To every inlen·a l cxcha.nge map T == T (íT , ct) we a re going to associale 
a Riemann surface R anel a quaclraJic d íffercnLial w = w(T ) on R whose 
vertical foliation,V == V(T ), when conveniently orienled , induces T as a first 
rel urn map on Lhe essent ially unique non-síngu lar horizontal leavc. To get 
R start with tbe rectang le [O, 1]2 in the complex plane z = x + iy E C 
anel elecompose [0, 1] x {O} in Lhe intervals closw·e(Ij) anel [O, 1] x {1} in 
the intervals clostt1'e( I; );i,j == 1, ... , m . We get R from [0, 1]2 ielentifying 
through a translation tbc intervaJ closu1'e(Ii) with the interval closw·e (I~(i)) 
for i = 1, ... , rn anel the interval {O} x [O. 1] with the interval {1} x [0, 1] . 
It is clcar thai n has a conformai structure induced from c a.nel that dz 
goes down to a holomorphic difl:'erential whose square we denote by w. The 
vertical (horizontal) stra ight lí ne segments of [0, 1]2 go elown to form the ve r­
t ical (resp.horizontal) leaves of w anel the set of points Di = D ;(i) contains 
the set of zeros of w a nd therefore the sei of singularitíes of its vert ical anel 
horizontal foliations. 

Using ;Y (%x) to orient the ver t ical (resp. horizontal) foli ation of w we 
look at the first retu rn map índuced by V on the horizonta l leaf at height 
y = 1/2. This map is well defineel except at the mee ting points of th is leaf 
with the sepa.ratrices of the s ingularití es. Exteneling this map by elemaneling 
right continuity at t hese points we get the interval exchange map T. Using R 
we see that x1 = T (x0 ) iff t,he union of segments of [O, 1]2

, (x0 +~i, xo +i] and 
(x 1, :~: 1 +i], go down in 1?.. t.o make a connecteel subset of a. union of vertical 
leaves anel s ingulariLies and the set {0, T (O), .. . , T n(O)} is representeel by a 
union of n + 1 Yertical segments that go elown in R to make up a closeel 
connected gra.ph \\'hich is a union of s ingularities anel segments of ver t ical 
leaves with totallength n, sta.rt ing at ~i a.nd cneling T n(o) + ~i. 

For each n 2 O define t he equivalence relalion ~ on Sm as follows: 

T ~ S iff T "(O) E I ;(T ) {::} S"(O) E I ;( S ); k == 1, .. . , n a.nd i = 1, ... , m 

The Farey cc/1 of order n 2 O a.round an interval exchange map T = 
T (ir,a), F n = :F11 (T ), is defined as tbc equivalence class of T under n 
Thus: 

Fn == {S (,B) I T "(O) E I ;(T ) {::} Sk(O) E I ;(S ); k = 1, ... , n and i= 1, ... , m} 
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Using t.hc rcma rk following the preccedillg lelllllla have: 

for k = O, ... , n a nel concluclc LIHLL F ,1 is a. convex polyhedron of 5 111 • 

Thus, to get a li t he Fa.rey cell s of order n 2:: 1 wi thou t taJk ing aboul 
inlerval exchangc maps we havc lo find ali thc sequences Ç1 ... . ,Çn+ l E 

{e 1, ••• • em}, 6 = e1, such thaL Lhe set. of diophantine incqualit.ies : 

k 

~k+lEto- :s; ( L~;)La < ~k+, Fta 
i=l 

k = 1, ... , n, have a solu t ion in the cone of posit ive a = ( a 1 , ... , a·m )t . If tbis 
is the case, the set of positive solutions of these inequalities in S m is F n(T ), 
where T = T ( a) a.nd a is any solution of the above system in Sm. If this is 
the case Tk = Zf=1 Çi , k = 1, ... , n + l. 

Two distincl Farey cells F n
1 

anel F 112 are eiLher disjoint or one, say F n
1

, 

is contained in Lhe other, F 112 , anel in this case we have n 1 > n2. 

Proposition 2.1 The interior of a Farey cell F n in S m is non-empty. 

Proof: Take T = T(a) E S m· If a rf. inte1·im·(Fn(T )) we have T k(O) 
Di(a) for some k E {l , ... , n} and i E {l , ... , m }. Vve will show that for 
c > O sma.ll enough 

_ ( a1 - é 0 '2 Úm ) . . ( 'L 
a· = ,--, ... , -- E 1.ntenor J""71 ) 

1- c 1-c 1 - é 

To see the truth of this asserLion we will rna.ke use of the Ricmann surfa.cc 
"R(T), the quad ratic differential w = w(T ) anel Lhe verti cal foliation V(T ) 
ineluced by w. Denote by F the union of segments of leaves anel singularit ies 
of V representing the T-positive orbit of O up to the n -th iterate anel take a 
point :r+ € +i E [0,1]2 where x, c> O are so small x +é< D 1 anel there is no 
point of {0, T (O), ... , T n(O)} in the interval (0, :r +c:) . Consicler the polygona.l 
linc th rough the sequence of points x +E + i; x +E + ~i; D~(I)- I + x + c+ ~i 
and D~(l)-l + x + € anel the polygonal line t hrough the scqucnce of points 
we get by dropping the summand é > O in the above sequence. T hese two 
polygonal lines cut thc square [0 1 1}2 in four components. two of them are 
rectangles of width € > O; one, R', above the linc y = ~ t. hc other , R", 
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bellow. H W<' cut t.ltesc red.anglcs from the squa.re, pusl1 Lo Lhe lcft the 
rcmaiuing right counected cornponcnt and ma.kc the obvi~us idcntifications 

in the rectangle thus obt.ained wc get a Riema.nn surfacc R which is R wit.h 
the hori%ontal lcngths scaled by a f a dor of 1 - é. Now, thc effect of this 
cutt ing anel gluing on F is to clisplace by é to Lhe right each crossing of this 
set in the interval [:t +é+ ~i, D ;(J)-J + x +é+ ~i], which includes at least the 
crossing corr:spor~_diug to T (O). Thus if we choose c:: > O small enough we 

can prevent F in R from hitt.ing a.ny Di = D rr(i) as we increase the wiclths of 
the rectangles R' anel R" from O to E. Since a horizontal scaling of 1 -é does 
not destroy tbese relationships wc see Lhat if E > O is small enough ã E Fn 
and, on account of this right displacement of F starting a t T (O), we ha.ve in 
fact ã E inte1·i07·(:Fn) , proving the proposition. 

I t is easy to sec that the map: 

k E {O, ... ,n} ~ T k(O) E [0,1) 

is injcct ive, for every T E inte1·ior(:Fn) and, using the proposition, we see 
tbat the map: 

TE Fn ~ Tk(O) E [O, 1) 

k = 1, . . . , n + 1 is the restriction of a non-triviallinear functional. 

P roposition 2.2 Lei S and T be in the interioT of a Farey cell Fn then: 

Proof: To ge t a contra.cliction , suppose there are k anel l for whicb our 
hypothes is does not hold . Take k anel I such that k + l is minimum with 
th is property. Without loss of generality we can suppose Sk(O) < S1(0) anel 
Tk(O) ~ T 1(0). But then T k(O) > T 1(0) otherwise O is T -periodic anel we 
would have T i(O) = Dr;-l(J)-J(a) for somej E {l, .. . ,n} contradicting the 
fad that T E inle?·ior(:Fn) · V\fe ca.n a lso suppose that s k- 1(0) < S 1

-
1 (0) 

anel we have by tlw minimal propert.y of k anel l, T k- 1 (O) < T 1- 1 (0). By 
hypothesis s k- 1 (0) E t (,B), T k- 1 (0) E Ii(o-) , anel S1

- 1 (0) E I i(,B), T 1
-

1 (0) E 
l i ( a) for i , j E {1, ... ,m}. As Sk- 1(0) < S1- 1(0) wesee that i~ j, but i= j 
is a.n absurd since, using the fact tbat T is order preserving in l i( a), we would 
have Tk(O) < T 1(0). Thus i< j. Now Sk(O) E I~(i)(,B) anel S1(0) E I;ul(B) 
anel since Sk(O) < S1(0) we see that I;(i)(,B) is bellow I~(j)(,B); but T anel S 
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are induccd h.'· 1 h<' samc pcrmut<üio tt r. and t.hereforc t lt c same relation holds 
between t.hc intcrvals r ; (;l(O') and I ;(j)(o·) but. then TÁ'(O) < T 1(0), again a 
cont rad ict ion \\'h ich proves t he proposition . 

Th is proposition shows that i f wc fixa Farey cell :F71 , Lhe o rdcr induced on 
the set {0, ... . 11} by lhe natu ral ordcr on [O, l ) via the injcction 1.: .,._. T k(O) 
is independcnt of TE intet·io1·(:F11 ) and that the bijective corrcspondence: 

for k E {0, .... 11}, i E {0, ... , m} a.nd T , SE ínte1·ior·(:Fn) between the sets 
{Tk(O)} k=O U{D;(T)}i~o and {Sk(O)}k=0 U{Di(T)}i~o is order preserving. 

We sa.y n ~ O or , more properly, T n(o) is a critica.l í terate of T if there 
is a discontinuity of T , D;(T), i E {1, ... , m}, such that onc of t he intervals 
[T"(O), D;(T )) or [Di(T ), T 11(0)) only intercepts {T k(O)}k=0 at T 11 (0) . 

If there is only one discont inuity sa.tisfying this condition wc say i is the 
íype of the criticaJ iíer aíe and ca.ll t he iterate left or rig hi cri ticai i terate 

accordingly to its position with respeci Lo the discont inuity. lf the condition 
above holds true for p > n tha.t is, o ne of the interva.ls [Tn( O) , D;(T )) or 
[D i(T) , T 11 (0)] only intercepts {Tk(O) }~=o a.t T 71 (0), we sa.y n rcmains criticai 
up io the order p. 

The reason why we neecl t he not ion of criticai iterates can be seen in the 
next proposition , but before we sta.te and prove this proposition we will show 
tha.t an intcr\'éll exchange map has plenty of critica.l itcra.tes . 

Lemma 2.2 An inteTval exchange map TE Sm has a1·bit.ratily large c1·itical 
itemtes. 

Proof: H O is T -periodic the resul t is clear. To get a. con tn,di ction suppose 
that there is s ~ O such that n is not criticai for n > s. Ta.ke i E { 1, ... , m} 
such that T s+l (O) E I ;. If i < m using tha.t Ts+t (O) is not a criti cai iterate, 
there is O :::; k :::; s such t ha.t T s+ • (O) < T k(O) < D; (T ). \'A/e can suppose: 

Consider t he interva.l I= [T5+1(0), T k'( O)j. T 11 (I) is an interva l for every n ~ 
O otherwise \\'e would ha.ve a. firs t n ~ O such tha.t T 11 (I) n{ Dj(T)}~11 i= 0. 
Let j E { l. .... m} be such that. Dj(T) E T n(I). Since T~+n+ 1 (O) is not a 
critica.! it erate \\'e can get O :::;]):::; .s + n such t ha.t '.P(O) E ·inte1·ím·(T 11 (I)) . 
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Decrease 11 if nece::;sary in such a. wa.y tha.t n is the first integcr surh t. l1o.f. 

Lhcrc is O ~ p ~ s + n with TP(O) E inleTior(Tn(I)). But the11 T 71 -
1 (O) E 

interim·(T n-I (I)) which is only possible i f p = O and this is an a.bsurd 
since then we would havc O= T P(O) E inte1·ior(T n(I)) . Thus we musL havc 
T n(I) an intcrval for every n, but that is an absurd also since the sequenrc of 
intervals I, T 1(1), T 21 (!) , .. . , L = s - k+ 1 is an infinite sequence of contiguous 
non-trivial iutcrvals in [0 , 1). lf i = m we can use Lhe discontinuity D 111 _ 1 (T ) 
Lo geL T s+J (O) > T ""(O) > Dm-1 (T ) a.nd repca.t the above a.rgument to gct a 
contra.diction. This concludes the proof of the lemma .. 

H :F11 is a Farey cell thcn c= c(Fn) = the grea.tesL T -critical itera.tc not 
greater than n is indcpendent of T E inte1·ior·(:F,J since this integer only 
depends on the order induced on the set {T k(O)}k=O U{Di(T)}i~o by [0, 1). 

Proposit ion 2.3 Fn = Fn(T ) = F c(T ), jo1· c = c(Fn) and eve1-y T E 
interim·(Fn) . 

Proof: H is dea.r tha.t Fn(T ) Ç Fc(T ). We will prove that Fn(T) 2 F c(T) 
for every T E inte1·ior(Fn(T) ) by induction on n. For n =O the statemcnt is 
triv ial. Suppose, to get a contra.diction, that the sta.tcrnent is true for ordcrs 
< n but Fn =/; F c(T) for some T E inteTi01·(Fn)· Since F c(T) = Fn-1 (T) 
we ha.ve Fn(T) Ç Fn-1 (T ) but Fn(T) =/= Fn-1 (T). Take V E Fn-1 (T) but 
V ~ F n(T ) and consider Lhe closed interva.l [T , V ] Ç Fn_1 (T ) oriented from 
T to V. Let S be the supremum of the points U E [T , V ] such that U E :Fn 
and take i E {1, ... , m} such that T n(O) E I. Since V f/. Fn but V E Fn-I (T) 
we ha.ve v n(O) < D;_1 (V ) or D;(V) ~ v n(O) . ln the first case, sincc n is not 
criticai for T we can find O~ l < n such that D;_1 (T) < T 1(0) < T n(O) and 
cons idering the linear rna.ps U 1--7 U 1(0)-D;_ 1 (U) a.nd U 1--7 U 11(0)- Di- l (U) 
on [T, V ], we have: 

O< U 1(0)- D;_1(U) < Un(O)- D;_ 1(U ) 

for U E [T , S ) and Un(O)- D;_1 (U) <O for U = V ·which is only possible 
if S1(0) = D;_ 1 (S ) and therefore U1(0) < D;_1 (U ) for U very closc and 
after S , a contradiction with S1(0) E l ;(U ) since S E F 11 _ 1(T ). In thc 
second case, since n is not critica! for T we can find O ~ k < n such that 
T n(O) < T k(O) < D1(T) and considering the linear maps U 1--7 U k(O)- D;(U) 
and U 1--7 u n(O)- D;(U) on [T, V], we have: 

u n( O) - D;(U ) < U k(O) - D;(U ) < O 
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for U E [T , S) andO:::; U ''(O)- JJ;(U ) for U = V which is only possible if 
Sk(O) = D;(S), a cont.radiction \\"Ít.h Sk(O) E I;(U ) sincc S E Fn_ 1(T) . 

Now, fixa Farey cell F 11 , t.a.kc T E inte1·ior(:F11 ) anel define 11 = /1(T ), ... , 
lm-1 = lm-1 (T) a.nd '~'1 = 7'1 (T ), ... , 1'm- 1 = 7'm-l (T) by: 

T 11(0) = max{Tq(O) < Di(a) I O~ q:::; n} 

T r"(O) = miu{T q(O) > Dk(o·) I O:::; q ~ n} 

In ot.her words, Lj and 1'k are, rcspectively, t.hc criticalleft. and right iterat.es 
t. hat. remain up to t.he order n;j,k = l, ... , ·rn- l. It is clcar t. hat these 
definitions are independent. of T E interior(Fn) and we can wri te, in [acl, 
lj = lj(:Fn) and rk = 1'k(Fn) · 

\Ve saw above that a Farey cell Fn is defined by a sei o[ inequalities on 
TESm: 

where the ik 's are chosen in { 1, ... , m}. 
\".'e can rewrite these inequalit.ies more conveniently as: 

The same kind of ideas that. lea.d to the proof of our last result can be used 
Lo prove the next proposition. 

Proposition 2.4 The sei of inequalities defining Fn is equivalent to the sub­
sei: 

O~ T r, (O) - Di(T) anel T 1i(Q) - D;(T) < O for i= 1, ... , m- 1 (3) 

Proof: Start by removing one by one Lhe inequalit.ies of 2) that a re not in 3) 
anel are redundant. Reasoning by absurd , suppose t hat aft.cr the completion 
of this process t.here remains an inequality noL in 3): 

T~.-(0) - D;(T ) < O for k =/= l; (4) 

o r 
(5) 

This means therc is a point S E Sm not verifying (4) or (5) but ,·erifying 
a li other rema.ining inequalities, wh icb includes (3) . Ta.ke U E inlerÍ01'(Fn)· 
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Lel v b(' Llw poinl or inlf'I'S('C\,Íon or th<' int.cn·al [U. S] wil h I h<' hypcrplanc 
T k(O) = D;(T ). Wc ha.,·e [U, V ) Ç inlct·ior(:F11 ). Ir S does nol vcrify wc 
ha,·e O ~ Sk (O) - D;( S). Using thal k f:. l; \\'C havc: 

and the rcfore : observing the linear maps T 1--1 T 1
• (O) - D;(T) and T 1--1 

T k(O) -D;(T) on the interval [U , S], we gct O ~ S1•(0) - Di(S) acontradiction 
since S satisfies ali inequali ties (3) . lf S does not vcrify (5) wc ha.ve Sk(O) -
D;(S) < O. Using Lh a l k f:. T ; we have: 

and therefore, observing the linear maps T 1--1 T r, (O) - D;(T ) and T 1--1 

T k(O) - D;(T) on the interval [U, S], we get s r·(O) - D;(S) < O again a 
contradiction since S satisfies a ll inequalities (3) . The proposition is proved. 

\llle finish lhis section recalling a definition from thc introduction. A Farey 
cell :F11 is called sma.Jl iff ea.ch interva.l I;(T ) (Ii(T )) , i = 1, ... , rn has a.t least 
one point of the set {T k(O) }k=l for some (and therefore all) T E inte1·io1·(:Fn)· 

It is clear tha.t given a.n i.d.o . T the Farey cell around T, Fn(T ), is sma.ll 
if n is great enough. In the next section we give a description of the sma.ll 
Fa.rey cells. 

3 Stacks 

In this section we give a combinatorial description of the small Farey cells 
and show that thcy belong to a finite set of projective types . 

by: 

Given 1r a pcrmutation of {1, ... ,m} irreducible and discont inuous , define: 

f = f(-rr ): {O, ... ,m -1}- {l, ... m} 
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if ;r(m) + I = r.( I ) and 

if rr(m) + 1 i: r.( l ). 

if j = O; 
if j = ?r- 1(r.(l)- J); 
i f j = 1r- 1 (m); 
in the rema.ining cases. 

It is ea.c;y to see that f is bijective. 
Now, using f define the sct A = A(1i) of pa.in; ~; = (_g,G) where: 

g : {0, ... ,m -1}--. {1, ... ,m. -1} 

and 
G:{1, ... ,m} --. {l , ... ,m- 1} 

satisfy: 

1. 
g = Gof 

2. 
{g(O),l(O), ... ,gm- 1(0)} = {l, 2, .. . m- 1} = 

(6) 

{G(m) ,G 2(m), ... ,G m-t(m)} and f(g 711
-

1(0)) i: G m- 1(m) (7) 

3. C, . th<' convex subsel of R 2(m-l) = {O} x R m-t x R m- l x {O} Ç R 2m 

givcu by the column matri ces (Lo, L 1 , .•• , Lm_1 , R 1 , R 2 , ... , Rm)t satisfy­
mg: 

(a) 
L;+ R; = L Li+ Rf(j); i = 1, ... , m- J (8) 

j Eg-l(i} 

(h) 
L i > O anel Ri 2: O ; i = 1, ... , m - 1 

(c) 
m - 1 

L (L; +R;)= 1 (9) 
i=l 

16 



ha.s dini<'JJSÍOII "' - I. 

We call the COIIV('X scl c( t.,h(' aiJsira("( Farey ccll o[ iypc I · 
It. follows from (7) that g a nel ( ,' are onto a.nd the rc is preciscly one 

i 0 E {1 , ... , Tn - 1} such that #.c; - 1(i0) = #G-1 (i0) = 2. \Ve say Lhat i 0 is the 
type of 1 or, by abuse of language, Lhe type of g {or G') . 

Note Lhat we can al so writc (8) as : 

L;+ Ri= L LJ-l(k)+ Rk; i=1, ... ,m - 1 
kEC- 1 (i) 

or, more simetri u"Lily : 

L; + R; = L g-l(i ) + Rc- l(i); i = 1., ... , rn- 1 anel i# io 

L;0 + R;0 = L9 - 1 (io) + Re-I (io) + L9 m -l (O) + Rem- I (m) 

\11/here g - 1 
( G- 1

) is t he uni que right in verse of g (resp . G) which misses 
gm- 1(0) ( resp. Q»t- 1 (m) ) in its image. 

'vVe are going to prove that, given a small Farey cell Fn, Lhere ís 1 E A 
such Lhat Fn(T ) is projectively isomorphic to some C..,, which implies t he 
'asymptotic' finiteness of projective types of Farey cells arounel any i.el .o .. 
Recall from the introduct ion that by a proj ecti ve isomorphism we m ean a 

biject.ion l which can be expressed as l(x) = .C(x )/II.C(x )li, where .C is 
linear, x E R "' anel llxll = L:i~1 lx;l; in this case we say l is the projective 
map induceel by L. 

Now. fix T an interval exchange map and n 2: O sue h that: 

T hen we havc that O, T (O), T 2 (0), .. . , T n(O) are a.ll distind anel 

Using T anel n we define the sct I = I(T ,n) = {I} given by: 

l. I is a non-clegenerate closed intcrval with extremes in {Tk(O) H=o· 
2. th<" on ly po ints of I in {Tk(O) }k=0 are its extremes. 
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Obscn·e that i f D,(T ) E I. i E {I .... , w - I} , Lhen D ;(T ) E inte1·ior( I ) 
and if D;"' (T ) E I. i E {I, ... , 111 - l} thcn Dp-(T ) E inle1·im·( I ) unl<'ss 
Di(T ) = T (O). 

On I dcfill c I hc relatiou ~= :5 (T , n): 
11 ~ 12 ifl' I1 = 12 or t hcre a.re q ~ 1 and 1°, 1\ .. . , l q E {I} such tha.l 

1° = 11 • I q = 12 anel T (r - 1
) = J1' for 7' = 1, ... , q. l t is easy to see that ::5 is 

an o r der rela tion. 
We are int.crested on subscts P Ç {I } which a.re totally ordered by lhe 

rela.tion :S and maximal (with respect to sel inclusion) wilh lhis property. 
T hese sets we ca ll stacks. Stacks are clisjoint anel given a stack P we denote 
by t(P) , the top of P , its last element anel by b(P), the botton of P , its firsL 
e lement. Denoting by [I ) lhe half-open interval we get from I by elropping 
its last extreme we can write: 

[0 , 1) = 2::: l::: [I ) + [1\1 , 1) (11) 
P IEP 

where, I: anel + denote cli sjoint union , anel M = max{T k(O) I k = O, .. . , n}. 

Lemma 3.1 Let T be an inter·val exchange map and n ~ O such that holds 

and take I = I(T , n) and :S=:S (T , n) as defined above. Let I be the inte1·val 

[Tk(O), T 1(0)] , O ~ l, k ~ ·n. 

1. I = t(P) foT some stack P iff eithe1· I contains a discontinuity of T 01· 
k = n or l = 11. 

2. I = b(P) for some sla ck P iff k = O 01· l = 1 o1· T n+l(O) E interior(! ) 
o1· I ha$ a discontinuily Di of T - 1 fo r some i = 1, ... , m - 1, i f:. 
7r(] ) - 1. 

Pro of: 1) To get a. contraeliction suppose I = t(P) but I n{D;(T)}~õ1 

0 anel k, I < n. T hen T (I ) = [T"+1 (O), T 1+1 (O)] anel since I = t(P) we 
must ha,·e T P(O) E interio1·(T (I )) for some 1 ~ p ~ n but then T P-1 (0 ) E 
inle1·ior(I ) which contradicts I E I. 

Con,·ersely: Lake P the stack containillg I. H Di(T ) E I for i E { 1, .. . , rn -
1} t hen D1 E inté?'Ío·r(I ) anel T(I ) is not an intcrval and t berefore T (I ) f/. I , 
from which we get I = t(P ) . \Ve ca.n suppose then lhat I n{D;}~~ 1 = 0 
which implies T (I ) = [T k+1 (0), T l+1 (0)]. By hypothesis we have k = n or 
l = n . lf T (I ) E I we have T n+1 (0) = T r>( O) for some O ~ p ~ n which 
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me;.urs t.hat T " - J>+ ' (O) = O or T n-IJ(O) = D,.-l (t)- l fo r O ~ 11- p ~ n, a 
conírad id.io rr witlr (10). Thus T (I ) tj. 'I anel again wc gct. I = t(P). 

2) Suppose we lr ave I = b(P), but rn{D;"(T)}:~~\~,.(J)-t = 0. 1.· > O 

anel l > J. Then T - 1 (I ) = [T k- 1 (0), T 1
-

1 (O)] even if D~(ll- 1 (T) = T (O) E I 
beca.usc in tb is case t.hi s discontinuity is thc left ext reme o f the inte rva l I . 
BuL t hen we must ha.ve T - 1 (I ) tj. 'I sincc I = b(P) a nd Lhis means there 
is T 11(0 ) E iHln·ior(T-1 (1)) for O~ p ~ n and tlre n T P+1 (0) E i11le1·io1·(I ) 
which is possi ble only i f]> = n. 

Now, going in the opposite direcLion , ta ke P t he stack that conta.ins I . 

If Di(T ) E I. i E {l, ... ,m-1} and i =f 1r(l)- 1 t hen Di(T ) =f T "(O) 

for if Di(T ) = T "'(O) wc have k > O and D 11- l (i+l)- l(T ) = T"- 1 (O) from 
which wc geL 1r-1(i + 1) - 1 =O or i= 1r(1)- 1. Thus Di(T )-=/= T"(O) and 
the refore T - 1 (I ) tf. 'I since T - 1 (I ) is not an interval a nd we have I = b(P). 
\ll.fe can assu me fro m now on that I does not con tain discon tinuitics o [ T-1 

otber thcn D~(l)- l (T ) = T (O). If l = l then again T - 1 (I ) is not an interval 
a nd thercfore I = b(P) thus we can assume a lso tha.t L > 1, but then we 
have T- 1 (I ) = [T "-1 (0), T 1

-
1(0)]. Tf k = O then T-1 (I ) tf. 'I and thus 

I = b(P) . If k > O we have by hypothesis T 71 +1 (O) E inte1·im·(I ) which 
implies T n(O) E inte1·ior(T - 1(I )) and again T - 1 (I ) tj. 'I and I = b(P) thus 

proving the lemma. 
For the next three lemmas take :Fs a small Farey cell with s 2: O cri tica! 

iterate and fix T E inte1·im·(:F5 ). For n t he firs t T -critical iteratc aJter 
s it follows that any T E inteTior(:Fn(T) ) satisfies (10) above . F ix T E 

inte1·ior(:Fn(T )). From the lemma and definitions a.bove it, fo llows tha.t T = 
T (T , n) has m stacks which wc will index as P 0, . .. , Pm- 1 in such a way that 
Di(T ) E b(P;) holds for i =O, ... , m- 1. Since :Fs is smt:ll l, n > s has a t y pe 
i0 and the tops of Lhe stacks are gi,·en b~· [T 1•(0), Tr•(O)]; i= I , ... , m - 1, 
i=/: i 0 , [T 1•o(OL T 11 (0)] and [T 11 (0), T~"•o(O )] where L;= l,(:F.~), r,= 1·;(:F5 ) . We 
have t hen: 

T 1•o(O) < T 11 (0) < T '.io(O) 

The natura.] ordcr of the set {li }J=t1 iuduces, via thc ma.p j ~ lj, a.n 
ordcr on Lhe seL {l , ... ,m - 1} . To th is ordcred sct add O as a first e l­
ement a.nd define g = g(T ): {O,l, ... ,m - 1} _, {l , ... ,m - 1} Laking 
each point to its sucessor a nd the last one to i 0 , t he type o [ n. Define 
G = G(T ): {1,2, .. . ,m } _, {1, ... , m -1} a na.logously u:; ing the r 's instead 

of t he l 's a.nd adding mas a first e lemenl. 
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Lct 1.~ = L~ (T ), ... , L~n-t = /,~n - l (T) anel R; 
R~~- I (T ) be Lhe lcft. anel right iu tcrva.ls elefi neel by: 

for i = 1, ... , m. - 1. 

L~= [T 1'(0), D;(a)) 

R~ = [D;(a), T r, (O)] 

Lenuna 3.2 Lel i E {1 , .. . ,m - 1} then: 

1. 

2. 
T(L~) = [T 1'+1 (0), D;(i)(a)) 

/C~ (T J ..... n;n-J 

(] 2) 

(13) 

and eilhet r.(i) =/: m and T(L~) Ç b(Prr{i)) oT r.(i) = m and T (M) = 
[T1;+2(0), D;(m)(a)) Ç b(Prr(m )) with T 1;+1 (0) = ma.x{T P(O) J p = 
O, ... , n} . 

Proof: 1 )Take R~ = [D;(a) , T ''•(O)]. R~ Ç l ;+I(a) by the elefinition of 7"; 

anel since each interva.l I ; has at least a po int of {T k(O)}k=J· Thus T(R~) = 
[D~(i+l)- 1 (a), T r, +l (O)] anel T(R~) n{T k(O)}k=l = {Tr·+1 (0)} . If O E T (R;) 

then D~(•+l)-l (a)= O anel we ha.ve i= 7r-
1 (1) - l from which "'e get T(R~) = 

b(P0 ). Jf O~ T(R~) then O< D;,(i+t)-t (a) or 1r(i + 1) -1 ~ 1 anel t here is k, 
OS k S n, such tha.t T k(O) < n ;(i+ l)-1(a). Taking the grcatest '' with this 

property we see that T(R~) Ç [T "'(O), T r,+t (O)] E {I} anel, by t he preceeeling 
lemma. th is last interva.l is the botton of P 71'(i+t )-l· T his completes the proof 
of 1 ). 

2)Let L; = [T 1•(0), D;(a)) be a left interval. As above, it is clea.r that 
T (L ;) = [T 1•+1 (0), D ;,(i)(a)) anel this set has no points in {Tk(O)}k=l besides 

T 1•+1(0). ff 11(i) =/: m then r.(i) < m or D;(i)(a) < 1 anel it follows tha.t 

t.here is a least one T "'(O), OS k S n, such that T "'(O) > D~u1 ( a). We have 

then T(L~) Ç [T 1•+ 1 (0), T '-'(0)] = :I E {I} anel I= b(P1r(i))· If ;;-(i)= m Lhen 

T (LD = [T 1•+ 1(0), l) Ç I m(a) and T 11+1(0) = max{T"'(O) I k = O, ... , n}. 
Applying T again to T(L~) we havc T2(L~ ) = [T1·+2 (0) , D.rr(m)) and li+2 S n 
other\\'ise li+l = n, but this lcad us to conclude that T n(O) is a crit icai iteratc 
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of T il JI(] T '' (UJ = max{T k(U) I/.·= O, ... . n} which co111 rad icls t.hc fad. t!Ja.t 
F.~ is Sinal!. T 2(f,;) docsn't conLain po i11 ls of {T "(O)}k=O besidcs T 1+2(0) anel 
1r{m) < m or , which is lhe sanl<', D:r(m)(o) < I anel a rguing as we did before 
we gct, !.: E {0, ... , n} such tl1at T2(L~) Ç [T 1•+2 (0), T k(O)] = b(Prr(m)) t hus 
proving Lhe lemma. 

l\ow define I h e in te1Tals L~ and R~. for j = O, ... , m - 1 and k = 1, . . . , m 
hy: 

{ 

T ( Lj) . if O < j ~ m- 1 anel r.(j) =f; m; 

L~ = T 2(Lj) . ~~ ~: j ~ m-] anel 1r{j) = rn; 
0, J! J - o. 

(14) 

R~ = { T(R~), if l ~ 1.· < m; 
k {T(O)}, if k = m . 

(15) 

with Lhese defin itions we have the following description of the bottons of 
t he stacks: 

Lemma 3.3 /. 

2. 

ij1r(m) = 1r(l)- lj 

if r.(m) =P 1r(l) - 1. 

3. 

if j = 1r(m); 

if j =f; r;(m) . 

Proof: l)We have: 

21 



[D~ ( o) . T '."- ' (l l-1+ 1(0)] Ç b(Pu) 

which implics Lt + R:-,( 1) _ 1 = b(Po). 
2)Jf r.(m) = r.(l) - 1 we ha.vc: 

L: - •(m) +R:,.= T2(L~-• (mJ) + {T (O)} = 

[T 1
:.-l ( m ) +

2(0),D;(m)(a)) + {D: (I}-1 (o)} = 

[T 1
,.-

1<"'>+2 (0), D;(t)- t (o-)] Ç b(Pr.(l) - 1) 

anel thus , as before, the equalit,y n1usL bolei. If r.(m.) f:. r.(l) - I; 

I> b t 
Lr.-1(~(1J -1 l + Rm = T (L,.-1 ("( 1)-1)) + {T (O)} = 

[T 1, - 1<"(' l-1>+1 (0), D:(1J- t (a))+ {T (O)} = [T 1,-•c,.<1J-1)+1 (0), T (O)] 

which is contained, anel Lhercfore is equal Lo, b(Pr.(l} - d · 
3)Take j E { 1, ... , m. - 1} anel cl istinct from r.( 1) - 1. Tf j = 1r(m) we 

h ave: 
L~-'(mJ + R: -1(i+IJ-1 = [T

1
"-1<"'>+

2(0), D~(mJ(o:))+ 

[D;(m}(o:), T r"_ 1
(J+ 1l - 1 +1(0)] = b(Pj) 

If, on the othcr hancl, j =f 1r(rn), 

L~-'Ul + R~-'(j+ t }- 1 = [T
1
"- 1

<1>+
1
(0). Dj(a))+ 

(Dj(o:), TT:r-1(1+ 1)- 1+1(0)] = b(Pj) 

anel the lemma j s proved . 

Lemma 3.4 Take i E {1, ... ,m - 1}: 

1. rf i =f i 0 lhe l.ype o.fT»(O) and P is lhe stack such that t('P) =L~+ R~ 
tve have: 

b(P) = L~-l(iJ + R~(g-1 (ill = L~- ' (G"-'!il) + R~- '! i) 
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::!. !fi= i 0 and I(Pt) + I(P2 ) = ( 0 +Rio. whcrc lh e slacks P 1 and P 2 on 
indc:rctl in surh a way lha! t (Pt) is lo lhe lefl of t(P2), we have: 

b(P!) = L~0 + R~ ... •-l(m) and b(P2) = L~ ... -~(0) + R~0 
whe1·e k:0 and j 0 cu·e g-iven by: 

Proof: Takc P any sta.ck. By the preceeding lemma. we ha.ve b(P) 
L~+ R~(j) for some j E {0, ... , m - 1}. 

1) Suppose t(P) = L~ + R~ for i =f. i 0 . If we look a.t the T -itera.Les 
of Lhe left cxtremum of L; = lcft extremurn of b(P) a.nd pa.y attention to 
t he defini t ions of the /; 's the first description of b(P) follows . The second 
description of b(P), the one using G, follows if we Jook at the T -iterates of 
t he right extremurn of b(P). 

2)Vle just havc to rcca.ll tha.t T 1•o (O) < T n(O) < T r;o (O) a.nd T l;o (O) < 
D;

0 
(a) < T r•o (O) from which we get l(P1 ) = [T1•o (O) , T n(O)] a.nd 
l(P2 ) = [T n(O), T r•o (0)] . The lem ma. follows as in 1) by the defini t ion of 

g(or G) since l9m- l(a) (resp. 7'a m-l(a)) is the grea.test li (resp. r;) . 
These la.st results show that given a srnall Farey cell :Fs with s ~ O 

criticai then n, the next T-cri tica.l itera.te after s, a.nd i 0 the type of T n(O) are 
independent of T E interi01·(:F5 ) and therefore :F5 is divided into exactly t wo 
Farey cells of arder n, these two cells being elefined accordingly to T n(O) E R~o 
or T n(O) E L;

0 
anel separated by the hyperpla.ne T n(O) = D;0 (T). In fact 

we can givc a elescription of n anel i 0 tha.t depenei only on the arder of the 
points {T k(O)}f=o U{ D;(T)} i~o in [0, 1) which, a.s we know, is independent 
of T E inte?'ior(:Fs) . 

To see this. start by noting tha.t s = ma.x1<i<m-1 {li,7'i} a.nd since :Fs 
is srna.ll s has a. ~ype j 0 E {1 , ... , m - 1}. Su1~p;sc s = lio which rnea.ns 
T s(O) is the left. extremum of L]

0
• T hen T s+ 1(0) (or T s+2 (0)) is the left 

extremum of L~0 Ç b(1\0 ) for ko = rr(Jo) (or /,·o = rr2 (jo)). Ta.ke T t(O) , t = 1 

or I E {·ri+ I }i'~~· . lhe other extreme of b(Pk0 ) and T u(O), u E {T;}f~} 1 t he 
point of t(P~.-0 ) lying a.bove T t(O): i 0 i!:i given by tt = Tio a.nd n = s + tt - t . 

The case s = 1·10 is similar, the kcy obscrvation being a.ga.in that the 
intervals Lu, R= , Lp anel R' depenei only on the arder in el uced on the set 
{T k(O)}L=o by [0 , 1). 
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A COJJ S<'C[llC'n ce of these obs<'rvations is 1l 1al .r; = .r;(T) all(l (,' = G(T ) are 
a.lso iJJdependent of T E intc1·im·(F9 ). 

Now t hat \\'(' ha\'C comple t.ed l he dcscription or Uw stacks of a.n iutcrva l 
exchangc map T it will be uscful Lo interpret thcsc object.!> geolllct ri cally on 
'R.(T ), the Riemann surface associatcd to T. To this end i L is more convenient 
to think of T as the first rcLurn map induced by V(T) on Lh<' union of leavcs 
and singularit.ies given by y = O. lf we do this it is clca.r tha.L to each sLack 
P is a.ssociated a recta.ngle 1·ec(P) Ç 'R.(T) with vertical sides on the gra.ph 
a.ssociated Lo the p iece of orbit O, T (OL ... , T n(O), tops on the un ion of leaves 
a.nd singula.rit ies y = 1., bottons on y = O anel ha.ving the inte rva.ls I E P as 
horizontal equall y spa.ced by 1 sli ces . To the rectanglcs 1·ec(P(T)) we add 
the rectangle [rnaxo~k~n{Tk(O)}, 1] x [0, 1] and geLa decomposition of R(T ) 
as a union of rcctangles with disjoinL in teriors; the interior of t.hese rectangles 
are embbeded disks in R (T ). 

Recall Lhe definition of the distribution ma.trix of a Farey ccll Fn from 
the introd ucLion. This is the m x 2( m - 1) ma.trix (À n, pn) w h os e fi rst nt - 1 
columns .>..j1 

; j = 1., . .. , m - 1 are given by: 

.>..ij =number of times Tk(L~) intercepts l i as k runs from O up to the t ime 

just before Tk(L~) bits the next t(P). 
anel whose last m - 1 columns pj ; j = 1, .. . , m - 1 are given by : 

pij =number of Limes T k(R; ) inlercepls I; as k runs from O up to the time 

just before Tk(R~) hits the next t(P) . 
It is easy to sce that these definit.ions are independenl of T E interiM(Fs) · 
\Ve are ready to show that every small Farey ccll has lhe projective lype 

of a.n abstract Farey cell. To this enel take Fs a small Farey cell with s ~ O 
criticai anel t.ake 11 > s next criticai itcrate of t he elements of inte1·ior(F s); 
ta.ke /; = qFs): 1'; = Ti(Fs) · i= 1, ... , m- 1, g = g(Fs) anel G' = O(Fs) anel 
de fine t be linear ma.p: 

o· ~ (Lo( O'), L1( O), ... , Lm-1 (o·), R1 (o·), ... , Rm-J (o·), Rm ( a-)) 1 

whereL;(o·) = D;(o-) -T1•(0) anel R,(o) = T '.•(O)-D;(o) for i= 1, ... :m-1, 
Lo= Rm =O and T = T (rt,o). 

The o rem 3.1 / ' = (g, G') E A and P lhe projecti-ve nwp indttced by th e 

linea?' map o 1---> ( ~ ) is a Jn·o.iecfive iSOI!W1'phism o f Fs onto c")' . 
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Proof: \V<' s t.(lrt. by !::i l towing tha.t g = G o f. Takc j E {0, . .. . m - 1}. lf 
g(j) :f i 0 th<·n j = g- 1(g(j)) anel from 1) in the preceeding lemma we have 

L; + R~(j l = L j - l(G- l(y(i))) + R~-l(y(j)) from which wc get J(j ) = c;-t (g(j)) 
or C'(.f(j)) = y(.j). lf g(j ) = i 0 we have, us ing thc nota.Lion of thc prececding 
lemma, j = j 0 or j = gw- t (O) and from 2) of thc samc lemma wc ha ,·c 
b(P1) = Lj

0 
+ R~-... - l(rn)' a nel then /Uo) = G rn-

1(rn) which means th at 

G(f(j0 )) = G ''1 (m.) = ·io = g(Jo). SLarting with b(P2) = L~m-I(O) + R~.0 we 

have f(g"1
-

1 (O)) = k0 anel a.gain G(f(gm- l (O))) = G(k0 ) = i0 . These last 
results also show t hat .f(gm-l(O)) = k0 :f G rn- 1 (m) . From the definitions of 
g and G it. ~ clcar that (7) of the deflnition of 1 holcls . 

Take (L, R)1 = P (a) where (L, R)1 =(Lo, L11 . .. , Lm_1 , R1 , R2, ... , Rm)1
• 

lt is clear t hat L; > O anel R ; ~ O anel as length(t(P)) = length(b(P)), (8) 
follows from the p receeding lemma. so tha.t all that remains to be proved is 
dimension(C,) = m - 1. Now, Lhis d imension is :::; m - l for thc equations 
in (8) are dependent since they add Lo the t rivia l equation O = O anel, using 
(9) we have Ct defined by at most m- 1 linearly inde pendent equat ions. To 
prove that dimension ~ m - 1, anel finish the proof of the propos it ion ali we 
have to do is show that P is a projecl.ive injection onto Fn· Start by noting 
tha.t L a.nd R are linear in a a.nd thus P is projective. In fa.ct, we have: 

I 

Li(cr) = Di(cr)- T 1'(0) =L Ct'k- T 1;L a (16) 
k=I 

I 

R;(o) = T r•(O) - D;(cr) = yr;Lcr- L: ak (17) 
k= l 

for i = l . .. . , m - I . 
Now, us ing (1 1) we can write: 

(18) 

Using Lh is equalit.y we can gct a left inverse for P given by the project ive 

rnap indur('d by (~) 1-4 a \\'he re a= (>.'t, pn) (~) . Since clearly P(Fs) Ç 

C..,, t his inverse shows t.hat P is injedive and that t he dimension of C,. is 
m. - 1. Thus ali we need to finish t he proof of t he theorem is to show thaL 
P is onto. Ta.ke (L, R)f E C.., and construct a set of closed disjo int intervals 
J distrib ut.ecl into rn disjoint subseLs {Pdk~l satisfying: 
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2. The cardinali ty o r P~.- i:; gi,·cn by: 

i f/.;=/: cm-l ('111.) anel /.; =/: m; 
if k = m ; 
if k =em- ! (m). 

To th is collect ion of intervals adel a ha.lf-opcn inte rval J of length L-:r-1 (m); 

ca.Jl thc set of intervals th11 s obtained .]'. We lincarl y ordcr ca.ch set P~;, 
name these sets a.bstract sta.cks and carry the top , botton t crminology to 
this abstract con text . 

Now, inelex the right extremes of Lhe intervals in .]' elistinct from J, 
{ Te1, }~=1 anel the left extremes of the interva.ls in .]' , { le u}~=O in such a. wa.y 
that : 

1. T'he maps Teu 1-t u anel leu 1-t u are order preservmg whithin each 
stack. 

2. The inelcx of the right. extreme of t(Pk) is 

for k: = 1 , ... , m. 

{ 

7'G(k)> if k =f. Qm- l(m.); 
n, if k = am-l (m,). 

3. The index of the lefl ext reme of t(Pk) is 

{ 
lc(k) , 

n, 

for k = 1, ... , m .. 

if k =f. .f(gm-l(O)); 
jf /.: = .f(gm-1(0)) . 

It is clear that there is only one way to index the extremes of the intervals 
sat isfy ing t he thrce above requirements. 

l'\o,,· glue thc left anel r ight extremes of t he inten·als in .]' idcntifying thc 
extremes \\'Íth t he same index leu = 1·e", tt = 1, ... , n. Afler t his identifica­
tion wc get an interva.l which , a.fter a propcr normali~aLion, we can assume to 
be [0, 1) anel a sequence of n + 1 elistinct points ttl := leu = 1·eu, u = 1, ... , n 
an el t0 := O in [O, 1 ) . Using t hese points define : 
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1. Thc points d; E lt1•, ir, L i = 1, ... , m - I such I ha.t. d; = t 1• + li whe rç 

Li= /,,f 11 A 11 a.nd A = (À",p'1
) (:~). 

2. Thc intcrvnls L~ a.ncl RL i= '1 , ... ,m -1 definecl as in {12) anel (13) 
using t." anel di instea.d of T"(O) anel Di(T ), r<'spcctivcly. 

3. The interva.ls L~ anel R~, k = l , ... , m-l such that b(Pk) = L~-'(k) +R~ 
where L~_, (k) is half-open of lcngth L J- ' (k) anel R~ is closed of length 

Rk· 

The clefinition of r such that P (r) = (L,R)t a.nd finishes the proof of Lhe 
theorem should be obvious by now: 
r translates each point in an in terval of a stack one int.erval up in the same 
s tack; points in tbe the top intervals are mapped in such a way that (14) a ud 

(15) hold true for T in pla.ce of T anel, fina.lly, r(J) = L~-'(m)· 
We cal] P elefined a.bove the canonical isomorphism of :Fs onto C-r. 
The next lemma. clescribe lhe vertices of an abstract Farey cell anel will 

help us in the understanding the approxima.nts to a.n interval excha.nge ma.p 
T. 

Lemma 3.5 X 0 = (Lg, .. . ,L~~-1 ,R? , ... ,R?n) is a veTlex ofC,.n ~; = (g,G) 
ifTX0 = X 0

/ 11 X0 11 where X 0 = (L0 ,R0
) satisfies: 

i. (L0
, R0

) is a non-trivial solution of the system (8) . 

2. L? , R? E {0, J }; i= J, ... , m 

S. f/ we defin e th e support o f L0 • supp(L0
) as s-app(L0

) = {i l L0 f. O} 
and, analogously, Sttpp(R0 ), t.h en these snppods nwst be disjoint and 
lh e jm1ction c defined on supp(L0

) U supp(R0
) by c lsupp(Lo)= 9 lsupp(LO) 

and c lsupp(no) = G lsupp( no) musl be a cycle on lhe ·union o f the suppo1·ts 
svpp(L0 ) U supp(R0 ). 

Proof: 'l'akc (L0 , R0 ) satisfying lhe three couditions abovc and let X 1) = 
(LP, RP); p = 1, 2, Lf a.nd Rf 2: O, i = 1, . .. , m, non-trivially satisfy ing the 
cquations (8) and such that. X is t he mid-poinl of lhe interval [X 1 , X 2]. VI/e 
are going to prove tha.l XP , p = 1, 2 are multi pies of X 0 therefore conclud­
ing that X 0 is a vertex of C,.. 1L is clea.r tha.t Stlpp(D' ) Ç supp(L0

) anel 
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~upp(/?P) ç S·ll pp( /1°) . ]J = I' 2 SÍ JlC"<' \\"('are d<'a ling with non-negat.ÍV(' quan­
t it ies . T hus, to prove t he su ffici ettry of Lhe conditions it is cnough to show 
t.hat Xt = X~(il ; i E svpp(L0 )Usum,(l?.0

) anel 7' = 1,2. 'l'he c(i) -Lb equat. ion 
of (8) i:; : 

/ ,c( i) + R c( i) = Ly-' (c( i) ) + Rc-1 (c( i )) 

o r 
L c(i ) + R c(i ) = L 9 - r (t(i)) + L 9 ... - • (o) + flc -• (c(i )J + Rc .., _. (mJ 

In any case if wc substitute (L0 , R0 ) in this equaLion we see, by t he disjoin t­
ness of the supports of L0 anel R0

, tha.t the left ha.nd side of has exctcUy one 
non-zero summand ; L c(i) if c(i) E supp( L0

) or R c(i) if c(i ) E supp(R0
) . Now, 

from 2), iL is clea.r thaL the same sit uation must hold on Lhe righL ha.nd of 
this expression. In other worels exactly one summand of the righ t side musL 
be non-zero; L 9 - • (c( i)) or L 9 ,,-•(o) if c(i ) = g(i) or R c -• (c(i )) or Rc m- '(m} if 
c(i) = G(i) anel in any case these equations sa.y t hat X~(i} = X ?. Using 
our observa.tion above on Lhe supports of ).:·1 anel )(2 we see tha.t the sa.mc 
relations must hold between t he entries o( X 1 anel X 2 or x:(i) = xt, p = 1' 2 
Lhus proving the sufficiency of Lhe conditions. 

To show tha.t Lhe coneliLions are necessary let, X 0 = (f}, R0 ) a ver­
tex of c"Y ' X 0 is a non-tri via.l solution of (8) anel L?) R? 2: o. It is clcar 
that if i E supp(L) Usupp(R) then g(i) or G(i) E sttpp(L) Usupp(R) anel 
thus, reasoning by induction, we can construci a. cycle c with domain D Ç 
supp(L) Usupp(R) such that c(i) = g(i) or c(i) = G(i) for i E D. Let 
X 1 = (.L1

, R1
) be given by Xi1 = 1 i f i E D anel );_'il =o otherwise. x; 2: o 

an el , it is easy to see, X 1 satisfies t he system (8) anel Lherefore t he samc 
holels for tX1 + X 0 , where t E ( - €, €) anel E. > O is small enough. But, by 
hypothesis, X 0 is an extreme point of c"Y ctnel this forces X 0 bc a multiple 
of X 1 proving thc lemma since then D = supp(L ) U sttpp( R ) a nd thus a li 
entries of X 0 must be equal. 

Recai] from the introduction that we call the vertices of F,~(T) the ap­
proximants to T. 

Theorem 3.2 Lel Fn be a Farey cell wifh n c·rit.ical, then lh e:. ve-r/ices of F ,1 

in 5 111 aTe primitive interval cxchangc maps. 

P roof: Take S vertex of F, in Slll . By t.he preceeeling lemma P (S) = )t0 

1s a vcrtex of C-y where / ' E A is the abst.ract type of Fn a.nd P is tbe 
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C<-'11011ÍCal isolllorphism Fn ---4 C-,. This ll1C<IIlS X 0 = x·o; 11 .x·o 11 wherc X 0 

sat isfics J L 2) anel 3) of the prccceding le mma. Ta.ke T E interior(:Fn) anel 
R(U), the Riemann su rfa.cc assoei ateei to U E [T , S ). R( U ) is decomposeel 
in to rectanglcs associatcd Lo the stacks of U. As we move U from T to S 
Lhe rectangles whose ba.sis are not in .supp(L0

) U supp(R0
) \ovill colapse into 

graphs but since c , which maps Lhe botton of a recta.ngle to its top, is a 
cycle ou .supp(L0 ) UsHpp(R0 ), we see that. S is primitive and this proves the 
theorem . 

4 U nique Ergodicity 

As before wc fix rr a.n irreduciblc anel discontinuous perrnutation of the set 
{ 1, ... , m}, m ;:::: 2, and identify a: E Sm with the interval exchange map 
T = T(rr, n) induced by 1r using n. 

\h/e want to consider now the Borel proba.bilities on [0, l) that are invari­
a.nt by T. Since T is a translation on cach interval I i(o) it is clear thaL 
the Lebesgue measure on [0, 1) is T -invariant,. If Jl is a T -invariant Bore l 
probability (i .e . J-L(T- 1 (B)) = tt(B), for every Borel subsct B Ç [O, 1)), 
consider c/>= cf>t,: [0,1) ~ [0, 1) its probability distribution given by <f>(x) = 
J-L([O,x)),x E [O, 1). if> is non-decreasing, left-continuous and, in fact, if Tis 
minima.l , an homeomorphism of the interval [0, 1). Indeed, if </> has a jump 
this is due to a. point p E [0, 1) which has pos itive measure, an atom of f.l· 
Bul.tt({p}) = fl({ T-n(p)}).n;:::: O thusp musL be T -periodic since f.L is finite 
anel we have a contracliction wiLlt the minimality of T .' This proves that </> is 
coutinuous. H, on the other hand, </> is not injective, if> is constant in an open 
intcrval which has then f.L-measure zero. Let {X} be Lhe set of open intervals 
that. are maximal with the property of having zero f.L-measure. Since 

and thcre are only a. finite numbcr of inLervals X not saLisfying thi s last 
properLy (as a matter of fact., at most 2nt of them), we see tbat t.he set 
{X} is finite. In fa.cL , T has 110 periodic points, preserves the Lebesgue 
measure and it cannoL ta.ke a.n arbitrary a.mmoun t of T -itera.tion to bit the 
T -el iscontinuit.ies. Taking in account that T has dcnse orbits we see that 
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Lh<> compiclll<'lll of U .Y 1nusl lw a finitc :;cL of poinls ""hich is <1 contradic­
t.ion since, as <;J cont.i11Uous, t.his implie; fL = O. Thus <p is an increasing 
homcomorp!J i:;nl. 

Let /3; = (J;( ft);i = l, ... ,m be given by {3; = ft(Ii) = </>(D;) - </>(D;_ 1 ). 

It is clear tha.t (J E Sm. Th us S = S(,u) = S( 1r, {3) is a well de fi ned inter vai 

exchange ma.p. An easy con1putat ion shows t.hat </> conjugat,cs T and S or: 
more precisely, S o T =T o S. Vccch [7] . 

The abo\·c considerations show t hat , if T is minimal, wc have a map: 

'P(T) --) C(T) C Sm ; fL ~ S( rr, (J(p)) 

where P(T) is Lhe set of T -invarianL Borel probabilitics on [0, 1) and C(T) is 
the conjugacy class of T in the space of Sm. We will only consider conjugacies 
by increasing homeomorphisms but refer to them simply as conjugacies. 

Lemma 4.1 (Veech ) Let T be a minimal interval exchange nwp, then th.e 
map p, ~ S defined above is an affine bijection o f P(T ) onto C(T ). 

As a corollary of Lhe lemma we see that T is uniquely ergodic iff its conjugacy 
class in S m is trivial. 

In what follows we relate lhe conjugacy class of T , C(T), to the Farcy 
sequence of cells around T , Fn(T). 

If T = T(rr,ü) and S = S(rr ,/3) are two interval exchange maps and 
c/> conjugates S anel T , </>o T = S o </>, then </> takes T-discontinuities onto 
S -discontinuities anel as q>(O) = O, we see that : 

for i = 1, ... , m a nel k 2: O. 
Thus C(T) Ç n~=o inle1·ior(Fr1 (T )) . 

Theorem 4.1 f( T .satis.fie::o A·eane 's i.d.o.c. th cn 

•X. 

C(T) = n inte1·io1·(Fn(T)). 
n=O 

\"'.le just sa.w t.hat C(T ) Ç n::o inte,·ior(Fn(T )) . To show lhe other inclusion 
and finish the proof the theorem we need some pr<>liminary results. 
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Lemma 4.2 Ld T nnd S br· inlcroal c.rrhangc 1nrt71S ind·nced by ;. and sal­
isfúing: 

a.)Tht posi.tive T-o·rúil of ze-ro, {T11(0)};'==0 , -is dense in [0 , 1). 
ú}F'or k and L ? O we lwve: T k(O) < T 1(0) iff Sk(O) < S1(0). 
The11 t.h.e1·c e:ól.s r/>: [0,1) ~ [0 , 1) ú~c1·easing and right contiwuo·us such 

th a l <P o T = S o <P. 

P r oof: Gi\·en :r E [O, 1) define 4>(:1:) as follows: choose nk? O, incrcasing 
such thai T 11k(O) l x (i.e. T nk(Q) > T nk+ 1 (0) > O anel Tnk(Q) ~ x as 
k ~ oo). By b) we have snk(Q) > snk+! (O) so that snk(O) is decreasing anel 
therefore converges to some y E [O , 1); take r/>(x) := y. 

To prove that r/> is well clefined take T mk (O) l X anel smk (O) l z anel , Lo 
get a contraelict.ion, suppose thai y < z . \'11/e have: 

for some k0 big enough anel any L anel k > k0 . Agaiu by b) we have T 71
k (O) < 

T nko(O) < T m1(0). If we make k ~ oo we havc x < Tn~<o (O) < T m1(0) anel 
now making I~ oo we get x < x, an absurd. 

To see Lha. L 4> is incrcasing and righ t-continuous is equally casy. Now, take 
x E [0, 1) anel T nk(Q) l x. Since T is right-continuous we have T n1,+1 (O) l 
T(:rL anel, by clefinition, snk+1(0) l <P(T (x)). But then: 

4>(T(:r) ) = lim gnk+ 1(0) = S( lim gn~<(ü)) = S(<P(x)) 
k-oo k-oo 

by t he right- cont.inu ity of S. Tbis proves the lemma. 
·sing that </> is increasing a.nd right -cont inuous we can write [0, 1) -

Im oge( o) = L_ f{ where L_ , as before, denotes di sjoint union , anel {K} is 
lhe family of int.ervals f( = [limx1 ~,0 <P(x),r/>(x0 )); x0 a cl iscontinuity of </;, 
/{ = [sup d> . l) or f{ = [0, </1(0)) . From 4> o T = S o <P we conclude that 
S(Image(4>)) = hnage(if>) anel thus tha.t S('L_K) =L_](. 

Lemma 4 .3 Lei T , S , rjJ úc as in lhe zn·eceeding lemnw and let { K} úe as 
abot•c : 

o.} f( clo.:>HI'Cn_( h') n{ D,( ,B ) r~~ l = 0 then: 

S(J\ ) E {H} a.nd S(l\) = [S(inf K), S(sup K)) 

úJrf closuren.(I\) n{Df(,B)}i'~~ ~ = 0 t.hen: 

s-1(1\ ) E {1\} anel s-1(K) = [S-1 (inf I<), S- 1(sup K) ) 
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Proof: Th<' proof of a) is clcar sincc by hypot.hcsis UIC rlosurc of }\. is 
contain<'d in an opcn int.en·al \\'hcrc S is cont.inuous; Lhe Séllll<' idea. holds for 
b ). 

Lem ma 4 .4 Lei. T , S, <P and {1\} be as in lhe preceeding lcmma. l j T 
sal.isfi.es i.d.o.t. lhtn {1\} is finitr. 

Proof: Fix an int.erval h' anel suppose closw·eR(S 11 (K )) n{Di(,B)}7~1 1 = 
0, for every n 2:: O. By the preceeling lemma we we have that sn (K) E { K} 
for every n 2:: O a nel sincc: the fam ily { K } is d isjoint a nel S preserves thc 
the Lebesgue mcasure there are O ~ n 1 < n 2 such that S111 

( l\.) = Sn2 ( ]{) o r 
5 112

-
711 (K) = f{ which implies that f( is made of S-periodic points anel 

therefore is containcd in a maximal interval M of S-periodic points. H 
inf M < in f f{ there is a x such that <f>(x) E M which implies that x is 
T -periodic a conLradiction with the fa.ct that Tis i.d.o .. If inf M = inf f( we 
get aga.in a cont radict ion since the extremes of AI[ uncler itcration by S hi t 
the set { Di(,B) }i~11 . All these contradictions prove that we must have a fi rst 
n 2:: O such that c/osureR(Sn(J()) n{Di(,B)}f:!:õ1 :f 0. Now Lhe set of J('s with 
a Di (f3) in its real closure is finite anel it can not take an arbitrary amount 
o[ iteration to bit {Di(,8)}~1 1 since S preserves the Lebesgue measure anel 
this proves the lemma. 

Using the fact that {K} is finite and t hat the ha lf-open intervals a re a 
semi-algebra it follows that we can write lmage(4>) = [0, 1)- L X as a finite 
disjoint anel non-contiguous sel of half-open intervals {L}. lt. is clear also 
tha.t a result analogous to Lemma 4.3 holds for the family {L} instead of the 
family { K}. 

Lemma 4.5 Lct T , S , <P and Un be as in th e preceding lcmma and fel 
{L} be as above. S'ttppose. lhal lhe image of </> meets every inlc·rval Ii(.B) and 
l f(,B); 'i = 1, ... , m.J then: 

{Q)(D;(a:)r'~~ 1 = {D;( :3) 1 D;(/3) E Image(</>); i= 1, ... ,111 -1}+ 

{ </>(xo) I Xo is a eliscontinuity of 4> & {D;(,B)}i~~l n[lim çb(.r) . o(.t:o)) :f 0} 
xll:o 

Pro of: Let J\1 be Lhe half-open int.erval obt.a.ined translating lhe the intervals 
L and laying then one next to the othcr starting from Z<'ro anel without 
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changing ~h eir ordC'r . Let 1/,: M ~ lmage(tb) be lhe translation by part s 
that pul the L's back to their origina.] posit,ion, let S = 1/;-1 o S o ~f; bf th<"' 
map induced by S on M and h = 'ifJ- 1 o</>. 

But for iLs domain , which can be difrere nt from [0, 1) , S is an intcn·al 
exchange map and h is an increasing homeomorphism tha.t conjugates S lo 
T. Thus S is di scontinuous at, the points {h(D;(a))}i',!:~ 1 from which \\'<' 

have: ·lj;((hscontinvi li e::; of S) = { </>( Di(a) )} ?~1 1 so that to prove the le mma 
we have to show tha.t: 

'1/;(discontinui.lies o.f S) = {D;((J) I D;((J) E Image( </>) ; i = 1, . . . , m.- 1} 

+{</>(xo) I Xo is a discontinuity of </> & { D;((J)};~~l-l n[Iim <P(x),</>(xo)) =/: 0} 
xlxo 

anel, considering that these sets have m - 1 elements s ince no interva.l J( can 
contain an interval I ;(,B), we only need to prove the inclusion of the right 
hand side of t he equality in lhe left hand. To do this take B; = D;( ,B) E 
lmage(<P) a.nd let L be such that B1 E L. lf 8; > inf L it is clear that 
1/;-1 (B;) is a discontinuity of S since there is I j(,B) ~ [limxlB, S (x), S (B ;)) 

and Image(q)) n i J(,B) =/: 0 which implies limxJB, S(x ) < S(B;). 
If, on the other hand, B; = inf L, take the interval I ;(,B) = [D;_1 (,B), B;). 

By hypothesis t hi s interval also meets Image(</>) from which it follows tha~ 
there is an interval L 1 ~ l mage(<P) immediately before L and again wc see 

that '1/;- 1 (Bi) is a discontinui ty of S since limxr B; S (x) < S(B;). Now, let x0 be 
a discontinuity of </> such that ihe interval N = [limxTxo </>(x), <f>(x0 ) ) contains 
the (necessarily) unique S-discontinuity, B; = D;(,B) . We have to prove that 
S is disconLinuous at 'l/,-l(</>(x0)). As l mage(<f>) intercepts I ;((J) and 1;+1(,8) 
there are intervals L 1 and L2 that meet these intervals and , respectively, 
precede anel fo llow N. These two inlervals wi ll came together when we make 
up 1\1 and S will be d iscon tin uous a.t ·lj)- 1(</>(xo)) since <f>(x0 ) = inf L2 anel, as 
bcforc, thcre is an I (,B)-interval betweenlim:cJB, S(x) and S(B;), thus proving 
t he le rnma. 

Lemma 4.6 Let T. S , 9. {H} and {L} be as in the pTeceeding lemma fhén 
<P is conlinuous. 

Pro of: Suppose, to geL a contradiction , Lhat x 0 is a discontinuity of </>. Take 
f { = [iimxlxo <f>(x),</>(x0 )) . Reasoning as in lemma we can ge~ a. first n ~O 
such Lhat closu1'en.(Sn(I\)) n{D;(,B)}i:::õ 1 =f 0 and for this n we slill havc 
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S a( /\') = [S"(i nfH ), S 11 (supl\) ) E {In . Ir sn( l\· ) n{D;(/i)}i~o :j:. 0 Lhen by 
thc j)H'\'ÍOliS i<' ll llll<'l t.here is io E { 1 ..... m - 1} such Lha.L S11 (sup /\') = </>(D;o) 
for 0 ,

0 
= D;

0
(o). But S11 (s up /\') = sn(</>(:~;0)) = <P( T 11 (x0 )) from which 

we gcL T 11 (.1·o) = D;0 . lf sn(J\) n{D;(.B) };~õ' = 0 we have sup(S n(I<)) E 
{D;( .B) }i~õ'· but sup(S" (I\)) = S"(sup(K )) = S"(cP(xo)) = cP( T 11 (l:o)) anel 
we condud<'. again by t.he previous lcmma, Lha.t T n(x0 ) = D;0 (a) for some 

i o E { 1 , . .. . m - l } . 
No\\' start. moving f{ backwards using S. There must ha.ve a. first l ::=; 

O such Lhat closw·en. (S1 (J{))n{Di(t3)}~~õ' f:. 0 and, as before, S 1(J() 
[S1(inf K) , S 1(sup 1\)) E {K}. We have a.gai u t wo possibili t ics, cither 

S1 (1<)n{Di(t3)}i~! 1 =f 0 

and, in this case, by t he previous Jemma, we have s1- 1 (sup(J\)) = </>(D;0 (a)) 
( or s1- 2 (sup( J\ )) = </>(D;0 (o:)) ) for some j 0 E {1, ... , m -1} from which we 

get T '-' (xo) = D;0 (a·) ( or T 1
-

2(xo) = D;0 (ü) ) or 

S1 (K)n{Oi(.B)}i~l 1 = 0 

anel in Lh~s cas~ s~p(S1 {K)) = DJ0 (.8) for some j 0 E {l , . . : ,m - 1} anel we 
conclude Jll a snnllar way that T - 1(xo) = D;0 (a-) ( or T 1- 2 (xo) = D;

0
(o-) ). 

Summing up t he t wo conclusions T 11 (x0) = D;0 (o-) anel T 1- 1(.r0) = Dj0 (o:) ( 
or T 1

- 2 (xo) = D;0 (a) ) for O~ l anel n ~O a.nd i 0 anel j 0 E {1, ... , m - 1} 

we get a contradiction with the fact that T satisfies i.d.o.c .. This proves the 
lemma. 

Proof of Theorem 4.1: Ali wc have to do is collect the above lemmas 
together: if the orbits of O under itera t ion by T anel S l1it corresponding 
intervals a.t t he same time Lemma 4.2 shows that t.he map T 11 (0) ~ s n(O) is 

oreler prcserving anel we ca.n const ruct </; . The following lemma.s show that 
1> is cotüÍll LJOus so that. a ll Lhat re mains to be proved i::; t hat 1> is onto or, 

which is Lhe ::;arne, tha.t. the intervals [O , inf <P) anel [sup </>, 1) are empty. Now, 
1í is irreeluciblc, t.hus these int.erva ls must be transposed by S but this is 

impossible for it \\'Ould imply that 11(/3) = [O,inf </>) anel Im(.B) = [sup</>,1). 
The Lheorem follo\\'S. 

Corollary 4.1 Lei T be an inle1·val e:cchange nwp sat.isfying i.d.o.c. and 
v~; 1..: = 1, ... , an; be its n-th ordc1' approúmants, n ~ O, then; T is tmiquely 
ergodic ·1:lf for eveTy choice of app'l'O.Ú '/1/.anLs v~" to T , n ~ O, we have 
limn--:-o v~;" = n. 



Proof: lf. for <'ach n 2': O, we clwose v~" such that: 

dn := sup{ 11 fj- a· 11 I f3 E Fn} =li v~" - o 11 

it is clca.r tha.t if dn ---+O a.s n ---+ oo, {T} = nn inte1·im·(Fn) a nel Tis uniq ucly 
ergoeli c. Suppose now that d71, 2': € > O for n; ---+ oo. V•le can supposc that 

a choice o f v~;·· sa.tisfying 11 v~;· · - a 11= dn, converges to f3 E closw·c(Sm), 
f3 # a . Let us show that 1 = o~O E conjugacy cla.ss of T , t hus proving tha.t 
T is not uniqucly ergoel ic anel completing the proof of the Corollary. Supposc 
1 tj. conjuga.cy class of T. T his means that there is a n 2': O such Lhat 1 such 
that 1 tj. Fn, but a· E conjugacy class of T anel this means t.hat a anel f3 a re 
in opposi tc sieles of H , an hyperplane obtaineel by substituting one of the 
inequalities elefining F n by an equality. If we let i be g reat enough such that 

k11 , > n anel v~~· anel f3 are in the same side of H , we have a. contrad iction 
considering tl1at H enters in the definition of Fn, Ç Fn. 

Fix now x E [0 , 1) anel two sequences of integers nk anel Nk such tha.t 
limk-oo Nk- nk = oo anel consicler the Borel proba.bilities f.J.k gi ven by: 

where Óy is the Dirac Borel probability concentrated at y E [0: l ). 

Lemma 4.7 !JT satisfics i.d. o.c. and is uniquely eTgodic then f.J.k conver·ges 
weakly to lhe Lebesgue measm·e on [0, 1). In particuJa1· if we take x = O, 
·n~; = k -t.h T- critical itcmte and /Ih= k + 1-th T- critical item/e wc sec that 
lhe scquence o.f thc nonna.lized distTib1llion vecto·rs úetwecn tu•o consecutive 
criticai itcmtes com;erge to a . 

Pro o f: Compa.ctifying the interval [O, 1) by iclentifyillg the ext remec:; o f 
lhe inLer\'al [0, 1], we see tha.t flJ..· has a. subsequence JLk

1 
tha.t converges wea.kly 

to a probability p.. We ha.ve to prove tha.t Jl is the Lebesgue measure . To keep 
the nota.tion simple let us assume the sequence f.l-k itself converges \\'eakly to 
p,. This means: 

35 



for cvcry r< 'a l continuous funcLio rr orr [0, J) satisfying 

/(O) = l}tp f( L) ( 19) 

An easy computaLion shows t.ha.L f I o T dp - f I d1' if f anel f o T are 
continuous anel both saLisfy (19). Using this equa.lity we sec that ft(T- 1 (I)) = 

p(J) for c\·ery interval I Ç [O, 1) whose real closure doesn't rneet Lhe set of 
discontinuities of T-1

. In fa.ct, iL is ea.sy to construd a uniformly bounded 
seque ncc /1 satisfying the a.bovc rcquirements such tha.t ft - XI, as L -t oo, 
wherc x 1 is the cha.ract.erist ic f unction of I. \V e h ave then by Lebesgue's 
theorem: 

ft (T - '(1 )) = j ;-( 1 o T dJ.L = lim j.Ji o T dJ.L = 
1- oo 

lim f f, d~t = f X 1 dft = ft{J) 
1- oo 

If we bear in rnind that T bas no period ic points, it is easy to conclude that 
if JL h as an atom p the backwa.rd T -orb iL of p must hit the set {Di( a) }?~] 1 . 
Thus if ft has atoms it ha.s one atom, p, in the set {Df(o·)} i~)1 . Now, using 
an argument ana.logous to the one used to prove the T -inva riance of the {t­
measm c of in tervals disjoint frorn {Di(o:)}7~1 1 , we see that p is in a finite set 
F. F Ç {Di(o:)}7~! 1 such that f-L(T-1 (F)) = p(F) from which we conclude 
that. fl has an aLom also in the set T - 1(F) Ç {Di(o:)}~1 1 • This a tom, in its 
t.urn . as we saw above: by bad:ward iteration using T m usl hit {Di(a)}f:!:11 

anel thi s contradicts Keane\ condition . This contradidion proves that T has 
no atoms anel thus p.(T-1 (1)) = {t(I) for every interval I Ç (0, 1). But this 
mcans that p is T-inva.ria.n t anel , by the unigue ergodicity of T , it follows 
t.ha.L p is the Le besgue measure, proving the lemma. 

Theorem 4.2 The necessm·y and su.fficienl condition fo ·r an i.d.o. inte1·val 
erchange map T to be ~ariq·uely ergodic is lhat the sequence of its nonnalized 
di81ribulion vecl.o1·s belu:cen tu·o co'llsecul-ivc c1-itical itemles conve1:qc to a. 

Proof: Thc preceeding lemma shows Lhe necessity of thc condition. To 
show the suffic ie ncy, start by noting t hat i f Lhe sequence of rto rmali zed distri ­
but.ion vccLors between tvvo consecutivc critica.! iterates converges to o: then 
the sequence of normalized clist.ribution vectors between two consecutive right 
(left.) criticai iterates a.lso converges to a since the normalized elistribution 
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vector between two conseCLILi\·e ri ght (left) c riti cai it.erat.C'S 11 1 a1Hin 1 is a coll­

vcx linear combination of the norma.lized clistribution vcct.ors hct\\·een t,wo 
conscc uti ve critica] iLcra.tes Lhat lie bctween n 1 anel n2 . Dut tbis means lha L 

thc norma lized coh1111n vectors o f the clistribution ma.t.rices of T , p n, pn ), go 
to a as n ~ oo a nel from this we get that the approxi1nanls also go t.o o since 
these, by Le mma. 3.5, are a.gain convex linear con1binat ions of tlw nonllalizccl 
columns o f (>.'t, pn ). T his nn ishes t.he proof of thc t heorem. 

5 Gauss Maps 

In this section we define the Gauss map 9 = Q(1r): C ~ C wherc C = 
disjoint union of C-y , AI E A anel show how it gene raLes the a.p proximants 
to an i.el .o. T E Sm(7r) . 

\ll.1e start by elefining two maps L anel R : A ~ A as follows L h) = , ,L 

wherC' AI= (g,G) anel AIL = (gL ,GL) is given by: 

gL j = {g(j) , if #g-1(g(j)) = 1 or j = g"' - 1 (0); 
( ) g2(j), otherwise. 

anel GL = gL o f - 1
. As to the definition of R we have 'R(;) = ,n where 

AI = (g, G) anel I n = (gn , G'R) is given by : 

( ,'n (j) = { G(j) , if #G- 1 (G'(j)) = 1 or j = cm-1 (m); 
G2 (j) . othcrwise. 

anel g'R = on o f. It is eas ily seen that A/ anel ,n satisfy (6) anel (7) above . 

Now, fix 1 E A anel consieler the hyperplane Rto = L9 m- 1(0) + RJ(g"' - 1(0)) 

where io is lhe type of f. This hyperplane divides t he polyhed ron C-y into 
t wo polyhedra.: 

c_;-= {R;0 < L9m-1(0J + R J(g•"-1(o))} ncf 
with Ji on-empty interiors. 

In fact, using the notat. ion of Lemma. 3.5, it is clea r Lhat Lhe verli ces X 1 

a.nd X 2 of C, g iven by R1 = O a nel supp(L1
) is Lhe g-orbi t of i 0 and L2 = O 
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and svpp( R2) is the G-o rbiL of i 0 , are in oppos ite sieles of tbe hy perpla.ne 

H;0 = L 51,, _, (O) + Rf(g"'-1 (O) ) · 

Thc scL of equations (8), which define the suppor t of the cone wi t h vertex 
O spanneel by C,. ca.n b<-' wri t.ten: 

i = 1, .. . , 1n. - 1 , o r 

if i =J Ío , g(io ); 
if i=g(io); 

if i = i 0 . 

L; + R;= Ly-l(i) + RJ(g-1(i ll: if i =J i 0 , g(i0 ); 

Lg(ia) + R 9(ia ) = Lia - (L9 - 1 (ia)+ Rf(g-1 (io)))+ 

Rf(io ) + Lg-l(io ) + Rf(g - 1(io))> if i= g(io); 
L ia - (Lg-l(io ) + Rf(g-1 (io))) +Rio = 
L9 m - 1 (O) + Rf(rr-1 (O))> if i = i 0 . 

i= 1, ... , m. - 1 . 
Now, restricting ourselves to (L, R) E c; anel defining L f anel Rf by 

Rc = R; for i = l, ... ,m. anel : 

anel subst.ituting in l.he a.boYe equaJities we get: 

if i = i 0 ; 

otherwise. 

if i=/: io , g(io); 

if 'Í = g(io); 
if i = i 0 . 

i = 1, . . . , m - 1, which is precisely the set equa.tions defining the support 
of t.he cone spa.nnecl by Cc( .. .,. J. This s hO\\'S t hat ..C(;·) is in A anel t ha.t the 

projcct ive map induced by L(;): (.L,R) ~ (Lc,Rc) is an isomorphism be­
t ween c; anel Cchl· A similar a.rgument shows tha.t 'R (;) is in A anel tha.t 
R (l'): (L, R)~ (Ln,Rn) given by: 

1 .. ?- = L i for i = 1, ... , m (20) 

as 



and: 
if i.= io: 
othcrwis<'. 

(21) 

induces an isomorphism between C~ and C.r-(1 l . Thc Gauss map 9 is elefineel 
by 9 bc= L ( 1) anel 9 ler.:= R(-r) for 1 E A. \Ve sum up our conclusions in 

"Y ) 

the next theorem. 

T h e o r e m 5.1 The Gauss map Ç:C _____, C is a 2-1 nwp thal establishes a 
JJmjective i.somo11Jhism C'!; ~ Cnh) and c; ~ C.q.,) .{o1· cach 1 E A. Lei 
Fs ~ Sm be a sm all Farey cc/1 wiLh s c1·itical, n be Lhe nexL c'l'itical iterate o.f 
:Fs, and P : :Fs ~ C.., be ih t canonical isomo1·phism, whc1·e / ' is th e abstmct 
type of :Fs. 1àke T E :Fs and 1' E C"'~ given by 1' = P (T ) . L et 8 be such that 
9 ( ,. ) E C.s and denote by Ç i 1 the bmnch o f Ç defined on C6 . W e h ave then: 

a)P- 1(9i 1 (Cs)) is thc nexl Farey cell a.1·ound T, Fn(T ). 
b ) Q = 9s o P: :F11 (T ) _____, C.s is the canonical isomo1·phism between F n(T ) 

and its abstract type Cs . 

Proof: \"-/e ha.ve a.lready shown that Ç lc.f a.nel Ç lc~ a.rc projcctive isomor­
phisms. 

Suppose 1· E C'!;. Th<> cas~· E c; is ana.logous. Using the nota.tion of 

Theorem 3.1 we have 1· = (L , R)t where L anel R a re elefincel by (16) an el 
(l 7). Using the o bservation tha.t follows Lemma 3.4 we see that Fn(T ) = 
p - 1 (C,;<-) = p - 1 (Çi 1(C5)) which proves a) of the theorem. To show b) start 

by using (18) to writc a = (À 11 pn) (~) = (N1 pn)/11-1 )\!f(~) where p,n pn ) 

is the elistribution matrix of Fs anel J\1! is the matrix of t.he linear map elefined 
by (20) a.nd (21 ) . T he matrix (.>. p) = (À" p'1 ).M-1 is equal to the m<:ürix 
(.>." pn) but. fo r t.wo columns; the gm- 1 (0) -th column of À anel the f( gm- 1(0))­
th column of p for which \\'e have: 

1 \ n + n .. d n + n 
A 9 m - 1 (O) = , 9 m-l (O) Pio c\.11 p J(gm - 1 (O)) = p f(g"' - 1 (O)) P;0 (22) 

Now, th is is precisely tlw el istribution matrix of Fn(T ) s ince the stacks a.sso­
cia.teel to Fn(T ) are the same as t he ones associat.eel t.o Fs(T ) exccpt for t.wo 
stacks which will account for the cha.nges (22) in the di st.ribution ma.trix . To 

see this, observe that the stack P of Fs with bot.Lon L~ ... - ~ (O) + R~(gm - 1 (O)) 

should now be mo\·eel to a position bellow R.~0 a t tlw botton of Lhe st<Kk 
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Q of .FA T ) whirh has botlon Lj-l(ioJ + R\ . This because t lw t.op of P is 

conlained in ll~0 which is 111a.ppc·d by T onto R~0 • P \\'Íth tlw right sl ice of Q 
o f width L 9 ... - l (OJ + Rf(g"' - l (OJJ on its top is a. new s ta.ck of F,(T); the other is 
the rema.ining of thc sta.ck Q aJt.cr the slicing. T his shows that Q- 1 oÇ5 oP is 
lhe identity o n F,(T ) wherc Q is the canoni cal isomorphism Fn(T ) ~ C5 

anel completes l he proof of Lhe thcorem. 
Using t.hi s theorcm \\' C can construct thc gcneraJized continued fract.ion 

expa.nsion of an i.d.o. T E S~~~. a.s described in lhe introduction. 
We start with the in tegra.! cell a.round T , F 110 (T ), anel its integral part 

P01
: C1.0 ~ F n0 (T ), where ~/o is Lhe integral typc of T . We can write T = 

P õ1(7'o), whc rc 1·o E C10 is t hc fractiona.l par t of T. Now using T heorem 5.1 
repeatedly we have: 

Q = Põ1 (9,;;1
( ... 9.;,,1(7'n) ... )) 

where the rema.inder 1'n is equa.l to ç n(To) anel 9~7, 1 is the b ra nch of ç - t 
taking C')', in to C"Y•- I . C"'(,, in its t urn, is defi ned by requiring Lhat Çi(1·0) E C"'(,; 
i= 1, . .. ,n . 

V./c use t hc formal expansion 

P -1 c - 1 ç-1 ç-1 
O' = o o '::J"Y o """ o .. . • o ... l ,~ (n 

to indica.te the a bovc cons(,ruct ion . 
Tt is clear fron1 Theorem 5.1 that we get the n-th order approxima.nts to T 

by truncating t.he a.bove expansiou a.t leve] n, substituting the remainder 1'n 

for Lhe ,·erticcs of C'),. a.nd carry ing Lhe indicated operations. Thus, bearing in 
mind Corollary 4 .1 , we sce tha.t jusL by looking at the generalizecl continued 
fraction expansion of an i.d .o. T we are able to decide if it is uniquely ergodic 
o r not . 

Theorem 5.2 Lei T = T (o, r.) be an i.d.o.c. inlerval exchange map and 

P -1 c-1 ç -J a-1 a- = u o '::1~ o ~ o ... '::J. o ... 
11 r2 (u 

i.l.s genera/i:;r:d rOJJ.I.i'llaedfraclion. e.~:pansion associaled to r., the11. T is w1.iq·uely 
e·rgodic i.jf ils appro:àmanls, comvuted as desc·ribed abo·ue, conveTge lo a- . 

On Lhe other hand, if we ask for the conditions under which a n expansion 

P - 1 ç-1 a-1 ç -1 
O o ~· o ':::/., o .. . ... o ... 

11 r2 rrt 
(23) 
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is thc gencralizcd ron~ illucd fra ct ion <·xpansion of an uniqucly crgodic T \\'C 

must firsl const ruct tltc space of the OIJc-s idcd subshift of finite typc on the 
set of s imbols A anel wiLh a Lransition ~, 1 to 1 2 a ll ow<'d i fi' Ç( 72 ) n11 -:/: 0 o r, 
which is Lhe same, iff thcrc is a. bra.nch of ç - 1 mappi11g 71 int.o ; 2 • 

This is Lhe spacc Sshift = SshifL ( 1r) o f sequenccs bn)~=I , In E A such 
that Ç(;n+dn;,-:/: 0 for n = 1,2, .... \ll,le sa.y tha.t the n.llowccl transit io n 
; 1 to ; 2 in Sshift is a Je{t transiiíon if Lhe branch of ç - J on ~r 1 is given by 
L - 1(;2 ) anel ríght t.ra.nsitíon if the branch of ç -• 011 } '1 is g iven by R - 1(12). 

It is clear thal thc sequence of /n 's in a genera.lized continued fraction 
cxpansion of a.n i.cl .o. Tis in thc space of Lhe subshift but tha.t is not enough 
to guarantee thc com·ergence of the a pproximants to an in terval exchangc 
map. Clearly the conditions thaL: 

a) the limit of the diameters of t he set of n-th order approximants gocs 
to O as n goes to oc a nel 

b) for every integer n ~ l there is ]J > n sue h tha t evc ry p-th order ap­
proximant, is in the interior of the convex buli of t he n -Lh order approximanLs 

are sufficient Lo guarantee the existencc of an unique interval exchange 
map T wiLh thc gi,·en expansion (23) , however this map can fail even to be 

minimal. We can get a. conclition sufficicnt for thc m inimal ity of the map 
by watching in Lhe scquence (;n)~=I> t he types i 0 E {1 , 2, ... ,m - 1} of the 
abstract cells ~/11 which come from a. right tra.ns iLion anel are followed by a 
left transition or \·ice-versa. V./e call these cells the transition cells of ( ln)~ 1 • 
The condition wc are seeking is tha.t: 

c) cach type i 0 occurs infinitcly often as a type of a transition cell in the 
sequence { /'n)~= I. 

Before proving the sufficiency of the condition note Lhat now the n-th or­
der a.pproximants can be found only by t ru ncating thc expa,nsion (23) at levei 
n, substituting Lhe re mainder for thc vertices of the corresponding abstract 
Farey cell a.nd ca rry ing the indicated operations. 

Theorem 5.3 Lrt 
P - 1 ç- 1 c-I c- 1 (')4) o o 1'1 o '::1"11 o .. . '::f,, o ... ~ 

be a genc·rah::ul continued fraclion c:rpansion whcTe bn)~1 i~ a sequence 
in lhe space Sshift. lhen conditions a), b) and c) above. are sufficienl in 
oTde1· that the app1'o.rimants defined by the exzJansion conve·rge lo an unique 
uniquely C1'[Jodic int.erval exchange map T = T ( 1r, a). In this case 

P -1 ç -1 ç-1 g- J a = 0 o '"ri o "'f2 o .. . ..., , o ... 
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L-:: ih( .r;euel'<di:;(:d conli.nucd fl'a.clion C' .1:pansion o f T . 

Proof: lL is obvious t ha.t. Llw expa ns io11 (24) defines a u11iquc in terval ex­
change ma.p T = T ( ,.., a) as t hc li mit of its approximanl::; anel t hat (2<1) is thc 
generalizecl cont.inued fra ction expansion o f T. \~'e clai m that thc T -orbi t of 
Ois dense in [0. l ). In fact , from the stacks parametrization of the Farey cells 
it is clear that, as we mo\·e fonva.rd with the Ga.uss map Ç starting at T , 
each t ime wc bi t a t ransition cell In of typc i 0 the numbe r of intcrva.ls in the 
stack C-y, conta ining D io in its top increases. Thus, using c), we see that the 
number of intervals in lhe sta.cks of C, ... go to ex:: as n ~ oo a nel t his forces 
the wiclth of these stacks go to O as n ~ oo proving the claim . 

Now, using 1\eane's minimality condition, Keane [2], we conclude that T 
is mínima! a nel , s ince C(T ) Ç n~=o inte1·io1·(F,. (T )) i f Tis mini mal, we have 
T uuiquel y crgodic which proves Lhe theorem. 

V•./e give now a combinatori al description of Lhe distribution matrices (À, p) 
associatecl to small Farey cells of a rixed type I ' = (g, G) E A. Using this 
description we are able to construcl l he integra l parts of inlerval exchange 
m aps in Sm(',..) that have integral type f. To this end we wi ll transform thc 
proble m of finding the distribution ma.trices into Lhe problem of finding the 
cycles in the set of pennutat ious II .L = IT.L(1r,g, G, h0 , ... , hm-l) constructed 
from g, G' anel rn. non-negat.ive integra.! pa.ra.meters, h0 , ... , hm- l , by a prece-
dure to be defined bellow. To motivate the defini tion of ll.L suppose we have 
F s a small Fa.rey cell of type 1 where s is criticai. Take n the next cri ticai 
iterale of F s a.nd h i; j =O, .. . , m -1, the number of of interva.ls in the sta.ck 

Pi of F s where Pi is such lhat b(Pj) = L;+ R~u> · Ea.ch itera.te of {T k(O)}k=O 

excepl O = T 0 (0) anel Tmax(O) = ma.x{T k(O) I 1.: = O, ... , n} occurs twice as 
a n ext reme of the interva.ls in 'Pj; fi rst as a left anel then as a rigbt extreme. 
If we ddlne ll1. taking the ordcr of itcrat ion of a left extreme of an interval to 
the orde r of ileration of the rig ht extreme of the same interval a.nd ma.x .,__. O 
we have a cycle on {0, ... , n }. 

Reversing t hc dircction of our considera.tions we start with the hj's, the 
heig hts of the st.acks a.nd use (g, C:) to define !11. without rcfcrence to the 
internd <'xchange map. This is clone as follo\\'S. take h0 , •. . , hm-l , m non­
negati vc integers anel define 1-h = h 1- 1 (k) , 1.~ = 1, ... , rn a nel n = L_j1~(/ hj. 
The pe rmuta tion Il 1. on {0, 1, ... , 'll} is defined as foll ows: 
fi.L (L{=0 hi) = O forjE {O, ... ,m - 1} such tha.t gi+1 (0) = 1r-

1 (m.) a.nd , 
to define IT.L on {0, ... , n}- {I:f=o h;}. subdi\·ide this sct into m sucessive 
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inten 1als h 0 . h g(OJ' ... , h g•" -1 (oJ of l <:'ng t.h ~ h.0 , hq(O ) , ... , h.g., - 1 (O) respectivcly 
and lhe sct. { l. .... 11} in to m ::;ucessi H' i nterqlls II m. H G(m ) , . . . , H c m- 1 (m) 

of lenghts 11m, Hc(mb . . . , !la w- l(mJ respcct ivcly; nj_ rnaps Lhe j-th inte r­
vai, h 9,(0): iucreas ingly onto tlt<' 1.:-th inten·a.l. Hc~:(o), wherc k is given by 
Gk(m.) = f( g.7(m)) . 

As cxplained abO\·e, wc must. requi re tha.t 11.t so defined be a. cycl<" which 

we will ass ume from now O JL 

Define Lhe quantities 7'k, for k =O, ... , m and Lj , for j = 1, . .. , m. as ro = O 
and rc~:(m) = max Hc~<-l(m)> for/.;= l , .. . ,m., a nd l91(o) = max h 91-1(0)· 

These quan t ities play the role of the order of ihe re maining criti cai i te rates . 

For i= 1, ... , m, define the set i;, wbich will represent t he set of iterates of 

the interval exchange map T in the intcrva l Ii(T ), a.s follows: 
i; is t he set of ite rates 111 (1·;_ 1) for q run ning from O to the time just beforc 

ITj_(r;_J) bi ts t he set {1·dí:'=~ 1 again. 
\Vith those rcprescntat ions in minei it is clear Lhat, if Lhe order of t hc 

points l9J(O) anel ,.Gk(m) in thc cycle ll.t sta.rling ai O is correct, wc get a. 
di stribu t ion matrix by taking: 
À ;j = the number of points q in i ; as q runs from li up to Lhe t ime just before 
q enters {li }j:1 again , and 
Pik = t he number of poin ts q in i; as q runs from 1'k up to the time just 

before q enters { 1·k}í,~ 1 again, for j and k = 1, . .. , m- 1. 
VI/e finish this section a.nd this pa.per using the a bove theory to construcL 

an example of an uniquely ergodic interva.l exchange map. I t is clear that the 

ideas used in this const ruclion can be used to give a wide cla.ss of examples 
of uniquely anel non-uniquely ergodic ma.ps, a matter t hat vvill be pursued 
elsewhere. 

As expla.ined in the int roduction , maps exchanging m = 2 in terva ls can 
be considered as rotations on t hc circle anel i.d .o.c iff irrationa.l rotation iff 

uniquely ergoclic. Thc study of maps exchanging m = 3 intcrvals can also be 
reduced to the case of rota.Lions by looking a.L Lhe induccd ma.p on a su itablc 

subinterval. Thus our t.heory is really usdul for m 2:. 4. 
If m = 4 \\'e havc seven irred uci ble and di sconti nuous pe rmuta tions: 

(2,4,1, 3), (2, 4, 3,1) , (3,1,4,2), (3,2,4, 1) , 

( 4 , 1 , 3, 2) , ( 4, 2 , 1 , :3) , an d ( 4, 3, 2, 1 ) 
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here, anel in wltaL follows, wc denoLc a m ap F elefineel on an interval of 
intcgcrs k + 1.1.· + 2 . ... 1 /.; + l by Lhe l-th upl <> 

(P(k + 1), F(k + 2), ... I F(k + /)) . 

Vle take -rr = (2,4, 3, I) to construct our example. In th is case f = f( -rr) = 
(3.2. 4,1) anel A !tas also se,·en elements : 

í 1 = ( (L :3, 1, 2), ( 2, :3 , 1, J ) ), 12 = ( ( 1 , 2, :3, 2), ( 2, 2, 1, 3)), 

/ '3 = ((1, 3,2, 2),(2,3, .1 , 2)), / '4 = ((213, 1,2), {2,3, 2,1)) , 

Í5 = ((11:3,3,2),(2,3,113)), ~í6 = ((2131 1, 3),(313, 2, 1))1 

an d ')'; = ( ( 3, 3 1 1 , 2) , ( 2, 3, 3 1 1 ) ) 

where, as bcfore, Lhe first entry of Lhe pair ; ; denotes 9 and the second G. The 
vert ices of t he co rresponding abst ract Fa.rey cells C-y a re givcn, respectively, 
by the norma li zcd columns of the mairi ces 

o o o 1 1 o o o 1 
o o 1 o 1 o 1 1 1 
o 1 o o 1 o o 1 o 

V J = 
1 o 1 o o 1 v2 = o 1 o o I 

l 1 o o o 1 o o o 
1 o o 1 o o 1 o 1 

o o o 1 o o o 1 1 
o o 1 o o o 1 1 1 
o 1 o o o 1 o o 1 

C3 = 
1 o o o l 'U4 = o o 1 o o , 

1 1 o o 1 1 o o o 
1 o o 1 o o 1 o 
o o o o J o o o 1 
o o 1 o o o ] 1 

o 1 o 1 o o 1 o o 
Vs = 

1 o J o o lv6 = o o 1 o I 

1 J o o o o o o 
1 o 1 o 1 o 1 
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o o o 
o o I 

and v7 = o 1 o I 

o o J o ' 

o 1 o o 
o o o 

Thc transition ma.tríx 

T;J = { ~: ir ç(c"f,) nc"YJ # 0; 
otltcrwise. 

i,j = 1, 2, ... , 7, is given by: 

o o 1 o o o 1 
o 1 o o 1 o o 
o o 1 o 1 o o 

T = 1 o o o o 1 o 
1 1 o o o o o 
o o o 1 o 1 o 
o o o 1 o o 1 

and is the sum of the left and right transition matrices 

o o o o o o 1 o o 1 o o o o 
o o o o 1 o o o 1 o o o o o 
o o 1 o o o o o o o o 1 o o 

LT= 1 o o o o o o anel 1?..T = o o o o o 1 o 
o 1 o o o o o 1 o o o o o o 
o o o o o 1 o o o o 1 o o o 
o o . o o o o o o o o o o 1 

The malriccs inclucing Lhe branches of Lhe inverse of the Gauss map a re: 

1 o o o o o 1 o o o o o 
o 1 o o o l o 1 o o o o 

J\1(4, 1)= 
o o 1 o o o ,M(5, l)= 

o o 1 o o o 
o o o l o o o o o 1 o o 
o o o o 1 o o o o o ] o 
o o o o o 1 o 1 o o o 1 
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I o o o o o J o o o o o 
o I o o o o o 1 o o o o 

A/(2,:2) = 
o o 1 o o o 

,J\1(5, 2) = 
I o 1 o 1 o 

o o o 1 o o o o o 1 o o l 

o o 1 1 1 o o o o o 1 o 
o o o o o 1 o o o o o 1 

1 o o o o o 1 o o o o o 
o 1 o o o o o 1 1 1 o o 

M (J,:3) = 
o o 1 o o o , J\1(3,3) = 

o o 1 o o o 
o 1 o 1 o o o o o 1 o o ) 

o o o o 1 o o o o o 1 o 
o o o o o 1 o o o o o 1 

1 o o o o o 1 o o o o o 
o 1 o o o o o 1 o o o o 

J\1(6, 4) = 
o o 1 o o o 

,A1(7,4) = 
o o 1 o o 1 

o o o 1 o o o o o 1 o o ) 

o o o o 1 o o o o o 1 o 
o o 1 1 o 1 o o o o o 1 

1 o o o o o 1 o o o o o 
1 1 o o 1 o o 1 o o o o 

M(2 .. j) = 
o o 1 o o o 

, A1(3, 5) = o o 1 o o o 
o o o 1 o o o o o 1 o o ) 

o o o o 1 o o 1 o o 1 o 
o o o o o 1 o o o o o 1 

1 o o o o o 1 o o o o o 
o 1 o o o o o 1 o o o o 

.\1 (-1.6) = 
o o 1 o o o 

, M(6,6) = 
1 o 1 o 1 o 

o o o 1 o o o o o 1 o o 1 

o o 1 1 I o o o o o 1 o 
o o o o o I o o o o o 1 

l o o o o 1 J o o o o o 
o 1 o o o o o 1 o o o o 

a.nd .\1 (1,7) = 
o o 1 o o o 

l 111(7, 7) = 
o o 1 o o o 

o o o 1 o o o o o 1 o o l 

o o o o 1 o o o o o 1 o 
o o o o o 1 1 o o o 1 
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wh<"'re M(i,j ) indun·s tlw bram:h oi' Q- ' 111apping 11 iuto ~,;. 
T l1c firsL sma ll l·'a rcy cc ll of type ~11 h as t.he d istribut ion 111al ri x 

I I O 1 1 O 

(

I O O O O OJ 

'D= o o J o 1 o ' 
o 1 o o o 1 

a.nd vcrLices given by norma.lizing the columns of 

Computing lhe prod uct 

M = M (1 , 3) .1\1(3, 5).M(5, 2).M(2, 5) .M (5, 1 ) . 

J\1(1, 7).Nf(7) 4 ).J\1(Ll ) G).JV/(6, 4 ) .. M( 4, 1 ), 

which is a sequence allowed by T, we get 

1 o 1 o 1 
1 1 2 2 1 2 

J\11 = 
1 o 4 3 1 2 

1 2 3 1 2 
] 1 3 3 2 2 
o 1 1 1 o 2 

This ma!.rix has cha.racteristic polinomial 

l- 13.\. + 44X2 - 64X3 + 44 . .\.4 - 1:3X5 + X 6 

= (-1 + Xf(l - llX + 21X 2
- l 1.\'3 + X'' ). 

anel exact ly Oll <-' eigenvaluc with modu lus grcater !.hen one 
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Th is <' igcn,·a luc has multip li ci~y one, Lh e a.sso cia.~ed c igcns pa.ce hi ts C11 aL 

0.06604 .):39:3:3 .. . 
0. 17:2909084 7 .. . 

A = 
0.227534629.5 . . . 
0.19524 96795 .. . 
0 . 249875224~ .. . 
0.0883859882 .. . 

a.nd , it. is casy to see, M cont racts c 'YI to A. 
Using ·v as integral pa.rt we sec by T heorem 5.3 that T = T (1r , a-), for 

( 

0.0443606097 ... J 
= V A = 0.4594 745664 . . . 

O' . 0.3206611563 . . . ' 
0.1755036674 .. . 

is uniquely ergodic with periodic fra.ct ional expansion 

Ç-1 g- 1 c-1 g-1 g-1 g- t 
"13 o "15 o ~ 'Y2 o ')'~ o ~(J o "17 o 

Ç -1 g-1 ç -1 ç-1 g-1 ç -1 
... 4 0 'YG 0 ')'4 0 'YI 0 ')'3 0 "'!. 0 . .. 
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