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1- Introduction

This paper investigates the adequacy of the maximum likelihood
method for estimating the parameters of a single latent logit/probit
model for binary response data.

We are interested in checking on whether the likelihood has a smooth
unimodal shape, or whether it has multiple relative maxima. The shape of
the 1likelihood around the maximum point will show whether the
information matrix will give a good guide to the wvariability of the
estimates. It is a counter-indication to the use of maximum likelihood
estimates if there is a flat plateau, or a ridge moving off to infinity.

A badly behaved 1likelihood function suggests either that a
reparametrization is necessary, or that the model is a poor fit for the
data, or that the inference is particularly difficult.

We shall study the behaviour of the likelihood function by profiling
and an approximate method, using 3 sets of real data. These examples
represent a good range of different patterns of parameter estimates and

sample sizes.

2- The Model and its estimatjion

We shall suppose that n individuals respond 0 or 1 (no/yes,
disagree/agree, for example) to each of p items designed to measure a
single latent wvariable. The response of individual j on item i is
written Xji- Individual j has a value z for a latent variable Z, and we
assume that Z has a standard normal distribution. Thus the response
function of the logit/probit model for individual j on item i may be
given by

PL Xij =112z )= 1ri(z)

where

Ti(z)
1n = 0f ot ,Z
1 - ﬁi(Z)

or



exp( o ot 4 2 )
ri(z) = (1)
L +exp (@ o+ @j 4 Z )

We assume that the responses to items by an individual are
independent given the latent value. This implies that the probability of
the response pattern Xy = (xjj,sz,...,ij) for individual j with latent

variable value z is

P
g(xs1z) = 1 g4 (x5112)
] i=1 Hp

) X34 1-in
= n (%i(2)) (1-73(z)) (2)
i=1

This means that the single latent wvariable Z explains all the
association between the responses to different items by an individual.

The difficulty parameter o , and the discrimination parameter oy ,,
i=1,2,...,p are estimated by marginal maximum likelihood method, using a
modified E-M algorithm (see Albanese(1990) or Bartholomew(1987)).

Models of this type for binary response were popularised by
Bartholomew(1987). Properties of these models were extensively

investigated by Albanese(1990).

3- Comparison between the Profile and an Approximate Method

Let us consider a single latent wvariable logit/probit model for
fitting binary responses given by (1). Thus the likelihood is a function
of aj , and oy ,, i=1,2,...,p. A profile likelihood can be obtained for
Qj o and o , by maximising the likelihood over the remaining variables
j, j=1,2,...,p and j#i. We repeat this procedure to pget the profile

likelihood at a representative set of values of (o 4,0 ,).
r ’

We wusually choose to look at the profile 1likelihood for those
parameters for which the likelihood seems to be less satisfactory. One
guide to possible poor behaviour is the size of the ML estimate &i,1' A
value of &i,: greater than 3.0 may be a sign of a badly behaved
likelihood function.

i



Obtaining the behaviour of the 1likelihood function wusing the
profile method, described above, takes much computer time, since if we
evaluate it for eighty (ai,o,ai,l) points we have to maximise the
likelihood function that number of times.

Clearly it would be useful to have a quicker method that gives the
same information as the profile likelihood.

A simple alternative 1is to replace the maximisation procedure by
some approximation. We have tried wusing the original marginal ML
estimates for ®j,0 and &j,1 for j#i instead of maximising again for each

new choice of values for o4 o and 05 q-

We shall call the latter approach method A, the profile likelihood
method B . Put

La(ag 4,04 ;) = loglikelihood value obtained by fixing the remaining
parameter at these ML values aj,u and &J,,,

3=1,2,.. 4P, J#L.

LB(ai,a-ai,1) = loglikelihood value obtained by maximising over

aj,o and &1,1, j=l:2.---.P, _]Ff].

We apply and compare both methods by contouring the wvalues for La,
Lp as a function of Qi g and of ,, as defined above, wusing the
subroutine library GINO-SURF. This is done using 3 sets of real data,
which represent a good range of different pattern of parameter estimates
and sample sizes. The computer program used for fitting the model was
FACONE, but also can be done using TWOMISS, using 48 quadrature points.
The asymptotic standard deviations of the parameter estimates are
obtained by inverting the observed second derivative matrix at the ML

solution point.

3.1- Arithmetic Reasoning Test on White Women

The frequency distribution of the response patterns for the first
and second examples are samples of the Arithmetic Reasoning Test (ART)
from the American Youth on the Armed Services Vocational Aptitude
Battery, given by Mislevy (1985). The individuals were classified by sex

and colour, but the results given here relate to white and black women.
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Table 1-

Score distribution

and

results

obtained by

fitting

logit/probit model to the Arithmetic Reasoning Test on white women.

Response Observed Expected Total Posterior
pattern frequency frequency score mean
0000 20 26.79 0 -1.20
0010 14 9.83 1 -0.69
1000 23 18.43 1 -0.67
0100 20 15.78 1 -0.58
0001 8 4.86 1 -0.48
1010 9 11.24 2 -0.20
0110 11 10.55 2 -0.11
1100 18 20.21 2 -0.09
0011 2 3.57 2 -0.02
1001 6.86 2 0.04
0101 5 6.70 2 0.09
1110 20 21.87 3 0.37
1011 6 8.16 3 0.46
0111 4 8.74 3 0.56
1101 15 17.18 3 0.58
1111 42 37:23 4 1.09
Total 228 228.00 -

x2 = 8.39 on 6 degrees of freedom (p = 0.21)

a

Thus it is reasonable to infer that the data are consistent with a

single latent variable indicating the arithmetic reasoning ability. The

scaling given by the posterior mean is consistent with that of the total

score because the &j ,'s are very similar as we can see in Table 2.
’



Table 2- Parameter estimates and asymptotic standard deviations
from fitting a logit/probit model to the Arithmetic Reasoning

Test on white women.

Item i TR SE(ag ) R SE(& i o) T 5
1 1.04 0.32 0.59 0.17 0.64
2 1.24 0.39 0.56 0.17 0.64
3 1.00 0.30 -0.06 0.16 0.48
4 1.44 0.45 -0.51 0.21 0.38

The parameter estimates show that the items are neither very easy
nor too difficult with approximately equal discriminating power.

We apply below methods A and B to discover the behaviour of the
likelihood for the data in Table 1 and parameter estimates in Table 2.

Let us choose the first item as our item i. Since all the slope
parameters are approximately the same, we would expect to get the same
behaviour by choosing any other item.

~

Figures 1 and 2 have been obtained from 183 pairs (a,,u,a‘,1), where

~

a, o € (-3.50,3.50) and &1,1 e (0.10,12.00).

According to Table 2, the ML estimates for item 1 are &1‘|=l.0a and
&1,n=0'59' However Figure 1 suggests that the value of the likelihood
does not change much along a whole straight line of wvalues for &1’1 and
&1'0. Close inspection of the input data shows that there is a slight
decrease but not enough to show up in the contouring. Figure 2 shows a
result much closer to Figure 1 than one might expect, though the peak is
slightly better defined. Comparing both graphs this is the only
difference between them and it is due to the fact that in method A the

likelihood decrease faster than in method B.

The most striking aspect of both figures is the long ridge in the
picture going off in a wvaguely North Easterly direction. This suggests
that there is very little information in the data to choose between
(&1,0,&111) values along that ridge, and casts doubt on the wvalidity of

the ML estimates for (o, g, ,).
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Figure 1- Loglikelihood values as a function of &, , and &, , using

method B (profile) to the ART on white women.
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Figure 2- Loglikelihood wvalues as a function of &1'1 and &1‘0, using

approximate method A to the ART on white women.



3.2- Arithmetic Reasoning Test on Black Women

As a second example, we analyse the results of the Arithmetic

Reasoning Test on black women.

Table 3- Score distribution and results obtained by fitting
a logit/probit model to the Arithmetic Reasoning Test on

black women.

Response Observed Expected Total Posterior

pattern frequency frequency score mean
0000 29 28.39 0 -0.84
0001 8 8.19 1 -0.74
0010 7 7.99 1 -0.63
0100 14 14.95 L -0.63
0011 3 2.36 2 -0.54
0101 5 4.42 2 -0.54
0110 6 4.41 2 -0.43
1000 14 17.74 1 0.49
1001 10 6.88 2 0.58
1010 11 8.90 2 0.69
1100 19 1607 2 0.70
1011 2 3.54 3 0.79
1101 5 6.66 3 0.79
1110 8 8.84 3 0.92
1111 4 3.62 4 1.02
Total 145 145.00 - -

X2 = 6.42 on 3 degrees of freedom (p = 0.10)

As for the test on white women (Table 1) we can also infer that the

logit/probit model with one latent variable fits reasonably well.

Note that Table 4 below shows significant differences between the

slope parameter estimates(tj ,, i=l,...,4).
’



Table 4- Parameter estimates and asymptotic standard deviations
from fitting a logit/probit model to the Arithmetic Reasoning

Test on black women.

Item i ai” SE(ai,1) &i,u SE(& a) T i
1 14.39 67.78 0.25 4,63 0.56
2 0.38 0:.22 -0.33 0.16 0.42
3 0.37 0.24 -0.96 0.20 0.28
4 0.19 0.24 -1.08 0.21 0.25

The results show that item 1, due its large discriminating power,
divides the sample into two totally separate groups, those answering the
item positively and those who do not. On the other hand, its standard
deviation is too large to be trusted. Even for the other &1,1 the
standard deviations may be considered so large that little information
is present about them.

Due to the very large slope parameter estimate of item 1 and its
strikingly wild standard deviation, it is an obvious choice to look at

the behaviour of the likelihood function for 185 pairs (&,'0,&1‘1).

Since both methods give exactly the same picture, we present just
one (Figure 3). There is only a tiny difference between the 185
loglikelihood values from methods A and B, for &, , bigger than 3.0 and

any g ;-

Figure 3 shows that the likelihood function assumes practically the
same values for all &, ,, and as &, , increases the best values for &, ,
cover all its interval of wvariation. Although the subroutine used to
draw the graph does not show small differences, analysing the input data
we can confirm that the likelihocod continues to increase indefinitely,
indicating that the actual wvalue for &1’1 is infinity, which is not
sensible,

This is one example where the loglikelihood does mnot behave
appropriately for ML method of estimation.

The broad ridge going from West to East strongly suggests that & 9
is not a meaningful parameter for values of «, , giving the highest
likelihood, since every value of &1'0 larger than -1.0 will provide the

same maximum for loglikelihood funf&ion.
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Figure 3- Loglikelihood values as a function of &, , and &, , using

methods A or B to the ART on black women.

3.3- Cancer Knowledge

The data in Table 5 comes from a study on knowledge about cancer by
Lombard and Doering (1947). Questions were asked about whether or not
the following were sources of general information:

(1l)radio (2)newspaper (3)solid reading (4)lectures

Table 5 shows that these data are fitted reasonably well by a
logit/probit model with one single latent variable as a measure of how

well-informed a person is.

o



Table 5- Score distribution and results obtained by fitting

a logit/probit model to the Lombard and Doering's data.

Response Observed Expected Total Posterior

pattern frequency frequency score mean
0000 477 467 .37 0 -0.98
1000 63 70.80 1 -0.68
0001 12 16.62 1 -0.66
0010 150 155.93 ! -0.46
1001 7 3.10 2 -0.41
1010 32 33.30 2 -0.22
0011 11 7.98 & -0.20
1011 4 2.02 3 0.02
0100 231 240.52 1 0.16
1100 94 82.16 2 0.41
0101 13 20.29 2 0.43
0110 378 362.29 2 0.66
1101 12 8.51 3 0.72
1110 169 181.61 3 1.00
0111 45 46.04 3 1.02
1111 . 30.49 4 1.42
Total 1729 1729.00 -

x2 = 11.68 with 6 degrees of freedom (0.05<p<0.10)

The scaling of the sample is not exactly the same when using the

total and the component scores.

by &, , as showed in Table 6.

Table 6-

fitting a logit/probit model to the Lombard and Doering data.

Parameter estimates

and asymptotic

This is due to the large wvalue assumed

standard deviations

~

Item 1 &i,, SE(&i’1) Qi g SE(ai,D) T i
1 0.72 0.09 -1.29 0.06 0.22
2 3.40 1.14 0.60 0.17 0.64
3 1234 0.1.7 -0.14 0.08 0.46
4 0.77 0.14 -2.70 0.18 0.06

B [/

from



The large wvalue for the discriminating power of item 2 indicates
that the newspaper has the largest effect on getting information about
cancer. Its standard deviation, however, 1is relatively large. The
difficulty parameter estimates range from 'popular source of

information' (item 4) to 'mot very popular' (item 2).

To carry out the analysis of the behaviour of the likelihood, we
used 138 wvalues for (&2’0,&2,1), since &2’1 is very large compared with

the other parameter estimates &j .
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Figure 4- Loglikelihood wvalues as a function of &2’, and &2’0, using

method B (profile) for the Lombard and Doering data.

According to Table 6 the likelihood function assumes its maximum
value when &; ,=3.40 and &; ¢=0.60 for item 2. Both Figures 4 and 5 show

that &, , could be equal to any number bigger than 1.0 and the range of

(o2

;. o increases as &2’1 also increases. As when analysing Figures 1 and
2, this happens because the likelihood wvalues change very little for

@, , bigger than 3.40.
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Figure 5- Loglikelihood values as a function of &, , and &, , using

approximate method A for the Lombard and Doering data.

In this case too, methods A and B give the same information about
the shape of the likelihood function, which does not seem suitable for

the ML method.

Conclusion

We have compared 3 sets of data for which a logit/probit model with
one latent variable seemed to fit reasonably well.

The results suggest that when one of the &i,1 is large this probably
indicates bad behaviour of the likelihood.

It is difficult to say exactly how large each ai.l can be before the
ridge in the likelihood appears and the second observed derivatives or
the information matrix are not good guides to the variability of this
estimates.

There is strong evidence that we can use the approximate method A
instead of the profile likelihood, since they give the same information

about the behaviour of the likelibﬁgg function.



4- Another Look at the Likelihood Function

Working with the contoured likelihood is not always easy, since a
lot of points are required and it is hard to see small changes in the
likelihood wvalues. It is useful to plot the shape of the likelihood
function along the ridge that is evident in Figures 1 to 6. This
corresponds to maximising the previously obtained loglikelihood wvalues
over o4 - Using the data points (&1‘1,&1’0) from Figures 1 to 5,
results are in the plotting points of Tables 7 to 9 and the likelihood

functions in Figures 6 to 8.

Table 7-Maximum loglikelihood Table 8-Maximum loglikelihood
value over &110’ fixing &1’1 value over &,ID' fixing 31,,
to the ART on white women. to the ART on black women.

&, La Ly Xy, g La Lp
0.0 -601.37 -601.14 0.0 -368.08 -367.48
1.0 -592.14 -592.12 1.0 -365.66 -365.33
2.0 -594.59 -594.22 2.0 -365.01 -364.90
3.0 -598.28 -596.62 3.0 -364.83 -364.78
4.0 -601.03 -597.87 4.0 -364.77 -364.74
5.0 -602.99 -598.51 5.0 -364.74 -364.72
6.0 -604.17 -598.85 6.0 -364.72 -364.71
7.0 -604 .96 -599.06 740 -364.71 -364.70
8.0 -605.50 -599.19 8.0 -364.71 -364.69
9.0 -605.85 -599.28 9.0 -364.70 -364.69

10.0 -605.99 -599.33 10.0 -364.70 -364.69

110 -606.13 -599.37 11.0 -364.70 -364.69

g
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Figure 6- Maximum loglikelihood value over al'n for each &,,, fixed, for
the ART on white women presented in Table 7.
Table 9- Maximum loglikelihood value over az'u, fixing &2'1

to the Lombard and Doering data.
a2,1 La Ly Q2,1 Lp Lp

0.1 -3758.59 -3755.13 6.0 -3624.05 -3622.90

1.0 -3656.02 -3645.49 7.0 -3624.71 -3623.17

2.0 -3637.84 -3625.53 8.0 -3625.10 -3623.24

3.0 -3622.71 -3622.47 9.0 -3625.29 -3623.27

4.0 -3622.68 -3622.52 10.0 -3625.47 -3623.31

5.0 -3623.54 -3622.80 11.0 -3625.62 -3623.39

Figure 6 shows that both methods give approximately the same

loglikelihood values for &1’1 smaller than 2, increasing up to &1’|=1.0d

(ML estimate) and decreasing faster when using method A than the profile

likelihood. This result agrees with our analysis of Figures 1 and 2.

16w
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As in the three dimensional graph, Figures 7 and 8 confirm that both
methods give roughly the same information about the behaviour of the
likelihood. Inspection of the data in Table 8 shows that the likelihood
continues increasing, while in Table 9 the likelihood assumes a maximum
value, but after that decreases so slightly that the change is

insignificant when plotting the data.

Plotting the results for all items

Since approximate method A followed by a simple plot is easy to
apply, we shall look at the shape of the likelihood for all items,
instead of only one, for the ART on white and black women, and the

Lombard and Doering data.

Table 10- Maximum loglikelihood wvalue, Lp(i), over &i,c,
fixing &i‘“ i=1,2..,4, to the ART on white women, using

approximate method A.

&, La(1) La(2) La(3) La(4)
0.0 -601.37 -603.57 -601.63 -606.09
1.0 -592.14 -592.22 -592.05 -592.74
2.0 -595.06 -593.84 -595.18 -592.68
3.0 -598.28 -595.98 -599.43 -595.06
4.0 -601.22 -598.18 -602.58 -596.31
5.0 -602.88 -599.46 -604.71 -597.47
6.0 -604.17 -600.42 -606.19 -598.33
7.0 -604.90 -600.99 -607.26 -598.71
8.0 -605.50 -601.37 -608.07 -599.13
9.0 -605.77 -601.66 -608.71 -599.27

10.0 -606.10 -601.79 -609.22 -599.44

11.0 -606.13 -601.93 -609.63 599,51

-18-
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Table 11- Maximum loglikelihood values, Lp(i), over &i,o

fixing &i . 1=1,2,..,4, to the ART on black women, using

approximate method A.

@i 4 La(1) La(2) La(3) La(4)
0.0 -368.08 -366.79 -366.01 -365.07
1.0 -365.66 -368.07 -367.59 -369.97
2.0 -365.01 -379.56 -377.88 -381.54
3.0 -364 .83 -392.35 -389.50 -394 .39
4.0 -364.77 -404.22 -400.20 -406.07
5.0 -364.74 -415.00 -409.66 -416,58
6.0 -364.72 424 .78 -418.04 -425.29
7.0 -364.,71 -433.57 -424.92 -432.68
8.0 -364.71 -441 .96 -430.51 -438.91
9.0 -364.70 -449.16 -435.21 -443 .32

10.0 -364.70 -455.29 -438.39 -446.98

11.0 -364.70 -460.03 -441.16 -449 .43

Table 12- Maximum loglikelihood values, Lp(i), over ai,u

fizing &i,11 i=1,2,..,4, to the Lombard and Doering data,

using the approximate method A,

& La(L) La(2) La(3) La(4)
0.0 -3666.35 -3790. 44 -3755.44 -3640.81
1.0 -3626.13 -3660.79 -3630.09 -3624 .84
2.0 -3680.93 -3627.58 -3635.98 -3650.53
3.0 -3739.91 -3622.71 -3666.38 -3682.70
4.0 -3785.70 -3623.91 -3693.62 -3710.37
5.0 -3818.87 -3623.95 -3714.12 -3730.04
6.0 -3842.86 -3624.05 -3728.73 -3743.71
7.0 -3859.40 -3624.97 -3740.07 -3752.89
8.0 -3871.61 -3625.30 -3749.21 -3759.02
9.0 -3881.08 -3625.29 -3756.80 -3763.18

10.0 -3886.42 -3625.97 -3762.16 -3765.29

11.0 -3890.69 -3625.62 -3766.36 -3766.72

~20-



Figure 9 shows that whichever item we choose, all items are
well-behaved. However it is interesting to point out that the order of
the curves from the top to the botton of the page is inversely related
to size of the &i’, ,i=1,...,4, since here they all have the same

coefficient of variation (0.31).

As we can see in Figure 10, the bad behaviour of the likelihood is
indicated by item 1, with very large 31’, and its large standard
deviation. Item 2 and 3 present very similar &1,1 (0.38 and 0.37), with
coefficient of wvariation 0.58 and 0.65, respectively, but the latter
loglikelihood decreases slowly. The value of &, , is half the size of

item 2 or 3, but with a large coefficient of variation (1.26).
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Figure 11- Maximum loglikelihood value over &; |, for each &y , fixed,
i=1l,....,4, for the Lombard and Doering data, presented in Table 12,

using approximate method A.

Working through the values of ai', and Figure 11 we see that &3’, is
bigger than &4,, (L.34 and 0.77), but the former has a smaller
coefficient of wvariation, and both items give approximately the same
likelihood shape. Item 1 has the smallest &1’, and the smallest
coefficient of wvariation (0.12) and the biggest 1likelihood function

decrease, while item 2 has a largilyalue for 61,1 and large coefficient



of wvariation (0.34) and effectively its likelihood function never

decreases.

Conclusions

These results suggest that there is strong evidence that we can look
at the behaviour of the likelihood function by the approximate method A,
using a graph like those in Figures 6 to 8. However, we should remember
that the likelihood wvalues from this method are equal or smaller than
the real values and small decreases in the likelihood function should

actually be still smaller.

Finally we can conclude that 1large discriminating parameter
estimate (31’1) and large standard deviation point to bad likelihood
behaviour. The results also indicate that for the same test the shapes
of the approximate profile likelihoods obtained for different items i

are related to the size of &; , and its coefficient of variation.

5- Reparametrization

The investigation of the behaviour of the likelihood function that
has been carried out suggests that, at least for the ART on black
women (Table 3) and the Lombard and Doering data (Table 5) a
reparametrization is necessary.

We have worked through many reparametrizations, as for example,

R
(=
[

By 4/ (14 exp@y ) )

a; =1/ &1,1

—01,1/(1"‘&1,1)

2
i
|

Or.'i,[]/ ( ].+C!i’1)

Qf o= - Qf o/ @i ,

where i=1 for the ART on black women data and i=2 for the Lombard and

Doering data. -22-



We shall present the results just for the reparametrizations that

gave useful results, in the sense that it showed better behaviour of the
likelihood function, that is, for

” i s 2 3 & & 2 3
ori,ci"a'i.,o/(1+0"i,1) and afja=aj o/ (l+ai,)

using the profile and the approximate methods (B and A, respectively).

5.1- Arithmetic Reasoning Test on White Women

The data related to this example are presented in Table 1.
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Figure 13- Loglikelihood values as a function of &, , and @, , using

approximate method A to the ART on white women.

Both Figures 12 and 13 show the same shape of the 1likelihood
function and their parallel and almost horizontal lines indicate that
the values of the loglikelihood almost do not change for a fixed &f,n
over all range of &T.1. There is a peak inside the ellipse, although the
contouring does not show the small differences in the loglikelihood
values. We can see it in Figure 15, where we have the maximum

loglikelihood values over & , for each &% , fixed.

That only one line represents the behaviour of the 1likelihood
function in Figure 14 is due to the fact that methods A and B give the
same results for all values assumed by &f}u.

From Figures 14 and 15 we can see that the loglikelihood function
behaves well in both reparametrizations and that the maximum
loglikelihood values for af,1 range in a larger interval than for & ,,
since maximum loglikelihood Bf’1 ¢ (-916.11;-592.27) while the maximum

loglikelihood af_o ¢ (-606.23;-592.14).

Comparing Figures 1, 2 and 6 with 12 to 15 we can conclude that the

reparametrization &T.D and &f,1 give a likelihood function with better

behaviour than ay g and ;- 29
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Figure 14- Maximum loglikelihood value over &, , for each &, , fixed to

the ART on white women, using methods A and B.

~590—
-592-
~593—
~594—
—595—
~596—
-598— ,
-599-
~600-
-601~
-602-
-804 - o
~605— — ¥ Z
~606-] i

1}

- 1
=80~ i | i ] J i

I | |
1.0 20 30 40 50 60 70 80 99 10

Figure 15- Maximum loglikelihood value over &1.0 for each a*, , fixed

to the ART on white women, using yf§bods A and B,



5.2- Arithmetic Reasoning Test on Black Women
The following graphs refer to the data in Table 3.

As in the first example, the Figures 16 and 17, 18 and 19 shows the
same shape for the likelihood function, whether using profile (method B)

or approximate method A.

Figures 16 and 17 show that the parallel 1lines are becoming
horizontal as the loglikelihood function approximates to the maximum
value, where we can see a broad bridge going from West to East and af

&f’n ranges from -0.35 to 0.35.

1
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Figure 16- Loglikelihood wvalues as a function of &f,, and &f,o, using

profile method for the ART on black women.
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Figure 17- Loglikelihood values as a function of &) , and &y o using

approximate method A for the ART on black women.
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Figure 18- Maximum loglikelihood value over &, , for each &¥ , fixed for

the ART on black women, using metpggg A and B.
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Figure 19- Maximum loglikelihood value over &1'0 for each a’f', fixed for

the ART on black women, using methods A and B.

The apparent increased 1likelihood function shown in Figure 19
is,actually, almost constant since it assumes wvalues in a small
interval (in the profile method from -367.48 to -364.68 and in the
approximate method from -368.08 to -364.69), corresponding to an
increase of 0.9%. Thus the reparametrization &T” provides a likelihood

function that is monotone increasing.

On the other hand, Figure 18 indicates that the

I
reparametrization &’flo = 0 5 /(].+&2]-_.1)2 works very well, since the
likelihood function is unimodal, assuming values from -510.35 to -364.68

in both methods (profile and approximate).

-28-



5.3- Cancer Knowledge
This example corresponds to the Lombard and Doering data(Table 5).

The small difference between methods A and B (Figures 20 and 21) is
because the loglikelihood function for &2,,< 1.1 in the profile method

is bigger than in the approximate method.

The behaviour of the likelihood function after reparametrization in

these example is very similar to the former one.

Although Figure 23 seems to show an increased loglikelihood function
for &"’;’,, it is almost constant, since it ranges from -3758.59 to
-3755.13 which represents a small increase of 3.8%. Therefore the

reparametrization &":'1 provides a likelihood function that is monotone

increasing.

As in the preceding example, the only useful reparametrization is
given by &‘:,0, as we can see in Figure 22 an unimodal 1likelihood

function that assumes values between -5813.38 and -3625.14.
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Figure 20- Loglikelihood values as a function of &% , and &3 o » using

profile method for the Lombard angzé')?ering data.
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Figure 21- Loglikelihood values as a function of &i" and &g’o, using

approximate method A for the Lombard and Doering data.
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Figure 22- Maximum loglikelihood value over &, , for each &% o fixed to

the Lombard and Doering data, usip§0pethods A and B.
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Figure 2.23- Maximum loglikelihood value over &, , for each &% , fixed

to the Lombard and Doering data, using methods A and B.

Interpretation of of ,
1

* 2 %

The reparametrization oj o =103 4/ ( 1 + @3 , ) corresponds to
the probit of the expected value of ¢(“i,o+ﬂi,1z)- the response function

of a probit model, i.e.,
aj o = &1 ( E ( &( Qi ot Qi 2) ) ).

For convenience, let us consider

aj o= a and Qaj 4 = b

E(d(a+bz)) = I_: d(a+bz) (Zr)‘% exp(-% z2) dz

By



1f we take

bz = u and bdz=du

Then

E(d(atbz)) = j-Z ®(atu) (27)°% b1 exp(-3 u? b-2)du

= I_Z P(Z-uga) (density for W -~ N(0,b?) at u)du

P(Z+W ¢ a), Z+W .~ N(0,1l+b?)

and therefore

E(d(atbz)) = &( a/(1+b2)% )
or

a/(1+b2)% = &~V (E(d(a+bz))).

6- Conclusions

The results about the investigation of the behaviour of the

likelihood function give evidencie that

(1)- The approximate method provides results equivalent to the profile
method. Both suggest that large @; ;, ( > 3/0, ¢ is the standard
deviation of the latent distribution) probably indicates bad behaviour
of the likelihood, which will be shown by the presence of a long ridge.
In this case the second derivative matrix or the information matrix are

not good guides to the variability of these estimates.

(2)- 1f 31’1 is not large, the likelihood funtion behaves well and thus

the first order asymptotic theory is appropriate.
(3)- A badly behaved 1likelihood function suggests either that a

reparametrization is necessary, or that the model is a poor fit for the

data, or that the inference is particulary difficult.

e



(4)- Among the several reparametrizations we tried only the one given
by

o* e ~ 2

@j o= Q@i o/ (1‘*01,1)%

provided a better behaviour of the likelihood, independent of the size

of the parameter estimates.

This reparametrization corresponds to the probit of the expected

value of the response function of a probit model, that is,

=1
a; o= ® (E(aj g+ta@j ,2) ) =

1

' ( E( P(Xy=l1z) ) = &

I

( P(X3=1) )
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