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Abstract

An explicit formula for an ergodic o-finite measure invariant by
the Gauss map associated to a new induction on the interval ex-
change maps is given. The techniques developed allow another proof
of Keane’s conjecture which was first shown to be true by Veech and

Mazur.



1 Introduction

In this paper we study the induction defined in [7] for interval exchange maps
from the metrical point of view.

In this induction we take T = T(x,e):[0,1) — [0,1) an exchange of
m 2> 1 intervals and n > 0 a critical iterate of T ( this means that T"(0) is
closer to a discontinuity of T than any iterate T*(0), 0 < k < n) and stack
the intervals [T*(0), T!(0)], 0 < k,! < n, ree of T-iterates of 0 up to the order
n in its interior. This stacking is done upward up to the first discontinuity of
T and downward down to the first discontinuity of T='. In this way we get
a finite number of towers of intervals which are in bijective correspondence
with the points of the Farey cell of order n around T, F,, = F,(T). F.(T)
is the equivalence class of T under the relation ~=~ defined on the space of
interval exchange maps by T ~ S iff the itineraries of 0 under T and S on
the respective permuted intervals are the same up to the n-th iterate. These
classes will define a sequence of partitions of the space of interval exchange
maps that get finer and finer as n grows and for most exchanges T (in the
sense of Lebesgue measure) the sequence of atoms around T converges to T.

To parametrize these towers and the corresponding Farey cells F, we
use a finite set of disjoint polyhedra C, C R*™~%, v € A(x), which we call
abstract Farey cells. This parametrization is a dynamically defined projective
isomorphism. On C = }_C, we have naturally defined a locally projective
map G = G(x), the Gauss map, which takes a given set of towers associated
to a critical iterate to the next one. Using the dynamics of G it is possible to
capture the set of T-invariant measures and therefore the uniquely ergodic
ones, [T].

Now we come to the main results of this paper. We exibit an explicit

formula
m=1 1

dpe = ——dA
; ;l;‘!:] L; + Ry

for an ergodic o-finite G-invariant measure. In this formula f = f(x) is a
bijection {0,1,...,m — 1} — {1,2,...,m} depending only on the permu-
tation 7 defining the space of interval exchange maps, Lg, Lq,..., Lyp_1 and
Ry, Ry, ..., R, are the dynamically defined variables used to parametrize the
cells and d) is the Lebesgue measure on C.

We close the paper using the techniques developed to construct the mea-



sure dp to give another proof of Keane'’s conjecture. This conjecture was
first shown to be true by Veech [9] and Mazur [4]. See also Kerkhoff [3] and
Rees [5]

The paper is organized as follows: in the next two sections we recall the
induction introduced in [7]; in section 2 we give examples and, in order to
ilustrate the main features of our method, consider the cases of two and three
intervals. In section 3 we recall the general formalism of the induction and
show that dp is G-invariant. In section 4 we present the procedure used to
get dp. This is the same procedure abstracted from Veech [9] by Arnoux-
Nogueira and used in [2]. This construction will be useful in the next section
when we show that dy is conservative. The technical lemma needed in this
section we pospone to the Appendix. Finally, in section 6 we give a proof of
the egodicity of du and another proof of Keane’s conjecture.

2 Examples

We will illustrate the procedure sketched above considering the cases of in-
terval exchange maps of respectively two and three intervals.

The case of two intervals

In the case of just two permuted intervals we will denote by 8 = 6, = oy
the discontinuity of T. In this case the map is given by just one parameter,
namely /.

Let’s consider the particular example given by the map T described in
Fig.1. In this case if one follows the orbit of zero by T we see that n =4 is
a critical iterate. The location of the orbit of zero up to the 4-th iterate is
presented in the x-axis of Fig.1. This order is:

0 < T%(0) < B < TH0) < T'(0) < T3(0) < 1 (1)

Consider the right and left intervals defined by the closest aproach to 3 given
by L = [T%(0),3) and R = [B, T"(0)], respectively. In this particular example
the value T(0) is in the interval R. In Fig.2 the interval L U R is shown,
and we point out to the reader that the length of the interval [T?(0),3) is
equal to the length interval [T%(0),T"(0)). This fact is important in order
to see that the next critical iterate is T7(0) an that the new set of right and



left intervals is L™ U R™ where L* = [T?(0),3) and R* = [3,T%(0)]. In the
particular case we are considering here the critical iterate T7(0) is in the
interval L™, but it could also happen that T7(0) be in R".

To see the truth of these assertions stack the intervals defined by the
iterates of (1) as described in the introduction. In the present example the
stacks associated to the critical iterate T#(0) are shown in the two stacks
of Fig.3 a). Note that the full dynamical information about the map T is
contained in this picture since each interval is mapped by T on the interval
that is placed on the top of it in the stack and the top intervals the stacks
join to form L* U R* and each of these intervals is mapped to the botton of
the opposite stack.

The two stacks associated to the next critical iterate, which is T7(0), is
shown in Fig.3 b). This can be easily understood as follows: move the stack
that do not contain the discontinuity f# in its top to the bottom in such way
‘the property "each interval is mapped into the interval that is on top of it”
is mantained. In this way we obtain the next stack given in Fig.3 b). The
fact that the new critical iterate is determined by the previous critical iterate
and has the stated properties is now transparent (see Fig.3).

The procedure is always the same, each critical iterate will determine the
next one. The previous critical iterate will be one of the extremals of the
new interval L* U R* containing the next critical iterate.

Note that the stacks of Fig.3 b) also describe the full dynamics of the
same exchange map T, but now with a different height and witdth of the
stacks.

Now we want the analytical expression for the lengths of the new left
and right intervals, L* and R*, obtained from the lengths of the preceding
intervals, L and R. The new values for L™ and R will depend on the position
of the critical iterate: if it is in R or in L. The two possibilities are shown in
Fig.4. For example in Fig.4 b) the critical iterate is in R as in the example
we considered in the beginning.

In order to simplify the notation we will denote the size of the intervals
L,R,L* and R* by the same letters L, R,L* and R*, respectively. If we
normalize these variables by requiring that L + R = 1, we have in fact just
one free variable. We choose to work with # = L. The Gauss map G at
z, G(x), will express the value of the new L* in a normalized form, that is
G(z) = L*/(L* + R*). The Gauss map in the present situation is defined
from [0,1] to [0,1]. The abstract Farey cell in this case has just one piece,
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namely [0,1]. Note the very important fact that the critical iterate is always
in the larger of the intervals L or R (the reader should convince himself of
this fact by looking at the several possibilities of the graph of T). If L < R
then @ < 1/2 and L* = L (the critical iterate was in R). The interval R* is
equal to R — L (see Fig.2). Therefore L+ R* =L+ R— L =1—z. The
new normalized L* is G(z) = L*/(L* + R*) = z/(1 — ).

In case L > Rwehavez > 1/2 and thenew L*is L— R=z— (1 —2) =
22—1 (the critical iterate wasin L). Then R* = R, and L"+R* = L-R+R =
L = z. Therefore the normalized L* is given by G(z) = (22 — 1)/=.

In this case G is also known as the backward continued fraction map, [1],
and its graph is shown in Fig.5. The map G is not expanding due to the
fixed points 0 and 1 that have eigenvalue 1. This map G leaves invariant a
o-finite invariant measure given by dz/(z(1—x). Measures with infinite mass
will appear in all cases of Gauss maps which we will consider here. One of
the purposes of this paper is to show explicit formulas for infinite measures
(equivalent to Lebesgue measure) which are invariant by the Gauss maps in
the case of interval exchange maps with more than three intervals.

The case of three intervals

We will denote by f; = a; the first discontinuity and B; = a; + a, the
second discontinuity of T, where a;, a; and a3 are the lengths of the intervals
permuted by T.

Fix a critical iterate n of T and denote by L, R; and L,, R, the left and
right intervals around the discontinuities f, and ;. We get these intervals
by taking the points in the T-orbit of 0 up to the n — 1-th iterate closest to
the left and right of the respective discontinuities. The critical iterate T™(0)
can possibily be in any one of these four intervals.

As we did before we will denote an interval and its length by the same
symbol and consider the normalizing condition L; + Ry + Lo+ R, = 1. In fact
there is just two independent variables (because there exists always one more
relation among Ly, Ry, Ly, Ry as we will see in a moment) which we choose to
be Ry and R;. We will be interested in finding the new R} and R; using the
procedure of going from one critical iterate to the next critical iterate. This
procedure is analogous to the previous one and is also described by moving
the stacks in such way that the old critical iterate will furn out to be a new
extremal of one of the intervals L7 U R} and L3 U R;.

It is not difficult for the reader to convince himself that in the present sit-



uation, the only possibilities for the stacks are the ones schematically shown
in Fig.6 a), 7T a) and 8 a). There are three towers, two of them always
coming together in a discontinuity and the third with its top at the other
discontinuity of T.

To simplify the notation we will denote the intervals T(Ly), T(R;), T(L,)
and T(R;), which are at the bottom of the stacks by Ly, Ry, L, and Rs, re-
spectively. Note however that the sizes of these intervals are correspondingly
equal.

In the first case I'ig.6 a), (denoted by cell 1), the critical iterate can be
in L; or in R;. These two cases will have to be considered when we define
the Gauss map. Before doing that, however, we will describe the Farey cells
(Fig.6 b), 7 b) and 8 b)). Note that in Fig.6 a) the right tower give us the
relation Ly + Ry = Lo+ Ry. Asl =L+ By + Lo+ Ry = 2(L1 + Ry) =
2(Ly + Ry), then Ly =1/2 — R; and L, = 1/2 — Ry. Therefore the possible
values of (Ry, R2) are in the square [0,1/2] x [0,1/2] (see Fig.6 b)). The
upper triangle of the square correspond to L; < R; (in this case the critical
iterate 1s in R;) and the lower triangle of the square correspond to L; > R,
(in this case the critical iterate is in L;). The two possibilities are shown in
the top towers of Fig.10 and 11.

Now we consider Fig.7 b). In this case from the left tower of Fig.7 a) we
get the relation L2 - Ll + Rl Asl = L1 + Rl + Lg -+ Rz = 2L1 + 2R1 + Rg,
then Ly = 1/2—(R;+1/2R,). The possible values of (R, R,) are in the right
triangle with height 1 and width 1/2 (see Fig.7 b)). The dotted horizontal
line is at heigth 1/3. The upper triangle is given by the condition R; > L,
(the critical iterate is in R;) and the lower quadrilateral is given by the
condition Ry < Ly (the critical iterate is in L;). The two possibilities are
shown in the two top towers of I'ig.12 and 13. We will denote such cell by 11.

Finally we will analyze Fig.8 b). The left tower from Fig.8 a) gives us the
relation [y = Ry — R;. Butas Ly + Ry + L, + R, =1 we have L, = 1 —2R,.
The values (R, R,) are then in the right isoceles triangle with equal sides of
lenght 1/2 shown in Fig.8 b).The dotted horizontal line is at height 1/3. The
upper quadrangle contained in the triangle is given by the condition L, < R,
(the critical point in R, ) and the lower triangle is given by the condition
L, > R, ( the critical point in L;). The two possibilities are shown in the
two top towers of Fig.14 and 15. Denote such cell by III.

Now that we defined the Farey cells, our next goal is to compute the
Gauss map G. This map is defined from the disjoint union of the three
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Farey cells to itself. It will be a two to one map. Note that each Farey cell
have two subpieces described in Fig.6 b) 7 b) and 8 b). Each subtriangle or
subquadrilateral will be mapped to one of the full Farey cells via a projective
isomorphism in such way that triangles will go to triangles and quadrilaterals
to the square I. The diagram of the Gauss map and its analytical expression
is shown in Fig.9. Our next purpose is to show that the analytical expressions
shown in this picture are correct. In other words, given the values R, and
Ry, we want to know the new normalized values (ry,r3) = G(R;, R3), 11 =
Ry /(L + Ry + L+ R3) and vy = R /(L5 + Ry + L + R;), where we denoted
the new values of Ly, Lo, Ry and R, by L}, L3, R} and I?;, respectively. These
new values are to be obtained by the procedure of moving stacks associated
to one critical iterate to the next one.

In order to define the Gauss map for (R, Ry) in case I, we have to analyze
two possibilities:

1. Ly > R, (corresponding to the lower subtriangle of I) and
2. Ly < R, (corresponding to the upper subtriangle of I).

I1) If Ly > Ry, the moving stacks procedure lead us to map (L, Ry, Lo, R3)
to (L3, Ry, L3, R3) = (L1 — Ry, Ry, L2, R2) (see Fig.10). This is so because, in
the new towers, only the value of L; change. Note that the new stacks are of
class II. This explains the arrow in the diagram of Fig.9 going from the lower
triangle of I to II. From the sum L1+ Ry + L3+ R; = (Ly—Rz)+ R+ L+ Ry =
1 — R, we get the normalized values (ry,73) = (Ri/(1 — R2), R2/(1 — Ry). It
is not difficult to see that the map taking (R;, R2) to (r1,72) is one to one
and map the lower triangle of I onto the full triangle II.

12) If L, < Ry, then the moving stacks procedure gives (L, R}, L3, R5) =
(L1, Ry — La, Ly, Ry) (see Fig.11). The new towers are of class III. That is
why the diagram of Fig.9 indicates that the upper subtriangle of I goes to III.
We have LI-l-R;-{-L;-}-R; = Ll-f-(R] _‘L2)+L2+RQ = I—Lg = Rz-!—]./?
The last equality was obtained using the fact that, from the right top tower
in Fig.11, L; + Ry = Ly + R,, therefore as Ly + Ry + Ly, + Ry = 1, then
Ly + Ry = 1/2. From this fact also follows that (L3, R}, L3, R3) = (L1, Ry +
Ry — 1/2, Ly, Ry). After normalization we obtain (ry,72) = ((2R; + 2R, —
1)/(2R2+ 1),2Ry/(2R2 4+ 1)). It is easy to see that G is one to one and onto
from the upper subtriangle of I to the triangle IT1. -



Now we will define the Gauss map for (R, R3) in the triangle II. We have
again two possibilities:

1. Ry < L (corresponding to the subquadrangle of I1) and

2. Ry > L, (corresponding to the subtriangle of 11).

I11) If Ry < La, (L1, Ry, La, Ry) goes to (Ly, Ry, La— Ry, R3) as can be seen in
Fig.12. The sum L]+ R;+ L;+ R; = 1 — R, gives the normalizing condition.
Therefore (ry,72) = (Ri/(1 — Ry), R2/(1 — R;)). In this case II goes to I
bijectively as indicated in Fig.9.

I12) If Ry, > L,, the moving stacks procedure associates (L, Ry, L2, R2)
to (Ly, Ry, Lo, Ry — Lj) (see Fig.13). The normalization factor is L] + R} +
L+ R; = 1— L,. After a simple calculation (as L, = L, + R, in the left top
tower of Fig.14 and L, + R, + L, + R, = 1, then 2L; + R, = 1 ) we obtain

1 =Ly =1-(1/2—-1/2R;) = 1/2 4+ 1/2R; and therefore the Gauss map is

given by (r1,72) = (2R /(1 + R»),(3R2 — 1)/(1 + Ry)). In this case II goes
to 11 by the Gauss map (see Fig.13).

To define the Gauss map in the triangle III we have two possibilities

1. L, > R, (corresponding to the subtriangle of III) and
2. Ly < R; (corresponding to the subquadrangle of I1I).

III 1) If L, > R,, the procedure (see Fig.14) associates (L, 1y, L, R3) to
(L1, Ry, Ly — Ry, Ry). The sum L} + Ry + L3+ Ry = 1 — Ry will give
the normalizing factor. The Gauss map G(Ry, Ry) = (r1,7m2) = (R /(1 —
R3)), R2/(1 — R;)) will map the subtriangle of III onto I11.

II12) If L, < Ry, (L4, Ry, Lo, Ry) will be taken to (L, Iy, Ly, Ry — Ly).
As Li+ R+ Lo+ R; =1 and Ly + Ry = R; (see the left top tower of Fig.15),
we conclude that L, = 1 — 2R,. Thereflore the sum L] + R} + L3 + R} =
1 — Ly, = 2R, will determine the normalization condition. In this case the
Gauss map is G(Ry, Ry) = (r1,7m2) = (I1/(2R2), (3R, — 1)/2R,), and map
the subquadrangle of III into the square 1.

The diagram and analytical expressions given in Fig.9 are thus justified.

To finish this section let us point out the formulas for a G-invariant mea-
sure in this particular case we are considering of three intervals permuted.
They are given explicitely by:

1. (Rg(l - 2]‘22))_1d1r{1dR2 in cell I,
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2. (Ry(1 — Ry)*)"'dR,dR; in cell 11 and
3. (2R3(1 — 2Ry))""dR1dR; in cell 111

It is a measure absolutely continuous with respect to the Lebesgue measure
which has infinite mass.

3 The invariant measure

In this section we recall the general formalism for the induction introduced
in [7] and show the G-invariance of dy.
Given 7 a permutation of {1,...,m} irreducible and discontinuous, define:

f=f(x):{0,...m —1} — {1,..m}

(1) -1, if § =0;
i) =1{ m, if j = 71 (m);
= m(j)+1)—1, otherwise.
if #(m)+1=m(1) and
x~1(1) -1, i § =0
m, if j =7~ Y(x(1) = 1);
1 x(m)+1)—1, if j==x""(m);
7Y x(j)+1)—1, in the remaining cases.
if #(m) 4+ 1 # =(1).
It 1s easy to see that f is bijective.
Now, using [ define the set A = A(7) of pairs ¥ = (g,G) where:

fl3) =

g:{0,...,m—1} = {1,...,m — 1}

and
G:{1,...,m} —= {1,..m—1}
satisfy:
15
g = Go f (2)



where C = disjoint union of C,, v € A.
Before doing that however we recall that a map

S:PﬂAﬂV—»PﬂAﬂW

where V and W are m — 1-dimensional subspaces of R", is said to be pro-
jective if
Mz (6)
| Mz |
for z € CNANY and M an n X n matrix with non-negative entries and
whose restriction to V has determinant 1.
By # > 0 we mean that all entries of the n rows column matrix z are
non-negative, |z |= Y1 2k, P={z20|z€ R }and A = {z| |z |=1}.
It is clear that the inverse and composite of projective maps are projective.

Since we will need the jacobian of a projective map, the following lemma from
p.248 of Veech [8] is handy.

S(z) =

Lemma 3.1 If S is a projective map as above and we take the Lebesgue
measure on AV we have forx € PNANYV that
1

A(z) = Jacobian of § at x = ———
( ) (I Mz !)m

(7)

We start by defining two maps £ and R : A — A as follows L() = ¢
where v = (g,G) and 7£ = (g%, G¥) is given by:

g2) = {9 T = Lo =0)
g%*(j), otherwise.

and G = g€ o f~!'. As to the definition of R we have R(y) = 4* where
v = (g9,G) and 4® = (¢g®,GR) is given by :

GR(j) = G(5), if#GTH(G()) =1orj=G"(m);
1 G*(j), otherwise.

and g® = GR o [. It is easily scen that v% and 4® satisly (2) and (3) above.

Now, fix v € A and consider the hyperplane R;, = Lgm-1(0) + Rs(ym-1(0))
where 2y is the type of 4. This hyperplane divides the polyhedron C. into
two polyhedra:

CF = {Riy 2 Lym-1(0) + Ry(gm-1(0p} [ 1Cy

10



C$ — {Rio < Lgm—l(g) ~+ R_{(gm—I{{]))} mcq.

with non-empty interiors.
Restricting ourselves to (L, R) € CX and defining Lf and Rf by

Rf=R;fori=1,...,m (8)

and: Ei 1L R j, i =
£ _ [ Lig = (Lg=1(ip) + Lig(g=13i0)))» 12 = 20;

L; { L;, otherwise. (9)
we have that £(7) is in A and the projective map induced by L(¥): (L, R) —
(L*, R®) is an isomorphism between C£ and Cg(,). Similarly R(y) is in A
and R(7):(L, R) — (L®, R®) given by:

IR=Lifori=1,....m—1 (10)
and: 5 L 2 . it
R _ [ ftig = (Lgm=1(0) + figgm-1(0)) )y 1 2 = 20
ki { ki, otherwise. (11)

induces an isomorphism between CJ and Cry).
The Gauss map G is defined by G |cz= L(y) and G |cr= R(y) for v € A.
On C take the o-finite measure g which has, on each G,,, v € A, a density
with respect to the Lebesgue measure d)\ given by.

m=1 1

Ngp= 1] m (12)

i=0

Proposition 3.1 du is G-invariant.

Proof: All we have to do is check that the Perron-Frobenius equation

dL! » v, AR
o (LB | A (12, R | =

holds, where 7 = (g,G) € A, (L,R) € Cyy 1 = (91,G1) = L7(7), 72 =
(92, Ga) = R™(3), L(L1, BY) = (L, R) and R(L?, R?) = (L, R).

By the definition of the Gauss map we have

L om-1gy+L =10 v+ Rgm=1,,, wqy s o
gM= ) T i) T ™M -), Ift—gm 1(0);
7!

Ay(L,R) = A, (L', RY) |

(L, R)| (13)

l'|'L'g.—‘.l (.u)""Rgm—l( m)
L; otherwise.

1
1+L9_} ("oJ+RG""_1(m) :
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b 14 Lg—l(io) + R(;m—l(m)

and

12 = Ls
b 1 Lgmero) + RBa-1(i0)

I iy +L me— +R -1¢q . & T —
2 gmiem)T gm0 776G i § = G™(m);
R =

1+Lgm“"'(0)+RG_l(l'nl i
otherwise.

) |
VLgm-10)+Rg-1(ip)’

fore=1,2,...,m—1.
Using (3.1) we have

dL1 .
I, B =
l d\ ( ) l (1 + Lg“(l'n) - RGm—l(m—l})m
and dR_l 1
L,R) |=
| d)\ ( ) I (l -4 Lym—l(o} + RG"(io))m

The above expressions give

dL-1! dR™1
d/\ (L‘! R) l +A“)‘2(L21]£2) | d/\
:’;Efi;egm—l(o}(f‘i + RIU))_I
Lgm-1(0) + Lg-1(ig) + Rgm-1(m) + Ri-1(io)
;:),li;eg—l (o) (Li + Ry(iy)™! =
Lg-1(i0) + Bgm-1(m) + Lgm-1(0) + Fg-1(i0)

Ay (L' RY) |

(L, R) |=

im0 (i) (i T Ryi) ™"
Ly-1(ip) + Rom=1(m) + Lygm-1(0) + BG-1(i5)

1 ]
_|_ et
(Lg-' (i) T Rem-1(m) ~ Lgm-1(0) + Rcﬂluo})

m—1 1
— = A(L,R)
E) L'+}?‘f(=} v

which proves the proposition.
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4 The construction

In this section we describe the procedure that lead us to define the density
[12] and justify the G-invariance of dy.

Let V be an m-dimensional vector real space and denote by A" = A"(V)
the space of exterior r-forms over V, 0 < r < m. Take I, F;,..., Fy,
1 < k < m, alinearly independent set in A' and 0 # € A™. Although there
are several ways in which we can factor 2 as an exterior product Q = F} A
FyA.. . AFpAw, w € A™F, it is easy to see that w [ is uniquely determined,
where I is the kernel of the linear map F:V — RK with components F}.
We call w the volume induced on A" by 2 and Fi, F, ..., Fj.

Globalizing this result for & = 1 we see that if M™ is a differentiable
manifold (here and in what follows manifolds and maps are C*®), Q is a
volume form on M™ and f: M™ — R is a [unction then € induces a volume,
w,on S = f~Y(r), where r € R is a regular value of f. It is clear that if ¢ is
a diffeomorphism preserving Q and f then the induced diffeomorphism in S
preserves w.

Now take M™, Q, f, r and S as above, ¢ a diffeomorphism and ¢;, t € R,
a one parameter group of diffeomorphism of M™. Suppose 3 and ¢, comute
and preserve §). If each orbit of ¢, intercepts S exactly once we can define
amap U: S — S, ¥(s) = s', where s’ is the only point in .S in the ¢, orbit
of ¥(s). If X, the infinitesimal generator of ¢, is transversal to S then the
following lemma, whose proof is a simple calculation, holds:

Lemma 4.1 V¥ is a diffeomorphism and preserves the m — 1-form 1xQ re-
stricled to S, where 1x) is the inner product of X and Q). Moreover, if we
write ) = df Aw as above, with 1xw =0, we have:

x|z, (5)= dfp(X;) @ |75)
forpeS.

To see how the above construction lead us to the density (12) we start by
introducing a new set of variables ly, l1,. .., -1 and ry,72,..., 7, which will
play the role of the heights of the stacks associated to the abstract Farey cell
C,,v=(g,G) € A, in such a way that:

1. [; is the height that the stack with botton L! + RI}(:‘) has above the
interval L! and
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2. r; is the height that the stack with botton L%, ;) + R} has above the
interval R®.

From these definitions we are lead to the relations
li =7ry) (14)

t=0,1,2,...,m —1 which shows that we can retain only the r;’s as a set of
independent variables.
Now for each v = (¢,G) € A take a copy of

R3m-2 _ R®-1 ¢ pm-1  gm

R:?““z, with coordinates (Li,...,Lom=1,R1s: -3 Bne1,T15-+-,Tm). and de-
compose R3™~2 in two open cones, C? and C£, given, respectively, by

Ria > Lgm—l(o) + RG—I(ic}
and

Lio = Lg‘liio] + RGm-I(m)
where 7 is the type of 4. On these cones define the maps

1. R= ﬁ('y)a? — R3M-2 R(L, R,r) = (L®, R®,#R), given by
EZ‘ = I;fory= 1, i 0—1;

R} = {R‘O — (Lgm-10) + Rg-1(i0)), il ¢ = 1g;
‘ R, otherwise.
. Tis otherwise.

and
2. L= f.('y)ég . RI-E E(L,R,r) = (L%, RE,7%), given by

R,-C=R,‘ ford= L. v ii=1,

IF = { Liy = (Lg=1(io) + Bam-1(m)), i 2 = 10;
' L;, otherwise.
# = {r("'""(m} +Tstio)s i 1= G™7H(m);
1 i, otherwise.
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It is clear that R is a diffeomorphism onto the cone of R%‘{';;z given by

TG=1(ig) = TGm=1(m) (15)

and L is a diffcomorphism onto the cone of R%?,:,_z given by

TGgm=1(n) > T'G=1(io) (16)

and that this set of maps define a diffeomophism ¢ of the manifold M =
) e Rzm‘z. Note that G in (15) and (16) above refers to R(7y) and L(7)
respectively. To be precise this diffeomorphism is not well defined on a finite
set of hiperplanes but, since this is a set of zero measure, this little imprecision
will not matter in what follows.

Finally define the flux ¢, on M by

wi(L, R,r) = (exp(t)L,exp(t)R, exp(—t)r)

whose infinitesimal generator is X (L, R,r) = (L, R,—r). It is clear that ¢,
comutes with 1.

On M take the volume element given, on each Rgm"z, by Q =dLA...A
dLm._l AdRI Mo f\d.Rm_l A dT] A ...Ad?'m.

Given v = (9,G) € A define the subspace of R3™-2 K = N7 KerF;
where F; = Li+ Ri — ¥ jeg-1iy Lj + Ryjy for i =1,...,m—1 and on K, take
the volume w induced by {2 and the functionals F;. We can write

w=dLgm-1gy NdRy A ... NdRy_y Adry A ... ANdry, =

dL] Nsss AdLm—l A dRGm—-I(m} Adrl A...A d?‘m

It is clear that ¢ and ¥ go down to 3 I, preserve this volume and permute
the positive cones of the spaces I,. We denote the disjoint union of these
cones by K.

For each v € A take the total area of the sacks associated to 7,

m=1 m-=1

A,‘r = Z LL; + Z ?'jRJ‘ (17)
i=1 1=1

Using [14] we have
m—1

Ay =Y rye(Li+ Ryy) = Y ri(Ly-15) + R;)

1=0 i=1
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On the hypersurface A, = 1, w induces a volume element which we still call
w. This volume can be written as

a1 —
ALy ) AdRyA. .. dR 1 AdriA. . Adrg-1,)A. . Adry, =
Lgm_l(m +RG—1{50} gm—1(0)/\d 2 Ry Adrq AT G=1(iy) Adr
+1

dLyA. .. dLn—y AdRgm-y(myAdriA. . Adrgmes (myA. . AdTm
Lg-1(io) + Ram-i(m) EESIER el

where the superscript = indicates omission and i is the type of 4. Since
and @, preserve w it is clear that 1 and ¢ induce diffeomorphisms on A, and
preserve the induced volume form.

Consider now the normalizing map N given on each C,, v = (¢,G) € A,
by

m=—1 m—1
N, = z:;‘.',,-+xl?f;n ZLI'+R;(;) (18)

i=1 i=0
Each orbit of ¢, intercepts the hypersurface N, = 1 exactly once and the
hypothesis of lemma 4.1 are met thus showing that we have a diffeomorphism

U: K’ — K’, where K' = KN{N, = 1}, preserving the volume
+1
Lym-10) + Bg=1(io)
Adry A ... A d?';{fo) A...Adry, =
+1
Lg-1(i) + flgm=1(m)
AdRgm-r(my Adry A ... Adrgmaigmy A ... Adrp,

It is easy to see that W covers G in the sense that 7 o ¥ = G o m where 7
is the projection w(L, R,r) = (L, R). If we push the measure of K’ by this
projection we get, integrating in the fibers, that the volume form

dLgm-30) AdRy A ... AdRGmosm) A -.. AdRpm_y

dLy A ... AdLgnosoy A ... AdLyy

i 1 oy
:i:(H L)+ R; )dLgm_l(D} AR B AR iy s B 53
j=1 71 3

m—1
1- —
:l:( II=ID m) dL] PXnina /\ dLgm—l(D) A awa A dLm_l A dRGm-—l{,n]
is invariant by G (Each fiber is a simplex with volume a fraction depending
only on m of the volume of the spanned paralelepiped). This form induces
a measure on each C, which, up to a constant, has the density (12) with
respect to the Lebesgue measure.
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5 du is conservative

In this section we show that G is conservative. This means that there is no
wandering set of positive measure or, what is the same, that G induces a
first return map on each subset of positive measure of C. It is here that we
will use that the construction of the preceding section gives the measure du
which, as we know from the beginning, is G-invariant.

Proposition 5.1 G:(C,u) — (C, p) is conservative.

Proof: To get a contradiction, suppose that there is a G-wandering subset
of positive measure of C. Taking the pull-back of this set by m: K’ — C we
get a W-wandering subset of positive measure of K’, i. Since U has positive
measure, the positive @, saturated of this set, .X', has infinite measure in K.
On the other hand, since U is V-wandering and ? and ¢, comute, we can
write X’ as a disjoint union

X = |J v™(D(){¢: saturated of ¥~"(2/)})
n=1
“where D is the fundamental domain of the action of ¢ on K given by
D= {p(s)| N(s)=1and 0 <t < 7(s)}

and 7(s) is the time needed to flow back to {N = 1} from ¥(s), s € {N = 1}.
Now, since 1 preserves measure, we get the contradiction that finishes the

proof of the proposition if we show that D has finite volume since the sets
DN {¢: saturated of W="(U)} are disjoint.

Lemma 5.1 D has finite measure.

Proof: It is enough to show that, for each v = (¢, G) € A, the measure of
the set D, which is the intersection of D with the positive cone of F is finite.
In fact we will show that D%, the intersection of D, with the cone

er—l{m] > TG'—IHO]
has finite measure. The proof that DX, the intersection of D, with the cone
TG=1(ip) = TGm=1(m)
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has finite volume is similar and will be left to the reader.
D,f is the set of 2m — 1-column row matrices

r TGm—1(n r,
(.’I?Lt .. ..’L‘Lm__l :(.‘Rc-m—l(m] --l o L—("'}' e ‘—i)
x x x
with entries satisfying

Li,R;>0,1=1,...,m-—1

ry > 0,...,?'“1 >0
Li+Ri= > Li+Ry5;i=1,..,m—1
JEgT()
T(_‘;m—l{m) > Tc;—iﬁo}

m—1 m
1= 3 ryp(Li+ Ryy) = Y rilLygy + R))
i=0 j=1
m=1 m—1
1= Li+Ri= ) Li+ Ry
=1 =0
and 1
1>22

==k LH_’(l'o} B Rcm—l(m)
If we eliminate z in the above expressions we get that DX is the set of matrices
(L1 T Lm—l R(;m-—i(m) TLews rG”;:T(m} o ?'m)
with entries satisfying
Li, R0, 2= 1uen st —1

5 e | [, = 2 |
Li+Ri= >, Li+Rs5;i=1,..,m—1
j€g=1(i)

rgm=-1 (m) > rg-1 (io)

m—1 m
1= rye)(Li + Ryy) = D_ri(Lyrj) + R;)
1=0 =1
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m

123 Ly + R;

1=1
and .
Lyg-1(i) + Ram=1(my + 3 Ly—1¢jy + R; 2 1
=1

We have to show that the integral

/ AL ...dLy_1dRgm1(mydry ... drgmetim) ... drm
'D.f Lg“(ig} + RG"‘“‘(m}

is finite. Integrating in the r’s we get that the above integral is, up to a
constant, equal to

f dLI “ne dLm_.ldIsz—l(m)
(Lg=1(i0) + Rem=tm) + Lym-110) + Ra-1(i0)) T p6-10i0) L1105y + B

over the set of matrices

(L1...Lm-1 Rom-s(m))
with entries satisfying
LiRim N =1 iii—1

L;+ R; = E Li+ Ry 5 t =1sm—1
J€g7(1)

123 Ly + R

j=1
and ”
Lg=1) + Bem-som) + 2 Ly + B 2 1
1=1
Pull-back the above integral to the cone with vertex the origin and spanned

by Cc-1(,), using the linear map that induces G, L(L7'(v)). We get the

integral
dLl W dLm_IdRGm—l(m]

[z Li—1(j) + R;
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over the set of matrices .
(L:1. .. Lnes Romerpm))
with entries satisfying
Li,R;>0,1=1,...,m—1

L;+ R; = E L_,'*FR!(J’) ;t=1,...m—1

i€g~(i)

1+ Ly-1(io) + Ram=1(my 2 D Ly-1(5) + R,

=1
Y Lygy+Ri>1
=1
and
Liy 2 Lg-1(iq) + Rem-1(m)

where now (¢,G) = L7'(y)
In this integral we make the change of variables given by the formulae

Iy =L, Ry=1R¢; 4= 1,mest0~1

and "
1= Zl L)+ R;
i=

If we trade the variable Rgm-1(,,) for the variable ¢ in the integral thus ob-
tained and integrate with respect to ¢t we finally get, up to a constant, the
integral

/ 11](1 -+ L_q—l“o] -+ Rc;m—l{m))dfq i3 .dLm_]
[z L1y + &

where for simplicity we dropped the primes. This integral is over the set of
matrices

(L ngimy)

with entries satisfying
L >0 6= L.m=1
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L+ R; = Z L + Ryiy 5 = Locym =1
JEgTI(Y)
ZL;-J(J-] +R; =1
i=1
and
Lig 2 Lg=1(iq) + Rgm=1(m)

This integral, in its turn, is finite or infinite with the integral

/ dly.idLu
[TZ 6m-1(m) L) + Bs
over the same set. This set is a polyhedron and can be decomposed as a

union of simplexes. Using theorem 7.1 in the Appendix we see that the proof
of lemma 5.1 is complete once we prove the next lemma.

Lemma 5.2 Given v = (¢9,G) € A with type 19 and a point
P= (Ll K Lm—l)
in the polyhedron given as above by

Li,R;>0,1=1,....m—1

L;+R;= Z Lj+RfU) H ?-.21,...,7?!-—1 (19)
J€g~1(i)
> Ly + B =1
=1
and
L‘.O ?_ LE—I("D} + RGm—-](,n) (2[])
the number of factors of the product
m m—1
II Lig+Ri= II  Li+Rp (21)
J=1#£G™ = (m) i=0,%9~" (io)

which are zero at P is less than the mazimal number of linearly independent
equations of the sel

L =0 H =08 12 e iit—1
which are satisfied by P
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Proof: Since
L,—-]-R,':L,'-l-ﬂf(,‘); i [y s 7& 0

the factors of (21) are L; + R; for : = 1,...,m — 1, ¢ # 70 and Lym-1(q) +
RG_lffo]'

We have several cases to consider depending on which factors of (21) are
zero at P.

1. If Lgm—l(o}‘-l-f‘z(;—lﬁo) =0 at P then Lym—l{o) = RG“{&]} = (0 and Ri‘u =
at P since (20) implies Lgn-1(o)+Re-1(3i0) = Rig- If Lym=1(0)+Rgm-1(0) >
0 at P the lemma follows since each factor L; + R; which vanishes gives
one equation L; = 0 and the factor Lym-19y + Rg-13i,) = 0 the two
equations Lgm-10) = Rjy = 0. If Lgm-1(0) + Rgm-1(9) = 0 we consider
two cases

(a) g™ 1(0) = 4p and
(b) g™='(0) # o.

In the first case Lym-1(0) + Rym-1(g) is not a factor of (21) and the
argument just made holds. In the second case take k > [, for [ such that
4'(0) = 1o, the last iterate of g, starting from above, g™~(0), and going
down, for which we have the equality Lgkg) + Ryro) = 0. In this case
each factor L;+ R; which vanishes at P gives one equation L; = 0 and we
have one extra equation, L; = 0, satisfied besides R;, = 0, since either
k = l+1and then Ly, = 0 for Ly(io)+Ry(io) = Lis+Ry(ip) or k > [+1 and
then using (= Lgk(g} +ng{0} = Lgk—lm) +R'f{gk—l (0)) we g('.‘t Lgk-l(gj =0
which is again an extra equation since Lgx-1(g) + Rye-10) # 0. This
finishes the case Lgm-1() + Rg-1(3ip) = 0.

2. H Lgm—l{u) + Rg— (io) = 0 at P, take k, k € {1, ceayM— l}, the greatest
iterate of g for which we have the equality Lgxg) + Rgr(o) = 0 at P. If
k > I, where ¢'(0) = iq, the lemma follows by repeating the argument
we just made. We suppose then that k < [ and Lgro) + Rgr0) > 0 for
r > k. I Loy + Rgs(0) > 0 for some s < k we can still get an extra
equation L; = 0 by the same argument. The only possibility left is
Lyeoy + Rye0) = 0 for s < k. We can write the equations (19) as:

Lyo) + Rg0p = Ry(o)
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Lyzoy + Rze) = Lggo) + Ry(g(0))
Ly + Bppo) = Lgzo) + Bra2(0))

Lgm-1(0) + Rgm-10) = Lgm-20) + Rp(gm—2(0))

where the [-th equation, corresponding to ¢'(0) = ¢, is missing. This
equation,

Lis + Riy = Lg-1(i5) + Rem-1(m) + Lgm-1(0) + Ra-1(ip)

is a linear combination of [22]. If some of the R’s appearing at the right
side of these equations do not show up in the left side we have & + 1
vanishing R’s and, as these equations are linearly independent, we are
done. On the other hand, it is not possible that any R appearing at the
right side of these equations appear also at the left side. In fact, suming
the first k equations of [22], we have L) = 0, which contradicts the
fact that C, has dimension m — 1.

The proof of the lemma is now complete.

6 Ergodicity and Keane’s conjecture

In this section we show that du is ergodic under the action of G and give
another proof to Keane’s conjecture.

We start by recalling some results of Rényi’s [6] which we will need. Let
(2, B, ») be a measure space and let F:Q — € be a measurable non-singular
map. We say F admits a Markov partition (C(7))ier, if C(7) is a measurable
partition of £, I is countable or finite and

F(C(i) = Y C) for 1(i) S 1
JEI(i)

Define the transition matrix 7 = (7;;);jer associated to this Markov
partition by

b

__{1, if 7(C(9)) 2 C(5);
2 lo, A F(C@E)NCH) = 0.

23



forz,7 € I.

A sequence of indices y,7q, ... i, n > 1, is called admissible if L, = 1
for k=1,2,...,n—1. In the cases we will be considering 7 is irreducible,
which means that given indices ¢ and j there is an admissible sequence
11522, .- ,1, starting at 7 = 7; and ending at j = ¢,.

We suppose that for each 7 € I there is a measurable and non-singular
map

H(i): F(C(2)) — C(3)
which is the inverse to F |¢q). In other words F o H(i) = Idrc() and
H(Z) o F = Idc{;).

Given y,1,,...,2, an admissible sequence define
H(i1y%2y .+ 5 10): F(C(2a)) = C(21)
inductively as
H(31582: -5 8n) = H(E1a 825005 851) 0 H(E3)
and define
C(iryizye .o yin) = H(i 2y 00 30-1)(C(in)) =
Cli)FHCi) N F*Clis)) ... N F"(C (i)

C'(41,92,...,in) is called the atom of depth n associated to the admissible

sequence 1y,172,...,2,. The set of these atoms, P", is a partition of Q and it
is clear that P"*! refines P.
Let o
Klietarnssie)a) & T By
dv
denote the jacobian of H(z;,42,...,%,) with respect to the measure v at the
point € F(C(i,))-

We say that the atom C(2,1s, ... ,1,) satisfies Rényi’s condition for k' > 1

1n) )

if
ess sup{A(ir,ta,...,0)(2) |2 € F(C(in))} <
K ess inf{A(21,22,...,1,)(z) | z € F(C(2.))} (22)

Rényi’s condition means that the distortion H(7;,1s,...,%,) produces on the

measure of any subset of F(C(i,)) is essentially the distortion it produces in
the measure of F(C(i,)).
We are ready to state Rényi’s result [6] we shall need.
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Theorem 6.1 Let F7: — Q and C(i) be as above and suppose that v is
finite, F(C(i,)) = Q for Vi, that there is K > 1 such thal every atom of any
depth salisfies Rényi’s condition and that \J;2, P" generales B. Then F is
ergodic.

We return now to consider the Gauss map G:C — C. Denote by I the set
of pairs i = (S,7) where § € {R, L} and v € A, and define C(i) = CS and

H(i) = 67:6(C(i)) — C(i)

It is clear that (C(2)):er is a finite Markov partition for G. Note that the set
{G(C(7)) | i € I} is the set of Farey cells and

H(2): G(C(7)) — C(z)

which is the inverse to G |¢(), is a projective isomorphism.

For each 7 € I fix M(7) an n X n-matrix inducing H(z) as in the definition
of projective maps (6).

Since projective maps take straight line segments to straight line segments
and therefore convex sets to convex sets it is clear that the atoms are convex.

To show the ergodicity of G we start by proving that the first return map
induced by G on C(iy,...,1,) is ergodic for certain good admissible sequences
215+ +y1n. Observe that there is a first return map since G is conservative.
Then we make use of the identification of X = T via the stacks associated
with the interval exchange maps and prove that if T satisfies Keane’s infinite
and distinct orbit condition, i.d.o.c., we can get a good admissible sequence
215...,1, such that T € C(zy,...,%,). Since the set of i.d.o.c.’s is a set of
full measure a well known argument using the transitivity of 7 shows the
ergodicity of G.

Lemma 6.1 There is a subset of full Lebesgue measure in C = Y., C,, such
thal for every point (L, R) in this set, say (L, R) € C.,, there is an admissible
SEqUENCE Uq,. .., 1, such that (L, R) € C(#y,...,1,) C int(C,)

Proof: To prove the lemma recall the interpretation of the Gauss map G
as the change the stacks associated to an interval exchange map T suffer
as we move from one critical iterate to the next one. Given v € A we can
identify each element (L, R) of this abstract Farey cell with the stacks of an
interval exchange map T in a conveniently fixed convex subset of the simplex
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of interval exchange maps. This procedure was described in detail in the last
section of [7]. Using this identification, the set of full measure we need to
establish our lemma is the set of interval exchange maps satisfying the infinite
and distinct orbit condition which, as we know, is made of minimal maps. To
see the truth of that assertion, fix T € C, i.d.o.c. and denote by f,..., Bn-1
its discontinuities. Since for each i = 1,...,m — 1, T~%(5;), k > 0, is dense
we can fix k; such that T~%(5;) 0 < k < k; crosses at least twice the interior
of each slice of cach stack of T € G,; once in the interior of the intervals L*
and the other in the interior of intervals R*. Now denote by s; the segment
of vertical separatrix conecting f; to T~%(A;) in the vertical foliation of
w(T), the quadratic form associated to T, [7]. Each of the segments s; has
possibly several connected components on each stack of T € G,. Now, as
we iterate T under G, the number of these components decrease to one since
they start being separated by the T-orbit of 0. Let n + 1 be the first time
each segment s; is entirely contained in one stack of the corresponding Farey
cell. This stack must necessarily be the one with f3; in its top. Take C,,
the Farey cell containing G*(T) with coordinates (L', R’). The itinerary of
G*(T), 0 < k < n, on the atoms C(z) define C(zy,...,7,) and it is clear that
C(i1y...,2,) is contained in the interior of C, since each each stack of C,,
contributes with at least one slice to compose the intervals L¥ and R* of C,.
In fact, if one of the equations defining the boundary of C,, is satisfied, say
L; = 0, this whould imply that L' = R’ = 0 which is an absurd. The lemma
follows.

Lemma 6.2 Lel iy,...,1, be an admissible sequence satisfying the thesis of
the preceding lemma:

Gl nita) SintlC,)
Then the first return map induced by G on C(1y,...,1,) is ergodic.

Proof: Fix i,...,1, an admissible sequence as in the hypothesis and take
J = {j} the set of admissible sequences j,...,ji, { > n, such that

1. ji,...,J starts with the sequence iy,...,1%,, in other words, i = j; for
T S

2. J1,---,J1 ends with the sequence zy,...,1,.
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3. there are no other ocurrences of the sequence iy,...,%, In ji,...,
other than the two just considered.

It is clear that 3°; C'(jy,..., 1) is the domain of the map G induced by G on
C(i15...,1,) and therelore

C(i1,. ZC(Jh v 1)

mod dy since the first return map is defined a.c.. It is also clear that C(j) =
C(g1y--y01)s J € J, is an irreducible Markov partltlon for G and, since
G = G"" on C(j), we have that H():G(C(j)) = C(j) is given by H(j) =
H(j1s---yJi—n) ON C(J) To prove the lemma we check ﬁl&t Reényi’s condition
for some ' > 1 that depends only on 7y,...,1,.

Fix C(51,...,5*). We have to bound

ess sup{A(7, ..., 5*)(x)}
ess inf{A(5,...,7%)(y)}

for z,y € G(C(j*)). Since these set are convex polyhedra we have by
lemma 3.1 that the supremun and infimun are taken at the vertices of the
polihedron G(C(;*)) thus we have to bound the quantity

AG',...,54)(0)
A@Y, ..., 5*) ()

q:

for ©,w vertices of 5(5‘(}")) Now,
H(G",---53%) = H(GY) ... H(G¥) =
H(GY) - HGE o HGE) - HGE L HGE) - HGE )

and

E(1*) =CliF e85
é(c?u*)):C(j!:_,ﬁ,,...,j,’;) Cliysessyin) =
(?1) (C(?n)))
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therefore © = H(z;)...H(z,)(v) and @ = H(iy)...H(i,)(w) where v and w
are vertices of G(C(i,)). Using the chain rule we can write
 Jac(H(Y) ... HGGE_)H() .. HGin))(v) Jac(H(i)) )
Jac(H(j1) ... H(GE _)H(i1) .. . H(in))(w).Jac(H(41) . . . H(in))(v)

Where Jac denotes the Jacobian with respect to the Lebesgue measure. We
have then to get a bound for

g Jac(H(5}) . - - H{jk ) H(ir) - .. H(in))(v)
Jac(H(51) - - - H{iE, ) H(i) - .. H(in))(w0)

using lemma 3.1 we see that we have to get a bound for

M(51) ... M5} _, ) M(ir)... M(i)w
uM(J) M(GE_ )M (@) ... M(in)o

qﬂ

where u is the n-columns row matrix with all entries 1. Since the vertices of
C(21,12,...,1,) are in the interior of C, we can fix a matrix A = A(7) all of
whose entries are positive such that WA = M(z,)... M(z,)V where V is the
matrix with columns the vertices of C, and W is the matrix with columns
the vertices of the Farey cell containing C(7;).

Setting X = w.M(j])... M(jf _,,)W we have

_ (ﬂ)m
= Xa
where @ and o' are columns of A. But then, for X}, = max{X; |0 < k < n},
we have. )
g= (_Ji)ﬂ)m Z*_w__ <
i:‘k:l ‘X'kai EA 1 I\k k -
Thmra )" < Shoiax " 2 n.max{A(:)}\"
@, — \min{A(7)} /] — \ min{A(:)}

where max{A(z)} and min{A(7)} are, respectively, the maximun and mini-
mum of the entries of A(7) We have then shown that Rényi’s condition holds

o K = max { (%{%l)m e I}
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To finish the proof of the lemma using theorem 6.1 we have to exhibit a subset
T of full measure of C(iy,i,...,1,) such that the diameter of the atom of
P" around = € T, A,(z), goes to 0 as n — oo. Now, the set of points in
(71,12, ...,1,) which, under the action of G, recur infinitely often to this set
has this property. This follows from lemma 3.28 p.240 of [8] on account of
the infinitely repeated matrix product M(i;).M(72)..... M(i,) occurring in
the definition of A, (x). This product, as we know from lemma 6.1, has all
entries positive. This finishes the proof of the lemma.

Theorem 6.2 Given © an trreducible and discontinuous permutation, the
set of interval exchange maps T = T(r,a), a € S, which are uniquely
ergodic is a set of full Lebesgue measure on S,,.

Proof: Using the notation and results of the last section of [7] we have to
show that the set of uniquely ergodic interval exchange maps of an arbitrary
but fixed integral type v € A form a set of full measure. But, as remarked
above, the set of these interval exchange maps can be identified with the
points in the Farey cell C,, T being uniquely ergodic ifl, in our present
notation,

8(C i1, iz, .. yin)) — 0 (23)

where 6 denotes diameter and C(7;,15,...,1,) is the depth n atom containing
T. Now, we just saw in the proof of the preceding lemma a set of full measure
with this property. The theorem follows.

Theorem 6.3 G:(C,u) — (C, ) is ergodic.

Proof: Let [ be a measurable G-invariant set with p(£) > 0. It is enough
to show that for any admissible sequence iy,...,7, such that C(z,...,7,)
satisfies the condition of lemma 6.1 we have

H(E(C(iryizs- - sin)) = p(Clir, iy - yin))
As ENC(y,...,1,) is invariant by G, the map induced by G on C(iy,...,1,)

all we have to do is show that u(E N C(i1,22,...,1,)) > 0 since by lemma 6.2
G is ergodic. Now, by lemma 6.1, as u(£) > 0, there is 7, ...,7; an admissible
sequence such that p(ENC(7,...,7;)) > 0 and since 7 is irreducible there
is an admissible sequence j1, j2,...,Jx Which starts with #,...,7; and ends
with 4;,12,...,7,. But the maps H are non-singular and as £ is G-invariant
it follows that u(ENC(%1,22,...,2,)) > 0 thus proving the theorem.
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7 Appendix

In this appendix we establish necessary conditions for an integral of the type
we dealt with in Section 5 to be finite.

Let s be the n dimensional simplex with vertices ¢g = 0 and e;,...,€,
the canonical basis of R™ i.e.

=) w | V=1, 0 Sag) =

i=0 i=0

n n
Doae| Y zig1,088)=
i=1

1=1

{(m1yeeesa) | 2oz S1, 0 <2}
=1

and L(z) = ¢jxy + ... + ¢y, + b an affine functional. Suppose L(z) > 0
for ¥ € s° the interior of s. Then L(z) > 0 for € s and, taking z =
€0sCly.--s€n, Weget .o+ 020, ¢ +562>20,...,¢,4+b2>0, where ¢g = 0.

If {L=0}Ns # 0 there are xg,zy,...,2, such that " x; =1,0 < z;
with ;2 +... 4 cpzn+b= 0, 0r (cg+b)zp+...+(cn + b)x, = 0. This shows
that there are indices 7 such that ¢; +0=10. Let 0 < 73 <13 < ... < 1 < n,
1 €< k < n, be this set of indices. It is easy to see that {L = 0}s is
the simplex generated by €;,,...,€;,. In other words, {L = 0} cuts s in a
subsimplex.

A simple consequence of these remarks is that if L vanishes in a point in
the interior of a face f of s then it vanishes in the entire face f.

Given P = l_[?;l L;, where Li(z) = cqx1+ ...+ cipzn + b fori =1,.., N,
and s a simplex as above, define the degree of a face f of s, degree(f) as the
number of factors of P, counting multiplicities, which vanish on the entire
face f .

Theorem 7.1 Let P and s be as above satisfying Li(z) >0 fori=1,...,n
and x € s°. If

dimension(f) + degree(f) < n (24)
Jor every face f of s we have
dz
A F < o0

where dx is the Lebesgue measure on R,
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Proof: Take B = {t} the baricentric subdivision of s. We have to prove that

dzx
t P b

for each t € B. Fix t € B and let vy, vq,...,v, be its vertices ordered in such
a way that v; is the baricenter of a j-th dimensional face of s, j = 0,1,...,n.
Take f a face of t with vertices vjy,...,v5, 0 < jo < ... < Jx < n, and
L; a factor of P such that L;(f) = 0. Using the remark just preceding the
statement of this theorem we conclude that L;(f;) = 0 where f}, is the face
of s with baricenter v;, I = 0,...,k. This shows that our hypothesis (24)
holds for t (since {L; | Li(f) = 0} C {L; | Li(f;,) = 0} and this set has
cardinality < n — jr < n— k). After an affine change of coordinates we can
suppose that vg = 0 and vy,...,v, is the canonical basis of R™. Using the
same remark again we see that every factor of P that vanishes at a point
of t must vanish at a vertex of t and therefore at all previous vertices of
this simplex. In particular this factor must be homogeneous. Thus, since
Li(z)>0fori=1,...,n—1 and 2 € s° we can write L; = ¢;j2; +...+ ¢in 2y
for : = 1,...,n — 1 and non-negative ¢;;’s such that if ¢;; = 0 for some j,
cir = 0 for k < j. Since (24) hold for f = t, at most n — 1 factors of P
vanish at a point of t. Factors which are finite on t won’t matter for our
thesis so we will ignore them and suppose we have at most n — 1 factors. In
fact, to simplify the notation, we suppose that P has exactly n — 1 factors
by multiplying P by a convenient number of factors equal to &y + ...+ .
Reordering the L;’s if necessary we can assume that the number of vanishing
cij does not decrease with i. We claim that the j-th column of the matrix
¢;; has al least j positive entries. In fact if n — j entries of this column are
zero n — j factors of P vanish at e; and therefore at the face generated by
€0, €1, - - - , €; contradicting our hypothesis. Thus ¢;; > 0 at least for 1 <1 < j
and then

n—=1 n

P = HECIJTI Z H CiiT; +C!n:rn Z CH T + T

i=1 j=1

where ¢ is the minimum of the positive ¢;;. Denoting by ¢ the cube [0,1]* D t

we have
d'r

]H;—1 i iy
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VAN

1 dz - 1 1 i sy
< e = W <o

n

which finishes the proof of the theorem.
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