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Abstract 

An explidt formula for an ergodic cr-finite measure inva.ria.nt by 

the Gauss map associated to a new induction on the interval ex­

change maps is given. The techniques devcloped allow another proof 

of Keane's conjecture which was first shown to be true by Veech and 

Mazur. 
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1 Introduction 

In this paper we study the induction defined in [7] for interval exchange maps 
from the metricaJ point of view. 

In this induciion we take T = T ('1l',a):[0,1) ---t [0,1) an exchange of 
m 2: 1 intervaJs anel n > O a criticai iterate of T ( this means that T n(O) is 
closer to a discontinuity of T than any iterate Tk(O), O ~ k < n) anel sta.ck 
the intervals [Tk(O), T 1(0)], O ~ k, l ~ n, free of T -iterates of O up to the oreler 
n in its interior. This stacking is clone upwa.rd up to the first discontinuity of 
T anel downward down to the first discontinuity of T - 1

• In this wa.y we get 
a finite number of towcrs of interva.ls which are in bijective correspondcnce 
with the points of the Fa.rey cell of order n a.rouud T, Fn = F 11(T). F 11(T) 
is the equiva.lence class of T under the relation rv=~ defineel on the space of 
interva.l exchange maps by T rv S iff the itineraries of O under T and S on 
the respective permuted intervals are the same up to the n-th iterate. These 
classes will define a sequence of partitions of the spa.ce of interval exchange 
maps that get finer anel finer as n grows a.nd for most excha.nges T (in the 
sense of Lebesgue mea.sure) the sequence of atoms around T converges to T. 

To parametrize these towers and the corresponding Farey cells F n we 
use a finite set of disjoint polyhedra C'Y Ç R 2m-2 , 1 E A( 1r ), which we call 
abstract Farey cells. This parametrization is a dynamically defined projective 
isomorphism. On C = l:C"f we have naturally defined a locally projective 
map Q = Ç(1r), the Gauss map, which takes a given set of towers associa.teel 
to a criticai iterate to the next one. Using the dynamics of Q it is possible to 
capture the set of T-invariant measures anel thcrefore the uniquely ergodic 
ones, [7]. 

Now we come to the main results of th is paper. VI/e exibit an explicit 
formula 

m -1 1 
a1l = II dÀ 

i=O L;+ RJ(i) 

for an ergodic u-finite Ç-invariant measure. In this formula f = j(1r) is a 
bijection {O,l, ... , rn -1} ---t {1,2, ... ,rn} depending only on the permu­
tation 1r dcfining lhe space of interval exchange ma.ps, Lo, L11 ... , Lm-l anel 
R11 R2 , ••• , Rm are the dynamically defined varia.bles used to para.metrize the 
cells anel d>.. is the Lebesgue measure on C. 

We dose the paper using the techniques developed to construct lhe mea-
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sure dfl- to give another proof of Kea.ne's conjecture. This conjecture wa.s 
first shown to be true by Veech [9] anel Mazur [4]. See also Kerkhoff [3] anel 
Rees [5) 

The pa.per is orga.nizeel a.s follows: in the next t\vo sections we recall the 
ineluction introeluccd in [7); in section 2 wc give examples and, in order to 
ilustrate the main features of our methoel, consider the cases of two and three 
intervals. In section 3 we recall the general formalism of the induction and 
show tha.t dp. is Ç-inva.riant . In sedion 4 we present the procedure useel to 
get df-t. This is the same proceelure a.bstracted from Veech [9) by Arnoux­
Nogueira. a.nd used in [2]. This construction will be useful in the next section 
when we show that dJt is conservative. The technica.l lemma neeeled in this 
section we pospone to the Appendix. Finally, in section 6 we give a proof of 
the egodicity of d11- anel another proof of Keane's conjecture. 

2 Examples 

Vve will illustrate the procedure sketched above considering the cases of in­
terval exchange maps of respectively two anel three intervals. 

The case of two intervals 
In the ca.se of just two permuted intervals we will denote by j3 = /31 = a-1 

ihe disconiinuiiy of T. In this case the map is given by just one parameter, 
namely (3 . 

Let's consieler lhe particular example given by lhe map T described in 
Fig.l. In this case if one follows the orbit of zero by T we see thai n = 4 is 
a criticaJ iterate. The location of the orbit of zero up to the 4-th iterate is 
presented in the x-axis of Fig.l. This order is: 

(1) 

Consider the right anclleft intervals defiued by the closest a.proach to {3 given 
by L= [T2 (0), (3) a.nd R= [/3, T 1 (O)], respectively. In this particular example 
the value T 4 (0) is in the interval R. In Fig.2 the interval LU R is shown, 
and we point out to the reader that the length of the interval [T2 (0), /3) is 
equal to the length interval [T'1(0), T 1 (0)). This fact is important in oreler 
to see that the next criticai iterate is T 7 (O) an that ihe new set of right and 
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left, interva.ls is L* U R· where L* = [T2 (0), ,8) a.nd R* = [,8, T 4 (0)]. In the 
particular case we are considering here the criticai iterale T 7(0) is in lhe 
interval L*, but it could also happen that T 7 (0) be in R*. 

To see the truth of these assertions stack t he intervals defined by the 
i ter ates of (1) as described in the introduction. In the present example the 
stacks associated to the criticai iterate T 4 (0) are shown in the two stacks 
of Fig.3 a). Note that the full dynamicai information about the map T is 
contained in this picture since ea.ch interval is mappcd by T on the interval 
that is placed on the top of it in the sta.ck a.nd the lop interva.ls the stacks 
join to form L· U R* and each o f these interva.ls is ma.pped to the bot ton o f 
the opposite stack. 

The two stacks associated to the next c.ritical itera.te, which is T 7 (0), is 
shown in Fig.3 b ). This can be easily understood as follows: move the stack 
that do not conta.in the discontinuity ,8 in its top to the bottom in such wa.y 

'the property "ea.ch interval is mapped into thc interval that is on top of it" 
is ma.ntained. In this way we obtain the next sta.ck given in Fig.3 b). The 
fact tha.t the new criticai iterate is detennined by the previous criticai iterate 
and has the stated properties is now transparent (see Fig.3). 

The procedure is always the same, each criticai iterate will determine the 
next one. The previous criticai iterate will be one of the extremais of the 
ncw interval L* U R* containing the next criticai iterate. 

Note tha.t the sta.cks of Fig.3 b) a.lso describe the full dyna.mics of the 
samc exchange map T , but now with a different height and witdth of the 
stacks. 

Now we want the a.nalytical express ion for the lengths of the new ieft 
and right intervals, L* and R*, obtained from the lengths o f the preceding 
intcrvais, L and R. The new values for L· and R"' will depend on the position 
of the criticai iterate: if it is in Ror in L. The two possibiiities are shown in 
Fig .4. For example in FigA b) the criticai iterate is in R as in the example 
we considered in the beginning. 

In order to simplify the notation we will denote the size of the interva.ls 
L, R, L· and R* by the same ietters L, R, L· and R*, respcctively. lf we 
normalize these variables by requiring that L + R = 1, we ha.ve in fa.ct just 
one free variable. We choose to work with x = L. The Ga,uss map Ç at 
x, Ç ( x), will express the v alue o f the new L,. in a normaiized form, that is 
Ç(x) = L*/(L • + R*). The Gauss map in the present situation is defined 
from [0, 1] to [0, 1). The abstract Farey cell in this case has just one piece, 
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namely [0, 1]. Note the very important fact that t.hc cri tica.l i ter ate is al ways 
in the larger of the intervals 'L or R (the reader should convince himself of 
this fact by looking at the severa} possibilities of the graph of T). If L < R 
then x < 1/2 and L* = L (the criticai iterate was in R). The interva1 R* is 
equal to R- L (see Fig.2). Therefore L*+ R* = L+ R- L = 1 - x. The 
new normalized L* is Ç( x) = L*/(L* +Ir) = x/(1 - x). 

In case L> R we have x > 1/2 and the new L" is L- R= x- (1 - x) = 
2x-l (the criticai iterate was in L). Then R*= R, and L"+R* =L-R+ R= 
L = x. Thercfore the normalized L* is given by Ç(x) = (2x- l)j x. 

In this case Ç is also known as the backward continued fraction map, [1 ], 
and its graph is shown in Fig.5. The map Ç is not expanding due to the 
fixed points O and 1 that have eigenvalue 1. This map Ç leaves invariant a. 
u-finite invariant measure given by dxj(x(1-x). Measures with infinite mass 
will a.ppear in all cases of Gauss maps which we will consider here. One o( 
the purposes of this paper is to show explicit formulas for infinite measures 
(cquivalent to Lebesgue measure) which are invariant by the Gauss ma.ps in 
the case of interval exchange maps with more than three intervals. 

The case of t hree intervals 
Vve will denote by {31 = a 1 the first discontinuity and (32 = a 1 + a 2 the 

second discontinuity of T , where a 1, a2 and 0'3 are the lengths of the intervals 
permu ted by T. 

Fix a cri ticai iterate n of T and denote by L1 , R 1 and L2 , R2 thc left and 
right intervals around the discontinuities /31 and /32• We get these intervals 
by ta.king the points in the T -orbit of O up to the n- 1-th iterate closest to 
the left and right of the respective discontinuities. The criticai iterate T n(O) 
can possibily be in any one of these four intervals. 

As we did before we will denote an interval and its length by the same 
symbol a.nd considcr the normalizing condition L 1 + R1 + L2 + R2 = 1. In fact 
there is just two indcpendent variables (because t here exists always one more 
relation among Lb Rt, L 2 , R2 as we will see in a moment) which we choose to 
bc R 1 and R2 . We will bc intercsted in finding the new R7 and R; using the 
procedure of going from one criticai iterate to the next criticai iterate. This 
procedure is analogous to the previous one and is also described by moving 
the stacks in such wa.y that the old criticai iterate will turn out to be a new 
extremai o f one o f the intervals Li U Ri and Li U R;. 

It is not difficult for the reader to convince himself tha.t in the present sit-
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uation, the only possibilit.ies for the stacks are the ones schematically shown 
in Fig.6 a), 7 a) and 8 a). There are three towers, two of them a.lways 
coming together in a discontinuity and the third with its top at the other 
discontinuity of T. 

To simpiify the notation we will denote the intervals T(Lt), T(R1), T (L 2 ) 

and T(R2 ) , which are at the bot.tom of the stacks by Lh Rh L2 and R2 , re­
spectively. Note however that the sizes of these interva.ls a.re correspondingly 
equal. 

In the first case Fig.6 a), ( denoted by cell 1), the criticai it.erate can be 
in L 1 or in R1 . These two cases will have to be considered when we define 
the Gauss map. Before doing that, however, we will describe the Farey cells 
(Fig.6 b), 7 b) and 8 b)). Note that in Fig.6 a) the right tower give us the 
relation Lt + R1 = L2 + R2. As 1 = Lt + R1 + L2 + R2 = 2(L1 + Rt) = 
2(L2 + R2 ), then L1 = 1/2 - R1 and L2 = 1/2 - R2 • Therefore the possible 

' vaiues of (R1 , R2 ) are in t.he square [O, 1/2] x [O, 1/2] (see Fig.6 b )). The 
uppcr triangle of the square correspond to L1 < R1 (in this case the criticai 
iterate is in R1 ) anel the lO\·ver triangle of the square correspond to L 1 > R1 
(in this case the criticai itera.te is in Li). The two possibili ties are shown in 
the top towers of Fig.lO and 11. 

Now we consider Fig.7 b). In this case from the left tower of Fig.7 a) we 
get the relation L2 = L1 + R1• As 1 = L 1 + R 1 + L2 + R2 = 2L1 + 2R1 + R2 , 

then L 1 = l/2-(R1 + l/2R2 ). The possible valucs of (R1 , R2) are in the right 
triangle with height. 1 and width 1/2 (see Fig.7 b)). The dotted horizontal 
line is at heigth 1/3. The upper triangle is given by the condition R2 > L 2 

(the critica! iterate is in R2 ) anel the lower quadrilatcral is given by the 
condition R2 < L2 (the criticai itera.te is in L2). The two possibilities are 
shown in the two top towers of Fig.l2 and 13. V·ie will denote such cell by 11. 

Finally we will anaiyze Fig.8 b ). The left tower from Fig.8 a) gives us the 
reiation Lt = R2- R1. But as L1 + R1 + L2 + R2 = 1 we have L2 = 1- 2R2. 
The values (Rll R2) are then in the right isocelcs triangle with equal sides of 
lenght 1/2 shown in Fig.8 b).The dotted horizonta!Iine is at height 1/3. The 
upper quadrangle contained in the triangle is given by the condition L2 < R 2 

(the criticai point in R2 ) and the lower triangle is given by the condition 
L 2 > R 2 ( the criticai point in L2). The two possibilities are shown in the 
two top towers of Fig.l4 a.nd 15. Denote such cell by III. 

Now that we defined the Farey cells, our next goal is to compute the 
Gauss map Ç. This map is defined fwm the disjoint union of the three 
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Farey cells to itself. It will b~ a two to one map. Note that each Farey cell 
have two subpieces described in Fig.6 b) 7 b) and 8 b ). Each subtriangle or 
subquadrilateral will be mapped to one of the full Farey cells via a projective 
isomorphism in such way that triangles will go to triangles and quadrilaterals 
to the square I. The diagra.m of the Gauss map and its analytical expression 
is shown in Fig.9. Our next purpose isto show that the analytical expressions 
shown in this picture are correct. In other words, given the values R 1 and 
R2 , we want to know the new normalized values (r1, 1·2) = ÇJ(RI, R2 ), r 1 = 
Rjj(Li + Rj +Li+ Ri) and ?'2 = Ri/(Lr +Ri+ Li+ R;), where we denoted 
the new values of L1 , L2, R1 and R2 by Li, Li, Ri and R;_, respectively. These 
new values are to be obtained by the proccdure of moving stacks associa.ted 
to one criticai iterate to the next one. 

In order to define the Gauss map for (R 11 R2) in case I, we have to analyze 
two possibilities: 

1. L1 > R 1 ( corresponding to the lmver subtriangle of I) and 

2. ~1 < R 1 ( corresponding to the upper subtriangle of I). 

Il) If L1 > R1, the moving stacks procedure lead us to map (LhR1,L2 ,R2 ) 

to (Li, R'i, Li, Ri) = (L1- R2, R1, L2, R2) (see Fig.lO). This is so beca.use, in 
the new towers, only the value of L1 change. Note that the new stacks are of 
class li. This explains the arrow in the diagram of Fig.9 going from the lower 
triangle of I to IJ. From the sum Li+Ri+Li+Ri = (L1-R2)+Rt +L2+R2 = 
1 - R2 we get the norma.lized values (rt, r2) = (RI/(1- R2), R2/(1- R2). It 
is not difficult to see that the map ta.king ( R1 , R2 ) to (1·1, r2 ) is one to one 
and ma.p the lower triangle of I onto the full tria.ngle II. 

12) If L1 < Rt. then the moving stacks procedure gives (Li, Ri, Li, R;) = 
(L1,R1- L2,L2,R2) (see Fig.ll). The new towers are of c.lass III. Tha.t is 
why thc diagrarn of Fig.9 indicates that the upper subtriangle of I goes to III. 
vVe ha.ve Lj + Rj +Li+ Ri= L1 + (Rt- L2) + L2 + R2 = 1 - L2 = R2 + 1/2. 
The last equality was obtained using the fact that, from the right top tower 
in Fig.ll, L1 + R1 = L2 + R2, therefore as L1 + R 1 + L2 + R2 = 1, then 
L2 + R2 = 1/2. From this fact also follows that (Li, R'i, Li, R;) = ( L1 , R1 + 
R2- 1/2,L2 ,R2)· After norma.liza.tion we obtain (1·1 ,1·2) = ((2R1 + 2R2 -
1)/(2R2 + 1), 2R2/(2R2 + 1)). It is ea.sy to see that Ç} is one to one and onto 
from the upper subtriangle of I to thc triangle TIL 
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Now we will define the Gauss map for ( R1 , R2 ) in the triangle li. 'vVe h ave 
again two possibilities: 

1. R2 < L 2 (corresponding to the subquadrangle of IJ) and 

2. R1 > L2 (corresponding to the subtrianglc of li). 

Ill) If R2 < L 2 , (Lt, R~, L2 , R2 ) goes to (Lt. R 1 , Lz- Rz, Rz) as can be seen in 
Fig.l2. The sum Li+ Ri+ Li+ Ri = 1-R 2 gives the normalizing condition. 
Therefore (r·~, r·2 ) = (Rtf(l - R2 ), R2/(1 - R2 )). In this case II goes to I 
bijectively as indicated in Fig.9. 

II2) If R2 > L2 , the moving stacks procedure associatcs (L1 , R 1 , Lz, Rz) 
to (L 1, Rt.L2, R2 - L2) (see Fig.13). The normalization factor is Li+ Ri+ 
Li+ R:;_= 1- L2 • After a simple calculation (as L2 = L 1 + R1 in the left top 
towcr of Fig.14 and L 1 + R1 + L2 + R2 = 1, then 2L2 + R2 = 1 ) we obtain 

, 1 - L 2 = 1 - (1/2- 1/2R2 ) = 1/2 + 1/2R2 and therefore the Gauss map is 
given by (t"t,7'2 ) = (2R1/(1 + R2),(3R2 -1)/(1 + R2 )). In th is case li goes 
to li by the Gauss map (see Fig.13). 

To define the Gauss map in the tria.ngle III we havc two possibilitics 

1. L2 > R 2 ( corresponding to the subtriangle of III) and 

2. L2 < R 2 (corresponding to the subqua.drangle of III). 

III 1) If L2 > R2 , the procedure (see Fig.14) associat.es (Lt, RI! Lz, R2) to 
(Lt,Rl>L2- R2,Rz). The sum Li+ Ri+ Li+ Ri = 1- Rz will give 
thc normalizing factor. The Gauss ma.p Ç(R1 , R2 ) = (r·1 , r·2 ) = (R1/(l -
Rz)), R2/(1- R2 )) will ma.p the subtria.ngle of III ont.o III. 

III 2) If L2 < Rz, (L 1,R1 ,L2 ,R2 ) will be ta.ken to (L 1,Rl>L2 ,R2 - L 2). 
As L 1 + R 1 + L2 + R2 = 1 a.nd L1 + R1 = R 2 {sce t.hc left. top tower of Fig.15), 
we conclude that L2 = 1 - 2R2 • Therefore the sum L~ + Ri + L; +R; = 
1 - L2 = 2R2 will determine t.he norma.liza.tion condition. In this case the 
Gauss map is Ç(Rl! R2 ) = (r· 1 , r·2 ) = (Rtf(2R2), (3R2 - 1)/2R2 ), and ma.p 
the subquadra.ngle of III into the square I. 

The diagram and a.nalytical expressions given in Fig.9 are thus justified. 
To finish this section lct us point out the formulas for a Ç-invariant mea­

sure in this particular case wc are considering of t hree intervals permuted. 
They are given explicitely by: 

1. (R2(1- 2R2 )) - 1dR1dR2 in cell I, 
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2. (R 2(1- R2)2)- 1dR1dR2 _in cell II anel 

3. (2Ri(l - 2R2)t1dR,dR2 in cell III. 

It is a measure absolutely continuous with respcct to the Lebesgue measure 
which has infinit.e ma.ss. 

3 T he invariant measure 

In this section we recall the general formalism for the induction introduced 
in (7] and show tbe Q-invariance of df.l. 

Given 1r a permutation o f { 1, ... , m} irrcducible a.nd discontinuous, define: 

by: 

if 1r(m) + 1 =/= 1r(l). 

f= f(1r): {O, ... ,m -1}--+ {l, ... m} 

if j =O; 
if j = 1r- 1(m); 
otherwise. 

if j =O; 
if j = 7r - 1(7r(l) -1); 
if j = 1r- 1 (m); 
in Lhe remaining cases. 

It is easy to see that f is bijective. 
Now, using f define the setA= A(1r) of pa.irs 1 = (g,G) where: 

g: {O, ... , m -1}--+ {1, ... ,m - 1} 

and 
G: {1, ... ,m}--+ {1, ... ,m - 1} 

satisfy: 

1. 
g = Gof 
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where C= disjoint union of C"', 1 E A. 
Before doing t,ha.t however· we recall that a ma.p 

where V and W are m. - l-dimensional subspa.ces of R 11
, is said to be pro­

jective if 

(6) 

for X E c nA n v a.nd l\lf an n X n matrix with non-negative entries a.nd 
whose restriction to V has determinant ±1. 

By x 2:: O we mean that ali entries of the n rows column matrix x are 
non-negative, I x I= 2::~=1 xk, P = {x 2:: O I x E Rn} andA= {x li x I= 1}. 

It is clear that the inverse a.nd composite of projective maps are projective. 
Since we will need the jacobian of a projective map, the following lemma from 
p.248 of Veech [8] is handy. 

Lemma 3.1 Jf S is a pmjective map as above and we take lhe Lebesgue 
measure on A n v we have for X E p n A n v that 

Ll(x) = Jacobian of S at x = (I M~1: l)m (7) 

We sta.rt by defining two maps C a.nd n :A -t A as follows C( 1) = ,..,/ 
whcre 1 = (g,G) and ;.c= (g.c,G.c) is given by: 

.c : = { g(j), if #g- 1(g(j)) = 1 or j = gm-1 (0); 
9 (J) g2(j), otherwise. 

and c.c = g.c o J-1 • As to the definition of n we have 'R(;) = ,n where 
1 = (g , G) and ,n = (gn, cn) is given by : 

Gn(:) = { G(j), if #G- 1(G(j)) = 1 or j = cm-1 (m.); 
:r J G2 (j), otherwise. 

a.nd g'R = cn o f. It is easily seen that ,.c and ,·r.. satisfy (2) a.ud (3) a.bove. 
Now, fix 1 E A and consider the hyperpla.ne Rio = L9m- l(O) + Rf(g"'-l(O)) 

where i 0 is the type of 'Y· This hyperplane divides the polyhedron C"' into 
two polyhedra: 
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c;= {Rio < L9m-l(o) + Rf(g"'- l(o))} nc-r 
with non-empt.y interiors. 

Restricting ourselves to (L, R) E c; and defining L f a.nd Rf by 

Rc = R; for i = 1, ... , m 

and: 
if i= i 0 ; 

otherwise. 

(8) 

(9) 

we have that .C(I) is in Á and the projcdive map induced by L(l): (L, R)~---+ 
(Lc , Rc) is an isomorphism between c; and Ccb) · Similarly R(l) is in Á 
and R ('y): (L, R) ~---+ (Ln, Rn) given by: 

L n = L; for i = 1, ... , m - 1 (10) 

and: 
Rf = { R;0 - (L9 m- I (O) + RJ(gm-1(0))) , if Í = Í~j (ll) 

R;, ot.herwtse. 

induces an isomorphism between c;: and Cn('Y)· 
The Gauss map 9 is defined by 9 Ice= L(l) and 9 lcn= R (!) for 1 E Á. 

1 1 

On C take the u-finite measure Jl which has, on ea.ch 9-r, 1 E Á , a density 
with respect to the Lebesgue mcasure d).. given by. 

m - 1 1 
6.-y = rr - - ­

i=O L; + Rj(i) 

Proposition 3.1 d1t is 9-inva?iant. 

Proof: All we have to dois check tha.t the Perron-Frobenius equation 

(12) 

6. ( R) ( 1 1) I dL - 1 ( I 2 2 I dR - 1 -rL, =6.-r1 L,R ----;v:-L,R) +6.-n(L,R) ---;v:-(L ,R)I (13) 

holds, where 1 = (g, G) E Á , (L, R) E C-r, 11 = (g 1, Gt) = .c-1
(/), 12 

(g2,G2 ) = n-1(1), L(L1,R1 ) = (L, R) and R(L 2 ,R2) = (L, R). 
By the definition of the Gauss map we have 

11 
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and 

{ 

Rc;m-l(m)+L9m-l(o)+Ra-l(io) 

R~ = J+Lgm-l (o) +Ra-l (io) ' 
I R· 

l+L9m-l(o)+Ra-l(io )' 

if i= om-l(m); 

otherwise. 

for i = 1, 2, ... , 1n - 1. 
Using (3.1) we have 

and 
I dR - 1 (L R) I= 1 

d).. ' (1 + L 9m-l(O) + Ra-l(io))m 

The above expressions give 

L 9 m-l(O) + L g-l(io) + Ram-l(rn) + Ra-l(io) 

TI~-;;\,~:9-t c;ol(Li + RJCilt
1 

Ly-l(io) + Ram-l(rn) + L 9m-l(O) + Ra-l(io) 

fl?~õ}#9m-l(O),g-l(io)(Li + Rf(i))-
1 

Ly-l(io) + R am-l(rn) + L 9m-I(O) + R c-l(io) 

( 1 + 1 )= 
Ly-l(io) + R am-l(m) L 9m- I(O) + Ra-l (io) 

m - 1 1 
II L · R . = 8."((L , R) 
i=O I+ f(t ) 

which proves the proposit ion. 
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4 The construction 

In ihis section we describe the procedure that lead us to define the density 
[12) anel justify the Ç-invariance of d~l. 

Lct V be an m.-dimensional vector real space and denote by /\r = /\r (V) 
the space of exterior r -forros ovcr V , O ~ r ~ m.. Take F1 , F2 , ••• , Fk, 
1 :::; k :::; m, a linearly indepenelent sei in 1\1 anel o =1- n E N11

• Although there 
are severa} ways in which we can factor n as an exterior product n = F 1 A 

F2 A ... A Fk Aw, w E 1\ m-k, it is ea.sy to see tha.t w I/\ is uniquely determineel , 
where ]{ is the kernel of the linear ma.p· F: V --+ R k with components Fi · 
We cal! w the volume induceel on A' by n anel F~, F2 , ••• , Fk. 

Globalizing this resuli for k = 1 we see that if Mm is a elifferentiable 
ma.nifolel (here a nel in what follows manifolds anel maps are C00

), n is a. 
volume form on Aifm anel f: Mm --+ R is ·a funct ion thcn n induces a volume, 
w, on S = f - 1(1·), where 7' E R is a regular value of f. It is clear that if '1/; is 
a eliffeomorphism prescrving n anel f then the ineluceel eliffeomorphism in s 
preserves w. 

Now take A1m, n, f , r anel S as above, '1/; a eliffeomorphism anel <pt, t E R , 
a. one parameter group of diffeomorphism of Mm. Suppose '1/; anel 'Pt comute 
an el preserve n. If each orbi t of <p1 intercepis S exactly once we can define 
a map 'li: S --+ S, 'll(s) = s', where s' is the only point in S in the 'Pt orbit 
of '1/;(s). If X, the infini tesimal generaior of <pt, is transversal toS then the 
following lemma., whose proof is a simple ca.lculation, holels : 

Lemma 4.1 'li is a difJeomorphism and zn·ese·rves t.hc rn - 1-form 1.xn re­
st?'icted to S, where 1.xn is the inner zn·oduct of X and n. Mo1·eove1·, if we 
w1'ite n = df A w as above, with ~xw = 0, we have: 

for p E S . 

To see how the above construction leael us to the density (12) we stari by 
introducing a new sei of variables /0 , l1, • •• , lm-l anel 7'1 , 1·2 , ••. , ?'m which will 
play the role of ihe heights of the siacks associated to the abst ract Farey cell 
C...,, 1 = (g, G) E A, in such a way that: 

1. L; is the height that the sta.ck with botton L~ + R~(i) has above the 

interval L~ anel 
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2. ri is the height that the. stack with botton L~-• (i)+ R; has abovc the 

interval R~. 

From these definitions we are lead to the relations 

(14) 

i = O, 1, 2, ... , 1n- 1 which shows that we ca.n rcta.in only the 1·j's as a set of 
independent variables. 

Now for ea.ch 1 = (g, G) E A take a copy of 

R~m-Z, with coordinates (L1, ... , Lm-1, Rb ... , Rm- 1, 7'1 , ... , Tm)· and de­

com pose R~m-Z in two open cones, C'!;- and Cf', givcn, respectively, by 

and 

Li0 > Ly-I(io) + Ram-l(m) 

where i 0 is the typc of I · On thcse cones define the ma.ps 

1. R= R(I):C~ -+ R3m-z, R(L,R,1·) = (lR,i{1~,rn), given by 

-n . Li = Li for t = 1, ... , m - 1, 

[{f'= {Rio- (L9m-I(Q) + Ra- •(io)), if i= i?; 
R;, otherw1se. 

r'!?-= { TG- I(io) + Tj0 , jf Í = G-1(io)i 
' ri, otherwise. 

and 

2. L= L(I):Cf'-+ R3m-z, L(L,R,r) = (Lc,Jlc,:;:c), givcn by 

-c . Ri =R; for 1. = 1, ... , m- 1, 

l(- = { Lio - (Lg-I(io) + Ram-l(m)), if i =i?; 
1 Li, otherw1se. 

14 
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It is clcar that R is a diffeom?rphism onto the cone of ~~(~)2 given by 

TG-l(io) > Tçm- l (m) (15) 

and L is a diffcomorphism onto the cone of R~(~)2 given by 

1"çm-l (m) > Tç-1 (io) ( 16) 

anel that t.hi s set of ma.ps define a. cliffeomophism 1/.) of the manifolcl M = 
L-reA R~m-2 . Note that G in (15) a.nd (16) a.bove refers to R.('y) and .C(/) 
respcct ively. To be precise this diffeomorphism is not. well defincd on a finite 
set of hiperplanes but, since this is a set of zero measurc, this little imprecision 
wiU not ma.Her in whal follows. 

Finally define the fiux c.p1 on M by 

c.p1(L,R,1·) = (exp(t)L,exp(t)R,exp(-t)r) 

whose infinitesimal generator is X(L, R, 1·) = (L, R, - r). It is clear lhat c.p1 
comutes with '1/J. 

On M take the volume element given, on each R;m-2 , by f2 = dL 1 1\ ... I\ 

dLm-1 1\ dR1 1\ ... 1\ dRm-1 1\ dr1 1\ ... 1\ d1·m· 
Given 1 = (g, G) E A define the subspa.ce of R;m-2 K-r = ni~1 1 KerFi 

where Fi =L;+ R;- LjEg-l(i) Li+ RJ(i) for i= 1, ... , m -1 a.nd on f( -r take 
the volume w induced by 11 and the functiona.Js F;. \Ve ca.n write 

w = dL9rn-l(O) 1\ dR1 1\ ... 1\ dRm- 1 1\ dr, 1\ ... 1\ dTm = 

dL1 1\ ... 1\ dLm-1 1\ dRam-l(m) 1\ dr1 1\ ... 1\ d1·m 

H is clear that cp1 a.nd 'lj; go down to 2: K-y, preserve this volume and permute 
the positive cones of the spaces J(T We denote the disjoint union of these 
cones by K. 

For ea.ch 1 E A ta.ke the total area of the sacks associa. teci to 1, 

m - 1 m-1 

Ay = L liLi + L 1'jRj (17) 
i= l i=1 

Using [14] we ha.ve 

m-1 m 

Ay = L 1'J(i)(L; +R f( i)) = LTi(L J-l(i ) +Ri) 
i=O i=l 
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On the hypersurface A...,= 1, w induces a volume element which we still call 
w. This volume can be written as 

±1 -
L R dL9 m-t(o)AdRtl\ ... dRm-11\d1'tl\ ... 1\dra-'(io)/\ ... 1\drm = 

grn- 1 (O) + G-1 (io) 

±1 -
L R dL11\. · · dLm-tAdRcm-l(m)AdrtA ... /\d7·am-1(m)Â· . . l\d1·m 

g-1(io) + cm-l(m) 

where the superscript ~ indicates omission anel ·i0 is the type of I · Since 1/J 
anel t.p1 preserve w it is clear that 1/J anel <p induce diffeomorphisms on A..., anel 
preserve the induced volume form. 

Consider now the normalizing map N given on each C..., , 1 = (g, G) E A, 
by 

m-1 m -1 

N..., = 2: L;+ R; = 2: L;+ RJ(i) (18) 
Í=l i=O 

Each orbit of c.p1 intercepts the hypersurface N..., = 1 exactly once anel the 
hypothesis of lemma 4.1 are met thus showing that we have a di:ffeomorphism 
ll!:K' __. K' , where K' = Kn{ N..., = 1} , preserving the volume 

±1 --
L R 

dL9m-!(O) 1\ dR1 1\ ... I\ dRcm-l(m) 1\ ... 1\ dRm- 1 
gm- 1 (0) + G-1 (io) 

l\dr1 1\ ... 1\ d1·;:;( io ) 1\ ... 1\ drm = 

±1 ----- - ---dLt 1\ ... 1\ dL9 m -l (o) 1\ ... 1\ clLm- t 
Ly-l(io) + Rcm-l(m) 

1\dRcm-I(m) 1\ dr1 1\ ... I\ drc~(m) 1\ ... I\ drm 

It is easy to see that 'li covers 9 in the sense that 1r o 'li = 9 o 1r where 1r 

is the projection tr(L, R, r) = (L, R). If we push the measure of K' by this 
projection we get, integrating in the fibers, that the volume form 

(

m 1 ) _ 
± ll L R dL9m-t(o) 1\ dR1 1\ ... 1\ dRcm-'(m) 1\ ... 1\ dRm-t = 

j=l J-1 (j) + j 

(

m-1 1 ) 
± ll dLt 1\ ... 1\ dL;:'(o) 1\ ... I\ dLm- t 1\ dRa"'-'(m) 

i=O Li+ RJ(i) 

is invariant by 9 (Each fiber is a simplcx with volume a fra.ct ion depcnding 
only on m of the volume of the spanned pa.ralelepiped). This form induces 
a measure on cach C..., which, up to a constant, has the densi ty (12) with 
respect to the Lebesgue measure. 
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. . . . 

5 df.-l is conservative 

In this section we show that Ç is conservative. This means that there is no 
wandcring set of positive measure or, wha.t is the same, that Ç induces a 
first return ma.p on each subset of positive measure of C. It is here tha t we 
will use that the construction of the preceding section gives the measure dft 
which , as we know from the beginning, is Ç-invariant. 

Proposition 5.1 Ç: (C, fL) --+ (C, fL) is conset~valive. 

Proof: To get a contradiction, suppose that there is a Ç-wandering subset 
of positive mcasure of C. Taking the pull-back of this set by 1r: K' --+ C we 
get a W-wandcring subset of positive measure of K', U. Since U has positive 
mea.sure, the positive cp1 saturated of this set, ..-Y, has infinite measure in K. 
On Lhe other hand, since U is \11-wandering and 'lj; and cp1 comute, we can 
write X as a disjoint union 

00 

X= U '!j;n(vn{cp1 saturated of w-n(U)}) 
n= l 

whcre V is the fundamental domain of the action of 'lj; on K given by 

V= {cpt(s) I N(s) = 1 and O~ t ~ T(s)} 

and T( s) is the time needed to flow back to {N = 1} from 'lj;(s), s E {N = 1}. 
Now, since 'lj; preserves measure, we get the contradiction tbat finishes the 
proof of the proposition if we show that V has finite volume since the sets 
vn{<f't saturated of w-n(U)} are disjoint. 

Lemma 5.1 V has finile measu·re. 

Proof: It is enough to show that, for ea.cb 1 = (g, G) E A, the measure of 
thc set V-y which is the intersection of V with the positive cone of F-y is finite. 
In fact we will show that v;, the intersection of V"'~ with the cone 

rem-I (m) > re-I (io) 

has finite measure. The proof that V~ , the intersection of V -y with the cone 

Te-l (io) > Tem-I (m) 

17 



ha.s finitc volume is similar an.d will be left to the reader. 
v; is the set of 2m - 1-column row matrices 

( - ) TJ Tem-I (m) 1'm 
xL1 • • • xLm-t xRcrn-1 (m) -... .. . -

X X X 

with entries satisfying 

and 

L;,~ > O, i = 1, ... , m - 1 

1'1 > O, ... , 1'm > O 

L;+~= L Li+ Rf(j) ; i= 1, ... , rn- 1 
jEg-1 (i) 

rcm-t(m) > 7'G- t(io) 

m-1 m 

1 = L TJ(i)(L; + RJ(i)) = L rj(LJ- l(j) +Ri) 
i= O j =l 

m-1 m-1 

1 = L L; + R; = L L; + RJ(i) 
i=l i=O 

1 
1 > X > ----------------­

- - 1 + L9-l(io) + Rcm-l(m) 

lf we eliminate x in the above expressions we get that v; is the sei of ma.trices 

with ent.ries satisfying 

L;, R; > O, i = 1, ... , m - 1 

1't > O, ... 1 Tm > O 

L;+ R;= L Lj + RJ(j) ; i= 1, ... , m. - 1 
} e9 - 1 (i) 

rcm- t(m) > 7'G-l(io) 

m -1 m 

1 =L TJ(i)(L ; + RJ(i)) = LTj(LJ-l(j) + Rj) 
i=O j=l 
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and 

m 

1;:::: L LJ-I(j) + Rj 
j=l 

m 

L9 -t(io) + Ram-l(m) +L LJ-I(j) + Rj;:::: 1 
j=l 

We have to show that the integral 

f dL1 ... dLm-tdRam-l(m)d1't ... d1·c='(m) ... drm 

Jvf Lg-l(io) + Rarn-l(m) 

is finile. Integra.ting in the r's we get that the a.bove integral ts, up to a. 
constant, cqual to 

f dL1 ... dLm-1dRam-1(m) 

(L9 - •(io) + Ram-l(rn) + L9 m- I(O) + Ra-l(io)) Tij=l,#G- '(io) LJ-'(j) + Rj 

over thc set of matrices 

with entries sa.tis fying 

and 

L;, R; > O, i = 1, ... , m - 1 

L;+ R;= L Li+ Rf(j) ; i= 1, ... , m. - l 
jEy-1 (i) 

m 

1;:::: L LJ-I(j) + Rj 
j=l 

m 

L 9 -l(io) + Ram-l(m) + LLJ-I(j) + Rj;:::: 1 
j=l 

Pull-back the above integral to the cone with vertex the origin a.nd spanned 
by C.c-1 (-y), using the linear map that induces ÇJ, L(.C- 1(1)). We get the 
integral 
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over the scf; of matrices 

wi th entcies satisfying 

and 

Li, Ri > O, i = 1, ... , m - 1 

Li+ Ri= L Li+ Rf(j) ; i= 1, ... , m- 1 
jEg-1(i) 

71l 

1 + L9-t(io) + Rcm-l(m) ~ L L J-l(j) + Rj 
j = l 

711 

L LJ-l(j) + Rj ~ 1 
j=l 

Lio ~ Lg-l(io) + Rcrn-l(m) 

where now (g, G) = .c-1 
( 1 ) 

In this integral we make the change of variables given by the formulae 

Li= tL~, Ri= tR; ; i= 1, ... , m- 1 

and 
m 

1 =L Lj-1(j) + Rj 
j=l 

If we trade the va.riable Ram-l(m) for the variable t in the integral thus ob­
tained anel integrate with respect to t wc finally get, up to a constant, the 
integral 

f ln(l + L9 -t(io) + Rcm-t (m) )dLt ... dLm-1 

I1j~ 1 L J-' (i)+ Ri 

where for simplicity we dropped thc primes. This integral is over the set of 
matrices 

wi th entries satisfying 

L;, R;> O, i= 1, ... ,m-1 
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and 

Li+R;= L Li+R!(j); i=1, ... ,m-1 
jEg-1 (i) 

m 

L Lj- l(j) + Rj = 1 
j=l 

L;0 ~ Lg- '(io) + Ram-l(m) 

This integral, in its turn , is fin ite or infinite with the integral 

f dLt .. . dLm-1 

fJj=t,:;tam-1 (ml L J-' U> +Ri 

over the sa,me set. This set is a. polyhedron a.nd ca.n be dcromposcd as a. 
union of simplcxes. Using theorern 7.1 in the Appendix we see tbat the proof 
of lemma 5.1 is complete once we prove t he nex t lemma.. 

Lemma 5.2 Gú;en 1 = (g,G) E A with lype i 0 anda point 

in the polyhedron given as above by 

and 

L;, R;~ O, i= 1, ... , m- 1 

L;+ R; = L Li+ Rf(j) ; i = 1, .. . , m - 1 
j Eg- 1 (i) 

m 

L LJ-I(j) + Rj = 1 
j=l 

L;0 ~ Lg-l(io) + Rcm-l(m) 

the number o f factors o f the pToduct 

m m - 1 

II Lj-l (j) + R j = II L;+ Rf(i) 
j=l ,#Gm-l (m) i=O,:Fg-1 (io) 

(19) 

(20) 

(21) 

which are zero at P is less than lhe maximal number of linearly indcpendent 
equations o f the set 

L; = O, R; = O; i= 1, .. . , m, - 1 

which a1·e satisfied by P 
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Proof: Since 

the factors o f (21) are L; + R; for i = 1, ... , m, - 1, i =f. i 0 and L9 m-l (o) + 
Ra-1 (io) · 

We ha.ve severa! cases to consider depending on which factors of (21) are 
zero a.t P. 

1. If Lgm-I(O) +Rc-l(io) =o at p then Lgm-I(O) = Ra-l(io) =o and Rio= o 
a.t P since (20) implies L9 m-t(o)+Rc-l(io) ~ R;0 • If L9m-l(o)+R9m-t(o) > 
O at P the lemma follows since each factor L;+ R; which vanishes gives 
one equa.tion L; = O and the fa.ctor L9m-I(O) + Ra-t (io) = O the two 
equations L9"'-'(0) = R;0 = O. If L9 m-I (O) + R9 m-I(O) = O we consider 
two cases 

(a.) gm- t(O)=ioancl 

(b) gm- 1(0) =f. io. 

In the first case L9m-1 (o) + R9 m-l (o) is not a facto r of (21) and the 
argument just made holds. In the second case take k > l, for l such that 
g1(0) = i 0 , thc last iterate of g, starting from above, gm-l (0), and going 
down, for which we have the equality L9k(o) + R9~c(o) = O. In this case 
each facto r L;+ R; which vanishes at P gives one equation L; = O and we 
have one extra equation, L; = O, satisfied besides R;0 = O, since either 
k = l+l and then L;0 =O for Lg(io)+Ru(io) = L;0 +RJ(io) or k > l+l and 
then using O = L9~<(o) + Rg"(O) = L9~<-t (O)+ Rf(gk-t (O)) we get L9~<-t (O) = O 
which is again an extra equation since L9k-l (o) + R9k-l (O) =f. O. This 
fiuishes the case L9m-l(o) + Ra-'(io) =O. 

2. If L9 m-t(O) + Ra-l(io) >O at P, take k, k E {1, ... , m -1}, the greatest 
iterate of g for which we have the equa.lity L9k(o) + R9k(O) = O at P . If 
k > L, where l(O) = i 0 , the lemma follows by repeating the argument 
we just made. We suppose then that Á: < l and L9 r(o) + R9 r(o) > O for 
T > k. H L9 ,(o) + R9.(o) > O for some s < k we can still get an extra 
equation L; = O by the samc a.rgument. The only possibility left is 
L9 .(o) + Jl9 ,(o) = O for s ~ k. We can write the equations (19) as: 

L9(o) + R 9 (o) = Rf(o) 
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Lg2(0) + Rg2(0) Lg(O) + RJ(g(O)) 

L93(o) + Rg3(o) - L92(o) + RJ(g2(0)l 

where the /-th equation, corresponding to g1(0) = io, is missing. This 
equation, 

is a linear combination of [22]. If some of the R's appearing at the right 
side of thesc cquatious do not show up in the left s ide we have k + 1 
vanishing R's a.nd, as these equa.tions are linearly independent, we are 
clone. On the other hand, it is not possible that any R a.ppearing at the 
right side of these equations appea.r also a.t the left side. In fa.ct, suming 
the first k equations of [22], we ha.ve L9 "(o) = O, which contradicts the 
fa.ct that c"Y ha.s dimension m - 1. 

The proof of the lemma is now complete. 

6 Ergodicity and Keane's conjecture 

In this section we show that dJ-L is ergodic under the action of Ç and give 
another proof to Keane's conjecture. 

We start by reca.lling some results of Rényi's [6] which we will need. Let. 
(n, 8, 11) be a measure space and let :F: n-+ n be a. meas ura.ble non-singular 
map. We sa.y :F admits a Markov pa.rtition (C(i))iEI, if C(i) is a measura.ble 
partition of n, I is countable or finite a.nd 

:F(C(i)) = I: C(j) for J(i) ç I 
jEl(i) 

Define the transition matrix T = (T;i)i,iEI a.ssociated to this Markov 
partition by 

{ 
1 if :F( C( i)) 2 C(j); 

T;i = o: if :F( C( i)) n C(j) = 0. 
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for i,j E I. 
A sequence o[ índices i 1 , i2 ~ ••. , in, n ~ 1, is ca.lled a.dmissible if T;k;k+J = 1 

for k = 1, 2, ... , n - 1. In the cases we will be considering T is irreduci ble, 
which means that given índices i and j there is an a.dmissible sequcnce 
i1, i2, ... , in starting at i= it anel ending at j = Ín. 

We suppose that for each i E I there is a measura.ble anel non-singular 
map 

1í(i):Jê(CJ(i)) ~ CJ(i) 

which is the in verse to Jê lc(i). In other words Jê o 1í( i) 
1í(i) o Jê = Idc(i)· 

Given i11 i2, ... , Í n an admissible sequence define 

inductively as 

and define 
C(ii, i2, · · · 1 Ín) = 1í(ill i2, · · ·, Ín-I)(C(in)) = 

I d F(C(i)) a.nd 

CJ( i1) n Jê-1( CJ( i2)) n Jê-2( C(i3)) ... n Jê-n+t ( CJ( in)) 

C( i 1 , i 2, ... , in) is ca.lled the a tom of depth n associated to the admissible 
sequence i 1 , i 2 , ... , in. The set of these atoms, pn, is a partition of n and it 
is clear that p n+t refines pn_ 

Let 
"(. . . )( ) _ d1í(i~, Í2, ... , in) ( ·) 
u 1.1, Z2 , •.• , Zn X - X 

dtl 

denote the jacobian o f 1í( i 1 , i 2 , ... , in) with respect to t;he mea.sure v at the 
point x E Jê(C(i11 )). 

i f 
We say that the atom C(i1 , i 2 , .•. , in) satisfies Rényi's condition for]( ~ 1 

ess sup{6(it, i2, ... , in)(:r) I X E Jê(C(in)) } s; 
f{ css inf{6(i1,i2, .. . ,in)(x) I X E Jê(CJ(in))} (22) 

Rényi's condition rneans that the distortion 1í(i 1, i 2 , ••• , i 11 ) produces on the 
measure of any subset of Jê(C(in)) is essentially the distortion it produccs in 
the measure of Jê(C(in)). 

We are ready to state Rényi 's result [6] we shall need. 
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T heorem 6.1 Let F: n --t n and C( i) be as abo-ue and Sttppose that v is 
finit e, F( C( in)) = n jo1· Vi, tiwt ther-e is f(~ 1 such that every alom of any 
depth satisfies Rényi 's condition and that U~=t pn gcnerates B. 1'hen F is 
C7'gOdic. 

We return now to consieler the Gauss ma.p Ç: C ---+C. Denote by I the set 
of pairs i= (S,1) where SE {R, L} anel 1 E A, anel define C(i) =C~ and 

'H( i) = ç-1
: Q(C(i)) ---+ C( i) 

lt is clear that (C(i))ieJ is a finite Markov partition for Ç. Note that the set 
{Q(C(i)) I i E I} is the set of Farey cells and 

'H( i): Q(C(i)) ---+ C( i) 

which is the inverse to 9 lc(i), is a projective isomorphism. 
For each i E I fix J\tf (i) an n X n-matrix inducing 'H( i) as in ih e definition 

of projective maps (6). 
Since projective maps take straight line segments to straight line segments 

anel thereforc convcx sets to convex sets it is clcar that the atoms are convcx. 
To show the ergocl icity of Ç we start by proving that the first return map 

incluced by 9 on C( i 1 , ... , in) is ergoclic for certain goocl admissible sequences 
it, ... , Ín . Observe that there is a first return map since Ç is conservative. 
Then we make use of the identification of X = T via the stacks associated 
wíth the interval exchange maps and prove that if T satisfies Keane's ínfinite 
and distinct orbit condition, i.d.o.c., we can get a good admissible sequence 
ih ... , in such that T E C( i 11 ... , in)· Since the set o f i.d.o.c. 's is a set of 
full measure a well known argurnent using the transit ívity of T shows the 
ergodicíty of Ç. 

Lem m a 6.1 TheTe is a subset o f full Lebesgtte measm·e in C = L-y C-y such 
that jo1· ever~y point (L, R) in this set, say (L, R) E C-y, thet·e is an admissible 
seq'u,cnce i 1 , ... ,in such thal (L,R) E C(i1 , ... ,in) Ç int(C-y) 

Proof: To prove the lemma recall the interpretation of the Gauss map 9 
as the change the sta.cl<s a.ssociated to an interval exchange map T suffer 
as we move from one criticai iterate to the next one. Given 1 E A we can 
identify each element (L, R) of this abstract Farey cell with the stacks of an 
interval exchange map Tina conveniently fixed convex subset of the simplex 
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of interval exchange maps. This procedure was described in detail in the last 
sectíon of [7]. Using this idet1tification, the set of full measure we need to 
esta.blísh our lemma. is the set of interval exchange maps satisfying the infinite 
and distinct orbit condition which, as we know, is made of mínima! maps. To 
see the truth of that assertion, fix T E C"Y i.d.o.c. and denote by /31, ... , f3m-l 

its discontinuíties. Sincc for each i= 1, ... , m - 1, T-k(/3i), A: 2:: O, is dense 
we can fix ki such that T-k(j3i) O ~ k ~ ki cresses at lcast twice the interior 
of each slice of ca,ch stack of T E Q"Y; once in the interior of the intervals L~ 
and the other in the interior of interva.ls R~. Now denote by Si the segment 
of vertical separatrix conecting f3i to T - k, (/3i) in the vertical foliation of 
w(T), the qua.dratic form associatcd to T , [7]. Each of the segments Si has 
possibly severa! connectcd components on ea,ch stack of T E Çj"Y. Now, as 
we iteratc T undcr Q, the number of these components decrease to one since 
they start bcing separated by the T -orbit of O. Let n + 1 be the first time 
each segment Si is entirely contained in one stack of the corrcsponding Farey 
cell. This stack must necessarily be the one with /3i in its top. Take C"Yn 
the Farey cell containing gn(T) with coordinates (L', R'). The itinerary of 
Çjk (T) , O ~ 1.: ~ n, on the atoms C(i) define C(i11 ... , in) and it is clear that 
C(i1 , ••• , in) is containcd in the interior of C"'~ since each each stack of C"Yn 
contributes with a.t least one slice to compose the intervals LU and R~ of C-y. 
In fact, if onc of the equatíons defining the boundary of C"'~ is satisfied, say 
L1 =O, this whould imply that L' =R'= O which is an a.bsurd. The lemma 
follows. 

Lemma 6.2 Let i 1 , ... , Ín be an admissible sequence satisfying the thesis o f 
the zn·eceding lemma: 

C(i~, ... , in) Ç int(C""f) 

Then the first retunt map indttced by Çj on C(i 11 ••• , in) is ergodic. 

Proof: Fix i 1 , •.• , Ín an aclmissible sequence as in the hypothcsis anel take 
J = {j} the set of admissible sequences j 11 ... ,jt, l > n, such that 

1. j 11 ... ,j1 starts with the sequence i1, ... ,in, in other words, ·ik = jk for 
k = 1, ... ,n. 

2. j 1 , ... ,j, ends with thesequencei11 ... ,in. 
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3. therc a~re no oLl1er ocurrences of the sequence i 1 , ... , in in j 1 , • .. , i1 
other than the two just considered. 

It is clear that I:j C(j1 , ••• ,j1) is the domain of the ma.p Ç induced by 9 on 
C( i 1, ... , Ín) anel therefore 

C(i), ... ,in) = "L CUt,···,it) 
j 

mod dft sincc the first return map is defined a.c .. lt is a.lso clea.r that C(j ) = 
C(j1 , ••• ,j1) , j E J , is an irreducible Markov part ition for Ç anel , since 
Ç = gl-n on C(j), we have that 'H(j) : Ç(C(j)) -... C(j) is given by 'H(j) = 
1i(j11 ••• ,j1_n) on C(j). To prove the lemma we check first Rényi's condition 
for some f{ 2: 1 that depeneis only on i 1, .• . , in. 

Fix C(P, ... ,/). Vve have to bound 

ess sup{ti(ji, . .. ,jk)(x)} 
ess inf{Li(jl, ... ,jk)(y)} 

for x, y E Ç(C(/)). Since these set are convex polyhcdra. we have by 
lemma 3.1 that the supremun and infimun are taken at the vertices of the 
polihedron Ç(C(jk)) thus we have to bound the quantity 

7\(· · t ·k)( ~) 
- L1 J , ... ,J v 

q - - '1 'k ~ !1(; , ... ,J )(tu) 

for v, w vert ices of 9(C(l)). Now, 

'L./( ·1 ·k) 'L./( ·1) 'L./( ·k) ti.J , ... ,J = tLJ ... fLJ = 

anel 
C- ( ·k) C( ·k ·k) J = Jt ' ... ,Jik 

;;,(C'( ·k)) C( ·k ·k) C( . . ) 
!::1 J = Jt~c-n+l' ''',J/k = 1· J, .•. ,~n = 

'H(it) ... 'H(in)(Ç(C (i,.))) 
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thercfore v = 1i(i1 ) ••• 1-l(in)(v) and w = 1-l(it) ... 1-l(in)(w) whcre v and w 
are vertices of Q(C(in)) . Using the chain rule we can write 

Jac(H(jf) ... 1i(j1:_n)1i(i t) .. . 1-l(in))(v) . .Ja.c(H(il) .. . 1-l(in))(w) 
q = Jac(H(jf) .. . H(jt-n)1i(it) .. . 1i(in))(w).Jac(1ih) ... 1-l(in))(v) 

Where Jac denotes the Jacobian with rcspect to the Lebesgue rneasure. We 
have then to get a bound for 

Jac(H(jf) .. . H(jt _,J1i(it) ... 1-l(in))(v) 
q = Ja.c(1i(jl) ... H(jt -n )H(ii) .. . 1i(i 11 ))(w) 

using lcmma 3.1 we see that we have to get a bound for 

uM(jf) ... 1Vf(jt_
11

)A1(it) ... M(in)tv 
q = uA1(jt) ... A1(j,:_

11
)A1(it) ... A1(in)v 

where u is the n-coJumns row matrix with all entries 1. Since the vertices of 
C('i" i2, ... , in) are in the interior of C..., we can fixa matrix A= A( i) ali of 
whosc entries are posit ive such that W A = A1(ii) ... A1(in) \I where V is the 
matrix with columns the vertices of C..., and vV is the matrix with columns 
the vertices of the Farey cell conta.ining C( i I). 

Sett ing X= u. iVf(jl) ... . M(jt_
11

)H1 we havc 

= (Xa)m 
q Xa' 

where a anda' are columns of A. But then, for Xko = max{Xk I O:::; k:::; n}, 
we have. 

( 

11 
,. )m (""n -&a )m _ Lk=l Xkak _ L-k=l xko k < 

([ - ""ll x· I - ""11 ..Kk_ 1 
L-k=l kak L-k=l xko ak 

(2:?=1 ak ) m:::; ( ~r=t a.k )m < (n. ~ax{A_(i)} ) m 
aí.

0 
mm {A( 1,)} - rnlll {A( 1.)} 

where max {A( i)} and rnin {A( i)} are, respectively, the maximun a.nd mini­
murn o f the entries o f A( i) vVe have then shown that Rényi's condi tion holds 
for 

. {(n. max{A(i)} ) m I. } 
/\ = max min{A(i)} tE I 
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To finish the proof of the lemma using theorem 6.1 we have to exhibit a subset 
T of full measure o f C( i 1 , i 2 , .' .. ,in) ·such that the diameter of the atom of 
pn around x E T , An(x), goes to O as n--+ oo. Now, the set of points in 
C( i~, i 2 , ••. , in) which, under the action of Ç , recur infinitely often to this set 
has t his property. This follows from lemma 3.28 p.240 of [8] on account of 
the infinitely repeated matrix product M(it).M(i2 ) ..•• • M(in) occurring in 
the defini tion of An(x) . This product, as we know from lemma 6.1 , has ali 
entries positive. This finishes the proof of the lemma. 

Theorem 6.2 Given 1r an irred·ucible and discontinuous ]Jemwtation, lhe 
set of inle1·val exchange maps T = T(1r, a) , a E Sm , which are uniqttely 
e1'!}0dic is a set of full L ebesgue measu1'e on Sm. 

Proof: Using the notation and results of the last section of [7] we have to 
show tha.t the set of uniquely ergodic interval excha.nge maps of an a.rbitrary 
but fixed integral type 1 E A form a set of full mcasure. But, as rema.rked 
above, the set of these interval exchange maps can be idcntified with t he 
point.s in the Farey ccll C...,, T bcing uniquely ergodic iff, in our prcsent 
nota.tion, 

(23) 

where 6 denotes dia.meter and C( i 1 , i 2 , ... , in) is the depth n atom containing 
T. Now, we just saw in the proof of the preceding lemma a set of full measure 
with Lhis propcrty. The theorem follows. 

Theorem 6.3 Ç: (C, JL) --+ (C, f.l) is ergodic. 

Proof: Lct E be a mea.sura.ble Ç-invariant set with f.l(E) > O. It is enough 
to show tha.t for any admissible sequence i 1 , ... , Ín such tha.t C( i 1 , ... , in) 
satisfies the condition of lemma 6.1 we have 

As E n C(i1 , ... , in) is invariant by 9, the map induced by Ç on C(i11 ... , in) 
ali we have to dois show t hat Jt(E n C(i l? i 2 , ... , in)) >O sincc by lemma 6.2 
9 is ergodic. Now, by lemma 6.1, as Jt(E) >O, there is i~, ... , i~ an admissible 
sequence such that Jt(E n C (i~, ... , i~)) > O and since T is irreduciblc there 
is a.n admissible sequence j 1,h, ... ,jk which sta.rts with i~, ... ,ií and ends 
with Ít, i 2 , .•• , Ín. But the maps 'H are non-singular and a.s E is 9-invariant 
i t follows tbat JL( E n c (ih i2, ... , in)) > o thus proving t he theorem. 
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7 Appendix 

In this appendix we esiablish necessary conditions for an integral of the type 
we dealt with in Section 5 to be fin ite. 

LeL s be the n dimensional simplex wiLh verLices eo = O and e1 , ... , en 

the canonical basis o f R n i .e. 
n n 

s = r~= x;e; I 2:::: X;= 1 ' o~ xi} = 
i=O i=O 

n n 

{L x;e; I L X; ~ 1 , O ~ xi} = 
i=l i=l 

n 

{(xt, ... ,xn) I LXi ~ 1, O~ xi} 
i=l 

and L(:t:) = c1x 1 + ... + CnXn + b an affine fundional. Suppose L(x) > O 
for x E s0

, Lhe interior o f s. Then L( x) 2:: O for x E s and, taking x = 
eo, Ct, .•• , Cn, we get Co + b ~ O, c , + b ~ O, ... , Cn + b ~ O, whe re C-o = O. 

lf {L= O} ns =/=0 there are xo,xb . .. ,Xn such that L~oXi = 1, o ~ Xj 

with CtXl + ... +cnXn + b =O, or (Co+ b)xo + ... + (cn + b)xn =O. This shows 
that t.here are índices i such that c; + b = O. Let O ~ i 1 < i 2 < ... < ik ~ n, 
1 ~ k ~ n, be this set of índices . It is easy to see that {L = O} ns is 
the simplex generated by ei1 , ••• , eík· In other words, {L = O} cuts s in a 
subsimplex. 

A simple consequence of these remarks is that if L vanishes in a point in 
the interior o[ a face f of s then it vanishes in the entire face f. 

Given P = Ilf:1 L;, where L;(x) = ci1x1 + ... + CinXn + b; for i= 1, ... , N, 
and s a simplex as abovc, define the degree of a face f of s, degree(f) as the 
number of factors of P, counting multiplicities, which vanish on the ent ire 
face f . 

Theorem 7.1 Let P and s be as above satisfying L;(x) >O joT i = 1, ... , n 
an<l x E s 0

• !f 
dimension(f ) + dcgree(f ) < n 

joT evc1·y fa ce f o f s we have 

1 dx 
- <oo 

s p 

whe1·e dx is the Lebesgue measure on R 11
• 
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Proof: Take B = { t} ihe baricentric subdivision of s. We have to prove thai 

1 dx 
-<oo 

t p 

for ea.ch tE 8. Fix tE B anel let v0 , v1 , ... , Vn bc its vertices ordered in such 
a wa.y that vi is the baricenter of a j-th dimensional face of s , j =O, 1, ... , n . 
Take f a face o f t with vertices Vj0 , ••• , vik, O :5 j 0 < ... < jk :5 n, anel 
Li a fa.ctor of P such that Li(f) = O. Using the remark just preceding the 
statement of this theorem wc conclude that Li(fj1) =O where fj1 is the face 
of s with baricenter Vjp l = O, . .. , k . This shows that our hypothes.is (24) 
holds for t (since {Li I Li(f) = O} Ç {Li I Li(fjk) = O} anel this set has 
ca.rdinality < n- jk :5 n- k). After an affine change of coorelina.tes we can 
suppose tha.t v0 =O anel v1 , ... ,vn is the canonical basis of R 11

• Using the 
same rema.rk a.gain we see that every fa.ctor of P tha.t vanishes a.t a poin t 
of t must va.nish a.t a vertex of t anel the refore at ali previous vertices of 
this simplex. In particular this factor must bc homogeneous. Thus, since 
Li(x) >O for i= 1, ... ,n-1 anel x E S 0 we can write Li= ci1:t: 1 + ... +cinXn 
for i = 1, ... , n - 1 anel non-negative Ci/S such that if cii = O for some j, 
Cik = O for k < j. Since (24) hold for f = t, at most n - 1 fa.ctors of P 
vanish at a point of t. Factors which are finite on t won 't ma.tter for ou r 
thesis so we will ignore them anel suppose we have a.t most n- 1 factors. In 
fact., to simplify the notation, we suppose that P has e>Utdly n- 1 factors 
by mult iplying P by a convenient number of factors equa.l to :r 1 + ... + Xn· 

Reordering the Li's if necessary we can assume that the number of va.nishing 
Cjj does not decrease with i. vVe claim that the j-th column of the matrix 
Cij has at least j positive entries. In fact if n- j entries of this column are 
1-ero n - j factors of P vanish at ei anel therefore at the face generateel by 
eo, et, ... , e i colltradicting ou r hypothesis. Thus Cij > O at least for 1 :5 i :5 j 
a.nd then 

n-1 n n-1 n-l 

p = rr L CjjXi 2:: rr CjjXj + CjnXn 2:: c rr :l"j + .T.n 
i=l i=l i=l i=l 

where c is the rninimum of the positivc Cij. Dcnoting by c the cube [O , 1 ]n 2 t 
we havc 

-<-1 dx 11 dx 
t P - C t Di;:"/ Xi + :t:n 
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:s ~ 1 n-/x . = ~ e[ln(l +xn)r-ldxn < 00 
C c Il;=l Xi + Xn C Jo Xn 

which finishes the proof of the theorem. 
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