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1- Introduction

Latent variable modelling of polytomous data would be appropriate, for example, in attitude scaling where
n individuals answer each of p items. We write the number of different responses for item i as ¢;,i =1, ..., p.

The POLYMISS program fits one and two logit-probit latent variable models to polytomous data
which may have missing observations (Sections 2,3 and 4); provides information on goodness-of-fit (Section
5); and gives scores or fitted values of the latent variable(s) (Section 6).

The fitted latent variables can be interpreted as summarising the associations between the observed
polytomous responses to the p items; i.e. as summarising what the items (or subsets of the items) measure
in common. If the model does not fit the data then the calculated scores will not adequately summarise the
structure of the associations.

Whether or not the model fits the data calculated scores may provide a useful partial summary of the
data.

2- Basic Model for Polytomous Data
Let ¢; denote the number of categories of item i (we shall also use the word variable) which are labelled
1,2,..,6 (1= 1,2,...,p) and indexed by s.

Suppose that Xy, ..., X, are p polytomous variables taking c; values, so that

X = 1, if the response falls in category s;
“i(3) 7 10, otherwise.

The ¢; x 1 vector with these elements is denoted by z; and, obviously, 3", z;,) = 1 the full response
pattern for an individual is denoted by z = (:r’l,;r:;, _— .'c;,) of dimension }_; ¢;.

We shall suppose that the responses are controlled by a latent variable Z. For each item there is a set
of response functions m;(,)(z) defined by

P{X.‘{,) =1j3] = :rg(,)(z)
for (s =1,...,c;; i=1,...p) so that )~ m(,)(z) = 1

We shall assume conditional independence, that is the joint conditional probability g(z|z) is

P
9(zl2) = [] gi(=il2) (1)
=1
where g;(zi|z) is the conditional probability of response z; for the i’th item.
Conditional independence is the assumption that the latent vector Z is sufficient to explain all the
association between the responses given to different items by an individual.

As the X’s are polytomous, the conditional probability function of z; given z is the multinomial given
by

o(@ilz) = [ (i) ()
=1
for i = 1,...,p, where m;(,)(2) = P[Xj(,) = 1|z], the probability than the answer of an individual to item i
falls into category s.
Consequently, from (1) and (2) the joint probability function of z can be written as

P
f(z) = ]R h(2) TT T mico(2)"0d= 3)

i=la=1

where R, is the range space of Z and h(.) is the prior density of Z.

One may obtain many different models by specification of the latent vector prior density h(.) and the
shape of the response function ;(,)(z). POLYMISS is concerned with the one- and two-latent logit-probit
response function as defined below.



One factor model

In the one factor model a single latent variable (factor) Z,, explains all the association between the responses
to different items.

We use the logit-probit response function that is, the response function for category s of item i is
given by

logit(ﬁ,‘(,)za) = @pi(s) + @1i(s)%as
or
exp(@oi(s) + @1i(s)%a)
r—1 exp(aoi(r) + A1i(r)2a)

Ti(s)%a = 2 (4)

where 3~ mi(,)(2a) = 1 withi=1,2,..,pand s = 1,2,...,¢i. Z, is distributed as N(0,1) and the parameters
agi(s) and ay;(s) are referred to as difficulty and discriminating parameters, of item i and category s
respectively. These parameters determine the position and shape of the response function.

As expressed in (4), mi(,)(2) is over-parametrized, so without loss of generality we may fix the location
of a set ay(y), as we please.

In POLYMISS we have chosen to take a;;(;y = 0. The order in which the categories are labelled is
arbitrary, but the one labelled 0 will be called the reference category for that variable.

To facilitate the interpretation of ag;i(s) we put z; = 0 for all j,and thus obtain the response probability
for the “median” individual. Let this be denoted by

exp(aoi(s))

Ti(s 0) = Ch . 5
=g exp(aoi(r)) ®)
Since the origin of the a’s is arbitrary we may again set ag;(;) = 0 and then
exp(aoi(s))
Ti(e)(0) = ) (6)

1+ 372, exp(aoi(r))
fori=1,2,...,pand s =1,2,..,c¢.

The interpretation of the m;(,y’s is the probability of a positive response of a median individual for
category s of item 1.

The discriminating power of an item i is indicated by the spread of the a,;(,) as functions of s. A large
spread produces larger differences between the corresponding response probabilities and so a better chance
of discriminating between individuals a given distance apart on the z-scale on the evidence of z;.

The a,’s are weights in the component score (see Section 6). Here we are looking at the relative influence
which each observed variable (item) has in determining the value of the component. An item will be an
important determinant if all the ay;(,) for a given i are large. It is the average level of the a;’s rather than
their dispersion which counts.



Two factor model

If there are two factors (latent variables) then the response function of category s of item i in equation 4
becomes

P(Xi(s) = 1lza1, 2a2) = Ti(s)(2a1, Za2)
where
logit(fr.-(,}(z) = Qoi(s) + Q1i(s)Za1 + A2i(5)Za2
or
_exp(aoi(s) + ari(s)Za1 + A2i(5)%a2)
Y orey eXP(oi(r) + B1i(r)Za1 + @2i(r)Za2)

Ti(s)(2) (7)

fori=1,2,...,p, s = 1,2,...,¢; where z,; is the jth latent variable (factor), j = 1,2. We assume that Z,,
and Z;, are independent normal with mean zero and variance one.
By analogy with one factor model, POLYMISS sets ag;(1y = 0 and a5y =0, for i = 1,2, .., p. It follows

that the response function is given by

— exp(@oi(s) + @1i(s)Za1 + A2i(s)Za2)
1+ )"0, exp(aoi(r) + G1i(r)Za1 + Gai(r)Za2)

'-‘Tu'(a)(z)
fori=1,2,...p,8=2;8.6

3- Basic Model for Polytomous Data with Missing Observation

The following model is an extension for polytomous data of the simplest model for binary data proposed
by Knott at al.(1990). Observations may be missing for a variety of reasons, for example, no opinion was
expressed for that item, either because the response was ‘don’t know’, or because the response was not
recorded. A full analysis would take these reasons into account, possibly by treating the observable variables
as polytomous - having several categories to allow for different types of missing values. We shall let X; =9
denote a missing value (non-response or ‘no-opinion expressed’) for the i’th item (observable variable).

For a fairly general model we could allow a two-dimensional common factor Z = (Z,,Z,) where Z,,
Z, are given independent N(0,1) distributions. For example, the factor Z, might summarise attitude and
Z,. might summarise the tendency to express an opinion. As was the case for the model for polytomous data
for complete response (no observations missing), we shall assume that individuals behave independently, and
we assume that the choices made by an individual to respond with approval, disapproval or not to respond
at all are conditionally independent between items given the individual’s value of Z. We break down the
modelling of the response function into two layers.

For each item, ;
P(X,‘{,) = llZ, X,'(,} #9) = wﬂ;(,)(za)
and
P(Xi(s) # 912) = mei(s)(2a, 2e).
It follows that
P(Xi(:) =1|2) = ﬂai(s)(za)rei(s)(z)-

P(Xl'(s) = UIZ) =(1- rai(a}(za))"’rci{:)(z)-

and
P(Xis) = 912) = 1 = mei(s)(2).

Thus for this family of models if a response 1,2,..c; has been observed, the response function is the
same at that for the models for complete responses (section 2), but the probability of a missing value (9)
is allowed to depend in the most general case on both factors Z, and Z.. For example one can within this
family of models allow the underlying attitude Z, to affect the probability of a response, and so one may
hope to recover information about attitudes from the pattern of non-response (non-expression of opinion).
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It is probably not worth using the missing responses in any of these models if the only response pattern with
missing information has every item coded 9. We consider the simplest sub-models of the family.

This is a simple model, in which for each item the probability of a missing response 9 is assumed constant
over all individuals, independently of other items. For one-factor model

logit(mais)(2)) = aoi(s) + @1i(s)%a

logit(mei(s)(2)) = €oi(s) (8)
fort=1,2,.;.,pand 8=2,3,..¢:

For two-factors model
logit(mai(s)(2)) = @oi(s) + @1i(s)Za1 + A2i(s)Za2

logit(ei(s)(2)) = eoi(s) (9)
fori=1,2,...,pand §=2,3, ..., ¢
The model says that every individual has the same probability of expressing an opinion on a given

item, and that non-expression gives no information about attitudes. There is no allowance for clustering of
non-response over several items for the same respondent.

4- A Modified E-M Algorithm for One-Factor Model

The POLYMISS program fits one or two factor logit-probit latent models described in sections 2 and 3,
using a modified E-M algorithm proposed by Bartholomew (1987, Chapter 7). The main results for the one
factor latent variable model follow.

Even though the latent variable Z, is distributed as N(0, 1), it is proposed as an approximation that
Zq assumes values zg1, Za2, ..., Zer With probabilities h(za1), h(242), ..., h(zax) chosen so that the joint
probability function

1@ = [ [ sadhiealdz,

for the response pattern z,,u = 1,2, ..., n can be approximated with high accuracy by Gauss-Hermite quadra-
ture, i.e,

k
f(-"’u) = Eg(zulzat)h(zat)
t=1

u = 1,2,...,n, where z4 is a tabled quadrature point (node) and h(z,) is the corresponding weight (see
Straud and Sechrest,1966).

The quadrature weights, h(zq), are approximately the normalized, i.e., Z:::: h(za¢) = 1, values of
the probability density of a N(0,1) random variable at the points z,;, which are chosen to give the best
approximation to the marginal probability function f(z,). This approximation becomes more accurate as
the number of quadrature points increases. From the maximization of

L= log /()
u=l

we obtain, forv=0,1land i =1,2,...,p, s =2,..,¢i

OL: .y o ;
day; = z:t{z xui{a)h(zailxu) = i(s)(Zat) E h(zaclzu)}
vi(s) t=1 u=1 u=1
OL: <~ .o
dayi(s) N Zzat{ﬁ-n(s)" Nemi(s)(2a)} (10)
vi(s =1



where

R»;‘t(a) = zxui{s)h(zallzu)l (11)
u=l
Ne =) h(zarla), (12)
u=l

and h(za¢|zy) is the conditional probability of Z,¢ given the response pattern z,.

The estimation of the parameters is performed by choosing any starting values for {ag;(s)} and {ayi(s)}
followed by repeated applications of (10), (11) and (12) over the set of items, using an E-M algorithm defined
as

E-step: Calculate the values of R;y(,) and N using equations (11) and (12).

M-step: Obtain improved estimates of the {ap;(,)} and {ayi(s)} solving equation (10), using the values
of Rjy(,) and N; from the E-step.

The E-M cycles are continued until convergence is obtained. In this case the number of values that the
latent variable assumes is fixed and the set of values constitutes the distribution of Z,.

5- Goodness-of-fit
P

If the sample size n is large compared with []_, ¢; (number of possible response patterns) a chi-squared or
log-likelihood goodness-of-fit test can be carried out on the observed frequencies of the response patterns.
Often, there are many small expected frequencies so that pooling becomes necessary. Since the number of
degrees of freedom in the unpooled case for a single factor variable is [T_, ¢; —23°%_ (¢; — 1) and for two
factors is []7_; ei = 3 3_F_,(ci — 1), then situations may occur where there will be no degrees of freedom to
judge the goodness-of-fit.

When a formal test cannot be carried out and p is not too large, the goodness-of-fit of the model may
be judged by comparing the observed and expected frequencies of the response patterns. An additional
check may be done by comparing the observed and fitted values of the one-, two- and three-way marginal
frequencies or an analysis of residuals.



6- Measurement of the Latent Variable

We might wish to score each response pattern, and hence each individual, using scores which measure the
latent variables.

Basic model for polytomous data

We could for example, score the response 11232 by using the total score, giving the score 9. In this
case we would be considering that all items are equally important, and scoring categories of response with
their integer labels in a fairly arbitrary way.

Another way of scoring the response patterns (Bartholomew’s (1987) component score) is to use
the sum of the parameter estimates ﬁl,(,) of the model. The response pattern 11232 would be scored
011(1) + 012(1) + {113(2} + 314(3} + 015(3) = 313[2) + 014(3) -+ 315(2) since al!(l) was set equal to zero for all
1=1,2,..,p. This method of scoring is more informative and give a better scoring than just using the total
score. We also may use the estimated conditional mean of the latent variable given the response pattern z,
that is, £(Z|z) which can be coupled with the use of the conditional standard deviation given the response
pattern as a measure of the accuracy of the latent variable. Knott and Albanese (1992) or Albanese (1990)
investigated the relation between component scores and conditional means for binary data and found that
the latter maintains the advantages of the component score, but it is more stable. These results should hold
for more than 2 categories. The component score is strongly dependent on the values of ay;(,) while the
conditional mean depends on m;(,) (equation 4), which does not vary much for different choices of a;¢,) > 3.

If we want to use the latent score in further analysis then the conditional mean is more informative and
reliable than the component score, specially when one or more @,;(,) are large (bigger than 3.0).
Basic models for polytomous data including missing observations

If the data include missing observations, the conditional mean is more suitable as a measurement of
the latent variable than the total score or the component score, since these latter do not cope with missing
observations.



7- Introduction to POLYMISS

The computer program POLYMISS fits one and two factor logit-probit latent variable models to polytomous
data, which may have missing observations. The parameters are estimated by a marginal maximum likelihood
procedure using a modified E-M (expectation-maximisation) algorithm (Section 4).

POLYMISS also calculates the proportion of missing observations for each observed variable and the
asymptotic standard deviations of the parameters. Observable variables may be responses to items in a
questionnaire.

Bartholomew’s component score (1980) and/or the estimated conditional mean and standard deviation
of each latent variable given the response pattern can be calculated for each response pattern (and hence
for each individual). For the two factor model the first and second conditional means and their standard
deviations are given.

The goodness-of-fit of the model is measured by the value of a likelihood ratio (LR) statistic, which
should be interpreted with caution when the number of observed variables is large compared with the sample
size. When the LR statistic is inappropriate the user may judge the goodness-of-fit from a comparison
between the observed and expected first, second and third order margins.

Input can be either individual response patterns or their frequency distributions as presented in the
next section.

POLYMISS is a program written in standard FORTRAN 77 for micro-computers, or large size comput-
ers. The execution time of this program can increase rapidly with the number of observed variables and the
number of quadrature points.

POLYMISS program suite contains a main routine POLY and the following subroutines, which must be
compiled and linked together: EM1, EM2, PCOUNT, QUAD, PHILIK, ENER, VARIANCE, POSMEAN,
MARGIN and INV. The routines described in the annexes, COUNT and ZSCORE run separately.

The initial control parameters which define the dimension of the matrices are

N RP = 1500 corresponding to the maximum sample size if the data are given as individual response patterns,
or the maximum number of different response patterns if the frequency distribution of the distinct response
patterns is given. The frequency distribution of the distinct response patterns can be obtained using the
COUNT program;

NV = 20, the maximum number of variables;
The maximum number of categories for each item was set to be equal to 5.

Let NC be the total number of categories then M1 = 2% (NC — NV) and M2 =3 x (NC — NV), the
maximum number of parameters to be estimated (for the one and two factor models respectively).

The annex of POLYMISS gives two programs: COUNT and ZSCORE.

COUNT is designed to provide the frequency distribution of the responses given by N individuals to P
items, which take values 1,2, ..,¢; (maximum equal to 5).

ZSCORE is designed to provide the scoring of the latent variable for each individual in the order given
in the input file. As the output from the POLYMISS program displays the response patterns in increasing
order according to the conditional mean, ZSCORE needs to be used when the latent scores for response
patterns in the input file order are the input data in further analysis.



8- Description of the Input Channels

8.1- Input format for channel 5 (filename: POLY.INP )

The file for this channel contains all the control parameters and the data set as described below. Control
parameters are read in FREE format, but the data set is read in FIXED format.

Line 1:

Title: Title of data set ( at most T0 characters).

Line 2:

N, P, NQ

N: number of individuals in sample

P: number of observed variables (items)

NQ: number of quadrature points (8, 16, 24, 32, 48)
Line 3:

C(1) C(2) ... C(P)

C(i): number of categories (2, 3, 4, 5)

Line 4:
NFAC, INPUT, FREQ, DISPLAY, MTER, LOUTS8, ERRC

NFAC : 1 or 2 (number of factors)
INPUT : Q0 or 1
0 The initial parameter estimates are set in the program, that is,

One-factor

0 0.5 = ape  aie)

0 05 = aoyws a1y

0 05 = aoier)) @(er))

0 05 = agpe G122

0 0.5 = doya a12(3)

0 05 = doye(2)) Gra(e(2))

0 05 = dop2)  Gip(2)

0 05 = aops)  dip(a)

0 05 = Qope(r)) A1p(ep))
Two-factors

0 1.0 15 = app ayi(2) a31(2)
0 1.0 1.5 = apya a1y@)  Ga(3)
0 1.0 15 = aoic1)) @11(c(1)) ‘:131(6(1))
0 1.0 1.5 = aoa2) ay1(2) G21(2)
0 1.0 15 = aoza) a11(3) a21(3)
0 1.0 15 = aozez)) G11(c(2)) @21(c(2))
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0 1.0 1.5

= aop(2) G1p(2)  G2p(2)
0 1.0 1.5 = agpa) G1p3)  Ga2p(3)
0 1.0 L5 = Gope(p)) Gip(e(p)) F2p(clp))

INPUT 1 The initial parameter estimates are given in channel 3.

FREQ: Oor1l
0 Input data are individual response patterns.
1 Input data is the frequency distribution of the response patterns.

DISPLAY: 0 or 1

0 Frequency distribution of response patterns is not displayed prior to fitting the
model.

1 Frequency distribution of response patterns is displayed prior to fitting the model.

MTER: Maximum number of iterations. Set to 50 for a first try. If ERRC below
1s made smaller, MTER may need to increase.

LOUTS8: 0orl

0 Do not create a special file for the final parameter estimates.

1 Create a special file for the parameter estimates (LI8.OUT). This file may be used
as an input file for channel 3 when running the program again for a large number
of iterations.

ERRC: Convergence tolerance for the E-M algorithm , for instance 0.00001 with
MTER set to 50.

Reading response patterns

If FREQ = 0 then
Line 5, 6.....N+5 Format(20I1)

IRESP(1,1) IRESP(1,2) .. IRESP(I,P)
IRESP(2,1) IRESP(2,2) .. IRESP(2,P)

IRESP(N,1) IRESP(N,2) ... IRESP(N,P)

where IRESP(L,I) = 1,2,...,C(I) or 9 (missing) is the response of individual L, L=1,2,....N to item I,
1=1,2,...,P. Thus, for example, if the number of categories is 3 then IRESP(L,I) is equal to 1, 2, 3 or 9.

If FREQ = 1 then

Line 5: NR Number of different response patterns.

Line 6, 7.... NR+5: Format(I4,1X,2011)

RL(1) IRESP(1,1) IRESP(1,2) .. IRESP(1,P)
RL(2) IRESP(2,1) IRESP(2,2) .. IRESP(2,P)

RL(NR) IRESP(NR,1) IRESP(NR,2).. IRESP(NR,P)

where RL(L), L = 1,2,...,NR is the observed frequency of the response pattern L and IRESP(L,I) =
1,2,...,C(I) or 9 (missing) is the response to item I, I=1,2,...,.P of the response pattern L. Thus, for
example, if the number of categories is 3 then IRESP(L,I) is equal to 1, 2, 3 or 9.
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8.2- Input format for channel 3 (filename: POLY3.INP )

If INPUT = 1, initial parameter estimates are inputted from channel 3. They are read in FREE format and
we can use the output estimates in channel 8 as the input in channel 3.
It follows the input format for channel 3:

Line 1: Title or first line from channel 8.

Line 2.3.....P+1: Free format
Each line corresponds to the parameter estimates of item I, I= 1,2...,P, obtained from fitting the logit-
probit model for one or two factors.

One-Factor

oy(2)  G11(2)
apy(3) a31(3)

do1(c(1)) @11(c(1))
&ag(z) ‘?12{2)
@gz(3)  @1(3)
Ao2(c(2))  @12(e(2))
Gop(z)  Gip(2)
dopa)  @ip(a)
op(e(p))  @1p(e(p))
Two-Factor

oyz)  An(z)  An()
ap1(3) ay1(3) a21(3)

oi(e(1)) G11(c(1)) @21(c(1))
Go2(2) ":312(2) ?22(2)
ap2(3) a32(3) a22(3)
@02(c(2)) G12(e(2)) @22(e(2))
Gop(2)  Gip(z)  G2p(2)

@op(3) @1p(3) @2p(3)

Gop(c(p))  B1p(e(p)) B2p(c(p))
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9- Description of the Output

9.1- Output from Channel 8 (filename: LI8.OUT )

Channel 8 gives the parameter estimates, which may be used directly as input for channel 3 (Input=1) if
the program is run again. Line 1 shows the title, number of variables and quadrature points.

9.2- Output from Channel 7 (filename: LI7.0UT )
This output contains all results of the fitting.

(1) All control parameters (sample size, number of variables, etc.) which steer program activity are printed.

(2) The E-M algorithm is an iterative scheme for computing maximum likelihood estimates. Convergence
is tested at each iteration by examining the relative change in the value of the likelihood function.

(3) The maximum likelihood search routine performs at most MTER iterations. If the E-M has not con-
verged by then (precision still bigger than ERRC) a message is printed out. We can use the estimates
given in LI8.OUT as input for channel 3 and run the program again, thus proceeding until convergence
is obtained.

(4) The asymptotic standard deviations of the parameter estimates are obtained by inverting the observed
second derivative matrix at the maximum likelihood (ML) solution.

(5) If the standard deviations of the parameter estimates are too large they will come out in the output as
HA¥*E This is likely to happen when the parameter estimates are very large.

(6) The goodness-of-fit is measured by the value of a likelihood ratio statistic, G-Square, defined as

2 RL(L)
2 s

G? = 2§RL{L)I:1 N+ PL(T)
where RL(L) and N % PL(L) are the observed and expected frequencies of the response pattern L,
which has an asymptotic x* distribution on (NRy — 2 * (NC — P)) degrees of freedom for one factor
model and (NRg — 3 * (NC — P)) degrees of freedom for two factors model where N Ry denotes the
number of terms in the summation (bearing in mind that response patterns whose expected parameters
estimated (NC: total number of categories and P: number of variables). For large NC — P most of the
observed frequencies RL(L) will take the value 0 or 1 and the expected frequency will be very small.
In this case the likelihood ratio statistic will be inappropriate. We can use the comparison between the
observed and expected first, second and third margin order to check how well the model fits the data.
If some responses are missing, the G-square statistic calculated by the program is not appropriate, so
the comparison of margins shquld be used to assess goodness-of-fit.

(7) The RG statistics is defined as .

RG = Glerny — Gy

G2
(k)

where G?k) is the G-square statistics at step k. If RG is smaller than the convergence tolerance (ERRC),

the process is said to converge. For two-factor models one may need to take ERRC as small as 0.0000001

to be sure that the iterations have come close to finding the ML estimates. A final decision on whether

the ML estimates have been achieved is best made by the user after checking that the derivatives are

near to zero.

(8) If the model fits the data, we might be interested in scoring each response pattern, and consider this
score a measurement of the latent variable.

We may score the response pattern z, with the conditional mean
E(Z|z,) = fzh(zl:“)dz
2
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the component score
P

CS(zy) = Z ai(s)Zui(s)

i=1

or the total score
P i

T(xu) = Z z Tui(s)

i=1a=1

(9) When the response pattern includes any missing response, the component score and the total score are
set equal to zero.

(10) The response patterns are ranked in increasing order of the conditional mean of the first latent variable.
Also provided are the standard deviations of the first and second latent variables given the response
pattern. Large values of the standard deviation may lead one to exclude that response pattern from

further analysis of the scores of response patterns, (for example, the conditional standard deviation may
be large where more than half of responses are missings).

(11) All item parameter estimates (ayi(s), v = 0, 1,2) are constrained to lie between -10.0 and 10.0, without
loss of information. In general this is necessary to ensure that when one or more a,;(,),v = 0,1,2 get
large we still can see how well the model fits the data before the PHILIK routine ‘blows up’ or the
VARIANCE routine sends out a message that the matrix is singular. The derivative for a truncated
@yi(sy may be large when iteration finish.

(12) Very often when working with a 5 points scale, one or both of the extremes categories have very low
observed frequencies for at least one item. In this case, sometimes the iterative procedure diverges,
that is, the loglikelihood starts decreasing and after few iterations, increasing again. When this starts
happening, the iterative procedure stops and POLYMISS prints out the message: ‘Iterative procedure
diverged’. Either try a new starting point, or reduce the number of quadrature points.

9.3 - General Comments

(1) For two-factor models it is best to start off with a small number of quadrature points, say 8, and to use
the output from that run for the initial parameter values of calculations for larger numbers of quadrature
points.

(2) It may be better to compile the FORTRAN with an option /G_FLOATING to avoid overflow errors.
This is particularly important for the two-factor models.

(3) Constraints on RAM in small personal computers may require that two-factor models are fitted with
only a small number of quadrature points.

(4) The program COUNT in the annexe may be used to preprocess the response patterns to reduce their
number. The program ZSCORE of the annexe may be used for scoring responses on the latent variable
in the order of response input, which is useful if the scores are to be used for other analysis.
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10 - Example

Environment Attitudes Data

The data are the responses in 1990 given by 311 individuals to six of the seventeen items concerning
attitude to environment by members of a panel surveyed in each of the years 1989 to 1990 as part of an
investigation of British Social Attitudes. For each item, respondents were asked: ”"How concerned are you
about each of these environmental issues?”

(1)- Very concerned

(2)- Slightly concerned

(3)- Not very concerned

(4)- Not at all concerned

(7)- Don’t know enough to make up my mind
The six selected items are:

(1)- Lead from petrol

(2)- River and sea pollution

(3)- Transport and storage of radioactive waste

(4)- Air pollution

(5)- Transport and disposal of poisonous chemicals

(6)- Risks from nuclear power station

As the seventeen items, except the original item thirteen, had observed frequency smaller than 10% in
category 4; and four of the seventeen had observed frequency smaller than 10% in category 3, these two
categories were amalgamated. Thus the new category 3 means not very concerned or not at all concerned.

Some members of the panel failed to respond to the items about environment either completely or in
part, leading us to fit the logit-probit model including missing observation described in Section 3. Category
7 was also coded as missing(9) response.

10.1- One Factor

Input format for channel 5: .
For the data we are considering in the first line we have ENVIROMENT 6 ITEMS

On the second line we have may set N =311 P =6 NQ = 48.
On the third line we may set C(1)=3 C(2)=3 C(3)=3 C(4)=3 C(5)=3 C(6)=3

On the fourth line we may have NFAC = 1, INPUT = 0, FREQ = 0, DISPLAY = 0, MTER = 50, LOUT
= 1, ERRC = 0.0000001

From the fifth line we display individual response patterns.
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File: POLY.INP

ENVIRONMENT 6 ITEMS
311 6 48
333333
1000501 0.0000001
111111
119991
211112
219193

312122
211223
223323
123323

Output from channel 7

*** PROGRAM POLYMISS ***
MAXIMUM LIKELIHOOD ESTIMATION OF A 1 FACTOR LOGIT/PROBIT MODEL
FOR POLYTOMOUS DATA
ENVIRONMENT 6 ITEMS

NUMBER OF OBSERVED VARIABLES = 6

NUMBER OF CASES SAMPLED = 311

NUMBER OF DIFFERENT RESPONSE PATTERNS = 105

NUMBER OF QUADRATURE POINTS USED = 48

MAXIMUM NUMBER OF ITERATIONS PERMITTED = 50

CONVERGENCE TOLERANCE FOR THE RELATIVE LIKELIHOOD VALUE = 0.00000010

A LIKELIHOOD RATIO TEST OF OBSERVED AND EXPECTED
FREQUENCIES OF RESPONSE VECTORS IS TO BE CARRIED OUT

ASYMPTOTIC STANDARD DEVIATIONS ARE OBTAINED FROM THE
INVERSE OF THE OBSERVED SECOND DERIVATIVE MATRIX

16



MARGINS

ITEM 1

ITEM 2

ITEM 3

ITEM 4

ITEM 5

ITEM 6

CATEGORY

1
2
3

MISSING

1
2
3
MISSING

1
2
3
MISSING

1
2
3
MISSING

LS B =

1ISSING

1
2
3
MISSING

0.598
0.331
0.058
0.013

0.772
0.183
0.026
0.019

0.717
0.196
0.061
0.026

0.633
0.322
0.029
0.016

0.717
0.193
0.061
0.029

0.508
0.312
0.161
0.019
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INITIAL ESTIMATES OF ITEM PARAMETERS
CATEGORY  A(0,1,J)A(1,1,J)

ITEM 1

2 0.000  1.000

3 0.000  1.000
ITEM 2

2 0.000  1.000

3 0.000  1.000
ITEM 3

2 0.000  1.000

3 0.000  1.000
ITEM 4

2 0.000  1.000

3 0.000  1.000
ITEM 5

2 0.000  1.000

3 0.000  1.000
ITEM 6

9 0.000  1.000

3 0.000  1.000

ITER PROP LOGLIKELIHOOD

1 0.33470 -1572.86346
1 0.17443 -1488.09535
2 0.11813 -1440.70171
3 0.08336 -1411.20712
4 0.05870 -1392.16919
5 0.03856 -1380.39615
6 0.02463 -1373.16625
7 0.01576 -1368.65376
44 0.00001 -1359.41265
45 0.00000 -1359.41136
46 0.00000 -1359.41025
47 0.00000 -1359.40928
48 0.00000 -1359.40844
49 0.00000 -1359.40771
50 0.00000 -1359.40708

18



¥*¥* MAX. NO. OF ITERATION EXCEEDED WITH RG STATISTICS 0.0000023

MORE ITERATIONS NEEDED TO ACHIEVE CONVERGENCE. CHECK THE DERIVATIVES OF
LOG-LIKELIHOOD FOR FURTHER INFORMATION ON CONVERGENCE.

*** ITERATIONS FINISHED ***

NUMBER OF ITERATIONS IS 50

% OF G-SQUARE EXPLAINED 50.0926
LOGLIKELIHOOD VALUE -1359.4071
LIKELIHOOD RATIO STAT. 213.9481
DEGREES OF FREEDOM -11

DERIVATIVES OF LOGLIKELIHOOD

ITEM CATEGORY PARAMETER DERIVATIVE

1 2 1 -0.01038007
1 2 2 -0.01607449
1 3 1 -0.00762531
1 3 2 -0.01175137
2 2 1 -0.01003292
2 2 2 -0.02018897
2 3 1 -0.00671159
2 3 2 -0.01343167
3 2 1 -0.01973129
3 2 2 -0.02904877
3 3 1 -0.01313931
3 3 2 -0.02032499
4 2 1 -0.02638349
4 2 2 -0.04884083
4 3 1 -0.01862773
4 3 2 -0.03445092
5 2 1 -0.01262074
5 2 2 -0.01632689
5 3 1 -0.00801406
5 3 # 2 -0.01065429
6 2 1 -0.02480291
6 2 2 -0.02726217
6 3 1 -0.01646732
6 3 2 -0.01903431

MAXIMUM LIKELIHOOD ESTIMATES OF ITEM PARAMETERS AND STANDARD DEVIATIONS

ITEM CAT A(0OL]) S.D A(1LJ) SD PHI(I,J)
1 2 -0.697 0.174 1.363 0.260 0.322
1 3 -2.978 0.399 2.042 0.435 0.033
2 2 -2.105 0.328 1.993 0.408 0.108
2 3 -6.406 0.984 3.713 0.768 0.001
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o

6
6

b

2o

2
3

-2.346
-5.634

-1.239
-8.130

-2.574
-5.105

-0.317
-1.792

0.441
1.062

0.315
1.546

0.532
0.996

0.176
0.351

3.180 0.683

4.914

1.016

2.888 0.625

6.118

1.202

3.455 0.852

4.603

1.096

1.474 0.311
2.677 0.482

FIRST ORDER OBSERVED AND EXPECTED MARGINS
OBS EXPECT OBS-EXP ((0-E)**2)/E

ITEM I1

M e Q0 L0 SO B B BD e e

(=== R R

CAT J1

GO B = LD B = L RS = L D e RS = WD

186
103
18
240
57
8
223
61
19
197
100
9
223
60
19
157
98
50

185.67
103.22
18.11
238.01
58.85
8.14
221.18
62.10
19.72
196.45
100.34
9.21
221.49
60.99
19.51
155.56
98.10
51.34

0.33
-0.22
-0.11

1.99
-1.85
-0.14

1.82
-1.10
-0.72

0.55
-0.34
-0.21

1.51
-0.99
-0.51

1.44
-0.10
-1.34

0.0006
0.0005
0.0006
0.0166
0.0582
0.0023
0.0150
0.0194
0.0264
0.0016
0.0012
0.0049
0.0103
0.0162
0.0135
0.0133
0.0001
0.0348

SECOND ORDER OBSERVED AND EXPECTED MARGINS

ITEM 11

e T e S e e e e e e i

ITEM 12

L7 P I I L LU R L I A I L I

J1 J2
|
1 2
1 3
N |
2 2
2 3
3 1
3 2
3 3
1 1
1 2
1 3
2 1
2 2
2 3
3 1

OBS EXPECT OBS-EXP

170
14
1
61
38

160.50
20.33
1.26
65.74
30.58
4.91
8.71
7.19
1.86
156.22
20.96
3.711
55.68
33.03
11.86
6.44

20

9.50
-6.33
-0.26
-4.74

7.42
-3.91

0.29
-4.19

3.14
-4.22

5.04

1.29

4.32
-3.03
-2.86

1.56

0.087
0.003

0.225
0.000

0.070
0.006

0.384
0.088

((O-E)**2)/E

0.5620
1.9707
0.0538
0.3471
1.8028
3.1163
0.0097
2.4402
5.3102
0.1140
1.2095
0.4458
0.3358
0.2782
0.6883
0.3786
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149

114
54
16
35
36
29

197

7.30
3.90
143.66
37.99
1.04
45.34
50.54
5.67
4.92
10.52
2.37
156.59
19.50
4.21
55.66
33.06
11.51
6.39
7.65
3.54
115.25
50.35
16.50
34.47
39.57
27.19
3.84
6.92
6.99
193.74
32.48
5.67
22.34
24.81
10.19
0.83
3.61
3.48
175.27
57.48
1.44
16.82
36.15
4.93
0.57
4.77
2.67
194.26
30.36
6.51
22.16
25.31
9.68

21

-2.30
1.10
5.34

-3.99

-0.04

-6.34
8.46

-2.67
1.08

-3.52
2.63

-2.59
3.50

-0.21
3.34

-4.06
0.49
1.61

-0.65

-0.54

-1.25
3.65

-0.50
0.53

-3.57
1.81
2.16
0.08

-1.99
3.26

-0.48
3.33
2.66

-0.81

-4.19
0.17
0.39

-0.48
9.73

-6.48
0.56

-6.82
7.85

-2.93
0.43

-2.77
2.33
1.74
0.64
1.49
1.84

-0.31

-2.68

0.7269
0.3121

0.1987

0.4188
0.0019
0.8866
1.4144
1.2609
0.2355
1.1763
2.9044
0.0429
0.6269
0.0101
0.2007
0.4986
0.0205
0.4036
0.0547
0.0828
0.0135
0.2650
0.0150
0.0081
0.3223
0.1209
1.2139
0.0008
0.5670
0.0549
0.0070
1.9492
0.3164
0.0264
1.7201
0.0336
0.0413
0.0663
0.5402
0.7310
0.2221
2.7669
1.7045
1.7424
0.3345
1.6112
2.0407
0.0157
0.0134
0.3417
0.1521
0.0037
0.7410
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S B = O D =

B = QOO = QOB = L0 D = L0 DD e O RD = L0 bD = QOB = LD e OB LR LoD M QO BD OB = LD RD = O

2

3

3
142
66
30
12
27
15

175

143
62
17

34
15

16
175
15

46
39
11

126
51
17
27
46

0.80
4.15
2.95
138.89
49.84
24.69
13.11
23.79
20.81
0.56
2.58
4.84
173.22
43.95
0.46
16.36
40.86
3.87
1.81
12.95
4.64
190.51
20.78
3.49
22.67
28.15
9.48
2.62
10.49
6.04
136.99
62.08
17.84
12.83
26.50
21.57
1.73
7.00
10.60
173.78
14.65
2.34
43.73
40.70
13.01
0.43
4.66
3.85
127.80
51.51
13.35
24.89
42.42

1.20
-1.15
0.05
3.11
-3.84
5.31
-1.11
3.21
-5.81
0.44
0.42
-0.84
1.78
2.05
0.54
0.64
0.14
-1.87
2.19
-3.95
1.36
8.49
-2.78
0.51
-2.67
6.85
-4.48
-0.62
-3.49
3.96
6.01
-0.08
-0.84
-3.83
7.50
-6.57
0.27
-6.00
5.40
1.22
0.35
1.66
2.27
-1.70
-2.01
0.57
0.34
-0.85
-1.80
-0.51
3.65
2.11
3.58

1.8013
0.3192
0.0008
0.0697
0.2111
1.1405
0.0942
0.4317
1.6214
0.3491
0.0694
0.1470
0.0183
0.0959
0.6430
0.0248
0.0005
0.9063
2.6444
1.2044
0.3964
0.3787
0.3730
0.0750
0.3141
1.6671
2.1199
0.1467
1.1620
2.5984
0.2634
0.0001
0.0398
1.1450
2.1228
2.0000
0.0417
5.1471
2.7449
0.0086
0.0086
1.1766
0.1181
0.0713
0.3095
0.7620
0.0242
0.1886
0.0253
0.0050
0.9968
0.1796
0.3017
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o

OBS EXPECT

96
1
1
1

14

27
2

o

P et et e S0 B O e e = B BD = = = BD O e = O Q0 e e e e L0 Wi D W

84.711
2.579
0.001
0.000

16.743

23.316
3.256
1.341
3.867
8.264
6.569
2.130
1.346
1.689
0.042
0.087
1.904
3.397
0.001
0.043
5.044
1.753
0.216
0.987
1.152
1.478
0.393
3.503
0.556
0.003
0.375
0.707
1.132
0.923
1.080
0.345
0.069
0.003

oo oo
SO GO B B BD = e e G2 GO GO B

(5]

E(Z1/X)

-0.944
-0.923
-0.799
-0.557
-0.450
-0.418
-0.283
-0.272
-0.133
-0.101
-0.091
-0.037
-0.006
0.011
0.097
0.102
0.104
0.136
0.137
0.150
0.152
0.193
0.202
0.215
0.217
0.230
0.230
0.330
0.346
0.355
0.367
0.391
0.396
0.402
0.403
0.435
0.440
0.464

OB = LB = WO N = e

SD1

0.671
0.681
0.739
0.814
0.538
0.529
0.491
0.487
0.449
0.440
0.438
0.424
0.416
0.412
0.407
0.419
0.390
0.383
0.398
0.430
0.379
0.371,
0.369
0.367
0.366
0.364
0.364
0.347
0.344
0.467
0.341
0.337
0.337
0.336
0.336
0.331
0.383
0.411

24
1
1
7

141

64

17

12

29

17
1
4

14

CSCORE

0.000
0.000
0.000
0.000
1.363
1.474
1.993
2.042
2.677
2.837
2.888
3.180
3.356
3.455
0.000
0.000
4.040
4.251
0.000
0.000
4.361
4.654
4.718
4.818
4.830
4.929
4.929
5.724
5.857
0.000
6.033
6.244
6.291
6.342
6.354
6.635
0.000
0.000

31.10
0.37
2.60
6.06

137.32

62.21

17.69

11.63

25.79

22.40
2.10
7.27
9.76

TOTAL

—_—

o
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-7.10
0.63
-1.60
0.94
3.68
1.79
-0.69
0.37
3.21
-5.40
-1.10
-3.27
4.24

1.6196
1.0451
0.9825
0.1452
0.0987
0.0517
0.0272
0.0115
0.4001
1.2998
0.5794
1.4718
1.8410

RESPONSE PATTERN

111111
111191
119991
999991
211111
111112
121111
31111
111113
211112
111211
112111
221111
111121
921112
112119
211113
211211
931111
111921
111212
112112
311113
211121
221112
111122
311211
211212
112113
219193
221113
221211
211122
111221
121212
112121
111293
212199
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0.493
0.065
0.955
0.520
0.000
0.010
0.452
0.031
1.479
0.045
0.880
1.031
0.000
0.402
0.053
0.534
0.156
0.689
1.666
0.490
0.266
0.632
0.040
0.616
0.255
0.910
0.110
0.901
0.126
0.000
0.926
0.124
1.265
0.936
0.034
0.337
0.194
0.000
0.885
2.260
0.669
0.000
0.647
1.064
0.468
0.235
1.875
0.101
0.216
2.537
0.117
0.612
0.193

0.497
0.504
0.519
0.520
0.523
0.524
0.526
0.527
0.531
0.536
0.547
0.548
0.560
0.578
0.584
0.588
0.616
0.650
0.665
0.667
0.704
0.726
0.745
0.752
0.780
0.781
0.785
0.808
0.831
0.843
0.858
0.864
0.868
0.885
0.894
0.928
0.921
0.940
0.990
1.007
1.008
1.043
1.062
1.074
1.079
1.112
1.136
1.143
1.178
1.225
1.275
1.306
1.331

0.324
0.323
0.321
0.351
0.475
0.321
0.320
0.370
0.320
0.319
0.318
0.318
0.502
0.316
0.315
0.315
0.313
0.311
0.311
0.311
0.310
0.310
0.310
0.310
0.311
0.311
0.311
0.312
0.313
0.492
0.314
0.315
0.315
0.316
0.316
0.318
0.318
0.567
0.322
0.323
0.324
0.349
0.327
0.328
0.329
0.331
0.333
0.359
0.336
0.340
0.359
0.347
0.350

7.220
7.280
7.430
0.000
0.000
7.481
7.494
0.000
7.541
7.591
7.705
7.717
0.000
8.010
8.070
8.108
8.396
8.744
8.904
8.920
9.314
9.534
9.732
9.809
10.101
10.107
10.150
10.382
10.620
0.000
10.897
10.958
10.996
11.172
11.255
11.515
11.530
0.000
12.199
12.359
12.375
11.559
12.878
12.989
13.038
13.347
13.562
0.000
13.933
14.352
0.000
15.031
15.242

212113
111133
212211
921129
299913
211311
211123
229211
112212
113113
211221
221212
199292
222112
121132
112122
321212
112213
212212
221213
112123
122212
213121
121222
122122
212213
312122
211223
212132
129299
222212
121232
112222
221222
132212
122221
211233
299299
112223
212222
221223
393131
222221
122222
312222
112233
212223
292222
113223
222222
222229
322222
213232



4 2.763 1.370  0.353 15.555 13 222223
1 0.347 1.417 0.357 15.926 13 123223
3 0.240 1.484 0.363 16.445 14 213233
1 1.154 1.518 0.366 16.703 14 222233
1 0.094 1.525 0.366 16.751 14 332222
1 0.026 1.598 0.429 0.000 0 222933
3 0.738 1.761 0.382 18.438 15 223233
1 0.070 1.868 0.389 19.157 14 123323
1 0.032 1.875 0.389 19.206 15 313323
1 0.028 1.995 0.397 19.982 15 332322
1 0.511 2.081 0.424 20.520 15 223323
1 0.175 2.275 0.424 21.654 16 232333
1 0.173 2.520 0.459 22.919 17 333323
2 0.288 2.786 0.507 24.067 18 333333
311 216.624

10.2- Two Factors

Input format for channel 5:
For the data we are considering in the first line we have ENVIRONMENT 6 ITEMS

On the second line we have may set N =311 P=6 NQ = 8.
On the third line we may set C(1)=3, C(2)=3, C(3)=3, C(4)=3, C(5)=3, C(6)=3

On the fourth line we may have NFAC = 2, INPUT = 1, FREQ = 1, DISPLAY = 0, MTER = 50, LOUT
=1, ERRC = 0.00001.

From the fifth line we display individual response patterns.

File: POLY.INP

ENVIRONMENT 6 ITEMS
311 6 48
333333
211050 10.00001
105
2 113113 .
1 393131
1213121
1111133

3 211191
1211123
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Input format for channel 3

Since for the previous number of iterations the convergence was not obtained, we run TWOMISS again
renaming the output of channel 8 ( LI8.OUT ) as POLY3.INP and using it as the input for channel 3.

ENVIRONMENT 6 ITEMS FACTORS=2 QUAD. POINTS = 8

-0.789 1.372  0.767
-2.761 0.690 1.556
-3.702 3.792 1.376
-5.391 1.176  2.718
-2.423 1478 3.244
13.418 0.969 10.185
-1.441 2.789 1.939
-6.625 2.205  4.551
-2.796 1.884 3.619
-5.775 1.889  5.270
-0.344 0.940 1.040
-2.045 0.907 2.855

Output from channel 7
The output from channel 7 is called POLY.LI7, and is as follows

**¥* PROGRAM POLYMISS ***
MAXIMUM LIKELIHOOD ESTIMATION OF A 2 FACTOR LOGIT/PROBIT MODEL

FOR POLYTOMOUS DATA
ENVIRONMENT 6 ITEMS

NUMBER OF OBSERVED VARIABLES = 6

NUMBER OF CASES SAMPLED = 311

NUMBER OF DIFFERENT RESPONSE PATTERNS = 105

NUMBER OF QUADRATURE POINTS USED = 8

MAXIMUM NUMBER OF ITERATIONS PERMITTED = 20

CONVERGENCE TOLERANCE FOR THE RELATIVE LIKELIHOOD VALUE = 0.00001000

A LIKELIHOOD RATIO TEST OF OBSERVED AND EXPECTED
FREQUENCIES OF RESPONSE VECTORS IS TO BE CARRIED OUT

ASYMPTOTIC STANDARD DEVIATIONS ARE OBTAINED FROM THE INVERSE OF THE OB-
SERVED SECOND DERIVATIVE MATRIX

MARGINS
CATEGORY
ITEM 1
1 0.598
2 0.331
3 0.058
MISSING 0.013
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ITEM 2

1 0.772
2 0.183
3 0.026
MISSING 0.019
ITEM 3
1 0.717
2 0.196
3 0.061
MISSING 0.026
ITEM 4
1 0.633
2 0.322
3 0.029
MISSING 0.016
ITEM 5
1 0.717
2 0.193
3 0.061
MISSING 0.029
ITEM 6
1 0.508
2 0.312
3 0.161

MISSING 0.019
INITIAL ESTIMATES OF ITEM PARAMETERS

CATEGORY A(0,1J)  A(1,1J) A(2,1,)

ITEM 1
2 -0.789  1.372 0.767
3 2,761  0.690 1.556
ITEM 2
2 -3.702  3.792 1.376
3 -5.391 1176 2.718
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ITEM 3

ITEM 4

ITEM 5

ITEM 6

ITER

b =

13
14
15

[ ]

[ 3%

()

-2.423
-13.418

-1.441
-6.625

-2.796
-5.775

-0.344
-2.045

1.478
0.969

2.789
2.295

1.884
1.889

0.940
0.907

PROP LOGLIKELIHOOD

0.00006
0.00005

0.00001
0.00001
0.00001

-1334.98172
-1334.96883

-1334.89994
-1334.89725
-1334.89487

**#* ITERATIONS FINISHED ***

NUMBER OF ITERATIONS IS 15

% OF G-SQUARE EXPLAINED 54.5416
LOGLIKELIHOOD VALUE -1334.8949
LIKELIHOOD RATIO STAT. 214.6738

DEGREES OF FREEDOM -19

3.244
10.185

1.939
4.551

3.619
5.270

1.040
2.855

ITEM CATEGORY PARAMETER DERIVATIVE

B B B BN B = b e et b et

SLINL N SR ST IR S S

B o O B = OB = O RS

-0.01050002
-0.01024560
-0.01430309
-0.01054095
-0.00112718
-0.01835918
-0.01080448
-0.00734269
-0.01832090
-0.00915167
-0.00340594
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2 3 3 -0.01699027
3 2 1 -0.00000579
3 2 2 0.00000185
3 2 3 -0.00000257
3 3 1 0.02434294
3 3 2 1.11965727
3 3 3 0.05484791
4 2 1 -0.03187189
4 2 2 -0.02679377
4 2 3 -0.05496643
4 3 1 -0.02845926
4 3 2 -0.01485578
4 3 3 -0.04892992
5 2 1 0.02353714
5 2 2 0.04038334
5 2 3 0.02962763
5 3 1 0.02243193
) 3 2 0.03100196
5 3 3 0.03114831
6 2 1 -0.00208683
6 2 2 0.02285534
6 2 3 -0.01557234
6 3 1 -0.00897947
6 3 2 0.01138884
6 3 3 -0.01519632

MAXIMUM LIKELIHOOD ESTIMATES OF ITEM PARAMETERS AND STANDARD DEVIATIONS

ITEM CAT A(0,1J) S.D A(L,LJ) S.D A(21J) S.D PHIIJ)

1 2 -0.80 0.20 1.38 0.35 0.74 0.40 0.30
1 3 -2.76  0.39 0.63 0.50 1.54 0.68 0.04
2 2 -3.84 1.78 3.97 247 1.31 0.96 0.02
2 3 -5.34 1.07 0.90 1.52 2.65 0.98 0.00
3 2 -2.43 0.66  1.49 0.68 3.24 1.43 0.08
3 3 -13.42 51949 0.97 1.36 10.19 317.51 0.00

4 2 -1.43 0.42 2.73 0.84 1.84 0.72 0.19
4 3 -6.47 1.53 2.06 1.87 438 1.23 0.00

5 2 -2.84 0.79 1.94 0.87 3.66 1.38 0.06

5 3 -5.81 1.48 1.97 1.34 5.30 1.66 0.00
6 2 -0.35 0.19 0.96 0.30 1.02 0.45 0.38
6 3 -2.03 0.44 0.94 0.61 2.81 0.77 0.07
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FIRST ORDER OBSERVED AND EXPECTED MARGINS
CAT J1 OBS EXPECT OBS-EXP ((O-E)**2)/E

ITEM I1

= W= T oL IR L 4 B = I S B i

[ N R . - B oL R I o

186
103
18
240
57
8
223
61
19
197
100
9
223
60
19
158
97
50

.

185.23
102.77
19.00
238.94
57.13
8.93
218.50
61.61
22.89
195.99
99.67
10.34
218.81
61.83
21.36
154.72
96.09
54.20

0.77
0.23
-1.00
1.06
-0.13
-0.93
4.50
-0.61
-3.89
1.01
0.33
-1.34
4.19
-1.83
-2.36
3.28
0.91
-4.20

0.0032
0.0005
0.0529
0.0047
0.0003
0.0965
0.0926
0.0061
0.6601
0.0052
0.0011
0.1735
0.0802
0.0540
0.2612
0.0697
0.0087
0.3251

SECOND ORDER OBSERVED AND EXPECTED MARGINS
OBS EXPECT OBS-EXP

ITEM I1

et et e et ek ek et e ek et ek ek b ek e ek e e b e e e e e e e e

ITEM 12

[ - N O - - RV L R L L L TR L - LT SR SR - SV U SO

J1

— G G2 GO B BD BD = e b G0 00 O B B B e e e Q0 00O D B BD e e

J2

b D DD = G0 BD = L0 RO = D B = LD D e L0 RS e O BD = D RD = L0 RS

170
14
1
61
38

164.60
14.15
2.90
58.98
38.14
3.67
12.29
4.11
2.24
151.72
21.24
7.50
56.86
33.76
9.50
7.11
5.82
5.59
145.26
34.13
2.86
40.34
56.21
4.57
7.87
8.06
2,17
153.25
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5.40
-0.15
-1.90

2.02
-0.14
-2.67
-3.29
-1.11

2.76

0.28

4.76
-2.50

3.14
-3.76
-0.50

0.89
-0.82
-0.59

3.74
-0.13
-1.86
-1.34

2.79
-1.57
-1.87
-1.06

2.23

0.75

((O-E)**2)/E

0.1772
0.0016
1.2483
0.0694
0.0005
1.9433
0.8820
0.2976
3.4072
0.0005
1.0669
0.8358
0.1729
0.4194
0.0261
0.1121
0.1147
0.0622
0.0963
0.0005
1.2131
0.0444
0.1388
0.5409
0.4449
0.1385
1.7957
0.0037



BB B2 B B B2 B B B B B B B B B BO B2 B B B2 B B B B B B BD B B B BD B B BD PO DD b e ek ek et et e e e et e e e e e

SCooooooooOTO OO s s B dad e AW Wwwwwwooooooooooooomonon oyt n

GO B B B = e = 00 GO GO B B DD = e = G0 G0 GO B B DD e b e G0 G0 G0 B B DD = e = G0 G0 GO B BD B e e = L0 L0 0O B B BD e e

L e

OB = LB LB LD B = Lo RS = LD R S0 BD = ) RS e S0 D = LD = SR = LD D = IR DR e LR DD LD e W

23

59
29
12

115
53
16
35
36
29

197

185

2
2

20.42
6.20
55.42
33.84
10.54
7.33
6.78
4.35
113.45
47.69
20.51
34.43
41.61
24.74
4.84
5.55

8.24-

188.98
32.01
11.80
24.09
25.74

5.83
1.21
2.67
4.82

181.04

49.49
4.58
9.06

44.35
2.80
211
3.91
2.77

190.92

31.36

9.74
22.35
25.58
7.55
1.31
3.69
3.66

138.43
65.03
30.87
12.31
27.31
16.41

0.99
1.89
5.88
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2.58
-2.20
3.58
-4.84
1.46
0.67
0.22
-1.35
1.55
5.31
-4.51
0.57
-5.61
4.26
1.16
1.45
-3.24
8.02
-0.01
-2.80
0.91
-1.74
0.17
-0.21
1.33
-1.82
3.96
1.51
-2.58
0.94
-0.35
-0.80
-1.11
-1.91
2.23
5.08
-0.36
-1.74
1.65
-0.58
-0.55
0.69
-0.69
-0.66
3.57
0.97
-0.87
-0.31
-0.31
-1.41
1.01
0.11
-1.88

0.3260
0.7800
0.2312
0.6911
0.2025
0.0617
0.0074
0.4187
0.0212
0.5911
0.9930
0.0094
0.7566
0.7320
0.2757
0.3794
1.2759
0.3399
0.0000
0.6644
0.0341
0.1177
0.0052
0.0356
0.6600
0.6867
0.0867
0.0463
1.4496
0.0978
0.0028
0.2280
0.5836
0.9324
1.8050
0.1350
0.0041
0.3119
0.1215
0.0131
0.0394
0.3582
0.1304
0.1196
0.0919
0.0144
0.0243
0.0078
0.0035
0.1205
1.0384
0.0066
0.6011



e R B e L R R L S~ S~ L L L L L L I P T L B I T L P R T i T L

SO oooooooooOoooOoooUiuoigigrgrn TGS SO G S OO OO OO DO O G B i W

[ PO R R o B I i - B - T B B . . < B R . B o T . B e e e g~ B~ = T - T o T e e B L T . T . e e e . - L R . R . T e

B = O B — GO R = GO B = GO B = O B = L0 B GO B = GO B = GO B b G0 R = SO B = S0 RS L0 B = SO RS GBS e LS D = G b

175

143
62
17
10
33

15

16
175
15

46
39
11

126
51
17
28
45
24

142
63
17
12
29
17

1
4

167.93
46.41
0.65
17.13
40.36
3.13
5.90
10.33
6.29
190.12
19.59
247
21.28
30.08
8.47
1.78
10.57
9.87
135.78
62.98
15.53
13.25
26.56
20.62
1.70
4.08
16.66
170.34
15.63
4.35
44.20
40.76
11.83
0.76
4.45
4.84
125.81
48.49
17.91
25.71
44.14
27.90
0.71
1.92
7.51
136.48
62.14
15.97
11.68
25.69
23.26
2.08
5.47
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7.07
-0.41
0.35
-0.13
0.64
-1.13
-1.90
-1.33
-0.29
8.88
-1.59
1.53
-1.28
4.92
-3.47
0.22
-3.57
0.13
7.22
-0.98
1.47
-3.25
6.44
-5.62
0.30
-3.08
-0.66
4.66
-0.63
-0.35
1.80
-1.76
-0.83
0.24
0.55
-1.84
0.19
2.51
-0.91
2.29
0.86
-3.90
0.29
-0.92
-0.51
5.52
0.86
1.03
0.32
3.31
-6.26
-1.08
-1.47

0.2980
0.0036
0.1863
0.0009
0.0101
0.4103
0.6099
0.1724
0.0132
0.4148
0.1288
0.9475
0.0770
0.8045
1.4204
0.0264
1.2041
0.0016
0.3836
0.0151
0.1397
0.7971
1.56539
1.5308
0.0514
2.3278
0.0260
0.1274
0.0252
0.0280
0.0736
0.0759
0.0586
0.0784
0.0690
0.6980
0.0003
0.1303
0.0463
0.2047
0.0168
0.5459
0.1165
0.4375
0.0350
0.2233
0.0118
0.0667
0.0089
0.4252
1.6853
0.5618
0.3943



5

6

3

OBS EXPECT E(Z1/X)

G bt = O e e e e BD

st
el il e e B S B e e B s B e < T e S B e e S e L el - Bl i T S B e i i ' B e

0.430
0.001
0.053
0.135
4.883
84.683
2.581
0.409
2.247
0.003
0.001
0.964
2.747
0.111
1.730
0.206
0.566
0.549
0.651
1.936
23.200
0.000
0.174
1.468
0.003
0.512
1.368
0.040
0.026
0.454
15.503
0.307
0.740
0.134
0.647
0.002
0.389
0.507
0.011
0.144
0.108
7.508
0.342
0.048
0.832
0.855
5.943
0.000
0.061
0.555

-1.667
-1.104
-0.907
-0.784
-0.687
-0.664
-0.659
-0.632
-0.614
-0.586
-0.580
-0.535
-0.525
-0.457
-0.420
-0.415
-0.379
-0.343
-0.329
-0.320
-0.319
-0.313
-0.281
-0.265
-0.246
-0.234
-0.213
-0.210
-0.065
-0.060
-0.036
-0.035
-0.034
0.020
0.041
0.052
0.071
0.074
0.076
0.082
0.129
0.136
0.144
0.167
0.191
0.252
0.261
0.266
0.286
0.291

3

SD1

0.547
0.609
0.566
0.776
0.666
0.817
0.813
0.610
0.734
0.679
0.833
0.646
0.618
0.619
0.593
0.561
0.754
0.505
0.716
0.582
0.730
0.943
0.685
0.600
0.653
0.662
0.588
0.658
0.591
0.625
0.697
0.576
0.593
0.655
0.632
0.599
0.600
0.557
0.556
0.554
0.590
0.628
0.594
0.558
0.550
0.521
0.601
0.784
0.501
0.493

14
E(Z2/X)

1.635
1.644
1.632
1.051
0.349
-0.675
-0.651
0.535
0.003
0.320
-0.554
0.667
0.364
0.436
0.385
1.780
1.106
1.637
2.772
0.423
-0.311
-0.457
2.443
0.303
0.749
0.652
0.438
0.395
0.447
0.594
-0.557
1.399
0.343
0.858
0.670
0.562
0.597
1.650
1.623
0.637
0.890
-0.311
0.066
0.461
0.423
0.958
-0.368
0.427
1.637
0.590

13.40
SD2 TOTAL
0.050 10
0.094 0
0.071 10
0.551 10
0.479 8
0.804 6
0.813 0
0.376 10
0.643 8
0.494 0
0.847 0
0.407 9
0.456 7
0.442 0
0.433 7
0.383 15
0.550 10
0.047 12
0.373 18
0.398 8
0.708 7
0.856 0
0.546 17
0.480 9
0.646 0
0.381 8
0.380 8
0.419 0
0.362 9
0.328 10
0.727 7
0.452 12
0.444 8
0.502 11
0.382 9
0.487 0
0.318 10
0.128 14
0.121 15
0.054 13
0.514 11
0.650 8
0.574 9
0.420 0
0.369 9
0.534 11
0.642 7
0.522 0
0.056 16
0.290 10
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0.60 0.0268
RESPONSE PATTERN

113113
393131
213121
111133
111113
111111
111191
311113
311111
931111
119991
112113
112111
112119
111121
313323
112123
113223
333333
112112
111112
999991
333323
211113
219193
112121
111122
111921
211311
212113
211111
112233
211121
312122
112122
212199
211123
213233
332322
213232
212132
211112
311211
111293
211122
112223
111211
299913
232333
112213



S = A =S e . B e e e e e e o B T i e - o T S o B e e e e e . e e I e i e A . M e = =R e el - T L P ]

0.018
0.716
0.036
4.271
0.104
1.171
0.293
1.279
0.662
1.191
0.795
0.697
0.067
0.787
3.573
0.017
1.432
1.774
0.157
3.376
0.226
0.000
0.000
0.127
1.430
0.063
0.282
0.253
0.323
0.029
0.587
0.000
1.222
0.886
0.676
0.000
1.145
0.460
0.157
1.126
0.636
0.026
0.432
1.784
1.328
0.150
1.527
1.088
0.081
3.698
2.467
2.022
4.207

0.292
0.295
0.344
0.360
0.379
0.382
0.435
0.466
0.478
0.480
0.482
0.505
0.526
0.528
0.551
0.553
0.560
0.602
0.633
0.643
0.648
0.652
0.758
0.762
0.800
0.870
0.872
0.873
0.976
1.021
1.034
1.044
1.087
1.093
1.099
1.122
1.171
1.171
1.186
1.243
1.251
1.301
1.345
1.357
1.365
1.401
1.410
1.417
1.467
1.509
1.518
1.521
1.580

0.491
0.514

0.502

0.568
0.439
0.457
0.424
0.455
0.329
0.340
0.434
0.310
0.436
0.398
0.555
0.321
0.361
0.368
0.358
0.550
0.454
0.681
0.500
0.532
0.589
0.529
0.571
0.533
0.569
0.602
0.588
0.746
0.590
0.642
0.610
0.597
0.579
0.597
0.579
0.598
0.612
0.673
0.592
0.535
0.664
0.715
0.662
0.603
0.525
0.617
0.487
0.677
0.497

0.580
0.409
1.404
-0.185
0.757
0.453
0.795
0.966
0.565
0.619
0.392
0.571
1.707
0.417
-0.381
0.496
0.449
0.618
0.529
-0.166
1.640
0.181
0.270
0.071
-0.892
0.472
1.834
0.183
0.500
-0.652
0.167
0.425
-0.906
1.734
0.179
0.175
-0.663
-0.013
-0.132
0.552
0.473
1.408
0.748
-0.500
1.382
0.574
0.061
0.485
-0.547
0.924
-0.674
0.090
-0.531

0.281
0.377
0.449
0.614
0.443
0.326
0.468
0.537
0.243
0.308
0.387
0.248
0.279
0.359
0.629
0.259
0.319
0.319
0.254
0.628
0.077
0.704

0.488
0.579

0.702
0.331
0.438
0.522

0.330

0.674
0.523

0.819

0.694
0.324

0.519
0.845

0.670
0.559
0.574
0.351
0.365
0.447
0.464
0.596
0.464
0.387
0.549
0.371
0.634
0.538
0.584
0.545
0.508
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10
14
12
12
12
11
10

11
14

10
10
11
10

13

10
11
15
10
10
10

15
10

11
11
11
12
13
14

11
11

13

11
10

132211
111221
332222
111212
211233
112212
312222
212223
212213
112222
212211
211223
123323
211221
211211
121132
212212
212222
122122
211212
123223
199292
921129
221113
121111
121232
223323
222112
122221
921112
122212
299299
221111
223233
121222
129299
221112
221213
321212
122222
221223
222033
322222
121212
222233
292222
222212
222221
229211
222223
221211
221222
221212



1 0.207 1.586 0.609 0.674 0.483 0 222229
7 5.715 1.668 0.592 0.548 0.391 12 222222

311 223.543
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ANNEX 1
USER INSTRUCTIONS FOR THE COUNT PROGRAM

COUNT is a program written in standard FORTRAN 77 for micro-computers, but it can be easily
implemented on large size computers. ;

COUNT is designed to provide the frequency distribution of the responses given by N individuals to P
items, which take values 1, 2, 3, 4, 5 or 9 (strongly agree, agree, neither agree or disagree, disagree, strongly
disagree and missing, for example). Missing, coded as 9, means that the response was ‘don’t know’ or it was
not recorded. The vector of responses of each individual is called response pattern.

The initial parameters, sample size (N) and number of items (P) were set equal to 1500 and 20, respec-
tively. They are defined on the third line of the COUNT program and they are easily changed to any other
value.

1- Description of the Input Channel

Input format for channel 5 (filename: COUNT.INP )

The file for this channel contains all the control parameters and the data set as described below. Control
parameters are read in FREE format, but the data set is read in FIXED format.

Line 1:

Title: Title of data set ( at most 70 characters).

Line 2:
N, P
N : number of individuals in the sample
P : number of observed variables (items)

Reading response patterns

Line 34,...N+2: Format(2011)

IRESP(1,1) IRESP(1,2) .. IRESP(1,P)
IRESP(2,1) IRESP(2,2) .. IRESP(2,P)

IRESP(N,1) IRESP(N,2) ... IRESP(N,P)
where IRESP(L,I) = 1, 2, 3, 4, 5 or 9 is the response of individual L, L=1,2,...,N to item I, I=1,2,...,P.
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2- Description of the Output Channel
Output format for channel 7 (filename: COUNT.OUT )

Line 1:

Title

Line 2:
Sample size = N
Number of items = P
Line 3:
Number of different response patterns = NR

Line 4 to N+3:

NR different response patterns of the N individuals according to the following format:

Columns 1 to 4: Format(I4)

RL(L), observed frequency of the response pattern (IRESP(L,I), I=1,P)

Columns 6 to P+45: Format(2011)
Response pattern (IRESP(L,I),I=1,P)

that is,
RL(1) IRESP(1,1) IRESP(1,2) ... IRESP(1,P)
RL(2) IRESP(2,1) IRESP(2,2) ... IRESP(2,P)

RL(NR) IRESP(NR,1) IRESP(NR,2) .. IRESP(NR,P)

where RL(L) is the observed frequency of the response pattern IRESP(L,I) for L=1,2,...,NR and
1I=1.2...R

3- Example

Consider a set of simulated dgta of 11 individuals who have answered 1, 2 3 or 9 (agree, neither agree
or disagree, disagree or missing) to each of 3 items.

The input file (channel 5) is called COUNT.INP, which has the following format:

Simulated data (Line 1, at most 70 characters)
11 3 (Line 2, N and P, free format)

123 (Line 3, IRESP(1,1), I=1,2,3, columns 1 to 3)
112 ...

212

333

912

112....

222

313

123

222 ...

222 (Line 13, IRESP(11,1), I=1,2,3, columns 1 to 3)
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Then running the program COUNT , using as input file COUNT.INP, the frequency distribution of
the response patterns are stored in the output file COUNT.OUT in the following format:

Simulated data

Sample size = 11 Number of items = 3
Number of different response patterns = 7
2123

3222

o0 [l £

1212

1333

1912

1313

Thus the first four columns from line 4 correspond to the observed frequencies of the 7 different response

patterns. After few changes on the first three lines, this file may be used as the input file for the POLYMISS
program.
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ANNEX 2
USER INSTRUCTIONS FOR THE ZSCORE PROGRAM
ZSCORE is a program written in standard FORTRAN 77 for micro-computers, but it can be easily
implemented on large size computers.

ZSCORE is designed to provide the scoring of the latent variable for individual response patterns as
given in the input file. As the output from the POLYMISS program displays the response patterns in
increasing order according to the conditional mean, ZSCORE needs to be used when the latent scores for
response patterns in the input file order are the input data in further analysis.

The initial parameters, sample size (N) and number of items (P) were set equal to 1500 and 20, respec-
tively. They are defined on the third line of the ZSCORE program and they are easily changed to any other
value.

1- Description of the Input Channels

1.1 - Input format for channel 5 (filename: ZSCORE.INP )

The file for this channel contains all the control parameters and the data set as described below. Control
parameters are read in FREE format, but the data set is read in FIXED format.
Line 1:

TITLE: Title of data set ( at most 70 characters).

Line 2:
MODEL, NFAC, N, P, NQ

MODEL : 1,2o0r 3

NFAC : 1 or 2 (number of factors)

N : number of individuals in the sample

P : number of observed variables (items)

NQ : number of quadrature points (8, 16, 24, 32, 48)

Reading response patterns

Line 3.4.....N42: Format(20I1) »

IRESP(1,1) IRESP(1,2) .. IRESP(1,P)
IRESP(2,1) IRESP(22) .. IRESP(2,P)

where IRESP(L,I) = 1, 2, 3, 4, 5 or 9 (strongly agree, agree, neither agree or disagree, disagree, strongly
disagree or missing for example) is the response of individual L, L=1,2,...N to item I, I=1,2,...,P.
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1.2 - Input format for channel 3 (filename: ZSCORE3.INP )

ZSCORE3.INP contains the parameter estimates after fitting the logit-probit model. They are read in FREE
format and we can use the output estimates stored in channel 8 (LI8.OUT) as the input in channel 3.

Line 1:

Title or first line from channel 8.

Models 1 or 2
Line 2.3.....P+1: Free format

Each line corresponds to the parameter estimates dp;(s) and @i,y (and as;i(,) for two factors) of item
i=1,2.pand 8=2,.¢x

One-Factor

ao1(2) dy1(2)
a01(3) ayi(s)

C:lm(c(:)) %11(:{1))
?02(2) ?12(2)
ap2(3) a12(3)
Qoa(e(2))  B12(c(2))
Gop(z)  A1p(2)

@op(a)  @ip(3)

Aop(e(p))  F1p(c(p))

Two-Factor
@oi(z)  Gn(zy  an(e)

ao1(3) ajys) (s
{tm(cm) l:lu(c(n) ‘}2:(:(1})
ap2(2) aya(2) aaa(2)
apa(a) aya(a) @32(3)
Goa(c(2)) G12(e(2)) G22(c(2))
Gop2)  Gip(2)  G2p(2)

Qop(3) @1p(3) a2p(3)

Gop(e(p)) B1p(e(p)) Q2p(c(p))
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2- Description of the Output Channel
Output from channel 7 (filename: ZSCORE.OUT )

If the one factor logit-probit model has been fitted then ZSCORE provides for each individual response
pattern the conditional mean E(Z|z) and the standard deviation SD(E(Z|z)), the component score, and
total number of positive responses.

If two factors logit-probit model has been fitted then ZSCORE provides for each individual response
pattern the conditional mean for the first factor E(Z|z) and SD(E(Z|z)), the conditional mean for the
second factor E(Zs|z) and SD(E(Z2|z)), and the total number of positive responses.
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