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HEYWOOD CASES AND IMPROPER SOLUTIONS
IN UNRESTRICTED FACTOR ANALYSIS

A Heywood solution is known in the literature of factor
analysis as the occurrence of a negative or zero estimate of the
error variance for one or more variables in any factor analysis
solution. Occurrences of Heywood cases have been reportied in the
literature since the first observation of this kind of particular
golution by Heywood (193123. Heywood cases may occur in any factor
analvsise method, they also occur in confirmatory factor analysis
and there iz some evidence in the literature that the maximum
likelihood factor analysis method is particularly prone tae the
occurrence of Heywood case=s. The causes for such occurrences are
not still clearly understood and some new studies have tried to
show, through empirical evidence, in which situations the
occurrence of Heywood cases are more frequent.

Wee shall distinguish, in thie paper Heywood solutions and
inproper =olutiong in factor analysis. The improper solutions in
factor analysis that occur frequently are Hevwood solutions, but
not all Heywood solutions are improper solutions, and not every
improper golution is a Heywood solution. Suppose we have a
one-factor with one or more of the factor lcoading parameters very
high or conversely, suppose one or more of Lhe error variance
parameters in facteor analvsis model are positive but very near
zero. A faclor analysis solution that yelds an exact Cand no
negative) zero eéerror variance estimate, when the corresponding
parameter is approximately zero, cannot be congidered an improper
zsolution. In this particular case, tLthe only cause for the zero
variance 1is Lhe sampling wvariation and any s=small difference
between the estimate and the parameter is only to be expected.
From the practical point of view, we can have =situations in which
the one—-factor model fits the data and one of bLhe variables is
perfectly correlated with te single factor, meaning that this
variable itzelf could be a good indicator of the factor. Suppose
a situation where the corresponding factor loading parameter for
that wvariable is 0.898, say. A s=solution that yelds a factor

loading estimate as 1.00 is not an "improper sclution™. It will



be a Heywood case because the variance estimate of the error term
for that wvariable is zero. But this is a proper seolution, given
the model.

There are also improper solutions in factor analysis that
are not Heywood cases. If the true number of factors is known,
any factor analysis solution, that has not tLhe same numbers of
factore as is assumed in the model, is an “improper solution'.
Unless we know Lhe model for a particular factor analysis
solution fas iz the case 1in simulation studies)?, we cannot
disetinguish, in practical work, an improper solution from a
Hevwond solution, but, wvery frequently, when the number of
factors is not Lhat of the hypothesized model a Heywood case will
indicate an impraper saolution, as we shall see in a simulation
study to be presented in Lhis paper.

Although we  cshall consider only unrestiricted factor
analysis in thi= study, a review of Lhe early research about
Hevwood cases will be made, considering also confirmatorj‘y factor:
analysis.

Martin and McDonald (19782 distinguish two bLypes of Heywood
solution: an exacl Heywood solution when at least one unique
variance is zero but nene are negative and ulira-Heywood solution
where at least one unique variance is negative. Ultra Heywood
cases are, obviously, improper solutions, because we cannot have
negative variances. Bul an exact Hevwood solution may not be an
improper solution as we explained before.

Most of the factor analysis programs available in  the
statistical analvysis packages do not allow Lhe communalities of
the variables Lo exceed one. That is the caze {or the BMDP and
SPSS packages. Some of the factor analysis programs in the ZSAS
package have Lthe option for ultra-Heywood cases, that is, Lhey
allow communalities to excesd one. Therefore on using either
BMDP, SPSS (or SZPE3-XD an ultra Heywood case will not be
chserved, although SPSZ will print "the communality is greater
than one'" and will stop the iteration process.

In past reseasrch, there are some simulation studies relevantl
te the present study, although zome of Lhem are concerned with

the confirmatory factor analysis model. We now review these



studies,

Tumura and Fukutomi 19702 have presented some numerical
experiments to investigate the occurrence of Heywood cazses in six
different case=, where the uniqueness of the solution is
considered and also where the given number of factors (md for the
solution is different from the true number of factorz of tiLhe
model . Joreskog’s unrestricted maximum likelihood factor analysis
method was considered in the study, which iz limited in the sense
that only one or two experiments per case was analysed,
Nevertheless, the authors conclude that for the case where A is
unigque and m=k, Heywood cases "occur occasionally if A contains
some row vector with their length equal to nearly one'" (see also
Tumura, Fukutomi and Asco, 1868D.

A Monte Carlo study is presented by Boomsma C(1985) Lo assess
the problem=s of nonconvegence, l1lmproper solutions and starting
values in LIZREL maxdmum likelihood ratio chi-square statistic
for goodness-of-Tit are also presented. Twelve factor analysis
models were studied, z2ll having two factors (carrelated and not
correlated factorsd. The factor pattern A (px2), where p is the
number of observed variables, was choszen such thal half of the
observed variables had a non zero loading on the first factor and
a zero loading on the second one, and ithe reverse faor the other
half Cp = 6 or 8). The sizes of the factor loadings were chosen

1! €O.4; 0.6); medium C0.6; 0.8) and large (0.8: 0.9). The
sample sizes were 25, S50, 100, 200 and 400 Cwith 300 replications
of  each). In this study, Boomsma  considers anly  the
ultra-Heywood cases (negative estimates of the error variance).
Ehe concludes that "there is a real danger of improper zolutiocns®
with small sample =ize. In Lthe simulation results, the
occurrence of improper solutions increased as 1) sample size
decreased; 22 the number of wvariables in the model was six rather
than eight and 3) the population values of the error wvariance
were close Lo zero.

Anderson and Gerbing (19840 also present a Monte Carlo study
for the LISREL confirmatory faclar analysie method. They analyse
54 models, with 2, 3 or 4 factors, for sample sizes of 50, 785,

100, 150 and 300 Cwith 100 replications of each). The propertion



of nonconvergent and improper solutions that occurreaed in
obtaining 100 good solutions per cell is presented. They conclude
that a sample size of 1850 for models with +Lhree or more
indicators per factor (6 or more variables in the model) will
usually be sufficient for a convergent and proper solution. In
this study the solutions are defined as improper when one or more
of the unique variances is less than a positive, arbitarily small
prescribed number such as 0.008. Anderson and Gerbing also
observed that the occurrence of improper solutions increased as
1> zample size decreased; 2) the number of indicators per factor
Cand consequently the number of wvariables in the modeld
decreased; 32 correlation between factors were 0.3 rather than
0.5. Far the models analyvsed, they also observe that with two
indicataors per lactor (small number of wvariable=), leoadings of
0.8 give the largest proportion of improper solubtions, whereas
for larger numbers of variables no improper solubtions occurred
for models with loadings 0.9, Results on goodness-of ~-fit indices
are also presented in this Monte Carlo study.

Seber (18984) reports some results from a simulation study by
Francig (1973, 1974). Francis’® analysis i< based on exploratory
or unrestiricted tactor analysis models wilh Lwo or three factors.
The <=sample gize iz S0. Twelve models were generated with
different factor palterns. Again in this case Lhe solution is
Zaid to be improper 1f the error wvariances are less than an
arbitrary small positive number (e.g., 0.005). Severzl cases of
improper solutions were observed when the number of factors for a
particular solution was greater than the true number of factors
of Lthe model.

OLher researchers have proposed methods to avoid the
occurrence of Heywood cases for detecting the cauzes of Hevwood
cases. We now review briefly Lthese methods.

Joreskog (1967) proposes a procedure to deal with improper
zsolutions for ithe maximum likelihood factor analysis methoed. He
defines the prablem of improper (Heywood) solution as follows:
"Since the diagonal elemsnis of w are variances the function
f}(wi iz delfined in the region where all the diagonal elements of

w are positive” (k is the number of f{factors). "We have



no guarantee, however, that all partial derivatives of fk vanish
at a point where all the diagonal elemenLts of w are positive.
This suggests that we =shall deline kaw:) in the region RE .
where wii >z g for all i =1, 2, ....p and where £ is a positive,
arbitrarily small, prescribed number. The problem, then, is to
find the minimum of I"k Cyd in the reglion Re' Since Esis a closed
region, the minimum is found either in the interior of R or in
the boundary. If the minimum ie found in the interior of RS » we
shall say that Lhe minimum is a proper solution. If on the olher
haznd, the minimum is found on the boundary of RE » the =solution
ig improper".

We have Lranscribed Joreskog’s text because it seems Lo be
the origin of the term “improper solution', which has been used
frequently. Joreskeg (1967, p.443) z2lso save that "such improper
CHeywood) solubtions occur more often Lhan is usually expected. "
The procedure that he proposes to avoid such impreaeper solutions
i Lo eliminate partially Lhe wvariables with unigue variances
equal Lo £ and the analysis continues from the conditenzal
dispereion matrix. The soluticon finally accepted in this process
iz combined with the principal componenis of the eliminated
variables, Lo give a complete solution for all the original
variables.

Martin and McDonald (19753 propose a Bavesian procedure for
eclimation in unrestricted factor analysis. The procedure has as
one of its objectives to avoid inadmissible estimates of unique
variances. A choice of Lhe fform of the prior distribution is
justified and empirical examples are shown.

Finallyv, we will review the paper by Van Driel (19782 which
has been cited in almost zll studies about Heywood cases. Van
Driel has identified some of the causes of Heywood solutions, by
dropping the constraints of positive definiteness of the matrices
containing the parameters of the facter analysis model. He

proposes a method, which he calls “"the nonclassical approach"” and

anal yses soma artifical data drawn from 5 populations,
corresponding to five factor analysis models. The models are
called: "Close Lo zero' (one of Lhe unidgque variances is close to
zero and the clhers are equal to 0.5); "Close Lo one” Cone of the
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unique wariancesis close to one and the others are equal to 0.8
"Dwarf" (all unigque variances are equal to 0.5 and the s=econd
factor has loadings very small comparing with the first facterd;
"Heywood” (the classical one-factor model example where one of
the unique variances iis supposed Lo be negative) and "Anderson
and Rubin®" Ca three-factor model with unique variances ecual to
0.5; the factor matrix for this population is in accordance with
the Anderson and Rubin identification conditiond. In this study
five samples are drawn from each population, each with =ample
size B00, and each sample is analysed with the classical and
non-classical approach for every appropriate number of factors.
Van Driel (1878) referring to Joreskog’s paper calls

attention Lo the "subtle" difference between the terms "“improper
solution” and Heywood cases, but he uses the term improper as
meaning Heyweod zsolutions Cthat i=s, at least one unique variance
negative or zero - small wvalues of the variance, such as 0.004
are considered proper by Van Driel, as for example in the "“close
ta zero" example). Van Driel identifies three causes for Hevwood
cases:

1) sampling fluctuations combined wilth true values af @ close
to zero;

2) there does not exist any factor analveis model that fite
tLhe data;

32 indefiniteness of the model (e.g. Loo many true factor
loadings are zerod

Starting from the results of the previous studies two main

guestions arise:

12 How ‘''close to zero should be the unique variance
parameters in the factor analysis model Lo cause Heywood casec?
2) How often do Heywood cases occur as a consequence of
chozing a gliven number of factore different from bthe true number
of factors of the model?
The first question is approached by Boomsma (C1885%) when she
generates models with "large', "medium'" and "small'" factor
lpadings leading to different magnitudes of the unique variances

of the model. Boomsma's results are, however, for confirmatory

factor analysis wusing the LISREL praogram. We shall present some



resulis for unrestricted factor analysis.

Conceaerning the second questicon, suppose m is the given
number of factors for a particular factor analysis solution and q
iz the true number of facltors of the model. We observed that
Tumura and Fukutomi (19702 did not obtain Heywood cases when mrqg
in their numerical eXperiments, bui on the other hand several
cases of Heywood solutions are reported by Seber with reference
to Francis' results when m.q (see Seber 1984, p.232, Table 520D,
We also observed that several numerical examples presented by
Joreskog show the occurrence of Heywood scolutions when icreasing
the number of factors for a particular example (see Joreskog,
1967, p.474, Table 8). We tLhen suppose that another possible
cause of Heywood cases is the inappropriateness of the solution
for 2z given number of factors.

Ta assess Lhe effect of sampling variation and model
characteristics an Lhe aoourrence of Hevwaoaod cases for
unrestricted factor analysis using the maximum likelihood method,
a Monte Carleo study was designed. As a by-product of the study
come results about bLhe goodness-of —{it Lesl off the model are zlso
obtal ned. This =imulation =study iz described in the next

section.



The effect of sampling variation and model characteristics

on bLhe oceurrence of Hevwood cases for maximum likelihood

factor analysis: a simulation study.

Our first objective is to study how Lhe normal theory
estimators for maximum likelihood unrestricted factor analysis
perform regarding the occurrence of Heywood cases for models with
cspecified characteristices. Estimates of the MLFA model are
provided by the BMDP factor analysis program uging an algorithm
developed by Jenrich and Sampson (see Dixon et al, 1883).

The normal random wvariates are created using the REandom

Number Generator of the BMDP package.

SimulaLion design

For this Monte Carlo study three one-factor models were
chosen for different magnitudes of the irst factor loading. The

one-factor model for variables with mean zero is given by

X, = Az toe 1 = 1585, e
X 19 L
such bthat vardx2 = 1, wvarCel = w, 2z and e are tLhe normal
L L L 1.
generated variables and
“
o S e
o L L
where h  i=s the communalily of the i-th observed wvariable, and wu%
L

unique variance or error variance. The fTirst factor pattern X
Cpxl), where p i the number of observed wvariables was chosen
auch that the first observed wvariable had 2 "close to zerao"
unique wvariance or a very high loading Chix £.98) and all other
loadings equal to 0.5 Chj= 0.8, J# 12. This model will be called
Model 1.

The other models are similar, but the idea was to vary the
firast loading in such a way that we had three different degrees

of “close to zero'" variances. The last model having far from zero
but not "close to one" unigque variance. The three models are:

Model T AI = < Ki = 0.938; RL = 0.8 £i =13 > or

w = < w=0.0306; y = 0.78 Ci = 13



Ci # 12 > or
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Model LI A

XTI i 1

Model III A =< A = 0.70: A = 0.447 Ci # 1) > or
S e ILIX 1 L
W, =< w =08l y =080 #1373

For each model thres different numbers p of observed
variahles were analysed =so as to represent & range of values
typically encountered in practice Cp=8; p=10 and p=202. Sample
sizes were chosen according with the criterion: small CON=503;
medium CN=100D) and large (N=5S00). For each cell of this design,
100 replications were generated.

Finally, Lo assess the effect of having mdp on Heywood
cazses, where m is the given number of factors in one solution and
q is the true number of factors of the model C(g=1 in this case),
we chose to analyse bLhe correlation matrices generated by Model
IIT Cwhere the occurrence of Heywood cases is assumed to be very
small with a two-factor soluition.

Although the above design produced 3600 separate analyses,

this is a limited Monte Carle study, with respect to different
model s studied, different sampl e sizes ancl number of
replications. Nevertheless, the study should give a geood deal of
important information related to the occurrence of Heywood cases,
standard erros of the MLFA estimators, results on the likelihood
criterion given by th MLFA CBMDPY program and results about the
empirical frguency distribution of Lhe eigenvalues. Our results
are, however , 1imited Lo tLhe cases here studied, no

generalizations beyond these models will be made.

The MLFA/BMDP program produces factor loadings estimates and
unique variances within the parameter space or on the boundary.
No ultra Heywood cases can be obzerved, because of the

constraints in the program. The results to be presented in this



cection are related Lo the proportion of exact Heywood cases for
each model. In table 1.1 we present the percentage of Heywood
solutions in each cell of the simulation design for Models I and
I1. For each cell we observed 100 replications.

Table 1.1 - Propoertion of Heywood solutions for Models I and II

in the Monte Carlo study (100 replications per cell).

Sample Size

Model No of war 50 100 500

5 .23 .32 .38

MODEL I 16 L1 .04 D N
[h1= Q. 93] Z0 . 20 18 . 00
.04 Y .00

MODEL II 10 .00 .02 . GO
[hi= 0. a0l =0 Nale] . ey . QO

The proporiion of Heywocod scolutions decreases as the sample
increases, in general, although when p=5 this was not always
observed. A greater proportion of Hevwood solutions is observed
for a <mall number of wvariables in the nodel. For Model I and
small sample =zizes a greter proportion of Heywood solutions is
abserved when the number of wvariables is S or &0 rather than 10.
A greater number of replications per cell would be necessary to
confirm this tendency. The results in Tabkle 1.1 are in accordance
with the findings of Van Driel (1878>, that ig the "close to
zero' population is one of the causes for Heywood cases combined
with =sampling wvariation. For Model I the Heywood cases were
observed always for the first variable ("close to zero case'),
therefore these solutions are very similar to the true model Cwe
obhserve a factor loading 5’:1 = 1.0 where Lhe parameter is ;\i =
0.98. Due to sampling variation, solutions with the first leoading

equal to one Cand consequently unique variance equal to zerol are

expected to occcur and such a s@olution cannot be called
s " et ok e g ey — T g s 8 | i = o k : 3
1L mpropetr They are exacl Heywood cazses, bub the zolution iz
proper.

In table 1.2 we present the proportion of Heywood solutions

10



out of 100 replications for Model III for different sample sizes.
We also show the proportion of Heywood solutions that occur as a
recult of a simulated misspecification of the model, that is, we
knew that the model had one factor, but we asked the program Lo
produce the two-factor solution. We then observed a very high
proportion of Heywood solutions for twe factors and even more
than one variable with zera variance. The Heywood cases were
observed for any variable, not always for the first as in the
case of Models I and II. In this case we have improper solutions.
We then conclude that another cause for Heywood cases i=s the
inclucsion of too many factorse in the solution. We believe iLthat
many of the Hevwood solutions observed in the literature are due
to the fact that they are over-factored (e.g. too many factors).
VYhen analysing empirical data, it is impossible to know the true
number of factors of the model. In the simulation studies we know
the model, but this is an artificial situation. We suggest that,

in empirical s=ituations, when Lhe researcher ise u=sing factor

analysis and obtaing a Heywood solution, he should reanalvyvse the
data decreasing tLhe number of factors one by one. If the
goodness-of -fit indices are good , that should be Lhe best

solution for factor analysis,

Table 1.2 - Preoportion of Heywood solutions for Model II1II1 using
cne-factor solution and two-factor solution (100 replications per

celld.

Sample Zize

Model No aof wvar S0 100 500

5 . 0= .00 .00

MODEL ITIIX 10 .00 . 00 . 00

LK1= 0. 701 20 . 00 .00 . 00

5 a7 7 ) 5a

MODEL II3X Lo .58 Hd .26
{with two factars) =0 L4a= Led o

11



As it ean be seen in Table 1.2, the proportion of Heywood
selutions indicating an improper solutien for twe factor
solutions is very high even for large sample size. The propeortion
ceems Lo decrease as the number of wvariables increases. Model I1T1

iz a one-faclor model with the following error variances

[wl .81 zand @ = 0,80, i & 173. L iz interesting to observe
Lhat for tLhe one-faclor soluLlion and faor sample size 50, we
observe cases with communalily very near zZero, or variances very
near ong, praoducing negative estimates of loadings, which could
be considered as anolher kind of improper solutian; the
proportion of these cases was very small {1 caze for p=5 and p=a0
and two cases for p=10, all for N=50).

As a by-product of this simulation study we shall now
present resulis about the Chi-gsquare test which can be obtzined
from bthe likelihood criterion CLC Lo be minimized. CThe
BEMDPAMLFA program only prints the likelihood criterion). The
Chi-square statistic can then be obtained by x? = n’LC, where n’
iz given by

ro= N1 ~CEp+E) B-2a-3
The X2 statistic for the unrestricted factor analysis model is

tested as a chi-square variable with degrees of freedom given by

df = 1/20Cp~-qd? - Cp+qdi.

la

In Table 1.3 we present the propartion of @ significant
chi-square values for a = 0.08, for 1900 replications in each cell
f'or the three models analveed We zlzo include in Table 1.3 the

results for the two—factor solutions for Model I171.



Table 1.3 — Proportion of significant chi-square stalistics €52
for modele T, II and TII and model IIT with two facteors {100

replications per cell).

Sample Size

Model No of wvar S50 100 S00

5 .03 11 1, 8

MODEL I 10 .01 1 .03
=0 .04 .00 S0

B 03 .13 12

MODEL IT 10 .04 1R . 0=
20 o3 03 (]3]

s 04 05 L O5

MODEL III 10 .05 03 .02
=20 (0]8] 02 04

5] .01 03 .03

MODEL. II1I 10 L0 L D0 .00
Cwith two factors) =0 .00 DL L OE

We observe in Table 1.3 that for gmall samples the observed
propartion of s=significant chi-scquare statistics is higher than
the expected proporiion of 0.05 for ithe one—factor model. When
analvaing the two factor solution the test accepts the model with
two fTactaors, which should rnot be accepled. But this is a known

ct of this goodness-of -fit test, becautse it depends aon the

=
I

residual ecorrelations, 1f we include more factors in Lthe model
the residuals become smaller, and conseqguently, the chi-square
statistic. The factor analvsis uzer should, for this reason, use
more than one goodness-of -fit indice, including in the analysis
cther criteriaz such as Akaike’'s Information Criterion and
Sehwarz's Bavesian criterion (see Seclion 4, 33.

Another inleresting result from Liras simulation study is
the empirical frequency distribution of the number of eigenvalues

greater than one (y > 12 of the correlation matrices. In Tables

13



1.4 to 1.6 we present these empirical frequencies, for each of
the one-factor models studied, according te sample <size and
number of wvariables in the model.

Table 1.4 — Empirical distribution (proportion? of the numbers of

eigenvalues greater than one, for Model 1 (100 replications per

cellD.
Ho. of SDample Slze

No of wvar eigenvalues > 1 50 100 200
5 i | .75 .89 1.006

2 £8 11 -
10 1 = 0 .29 1.00

= LSRG . 60 -

e 57 14 =

4 = - =
Pt i 1 = = S
= £ = .63
3 - - A8

4 .03 16 i

5 23 40 -

& 5 .40 -

7 20 .04 =

8 03 - -
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Table 1.8 - Empirical distribution (proportionl of the numbers of

eigenvalues greater than one for Model 11 C100 replications per

celld.
Mo, ot Hample Zize
No of wvar eigenvalues > 1 50 100 500
5 1 . 80 .82 1.00
& .20 .08 -
10 4 .03 a8 1. 08
o w38 3, -
2 5 S ] -
4 o 5 = -~
A @) 1 = = =
= v = . 54
3 = o2 19
4 T 14 —
8 .1 .47 -
& L e 31 e
v .29 . DB -
8 .01 - -

18



Table 1.6 - Empirical distribution of the number of eigenvalues

greater than one for Model III (100 replications per cell).

No. of Sample Tize

No of wvar eigenvalues > 1 80 100 S00
5 1 .40 « TG T 00
2 . B0 e <=
10 3 01 04 .80
2 A8 s e 8

3 48 .58 s

4 35 &ls] -

=0 1 s - =
= = = 2 O

3 . - .55

4 = = .34

8 L OF o i .03

& &8 48 -~

it 54 38 =

a8 L& .03 -

The Tables 1.4 to 1.6 show that small sample size and for a
number of wvariables in the model such as 20, several eigenvalues

-

of the correlation are greater than one for the one-factor models
I, II and III. If Lhe factor analysis user chooses the number of
factores by this criterion, as is =gtill wvery common, with small
samples and large number of variables, the inclusion of too many
factors in the solution would occur. Even for a moderate sample
mize such as 100, that would be the caze. On the other hand, for
all models and cases, the scree test would be morse appropriate
since the magnitude pattern of the eigenvalues always shows a
very high first eigenvalue compared with the others.

Finally, as another by-product of Lhe simulation study we
now present the results related to Lhe parameler estimates of the

models., In Tabkle 1.7 we prezent the mean and standard deviation



of the first factor loading for the three models, for each cell
of Lhe simulaztion design, based on 100 replications. We have
included the Heywood solutions in all caleculations. In Tables 1.8
and 1.9 we prezsent the mean and standard deviation of the second
and Lhird factor loading for each model, respectively.

Table 1.7 - Mean and standard deviation of the Tirst {acter

loading estimates for models I, II and III (100 replications pear

cell).
Sample Size

Model No of var 50 100 500

5 . 942 . 064 . 084

C.058> C.033 C.O0L7D

MODEL. I 10 . 967 . 064 . 979

€.033 C.021> <.009>

20 . 084 . 085 .o84

C.017> C. 011> C.0058)

5 . 847 . 803 . 003

C.106) C.061) C.025>

MODEL IT 10 . 887 . 940 . go2

G 0519 C. 0460 C. 0L 7D

20 . 809 . 010 . 903

C.066D C.024> C.OL1D

& .B17 . 671 . B89

C.143) C€.095)  C.041)

MODEL 1TI 10 . 661 . 620 . 706

C.106> C.076>  C.O031>

20 . 730 . 699 715

L. OF8) €.061D C.0B7D

Note: Estimates are based on averaging the estimates in each

cell. In parenthesis is the empirical satandard deviation.
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Table 1.8 - Mean and standard deviation of the second factor

loading estimates for models I, II and III (100 replications per

cellD.
mample Zize
Moclel Na of var 50 100 500
= . 643 . 590 . 509
C.0802 C.072D £.0282
MODEL I 10 . 529 - OE3 . 474
£.108) . 058) C.034D
20 . 483 . 460 . 487
C. 148 € 071D €081
& . B&1 . 85490 .818
C.080) C.070) C.082)
MODEL II 10 s B B . 473
C.113) C.062D .02
20 . 8504 . 468 . 482
0853 €. 0783 C.0320
5 . B0g . 894 . 462
C.A87> <. 098> C.0480
MODEL. LI 16 . 487 . 449 ~412
C.108> C.091D C. 039
20 . 445 . 3695 . 434

™
.-.,i
[4E
[
o
m
o
o
o
L
™

- . 032D

ig



Table 1.9 - Mean and standard deviation of the third factor
loading estimates for models I, II and III (100 replications per
celld

Sample Size

Model No of wvar 50 100 800

5 . 484 - 808 . 488

C.oBdd C.077D C .03

MODEL I 10 . 484 S . 494
GOl € J0ESD C. 0332

20 . 430 . 423 . 487

€.208) L.082 C.0=9)

=] ST B23 L ABG

C.117> C.077D {.0382

MODEL T1I 10 L ABS . BEE L4897
€210 €.073D C. 029

=0 . 499 . 443 . 4380

C.096> C.078D £ . OB5D

5 . 385 . 4862 . 432

C.141> C.094) C.042)

MODEL II1I 10 . A2 . 466 . 444
C.1182> C.091) C.0400

=0 . 483 . 478 L 433

C.108) €. 074D C.0383

Discussion

In this simulaltion study the effect of sampling variation
and model characteristics on the occcurrence of Heywood cases was
analvysed. Two main causes of Heywood solutions in factor analysis
were observed faor the models analysed:

1> sampling variation combi ned with uni gque variance
parameters close to zero, which is in accordance with Van Driel
c1978>2;

2) misspecification of the model - too many factors are
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included in one particular scolution causing improper solutions

The occurrence of Heywood cases is much more frequent for
small sample sizes. Factor analysis based on fifty or less
observations chould certainly be avoided, not only because of a
higher possibility of Hevwood cases. but because the =zampling
fluctuations may lead to solutions that differ substantially from
the true model.

It was observed, generally, that the occurrence of Heywood
cases lncreases as the number of the wvariables of the model
decreases.

Our results, for unrestricted factor analysis, are in
accordance with the findings of BRoomsma (189852 and Anderson and
Gerbing (18842 for confirmatory factor analysis, concerning the
occurraence of Heyvwood cases.

For normal theory, the chi-square test has been shown to
behave well although a higher proportion than the expected
rejects the model Tor small sample sizes and maderate number of
variables Cp=20D.

The results from the simulation study also show that the
Kaiger criterion ("eigenvalues greater than one') choosing the
number of factors should not be used asz it may lead to the
occurrence of Heywood cases, caused by the inclusion of too many
factors in a solution, mainly if the sample =ize is small and the
number of variables large. With large sample sizes and small
number of variables, the criterion may be useful if used together
with other criteria.

As a final comment we strongly advise that sample sizes of

100 or more are needed for reasonable factor analysis results.
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