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In this paper we summarize the foundation for a model-based approach to diag­
nosis of technical systems ud discuss the import&Dce of qualitative reasoning within 
this framework. Based on this, we propose to apply these diagnostic techniques to 
model building. Thus, theories about physical systems are checked for consistency ud 
against empirical observations. Thu leads to a tool that supports the conatruction ud 
maintena.nce of modellibra.ries as well as the process of theory formation in research. 

1 The Consistency-based Approach to Diagnosis 
Knowledge-based diagnosis systems of ih e firtt generation are erucially based on establishing 
more or less direct links between symptoms that can be observed and faults (or diseases) that 
have been known to cause the symptoms (with a eertain probability) (Fig. 1). Obviously, 
this approach heavily depends on the completeness of knowledge about ali three elements: 
the symptoms, the faults and the associations between tbem. Tbe resulting restriction of 
the system to wbat bas been encountered and widely experienced before, is prohibitive for 
most industrial applieations; handling newly designed systems and new kinds of failures are 
a must. 

Figure 1: First generation: Linking symptoms to faults. 
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An even more signiftcant impediment to industrial applications of thi.s technology lies in 
the fact that each diagnostic system i.s dedicated to a particular type of device and has to be 
developed individually, even though the engineering knowledge required may be essentially 
the same for a much broader class of devices. Intolerably high costs in development and 
maintenance of such systems are a consequence. Altogether, these aspects demand for a 
different approach to diagnosi.s. 

Diagnostic systems of the 1ecorul generGlion are based on representing and exploiting 
primarily a different kind of knowledge: principled knowledge about the elements of the 
system to be diagnosed and about the way they are designed to interaet in order to achieve 
the intended fundion of the entire system. Thi.s is why such knowledge-based systems are 
called model-ba•ed. The model of a particular system i.s constructed from two different 
sources: models of the constituent parts of the system taken from a domain-•pecific üõrar11 
and the draclare le1cription which captures the speciftc knowledge about the respective 
ariifact. 

The constituents are normally thought of as active physical components, but they may 
also be abstract entities, such as processes and characteristic parameters, or passive instru­
ments like sensors. If new kinds of components are introduced, their models have to be 
added to the library, and after their inclusion in the structure, the changed systems can 
be diagnosed. In both cases, the diagnostic engine remains unchanged. Obviously, such a 
system is able to exhibit the ftexibility and adaptability required in many diagnostic tasks 
in technical domains. 

As explained above, the system model comprises knowledge about the structure of the 
device and the behavior of its constituents ("components"). Thi.s model i.s exploited by 
the s<><alled coruidenclf·ba•ed approach as follows: for the situation(s) to be analyred, the 
normal, or intended, behavior is predicted from the modeL Inconsi.stencies of the set of 
predictions and real observations are determined (sO<alled lücrepaneie•), and also their 
potential origins are identifted, which represent diagnostic candidates (Fig. 2) . lf an incon­
sistency ari.ses from a prediction based on, say, components cl and c2, then there must be 
a fault in at least one of C1 or C2, whereas there i.s no reason for suspeding C3, if it i.s not 
involved in the respective prediction. 

....... . .... ---- -~ --------

~ 
Figure 2: Second generation: Model-based prediction of observable behavior. 

Consi.stency-based diagnosi.s has a formal description in terms of logic (see e.g. Ide Kleer 
et al. 901) . Given the MODEL of the device and the set OBS of observations about 
its aetual behavior, the diagnostic task i.s to flnd the set !l. of broken components. It i.s 
solved by determining (complete) sets of unmption1 about the correctness of the system's 
components that are conlinent with the model and the observations, i.e. 

MODEL u OBS u {FAULTY(C)IC E ll.} u {CORRECT(C}IC E COMPS \ll.} 
must be consi.stent (COMPS i.s the set of ali components). Thi.s formalization serves as 
a basis for rigorous analyzing properties of different algorithms and implemented systems, 
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such as the General Diagnostic Engine (GDE) (Ide Kleer-Williams 871) or GDE+ (IStruss­
Dressler 891). 

This model-based approach to diagnosis oftechnical systems promises signifieant progress 
in this domain. Its relevance for applications to industrial automation has severa! aspects: 
First, it will extend the scope of potential diagnostic applications, because it does not 
require previous experience with the device to be diagnosed. Second, it is a qualitative 
advance in competente of knowledge-based diagnosis, since it enables the diagnosis of new 
and unanticipated kinds of faults. Third, it contributes to the reuse of software (in terms of 
the component models and the diagnostic algorithms ), thus enabling the fast and inexpensive 
generation of specialized diagnosis systems for new devices. Finally, and more strategically, 
it opens the perspective of a coherent representation of technological and scientiftc knowledge 
that can be exploited for different task-oriented knowledge-based systems, supporting, for 
instance, design, simulation, monitoring, maintenance etc. 

Today, the technology is rTWture enoagh to be applicable to diagnosing selected domains 
(see e.g. [Guida.-Stefanini 92J, [Beschta et ai. 931) and, hence, attracts industrial interest. 

Nevertheless, still m•ch more re1earch in compu ter science, mathematics and engineering 
needs to be done in order to enhance the systems and broaden the application domains. 

2 Qualitative Modeling and Diagnosis 
The diagnostic approach outlined above does not imply any particular form and content of 
the model, except that this model and its use pre1erve1 the ltr1tcture of the real device. 

There are several reasons for incorporating qualitative modeling techniques for a model­
based system: 

• Providing a llracfaral tle1cription of the device is fundamental for a model-based sys­
tem. This has been a major research topic of qualitative reasoning. 

• There are domains in which preci1e model1 and valttel are not available or situations in 
which they are not applicable. Recall the limited precision of measurements in many 
real cases. 

• Much of the naturalness of qualitative arguments is dueto the way humans try to han­
dle complenty of systems: concentrating on the essential distinctions ( e.g. considering 
only the directions of infiuences and changes), performing abstractions, working with 
approximate models and making simplifying assumptions requires qualitative meth­
ods. We believe this aspect is of the most important but least developed features of 
model-based diagnosis. 

Qualitative reasoning, or more precisely, qualitative physics (!Weld-de Kleer 89J, !Faltings­
Struss 001} has emerged as a special branch of Artificial Intelligence research from two roots: 
modeling common sense knowledge about the physical world and modeling engineering prob­
lem solving skills. 

lt is obvious that reasoning about systems without precisely knowing their laws and 
parameters is an essential feature of human interaction with every-day life environment. As 
a matter of fact, also scientiflc and engineering work involves analysis on a more abstract 
level than the solution of differential equations and computation of numerical values. Quite 
often, these strudural and qualitative levels are crucial for solving a problem ( and for being 
able to perform the appropriate calculations). 

Sometimes, qualitative reasoning is considered from the narrow perspective of being "cal­
culation with qualitative values". In opposition to this point of view, we want to emphasize 
that qualitative reasoning, in pursuing the goal to identify and describe the essential features 
and mechanisms underlying a (physical) system, comprises both: 
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• Modeling lfr•chtre, i.e., representation of the constituents of a system and of their 
paths of potential interactions, and 

• Modeling beh.tunor, i. e., charaderizing the system 's state and its development over 
time qualitatively. 

To achieve this, qualitative reasoning operates on behavior descriptions that reflect only 
the e11ential distinctions in the behavior. It derives statements about whole classes of phys­
ical systems that share basic behavioral properties. Thus, it avoids having to sample large 
parameter spaces and sets of initial conditions which is what numerical simulation would 
require in order to achieve the same results. For this purpose, formal methods and sys­
tems have been developed that perform, for instance, inferences about orders of magnitude 
(IRaiman 861} and inequality reasoning (IForbus 841). 

Another technique that derives qualitative statements about interdependencies among 
variables is regime analysis ([Roque t)l, Roque 931). Qualitative reasoning with regime 
tsnal11li• has its foundations in the theory of dimensional analysis, which is quite well-knwon 
in physics but rather new to the qualitative physics community. The main idea behind regime 
analysis is to flnd out dimensionless quantities that describe the core of the physical system 
and perform a qualitative analysis about the composite behavior of the system forming the 
so-called regimes. 

Regime analysis seems applicable to a number of situations where 

• the process is defined by a large number of variables and parameters, and the effect of 
a change in one of these variables on other variables has to be analyzed, 

• the actual physicallaw that underlies the process or device is only incompletely known, 

• the computational costs of a full numerical (quantitative) analysis is high, 

• the actual qualitative analysis of the physical process or device satistles the require­
ments. 

Examples can be found in monitoring of engineering plants, in diagnosing faulty devices, 
robotics, etc. Actually, this approach can be extended to other non-physical areas where the 
notion of dimensional representation can be establishcd. Potential candidates are ecology 
and economy. 

Clearly, in many situations, qualitative reasoning is not able to provide an unambiguous 
and sufficiently detailed behavior of a process, and so, the association with other approaches 
becomes necessary. Often, di.ft'erent methods of analysis have to be combined. 

Quite fundamental too, are techniques that use distinctive "landmark values" and in­
tervals between them as qualitative values (!Kuipers 86J, jStruss 881), with the sign algebra 
{Ide Kleer-Brown 841) given in Tables 1 and 2 as a special case. 

E9 o + ? 

o o + ? 
+ ? + + ? 
? ? ? ? ? 

'l'&ble 1: Addition of si.sns. ? denotes unrestricted va.lues. 



® o + ? 
+ o 

o o o o ? 
+ o + ? 
? ? ? ? ? 

Table 2: Multiplication of signs. ? denotes unrestricted values. 

Although this may appear io be raiher weak, it often suftices to generate useful informa­
tion about a system's behavior and diagnostic hypotheses. Qualitative models become even 
a necessity, ü numerical information is not available. In order to illustrate this, consider the 
simple circuit consisting of a voltage source, three resistors and a light bulb shown in Fig. 3. 
Assume that the only observation is that the light bulb is dimmed compared to its normal 
mode, thus indicating a reduced current through ~. 

R2 

v 

Figure 3: Eledric circuit 

Let us denote the deviation of the actual value of a variable, x, from its nominal one by 
ÂZ = Znom - Zcsct· From the equation 

. v 
I - -:-=-- -.,-:-Pr---=-"7 
:l- (Rt + Rn~' +R2) 

we obtain the "qualitative equation" 

Ai2 =Av $ (AR3 e ARt e AR2) ®v 

for the deviations from the nominal values. If v = +, the dim light bulb indicates thai 
Ai:l = - , and the equation implies 

Ai2 = - A v = + => Av = - v AR3 = - v AR1 = + v AR2 = +, 
i.e. a set of deviations of parameter values as possible e:xplanations for the observation. 

This, admittedly simple, example illustrates that the use of qualitative models can reflect 
the nature of the available information about a system and is able to derive useful results 
even ü observations are imprecise and incomplete. As the diagnosis obtained will often be 
ambiguous, further reflnement may be required based on additional observations andfor 
the use of more detailed models. Hence, one requirement that is frequentely raised by 
application-oriented work is the neeessity of combintdioru of modeling techniques instead of 
a single one ("Multiple Modeling" , see e.g. !Struss 921). 

Under this aspect, it shonld be noted that the model we introduced in the example is 
not only qnalitative bnt also simplifled, because it neglects, for instance, the resistance of 
the connecting wires. Such modeling assumptions, although justifled in general, may turn 
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out to be inadequate in certain situations, in particular when a fault is present. This is why 
multiple modeling has to include techniques for handling simplified and appraximate models 
and for reasoning about modeling assumptions, as shown in (IStruss 92]). 

3 Diagnosis as Support for Model Formation 
Modeling, i.e. the formation of a theory about a physical system in order to perform model­
based reasoning for a particular task, turns out to be difficult in practice. In fact, it is, in 
general, more difficult than collecting a sample of experiential rules because of the much 
stronger requirements on the generality and robustness of the knowledge captured. Having 
built a library comprising context-independent behavior models of a set of constituent el­
ements, the system developer has to check for a number of properties. Are these models 
consistent with each other7 Are they together adequate for behavior prediction in the in­
tended contexts7 Do they suffice to explain the known phenomena of composite systems7 
Are they compliant with the "accepted wisdom"? Currently, there is almost no computer 
support for this task. · 

At this point, the consistency-based approach to diagnosis explained in section 1 provides 
the foundation for some help. Remember that this approach can be described as checking a 
composite model for consistency with a set of given data and determining the possible causes 
of contradictions to these data in terms of constituent models to be revised. This abstract 
characterization matches very well with the task of mo dei validation discussed above. Hence, 
model-based diagnosis techniques can indeed be applied to create a tool that supports the 
model formation in the following way. The developer of a modellibrary has to 

• formulate the "accepted wisdom", i. e. the theory he or she considers undoubted, 

• add model fragments that require validation, i.e. an extension to the existing theory, 
and, using these two elements of the modellibrary, 

• construct a composite model of a known system scenario and enter empirical data 
about its (normal) behavior. 

Consistency-based diagnosis is then applied to this model using the empirical data as 
observations and will either confirm consistency or return a list of model fragments as 
possible origins of contradictions which are candidates for a revision of the theory. Two 
issues are worth noticing. 

Such a system cannot only point to the model fragments that may need inspection. It 
can often ngge1t certain 1pecijic modijication1 to the model that would remove the con­
tradiction. This happens because the system proposes suspected model fragments because 
they contradict predictions of other models (or the given data). Hence, the latter predictions 
indicate what the suspect should predict in order to be appropriate. 

On the other hand, this approach does not suffice to discover ali deficiencies. If a model 
is simply too weak to make particular predictions about the expected behavior, it would be 
consistent with the given data and, hence, pass consistency-based diagnosis. So, what we 
want to make sure is that the known behavior is actually entailed by the composite model 
(rather than being merely consistent). The appropriate type of diagnosis for this task is 
tJbdactifle diagnosis. (!Dressler-Struss 921) describes an integration of abductive diagnosis 
into the consistency-based approach which is needed in the proposed model-building tool. 

Such a tool would be a signiflcant support for the development of model-based sys­
tems and help to reduce development time and efforts spent on maintenance of model li­
braries. While this indicates the importance for the industrial production and application 
of knowledge-based systems, it should be noted that this kind of tool may as well be used in 
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research activities in areas where the formation or extension of a theory can be supported. 
Here, the models diagnosed would not necessarily be component models, but fragments or 
hypotheses in a theory which are checked against other confirmed theories, empirical data, 
or expected predictions. 

For instance, this might support the formation of models of biological and ecological sys­
tems, in particular in conjunction with qualitative modeling techniques, since often data in 
these domains are inherently qualitative. Furthermore, as the consistency-based diagnostic 
techniques provide facilities for proposing useful measurements (Ide Kleer-Williams 871) and 
for generating tests (IStruss 03]), they can also be used for the design of experiments to 
check and promote the evolution of the theory. 

4 Summary and Outlook 
We have shown that model-based diagnosis in conjunction with reasoning with qualitative 
and multiple models make an important contribution to the application of knowledge-based 
systems to industrial automation. Furthermore, the techniques can be applied to the process 
o f building such systems, in supporting the development of mqdellibraries or, more generally, 
of theories of physical systems. 

The authors intend to continue collaborating on model-based diagnosis, qualitative mod­
eling and model formation. For the validation of the research results, discussions are in 
progress to jointly develop 

• with Riosoft company an application to diagnosis of the pulp production process and 

• with ELETROSUL/UFSC and SIEMENS Munich an application in the domain of 
power transportation networks. 

These proposals fit in the context of the Brazilian project on "Integrated Automation 
Technology". Furthermore, we intend to evaluate the facilities for qualitative modeling and 
scientific theory formation in other areas, such as ecology. 
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