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Abstract

In this paper we summarize the foundation for a model-based approach to diag-
nosis of technical systems and discuss the importance of qualitative reasoning within
this framework. Based on this, we propose to apply these diagnostic techniques to
model building. Thus, theories about physical systems are checked for consistency and
against empirical observations. This leads to a tool that supports the construction and
maintenance of model libraries as well as the process of theory formation in research.

The Consistency-based Approach to Diagnosis

Knowledge-based diagnosis systems of the first generation are crucially based on establishing
more or less direct links between symptoms that can be observed and faults (or diseases) that
have been known to cause the symptoms (with a certain probability) (Fig. 1). Obviously,
this approach heavily depends on the completeness of knowledge about all three elements:
the symptoms, the faults and the associations between them. The resulting restriction of
the system to what has been encountered and widely experienced before, is prohibitive for
most industrial applications; handling newly designed systems and new kinds of failures are
a must.
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Figure 1: First generation: Linking symptoms to faults.
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An even more significant impediment to industrial applications of this technology lies in
the fact that each diagnostic system is dedicated to a particular type of device and has to be
developed individually, even though the engineering knowledge required may be essentially
the same for a much broader class of devices. Intolerably high costs in development and
maintenance of such systems are a consequence. Altogether, these aspects demand for a
different approach to diagnosis.

Diagnostic systems of the second generation are based on representing and exploiting
primarily a different kind of knowledge: principled knowledge about the elements of the
system to be diagnosed and about the way they are designed to interact in order to achieve
the intended function of the entire system. This is why such knowledge-based systems are
called model-based. The model of a particular system is constructed from two different
sources: models of the constituent parts of the system taken from a domain-specific library
and the structure description which captures the specific knowledge about the respective
artifact.

The constituents are normally thought of as active physical components, but they may
also be abstract entities, such as processes and characteristic parameters, or passive instru-
ments like sensors. If new kinds of components are introduced, their models have to be
added to the library, and after their inclusion in the structure, the changed systems can
be diagnosed. In both cases, the diagnostic engine remains unchanged. Obviously, such a
system is able to exhibit the flexibility and adaptability required in many diagnostic tasks
in technical domains.

As explained above, the system model comprises knowledge about the structure of the
device and the behavior of its constituents (“components”). This model is exploited by
the so-called consistency-based approach as follows: for the situation(s) to be analyzed, the
normal, or intended, behavior is predicted from the model. Inconsistencies of the set of
predictions and real observations are determined (so-called discrepancies), and also their
potential origins are identified, which represent diagnostic candidates (Fig. 2). If an incon-
sistency arises from a prediction based on, say, components C; and C3, then there must be
a fault in at least one of C; or Cy, whereas there is no reason for suspecting Cs, if it is not
involved in the respective prediction.

C, Cg Prediction

Figure 2: Second generation: Model-based prediction of observable behavior.

Consistency-based diagnosis has a formal description in terms of logic (see e.g. [de Kleer
et al. 90]). Given the MODEL of the device and the set OBS of observations about
its actual behavior, the diagnostic task is to find the set A of broken components. It is
solved by determining (complete) sets of assumptions about the correctness of the system’s
components that are consisfent with the model and the observations, i.e.

MODEL U OBS u {FAULTY(C)|C € A} u {CORRECT(C)|C € COMPS \ A}

must be consistent (COMPS is the set of all components). This formalization serves as
a basis for rigorous analyzing properties of different algorithms and implemented systems,



such as the General Diagnostic Engine (GDE) ([de Kleer-Williams 87]) or GDE* ([Struss-
Dressler 89]).

This model-based approach to diagnosis of technical systems promises significant progress
in this domain. Its relevance for applications to industrial automation has several aspects:
First, it will extend the scope of potential diagnostic applications, because it does not
require previous experience with the device to be diagnosed. Second, it is a qualitative
advance in competence of knowledge-based diagnosis, since it enables the diagnosis of new
and unanticipated kinds of faults. Third, it contributes to the reuse of software (in terms of
the component models and the diagnostic algorithms), thus enabling the fast and inexpensive
generation of specialized diagnosis systems for new devices. Finally, and more strategically,
it opens the perspective of a coherent representation of technological and scientific knowledge
that can be exploited for different task-oriented knowledge-based systems, supporting, for
instance, design, simulation, monitoring, maintenance etc.

Today, the technology is mature enough to be applicable to diagnosing selected domains
(see e.g. [Guida-Stefanini 92|, [Beschta et al. 93]) and, hence, attracts industrial interest.

Nevertheless, still muck more research in computer science, mathematics and engineering
needs to be done in order to enhance the systems and broaden the application domains.

2 Qualitative Modeling and Diagnosis

The diagnostic approach outlined above does not imply any particular form and content of
the model, except that this model and its use preserves the structure of the real device.

There are several reasons for incorporating gualitative modeling techniques for a model-
based system:

¢ Providing a structural description of the device is fundamental for a model-based sys-
tem. This has been a major research topic of qualitative reasoning.

o There are domains in which precize models and values are not available or situations in
which they are not applicable. Recall the limited precision of measurements in many
real cases.

¢ Much of the naturalness of qualitative arguments is due to the way humans try to han-
dle complezity of systems: concentrating on the essential distinctions (e.g. considering
only the directions of influences and changes), performing abstractions, working with
approximate models and making simplifying assumptions requires qualitative meth-
ods. We believe this aspect is of the most important but least developed features of
model-based diagnosis.

Qualitative reasoning, or more precisely, qualitative physics (|Weld-de Kleer 89], [Faltings-
Struss 90]) has emerged as a special branch of Artificial Intelligence research from two roots:
modeling common sense knowledge about the physical world and modeling engineering prob-
lem solving skills.

It is obvious that reasoning about systems without precisely knowing their laws and
parameters is an essential feature of human interaction with every-day life environment. As
a matter of fact, also scientific and engineering work involves analysis on a more abstract
level than the solution of differential equations and computation of numerical values. Quite
often, these structural and qualitative levels are crucial for solving a problem (and for being
able to perform the appropriate calculations).

Sometimes, qualitative reasoning is considered from the narrow perspective of being “cal-
culation with qualitative values”. In opposition to this point of view, we want to emphasize
that qualitative reasoning, in pursuing the goal to identify and describe the essential features
and mechanisms underlying a (physical) system, comprises both:



e Modeling structure, ie., representation of the constituents of a system and of their
paths of potential interactions, and

o Modeling behavior, i.e., characterizing the system’s state and its development over
time qualitatively.

To achieve this, qualitative reasoning operates on behavior descriptions that reflect only
the essential distinctions in the behavior. It derives statements about whole classes of phys-
ical systems that share basic behavioral properties. Thus, it avoids having to sample large
parameter spaces and sets of initial conditions which is what numerical simulation would
require in order to achieve the same results. For this purpose, formal methods and sys-
tems have been developed that perform, for instance, inferences about orders of magnitude
([Raiman 86]) and inequality reasoning ([Forbus 84]).

Another technique that derives qualitative statements about interdependencies among
variables is regime analysis ([Roque 91, Roque 93|). Qualitative reasoning with regime
analysie has its foundations in the theory of dimensional analysis, which is quite well-knwon
in physics but rather new to the qualitative physics community. The main idea behind regime
analysis is to find out dimensionless quantities that describe the core of the physical system
and perform a qualitative analysis about the composite behavior of the system forming the
so-called regimes.

Regime analysis seems applicable to a number of situations where

o the process is defined by a large number of variables and parameters, and the effect of
a change in one of these variables on other variables has to be analyzed,

e the actual physical law that underlies the process or device is only incompletely known,
o the computational costs of a full numerical (quantitative) analysis is high,

e the actual qualitative analysis of the physical process or device satisfies the require-
ments.

Examples can be found in monitoring of engineering plants, in diagnosing faulty devices,
robotics, etc. Actually, this approach can be extended to other non-physical areas where the
notion of dimensional representation can be established. Potential candidates are ecology
and economy.

Clearly, in many situations, qualitative reasoning is not able to provide an unambiguous
and sufficiently detailed behavior of a process, and so, the association with other approaches
becomes necessary. Often, different methods of analysis have to be combined.

Quite fundamental too, are techniques that use distinctive “landmark values” and in-
tervals between them as qualitative values ([Kuipers 86|, [Struss 88]), with the sign algebra
([de Kleer-Brown 84]) given in Tables 1 and 2 as a special case.
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Table 1: Addition of signs. 7 denotes unrestricted values.
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Table 2: Multiplication of signs. 7 denotes unrestricted values.

Although this may appear to be rather weak, it often suffices to generate useful informa-
tion about a system’s behavior and diagnostic hypotheses. Qualitative models become even
a necessity, if numerical information is not available. In order to illustrate this, consider the
simple circuit consisting of a voltage source, three resistors and a light bulb shown in Fig. 3.
Assume that the only observation is that the light bulb is dimmed compared to its normal
mode, thus indicating a reduced current through R,.
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Figure 3: Electric circuit

Let us denote the deviation of the actual value of a variable, x, from its nominal one by
Az = Zpom — Zact. From the equation

p v
" R+ BB 1Ry

we obtain the “qualitative equation”

Aig =Av ® (ARs 6 AR, 6 AR;) ® v

for the deviations from the nominal values. If v = +, the dim light bulb indicates that
Aiy = —, and the equation implies

Aig=—Av=+=> Av=—-V ARy=-V AR =+ V ARy = +,

i.e. a set of deviations of parameter values as possible explanations for the observation.

This, admittedly simple, example illustrates that the use of qualitative models can reflect
the nature of the available information about a system and is able to derive useful results
even if observations are imprecise and incomplete. As the diagnosis obtained will often be
ambiguous, further refinement may be required based on additional observations and /or
the use of more detailed models. Hence, one requirement that is frequentely raised by
application-oriented work is the necessity of combinations of modeling techniques instead of
a single one (“Multiple Modeling”, see e.g. [Struss 92]).

Under this aspect, it should be noted that the model we introduced in the example is
not only qualitative but also simplified, because it neglects, for instance, the resistance of
the connecting wires. Such modeling assumptions, although justified in general, may turn



out to be inadequate in certain situations, in particular when a fault is present. This is why
multiple modeling has to include techniques for handling simplified and approximate models
and for reasoning about modeling assumptions, as shown in ([Struss 92]).

3 Diagnosis as Support for Model Formation

Modeling, i.e. the formation of a theory about a physical system in order to perform model-
based reasoning for a particular task, turns out to be difficult in practice. In fact, it is, in
general, more difficult than collecting a sample of experiential rules because of the much
stronger requirements on the generality and robustness of the knowledge captured. Having
built a library comprising context-independent behavior models of a set of constituent el-
ements, the system developer has to check for a number of properties. Are these models
consistent with each other? Are they together adequate for behavior prediction in the in-
tended contexts? Do they suffice to explain the known phenomena of composite systems?
Are they compliant with the “accepted wisdom”? Currently, there is almost no computer
support for this task. '

At this point, the consistency-based approach to diagnosis explained in section 1 provides
the foundation for some help. Remember that this approach can be described as checking a
composite model for consistency with a set of given data and determining the possible causes
of contradictions to these data in terms of constituent models to be revised. This abstract
characterization matches very well with the task of model validation discussed above. Hence,
model-based diagnosis techniques can indeed be applied to create a tool that supports the
model formation in the following way. The developer of a model library has to

e formulate the “accepted wisdom”, i.e. the theory he or she considers undoubted,

o add model fragments that require validation, i.e. an extension to the existing theory,
and, using these two elements of the model library,

e construct a composite model of a known system scenario and enter empirical data
about its (normal) behavior.

Consistency-based diagnosis is then applied to this model using the empirical data as
observations and will either confirm consistency or return a list of model fragments as
possible origins of contradictions which are candidates for a revision of the theory. Two
issues are worth noticing.

Such a system cannot only point to the model fragments that may need inspection. It
can often suggest certain specific modifications to the model that would remove the con-
tradiction. This happens because the system proposes suspected model fragments because
they contradict predictions of other models (or the given data). Hence, the latter predictions
indicate what the suspect should predict in order to be appropriate.

On the other hand, this approach does not suffice to discover all deficiencies. If a model
is simply too weak to make particular predictions about the expected behavior, it would be
consistent with the given data and, hence, pass consistency-based diagnosis. So, what we
want to make sure is that the known behavior is actually entailed by the composite model
(rather than being merely consistent). The appropriate type of diagnosis for this task is
abductive diagnosis. ([Dressler-Struss 92]) describes an integration of abductive diagnosis
into the consistency-based approach which is needed in the proposed model-building tool.

Such a tool would be a significant support for the development of model-based sys-
tems and help to reduce development time and efforts spent on maintenance of model li-
braries. While this indicates the importance for the industrial production and application
of knowledge-based systems, it should be noted that this kind of tool may as well be used in



research activities in areas where the formation or extension of a theory can be supported.
Here, the models diagnosed would not necessarily be component models, but fragments or
hypotheses in a theory which are checked against other confirmed theories, empirical data,
or expected predictions.

For instance, this might support the formation of models of biological and ecological sys-
tems, in particular in conjunction with qualitative modeling techniques, since often data in
these domains are inherently qualitative. Furthermore, as the consistency-based diagnostic
techniques provide facilities for proposing useful measurements ([de Kleer-Williams 87]) and
for generating tests ([Struss 93]), they can also be used for the design of experiments to
check and promote the evolution of the theory.

4 Summary and Outlook

We have shown that model-based diagnosis in conjunction with reasoning with qualitative
and multiple models make an important contribution to the application of knowledge-based
systems to industrial automation. Furthermore, the techniques can be applied to the process
of building such systems, in supporting the development of model libraries or, more generally,
of theories of physical systems.

The authors intend to continue collaborating on model-based diagnosis, qualitative mod-
eling and model formation. For the validation of the research results, discussions are in
progress to jointly develop

o with Riosoft company an application to diagnosis of the pulp production process and

e with ELETROSUL/UFSC and STEMENS Munich an application in the domain of
power transportation networks.

These proposals fit in the context of the Brazilian project on "Integrated Automation
Technology”. Furthermore, we intend to evaluate the facilities for qualitative modeling and
scientific theory formation in other areas, such as ecology.
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