
Exploration of Load Balancing Thresholds to
Save Energy on Iterative Applications

Edson L. Padoin1, Laércio L. Pilla2, Márcio Castro2,
Philippe O. A. Navaux3 and Jean-François Méhaut4

1 Department of Exact Sciences and Engineering
Regional University of Northwest of Rio Grande do Sul (UNIJUI) – Ijúı, RS – Brazil

2 Department of Informatics and Statistics
Federal University of Santa Catarina (UFSC) – Florianpolis, SC – Brazil

3 Institute of Informatics
Federal University of Rio Grande do Sul (UFRGS) – Porto Alegre, RS – Brazil

4 Laboratoire d’Informatique de Grenoble (LIG)
Grenoble University – Grenoble – France

padoin@unijui.edu.br,laercio.pilla@ufsc.br,marcio.castro@ufsc.br,

navaux@inf.ufrgs.br,jean-francois.mehaut@imag.fr

Abstract. The power consumption of High Performance Computing
systems is an increasing concern as large-scale systems grow in size and,
consequently, consume more energy. In response to this challenge, we
proposed two variants of a new energy-aware load balancer that aim at
reducing the energy consumption of parallel platforms running imbal-
anced scientific applications without degrading their performance. Our
research combines Dynamic Load Balancing with Dynamic Voltage and
Frequency Scaling techniques in order to reduce the clock frequency of
underloaded computing cores which experience some residual imbalance
even after tasks are remapped. This work presents a trade-off evaluation
between runtime, power demand and total energy consumption when
applying these two energy-aware load balancer variants on real-world
applications. In this way, we can define which is the best threshold value
for each application under the total energy consumption, total execution
time or the average power demand focus.

1 Introduction

Several load balancers are able to reduce the total energy consumption of an
application by reducing its total execution time (as energy=time×power). Load
balancers can improve the performance of imbalanced iterative applications by
making a better load distribution among the available processors. However, they
can take suboptimal decisions that result in some load imbalance still remaining
after task migrations. This can happen due to characteristics of the application
that prevent a perfectly balanced mapping to be achieved, and due to limitations
of load balancing heuristics, as the problem that they are trying to solve is NP-
Hard [15].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lume 5.8

https://core.ac.uk/display/293605159?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Edson L. Padoin et al.

Our proposed algorithms, FG-EnergyLB and CG-EnergyLB [17] try to
reduce the total energy consumption by exploiting residual imbalance left by load
balancing algorithm. The first one, called Fine-Grained Energy Load Balancer
(FG-EnergyLB), is suitable for platforms composed of few tens of cores that
allow per-core Dynamic Voltage and Frequency Scaling (DVFS). The second one,
called Coarse-Grained Energy Load Balancer (CG-EnergyLB) is suitable for
current HPC platforms composed of several multi-core processors that feature
per-chip DVFS. They identify the possibility of reducing the processors clock
to achieve better gains better than other load balancing algorithms that they
employ. In this form, energy improvements are achieved due to the reduction of
average power during the runtime and also by reducing the application execution
time by reducing the number of tasks migrated. The main idea of the EnergyLB
is to exploit the existence of residual imbalances on iterative applications to
adjust the clock frequency of underloaded cores/processors through DVFS.

Nevertheless, the definition of the interval between calls to the load balancer
is decisive to reduce the load balancing overhead. If the load balancer is invoked
in long time periods, the load imbalance may increase too much and result in loss
of performance, which consequently increases the total energy consumption. On
the other hand, if the strategy is performed very frequently, it also may incur
in a reduction of performance, since the load balancing overhead may exceed
its benefits. In this context, aiming to decrease the load balancing overhead,
recent strategies have adopted a threshold value to determine if load balancing
or DVFS must be performed.

In this context, in this paper we focus on a trade-off evaluation between run-
time, power demand, and total energy consumption when using different thresh-
old values in the two variants of our energy-aware load balancer (EnergyLB) on
two imbalanced real-world applications. Our results show that FG-EnergyLB
can achieve energy savings of up to 17.1% with an average of 16.3%, and CG-
EnergyLB of up to 31% with an average of 23% through the reduction of the
average power demand. However, we observed that the total execution time of
the applications may be reduced or increased according to threshold value cho-
sen.

The remaining sections of this paper are organized as follows. Section 2 dis-
cusses related works on DVFS and energy-aware load balancing. Then, Section 3
presents the evaluation methodology and the applications used to evaluate the
efficiency of our energy-aware load balancer. Our experimental results are dis-
cussed in Section 4. Finally, Section 5 concludes this paper.

2 Related Work on Energy Consumption

Different techniques have been proposed to reduce the runtime and power de-
mand and thus improve the energy efficiency of platforms while running parallel
applications. Among them, we highlight in this section DVFS and load balancing
strategies.

Exploration of Load Balancing Thresholds ... 3

Dynamic voltage and frequency scaling (DVFS). Recent studies demon-
strate that an idle host may consume more than half of its peak power [7]. Be-
cause of that, DVFS has been used in different contexts as a means to save
energy. Gerards et al. [4] analyze the use of global DVFS in the context of multi-
core processors. They proposed a theoretical method to transform the problem
of finding an optimal clock frequency on global DVFS systems to a single core
problem by using the amount of parallelism of applications. Their main goal is to
minimize the energy consumption of nontrivial real-time applications. Spiliopou-
los et al. [19] extended the gem5 simulator to support full-system DVFS model-
ing. This extended version is then used to study the behavior of different DVFS
governors (interactive, on-demand and performance). They concluded that the
interactive governor is faster than on-demand to adapt to the workload changes
and thus achieves better performance at about the same energy consumption.
Kin et al. [14] proposed a realistic DVFS performance prediction method and a
practical DVFS control policy (eDVFS) that aims to minimize total energy con-
sumption in multi-core processors. Their experimental results show that eDVFS
can save a substantial amount of energy compared with Linux on-demand. Isci
et al. [9] proposed to fine-tune the processor’s clock frequency by using workload
characteristics to maintain a chip-level power below a specified budget with-
out degrading the performance significantly. The proposed approach can come
within 1% of the performance of an ideal oracle, while meeting a given chip-level
power budget.

Energy-aware load balancing. Load balancing is a challenging problem
and has been studied extensively in the past to improve the performance of par-
allel applications [11, 21]. However, few works have made some efforts to further
improve the energy consumption. Aupy [1] proposed energy-aware scheduling
models to schedule tasks under reliability and makespan constraints. They de-
signed and evaluated them using simulations with different heuristics based on
the failure probability, the task weights, and the processor speeds. These heuris-
tics aim at minimizing the energy consumption while enforcing reliability and
deadline constraints. Sarood et al. [18] proposed a load balancing strategy that
limits the processors’ temperatures to reduce the energy spent in cooling and
to prevent hot spots. Their results achieved energy savings of up to 63%, with
a timing penalty from 2% to 23%. Goel et al. [5] proposed a model that uses
CPU performance counters and CPU temperature to generate accurate per-core
power estimates in real-time. They showed that the model can be used to guide
scheduling decisions in power-aware resource managers. Hartog et al. [6] studied
the relationship between CPU temperature and energy consumption in clusters
and provided a method of estimating the power consumption of the system. This
method was then used to implement a MapReduce framework that can evaluate
the current status of each node and dynamically react to estimated power usage
without having to rely on readings from expensive power monitoring hardware
affixed to each node in the cluster.

As opposed to these works, our energy-aware approach performs load bal-
ancing along with DVFS to improve the performance and to reduce the energy

4 Edson L. Padoin et al.

consumption by exploiting residual imbalances of parallel applications [17]. In
addition, we also reduce the cost of task migrations, since we only migrate tasks
between processors when necessary. The performance, power demand and total
energy consumption of our energy-aware load balancers are here analyzed on a
set of real-world application running on top of a real platform without the need
of simulations.

3 Evaluation Methodology

This section describes the methodology used in our trade-off study. We first
present the execution environment, followed by the applications used in our
experiments.

3.1 Experimental Environment

The experiments were conducted on an Altix UV 2000 platform designed by
SGI. The platform is composed of 24 NUMA nodes. Each node has an Intel
Xeon E5-4640 Sandy Bridge-EP x86-64 processor with 8 physical cores running
at 2.40 GHz. There are 14 clock frequency levels available in this processor,
allowing us to vary the clock frequency of the processor from 1.2 GHz up to
2.4 GHz.

Each core of the Intel Xeon E5-4640 has 32 KB instruction and 32 KB data
L1 caches and 256 KB of L2 cache. All the 8 cores share a 20 MB L3 cache.
Each node has 32 GB of DDR3 memory, which is shared with other nodes in a
cc-NUMA fashion through SGI’s proprietary NUMAlink6. Overall, this platform
has 192 physical cores and 768 GB DDR3 memory.

The platform runs an unmodified SUSE Linux Enterprise Server operat-
ing system with kernel 3.0.101-0.29 installed. All applications as well as the
Charm++ programming model were compiled with GCC 4.8.2. The Charm++
version used in our experiments was linux64-6.5.1. The results presented in Sec-
tion 4 are the average of at least 10 runs. The relative error was less than 5%
using a 95% statistical confidence by Student’s t-distribution.

3.2 Applications

To evaluate the trade-off between run time, power demand and total energy
consumption of our proposed variants of EnergyLB, we selected different real-
world applications. They were chosen due to their varied range of communication
patterns and workload characteristics. The description of the applications is
given below:

– Ondes3D is a seismic wave propagation simulator employed to estimate
the damage in future earthquake scenarios [3]. In Ondes3D , seismic waves
are modeled as a set of elastodynamics equations. These equations are then
solved by applying a finite difference method. In our experiments, we used a

Exploration of Load Balancing Thresholds ... 5

version recently adapted to Adaptive MPI [8] [10] that profits from Charm++’s
load balancing framework [20]. In this version, the application is overdecom-
posed into multiple virtual MPI processes per core. Ondes3D presents load
irregularity due to the boundary conditions producing additional work, and
load dynamicity from the simulation of waves spreading through space;

– Lulesh simulates a variety of science and engineering problems requiring
hydrodynamics modeling, which describes the motion of materials relative
to each other when subject to forces. The Livermore Unstructured Lagrange
Explicit Shock Hydrodynamics (LULESH) application was originally devel-
oped as one of the five challenge problems in the DARPA Ubiquitous High
Performance Computing (UHPC) program. Lulesh solves one octant of the
spherical Sedov problem using Lagrange hydrodynamics [13] [12] [2].

Input parameters Table 1 summarizes the characteristics of the applications
and parameters used in our experiments. Different load balancing frequencies
have been chosen for different applications in order to strike a balance between
the benefits of remapping tasks and the overheads of moving tasks and computing
a new task mapping. Deciding the optimal moment to call a load balancer is a
challenging problem [16] and is out of the scope of this paper.

Table 1. Summary of the input parameters of applications.

Application Tasks Iterations LB Frequency

Ondes3D 128 500 20
Lulesh 729 1000 50

3.3 Load Balancers

Charm++ provides a set of load balancing algorithms that can be used to
migrate tasks among processors and to reduce the load imbalance. Thus, to
analyze which is the best threshold value for each application under the total
energy consumption, total execution time or the average power demand focus, we
have selected the GreedyLB load balancer available on Charm++ platform.

4 Experimental Results

This section presents a trade-off between run time, power demand and total
energy consumption achieved by our energy-aware load balancer.

The Intel Xeon E5-4640 processors, available on our experimental platform,
there are 14 clock frequency levels available, which allow us to vary the clock fre-
quency of the processor from 1.2 GHz up to 2.4 GHz. So, we vary the threshold

6 Edson L. Padoin et al.

(thrld) parameter of the algorithm from 0 up to 5 and execute the applications,
in order to make a trade-off. In the following sections we first evaluate the re-
sults achieved with FG-EnergyLB on applications. Then, we perform a similar
evaluation using the CG-EnergyLB.

4.1 Fine-Grained EnergyLB Evaluation

Aiming to reduce the effects of load imbalance and load balancing overhead to
save energy, this section provides a trade-off between run time, power demand
and total energy consumption when used FG-EnergyLB over real applications
with different threshold values. The application run time depends on several
issues, among them, the number of parallel tasks and their load, the duration
of each timestep, and the selected load balancing strategy. The impact of load
balancing is directly related to the load balancing frequency once load balancing
overhead can overcome the gains achieved with load balancing.

In this way, to FG-EnergyLB, in each call of the load balancer, the algo-
rithm verifies if the weighted load of each processor exceeds or not the threshold,
makes decisions to adjust the frequencies (determining so that the frequency
will be decreased or increased) or invokes other load balancer to migrate tasks.
However, the load balancer generates an overhead and when this cost exceeds
its benefits, the total execution time is increased, i.e., calling load balancing
strategies incurs timing penalties to applications.

Our proposed load balancers take three input parameters in their execution.
The first one, is the load balancer that is used to migrate tasks when the imbal-
ance is high. The second one, is the maximum frequency available by processors
that can be set to a core, and the last one, is a threshold value, used to decide
whether call the load balancer or perform DVFS strategy.

Running the applications with FG-EnergyLB configured with different
threshold values, we obtain different amounts of DVFS performed or load bal-
ancers called, what determines different frequency settings of cores or migration
tasks. In this way, we can analyze which is the best threshold value for each
application under the total energy consumption, total execution time or the
average power demand focus as shown in the Figure 1.

Exploration of Load Balancing Thresholds ... 7

 0.7

 0.8

 0.9

 1

 1.1

 1.2

noLB 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

R
e

la
ti
v
e

 t
o

 n
o

L
B

Threshold

2.0
%

17.1
%

18.0
%

Total Time (s)
Energy Consumption (KJ)

Average Power (W)

(a) Ondes3D .

 0.7

 0.8

 0.9

 1

 1.1

 1.2

noLB 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

R
e

la
ti
v
e

 t
o

 n
o

L
B

Threshold

7.3
%

7.7
%

15.6
%

Total Time (s)
Energy Consumption (KJ)

Average Power (W)

(b) Lulesh.

Fig. 1. FG-EnergyLB comparison with different threshold value on Real Applications

– Ondes3D Application

Experiments with Ondes3D were performed using 128 tasks, which run for
500 iterations. Total energy spent to run this application without a load balancer
is 550.4 kJoules and its total execution time is 645.8 seconds. In this way, during
the execution, the average power demand is 35.5 W. These values are taken as
reference in the analysis and represent the noLB value in the Figure 2(a).

In the tests with FG-EnergyLB, the load balancer is called at every 20
iterations, resulting in a total of 24 calls. Using threshold values equal to 0.5 and
1.0, FG-EnergyLB does not perform DVFS, calling GreedyLB at every op-
portunity to migrate tasks. In this context, the average power remains constant
around of 35.5 W. However, performing migrations in this application is very
costly, which incurs in an increase of 15.5% in run time and total energy con-
sumption. This increase is the result of the overhead of migrations undertaken
by GreedyLB.

Using a threshold equal to 1.5, FG-EnergyLB adjusts the clock frequency
through DVFS 18× and only 6× calls the other load balancer to migrate tasks.
In this way, it is able to reduce the average power in 5.7%. Reducing the number
of migrations, the run time suffers a small reduction to 724.38 seconds, which is
still 12.2% longer than with no load balancer, and spends 5.82% more energy.

With the threshold value equal to 2.0, gains in both execution time, power
demand and, consequently energy consumption, are achieved. DVFS was per-
formed 18× during the execution, which reduced the average power in 10.6%,
but the run time was still 8.32% larger than the baseline. Nevertheless, using
this threshold, the total energy consumption is reduced in only 3.15%.

For thresholds from 1.0 up to 2.5, the increase of threshold value also increases
the number of calls of DVFS. For these values, the run time has a reduction near
to linear. The total execution times is reduced from 15% to 2% larger than the
baseline. Similarly, for this threshold range, the average power demand of the
parallel platform is reduced by up to 19%. In this way, both run time and power
demand reductions contribute to reduce the total energy spent.

8 Edson L. Padoin et al.

The greater energy saving for this application is achieved using the threshold
value equal or greater than 2.5. Using these values FG-EnergyLB is able to
reduce in up to 17.1% the total energy consumption in relation to baseline noLB.
These gains are achieved through a reduction in the overhead, which is only
2%, and the average power is reduced in 18%, once that in all calls DVFS was
performed, which resulted in a greater amount of energy saving, as shown in
Figure 2(a).

– Lulesh Application

Lulesh was executed with 1000 iterations in each one of its 729 processes
mapped in 24 cores. This application spent 100.6 kJoules of energy and takes
84.7 seconds when executed without a load balancer. In this execution the av-
erage power demand is 35.1 W. Similar to Ondes3D , these values are taken as
baseline (noLB) in Figure 2(b)) to examine the threshold variation of the Lulesh
application.

Load balancing call is configured with a frequency of 50 iterations so, in
this test, our load balancer are called 19 times during the execution. When
thresholds equal to 0.5 and 1.0 were used, FG-EnergyLB did not perform any
time adjustment in clock frequency. So, using these thresholds the average power
is not changed. In addition, in these tests the load balancing overhead increases
the run time and consequently, the total energy consumption in up to 2%.

A greater amount of DVFS is performed when the value of threshold is in-
creased. For a threshold equal to 1.5, FG-EnergyLB calls DVFS 17×. Thus,
it reduces the run time in up to 1.33%, which also contributes for the reduction
of the total energy spent. FG-EnergyLB achieves a reduction of up to 5.6% in
average power demand. In this way, reducing both, the power demand and run
time, the total of energy spent is reduced in up to 6.91%.

The energy saving further increases when using thresholds equal to 2.0 or
greater. For these values, the run time reduction is greater than the reduction
of the average power demand. In every call of the load balancer, DVFS was
performed, which resulted in reductions of 7.3% in average power demand and
an average performance improvement of 7.74% compared to noLB. In this way,
FG-EnergyLB is able to save energy by up to 15.6% to Lulesh.

For this application, the threshold variation from 1.0 up to 2.0 presented the
more significant reduction in execution time. When these values were used, the
run time was reduced in up to 11%, while the average power demand is reduced
in up to 6%. Similarly to Ondes3D , both run time and power demand reductions
contribute to the reduction of the total energy consumption.

In the tests with threshold values greater than 2.0, a greater amount of DVFS
is performed, resulting in lower average power demands. However, such reduc-
tions cause an equivalent increase in the total execution time, thus maintaining
the energy consumption constant.

In the execution with threshold equal to 5.0, FG-EnergyLB adjusts the
frequency 8×, which resulted in a reduction of the power in 23.36% and reduction
of energy in 21.50%. However, the run time exceeds the baseline by 2.42%.

Exploration of Load Balancing Thresholds ... 9

4.2 Coarse-Grained EnergyLB Evaluation

These scientific applications present a dynamic behavior, as the load of theirs
tasks change through the iterations, which provides a more challenging scenario
for energy aware load balancing. Since all the 192 cores will be used, differ-
ent parameters are used in the evaluation of the CG-EnergyLB, as shown in
Table 2.

Table 2. Summary of the input parameters of real applications.

Application Tasks Iterations LB Frequency

Ondes3D 1024 500 20
Lulesh 5832 1000 50

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

noLB 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

R
e

la
ti
v
e

 t
o

 n
o

L
B

Threshold

34%

5%

31%

Total Time (s)
Energy Consumption (KJ)

Average Power (W)

(a) Ondes3D .

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

noLB 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

R
e

la
ti
v
e

 t
o

 n
o

L
B

Threshold

25%

14%

15%

Total Time (s)
Energy Consumption (KJ)

Average Power (W)

(b) Lulesh.

Fig. 2. CG-EnergyLB comparison with different threshold value on Real Applications

– Ondes3D Application

Experiments with CG-EnergyLB over Ondes3D were performed using 1024
tasks mapped on 192 cores, which run 500 iterations each. Total energy spent to
run this application without load balancer is 263.1 kJoules and its total execution
time is 200.41 seconds, which represent an average power demand of 54.71 W.
These values are taken as reference (noLB in Figure 2(a)) in our analysis.

Figure 3(a) depicts the instantaneous power of the execution when CG-
EnergyLB uses a threshold value equal to 1.0. In this execution any times
DVFS is performed, in all the 24 load balancer calls tasks were migrated by
RefineLB. In this way, during execution the power of all processors is always
high, resulting in an average power of 54.7 W.

10 Edson L. Padoin et al.

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200 250 300

P
o

w
e

r
(W

)

Time (s)

(a) Threshold = 1.0.

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200 250 300 350

P
o

w
e

r
(W

)

Time (s)

(b) Threshold = 2.5.

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200 250 300 350

P
o

w
e

r
(W

)

Time (s)

(c) Threshold = 5.0.

Fig. 3. Power evaluation to different threshold value on Ondes3D

Using threshold equal to 2.5 the processors power is differently reduced as
shown in the Figure 3(b). For this threshold, 17 times DVFS is performed and
only 7 calls migrate tasks by RefineLB. This form, the power is reduced in
great majority of the processors, which result in a total reduction of 16.08%,
leaving the average power in 43.4 W.

A different amount of energy is saved when using threshold equal to 5.0
(Figure 3(c)). In this execution in all call (24) adjusts in clock were performed,
leaving only one processor using its maximum power. For this threshold value,
the power demand follows the increase of application needs, once the increases
from the second 160 and reduces again from the second 212. This form, in this
test the average power is reduced in 32.39%, resulting in an average of 35.0 W.

For Ondes3D , the least amount of energy spent is achieved using threshold
value equal to 3.0. Using this value CG-EnergyLB is able to reduce in up to
31% the total energy consumption in relation to baseline noLB. This reduction
is achieved through of the reduction of the average power demand in 34%, which
overcome the time overhead of 5%, as shown in the Figure 2(a).

– Lulesh Application

Lulesh was executed with 1000 iterations in each one of its 5832 processes
mapped in 192 cores. This application spent 840.6 kJoules of energy and takes
688 seconds when executed without load balancer. Thus, in this execution the
average power demand is 50.9 W. These values are taken as reference (base-
line) and shown in column noLB of the Figure 2(b)) to examine the threshold
variation of the Lulesh application.

Instantaneous power measured when the application is executed with thresh-
old equal to 0.5 is depicted in the Figure 4(a). Using this value, in all load bal-
ancing calls (19 times) were migrated tasks through do RefineLB. Similar to
Ondes3D execution, for this threshold all processors running using a high power
during all execution, which result in an average of power of 50.9 W.

On the other hand, using a threshold equal to 2.5, CG-EnergyLB is able
to reduce the power demand to intermediate levels as shown in the Figure 4(b).

Exploration of Load Balancing Thresholds ... 11

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200 250 300 350 400 450

P
o

w
e

r
(W

)

Time (s)

(a) Threshold = 0.5.

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200 250 300 350 400 450 500

P
o

w
e

r
(W

)

Time (s)

(b) Threshold = 1.5.

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200 250 300 350 400 450 500

P
o

w
e

r
(W

)

Time (s)

(c) Threshold = 5.0.

Fig. 4. Power evaluation to different threshold value on Lulesh

With this threshold, in this execution are performed 4 times DVFS, which re-
duced the power of the processors in 12.7%, to 43.4 W.

For threshold equal to 5.0 (Figure 4(c)) were adjusted 19 times the clock
frequency of cores. This way, the power of most of the processors is reduced
to minimum levels saving more energy. The total reduction was of 24%, which
reduced the average power demand to 38.7 W.

The threshold variation from 0.5 up to 2.0 present the reduction more sig-
nificant in energy consumption for this application. Differently from Ondes3D ,
when used these threshold values in CG-EnergyLB load balancer, the runtime
increases in up to 14%, while that the average power demand reduces in up to
25%. In this way, the least amount of energy spent for Lulesh, is achieved using
threshold value equal to 2.0. For this value, CG-EnergyLB reduces the total
energy consumption in up to 15% if compared to baseline noLB. This reduc-
tion is achieved through of the reduction of the average power in 25%, which
overcome an overhead of 14%, as shown in the Figure 2(b).

5 Conclusions

The exponential increase in power consumption related to a linear increase in
the clock frequency and a higher complexity involved in the processors’ design
changed the course of development of new processors. Power consumption has
become a critical aspect to the development of both large and small scale systems.
This concern is now enough to warrant the research on techniques to improve
the energy efficiency of parallel applications running on top of HPC platforms.

In this paper, we focused on analyze the trade-off between run time, power
demand and total energy consumption of the variants of our energy-aware load
balancer which aim to reduce the energy consumption and power demand of
parallel applications without considerably degrading their overall performance.

Our results demonstrated that FG-EnergyLB can achieve energy savings
of up to 17.1% with an average of 16.3%, and CG-EnergyLB of up to 31%
with an average of 23% on real-world applications through the reduction of the
average power demand. On the other hand, the total execution time happens
to be reduced or increased according to threshold value. In this way, we can

12 Edson L. Padoin et al.

analyze which is the best threshold value for each application under the total
energy consumption, total execution time or the average power demand focus.

This work can be extended in different directions. One possibility would be
to develop a new load balancer that performs load balancing and DVFS at
the same time in each load balancing step. For that, it would be necessary to
create a heuristic that takes into account the cost of task migrations between
cores/processors that operate in different clock frequencies. Another possibility
would be to develop a hierarchical energy-aware load balancer that performs task
migrations between cores of the same processor and only migrate tasks between
processors when needed. In this scheme, only the processors involved in task
migrations would need their clock frequencies to be adjusted, reducing overhead
of performing DVFS on all processors at each load balancing step. Finally, we
also intend to evaluate the benefits of FG-EnergyLB and CG-EnergyLB on
other real-world applications and platforms.

Acknowledgments

This work was supported by CNPq, CAPES, FAPERGS and FINEP. This re-
search has received funding from the European Community’s Seventh Frame-
work Programme (FP7-PEOPLE) under grant agreement number 295217, fund-
ing from the EU H2020 Programme and from MCTI/RNP-Brazil under the
HPC4E Project, grant agreement number 689772 and STIC-AmSud/CAPES
scientific-technological cooperation program under EnergySFE research project
grant 99999.007556/2015-02.

References

1. Aupy, G., Benoit, A., Robert, Y.: Energy-aware scheduling under reliability and
makespan constraints. In: Proceedings... pp. 1–10. International Conference on
High Performance Computing (HiPC), IEEE Computer Society (2012)

2. Dosanjh, S., Barrett, R., Doerfler, D., Hammond, S., Hemmert, K., Heroux, M.,
Lin, P., Pedretti, K., Rodrigues, A., Trucano, T., et al.: Exascale design space
exploration and co-design. Future Generation Computer Systems 30, 46–58 (2014)

3. Dupros, F., Aochi, H., Ducellier, A., Komatitsch, D., Roman, J.: Exploiting in-
tensive multithreading for the efficient simulation of 3d seismic wave propagation.
In: Proceedings... pp. 253–260. International Conference on Computational Science
and Engineering, IEEE (July 2008)

4. Gerards, M.E., Hurink, J.L., Holzenspies, P.K., Kuper, J., Smit, G.J.: Analytic
clock frequency selection for global DVFS. In: Proceedings... pp. 512–519. Euromi-
cro International Conference on Parallel, Distributed, and Network-Based Process-
ing (PDP) (2014)

5. Goel, B., McKee, S.A., Gioiosa, R., Singh, K., Bhadauria, M., Cesati, M.: Portable,
scalable, per-core power estimation for intelligent resource management. In: Pro-
ceedings... pp. 135–146. International Green Computing Conference (IGCC), IEEE
Computer Society (2010)

Exploration of Load Balancing Thresholds ... 13

6. Hartog, J., Dede, E., Govindaraju, M.: Mapreduce framework energy adaptation
via temperature awareness. Cluster Computing 17(1), 111–127 (2013), http://dx.
doi.org/10.1007/s10586-013-0270-y

7. Hosseinimotlagh, S., Khunjush, F., Hosseinimotlagh, S.: A cooperative two-tier
energy-aware scheduling for real-time tasks in computing clouds. In: Proceedings...
pp. 178–182. Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing (PDP) (2014)

8. Huang, C., Lawlor, O., Kalé, L.V.: Adaptive mpi. In: Rauchwerger, L. (ed.) Lan-
guages and Compilers for Parallel Computing, Lecture Notes in Computer Science,
vol. 2958, pp. 306–322. Springer Berlin Heidelberg (2004), http://dx.doi.org/10.
1007/978-3-540-24644-2_20

9. Isci, C., Buyuktosunoglu, A., Cher, C.Y., Bose, P., Martonosi, M.: An analysis
of efficient multi-core global power management policies: Maximizing performance
for a given power budget. In: Proceedings... pp. 347–358. International Symposium
on Microarchitecture (MICRO), IEEE Computer Society (Dec 2006)

10. Kalé, L.V., Bohm, E., Mendes, C.L., Wilmarth, T., Zheng, G.: Programming Petas-
cale Applications with Charm++ and AMPI. pp. 421–441. Chapman & Hall / CRC
Press (2008)

11. Kalé, L., Bhandarkar, M., Brunner, R.: Load balancing in parallel molecular dy-
namics. In: Ferreira, A., Rolim, J., Simon, H., Teng, S.H. (eds.) Solving Irregu-
larly Structured Problems in Parallel, Lecture Notes in Computer Science, vol.
1457, pp. 251–261. Springer Berlin Heidelberg (1998), http://dx.doi.org/10.

1007/BFb0018544

12. Karlin, I., Bhatele, A., Chamberlain, B.L., Cohen, J., Devito, Z., Gokhale, M.,
Haque, R., Hornung, R., Keasler, J., Laney, D., Luke, E., Lloyd, S., McGraw,
J., Neely, R., Richards, D., Schulz, M., Still, C.H., Wang, F., Wong, D.: Lulesh
programming model and performance ports overview. Tech. Rep. LLNL-TR-608824
(December 2012), http://www.osti.gov/scitech/servlets/purl/1059462

13. Karlin, I., Bhatele, A., Keasler, J., Chamberlain, B.L., Cohen, J., DeVito, Z.,
Haque, R., Laney, D., Luke, E., Wang, F., Richards, D., Schulz, M., Still, C.:
Exploring traditional and emerging parallel programming models using a proxy
application. In: Proceedings... 27th IEEE International Parallel & Distributed Pro-
cessing Symposium (IEEE IPDPS 2013) (May 2013)

14. Kim, S.g., Eom, H., Yeom, H., Min, S.: Energy-centric DVFS controlling method
for multi-core platforms. In: Proceedings... pp. 685–690. High Performance Com-
puting, Networking, Storage and Analysis (SCC), IEEE Computer Society (Nov
2012)

15. Leung, J.Y.T.: Handbook of scheduling: algorithms, models, and performance anal-
ysis. Chapman & Hall/CRC (2004)

16. Menon, H., Jain, N., Zheng, G., Kalé, L.: Automated load balancing invocation
based on application characteristics. In: Proceedings... pp. 373–381. IEEE Inter-
national Conference on Cluster Computing (CLUSTER), IEEE Computer Society
(2012)

17. Padoin, E., Castro, M., Pilla, L., Navaux, P., Mehaut, J.F.: Saving energy by
exploiting residual imbalances on iterative applications. In: Proceedings... pp. 1–
10. High Performance Computing (HiPC), 21st International Conference on (Dec
2014)

18. Sarood, O., Meneses, E., Kalé, L.V.: A ’cool’ way of improving the reliability of
HPC machines. In: Proceedings... pp. 58:1–58:12. International Conference on High
Performance Computing, Networking, Storage and Analysis (SC), ACM (2013)

14 Edson L. Padoin et al.

19. Spiliopoulos, V., Bagdia, A., Hansson, A., Aldworth, P., Kaxiras, S.: Introduc-
ing DVFS-management in a full-system simulator. In: Proceedings... pp. 535–545.
International Symposium on Modelling, Analysis & Simulation of Computer and
Telecommunication Systems (MASCOTS), IEEE Computer Society (2013)

20. Tesser, R.K., Pilla, L.L., Dupros, F., Navaux, P.O.A., Mehaut, J.F., Mendes, C.:
Improving the performance of seismic wave simulations with dynamic load balanc-
ing. In: Proceedings... pp. 196–203. Euromicro International Conference on Par-
allel, Distributed and Network-Based Processing (PDP), IEEE Computer Society
(Feb 2014)

21. Zheng, G., Bhatelé, A., Meneses, E., Kalé, L.V.: Periodic hierarchical load balanc-
ing for large supercomputers. International Journal of High Performance Comput-
ing Applications 25(4), 371–385 (2011)

