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Two-site Bose-Hubbard model with nonlinear tunneling: Classical and quantum analysis
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The extended Bose-Hubbard model for a double-well potential with atom-pair tunneling is studied. Starting
with a classical analysis we determine the existence of three quantum phases: self-trapping, phase-locking,
and Josephson states. From this analysis we build the parameter space of quantum phase transitions between
degenerate and nondegenerate ground states driven by the atom-pair tunneling. Considering only the repulsive
case, we confirm the phase transition by the measure of the energy gap between the ground state and the first
excited state. We study the structure of the solutions of the Bethe ansatz equations for a small number of atoms.
An inspection of the roots for the ground state suggests a relationship to the physical properties of the system. By
studying the energy gap we find that the profile of the roots of the Bethe ansatz equations is related to a quantum
phase transition.
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I. INTRODUCTION

The Bose-Hubbard model for a double-well potential has
been extensively studied since the experimental realization
of Bose-Einstein condensates (BECs). This simple model
can well describe Josephson oscillations and nonlinear self-
trapping of BECs in a double-well trap [1] with weak atom-
atom interactions. Due to its simplicity, this model has been
investigated widely by many authors using various methods,
such as the Gross-Pitaevskii approximation [2], mean-field
theory [3,4], the quantum phase model [5], and the Bethe
ansatz method [6], providing insights into many intriguing
phenomena. For example, it is well known that this model
presents a quantum phase transition separating a delocalized
from a self-trapped phase [7,8], which has been observed
through parity-symmetry breaking [9].

The tunneling dynamics of a few atoms loaded in a
double-well trap has been studied by varying the interaction
strength from the weak to the strong limit, and the existence of
correlated tunneling has been confirmed. The study [10] was
the first to directly observe atom-pair tunneling processes, in
a sample of rubidium atoms in the few-atom limit. This was
achieved through the use of superimposed periodic potentials
to create an array of double-well potentials. It was shown
that the tunneling character changes from Rabi oscillation to
an atom-pair cotunneling process with increasing interaction.
Complementary theoretical analysis has also been presented
in terms of two-body quantum mechanics [11].

It is known that the two-mode Bose-Hubbard model
(TMBH) should be modified by a nonlinear tunneling term
in the derivation of a two-mode approximation from the
many-body nonlinear Schrödinger equation [12,13]. However,
this term is most commonly omitted because the nonlinear
tunneling coupling is several orders of magnitude smaller
than the linear tunneling strength. However, in [14] it was
argued that the inclusion of an atom-pair tunneling term
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in theoretical calculations produces a noticeably better fit
with the experimental data in [10]. Following from this
finding, there has been a great deal of effort devoted to the
theoretical development of this subject [15–18]. Among these
is a proposal to use lattice shaking techniques in order to tune
and amplify, the atom-pair tunneling strength [16]. This raises
the prospect of investigations into atom-pair tunneling effects
beyond the few-atom setup in [10].

In anticipation of further developments in this direction,
here we adopt a Hamiltonian including the atom-pair tunneling
term to describe BECs in a double-well potential. The extended
two-mode Bose-Hubbard model (eTMBH) is described by the
Hamiltonian

H = U1n̂
2
1 + U2n̂

2
2 − 1

2
�(n̂1 − n̂2) − J

2
(â†

1â2 + â
†
2â1)

− �

2
(â†

1â
†
1â2â2 + â

†
2â

†
2â1â1), (1)

where {âj , â
†
j | j = 1, 2} are the creation and annihilation

operators for well j , associated, respectively, with two bosonic
Heisenberg algebras and satisfying the following commutation
relations:

[âi , â
†
j ] = δij , [âi , âj ] = [â†

i , â
†
j ] = 0.

Also, n̂j = â
†
j âj is the corresponding boson number operator

for each well. Since the Hamiltonian commutes with the
total boson number operator n̂ = n̂1 + n̂2, the total number of
bosons n is conserved and it is convenient to restrict ourselves
to a subspace of constant n. The coupling Uj provides the
strength of the scattering interaction between bosons in the
well j and may be attractive (Uj < 0) or repulsive (Uj > 0).
The parameter � is the external potential, which corresponds
to an asymmetry between the condensates, J is the coupling
for the tunneling, and � is the coupling for the atom-pair
tunneling process. The change J → −J corresponds to the
unitary transformations â1 → â1, â2 → −â2, while � → −�

corresponds to â1 ↔ â2. Therefore we restrict our analysis to
the case of J,� � 0.

2469-9926/2017/95(4)/043607(9) 043607-1 ©2017 American Physical Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lume 5.8

https://core.ac.uk/display/293601759?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1103/PhysRevA.95.043607


D. RUBENI, J. LINKS, P. S. ISAAC, AND A. FOERSTER PHYSICAL REVIEW A 95, 043607 (2017)

Undertaking a classical analysis we obtain the fixed points
of the system in the large-n limit and find three distinct phases
for the ground state. Under the right conditions the system
may undergo a quantum phase transition. The results in some
particular cases allow us to identify a parameter space of
quantum phase transitions. We then confirm that this parameter
space is associated with quantum phase tranitions of the system
through studies of the energy gap.

Motivated by the results in [9–11], and also by the
discussion in [14] of the case of a low particle number,
we then present the exact solution for this model using the
Bethe ansatz approach. By this method one can have access to
the ground state through the solution of a set of Bethe ansatz
equations (BAEs). A careful observation of the behavior of
solutions of these equations for the ground state, as we vary
some parameters of the Hamiltonian, suggests a connection
between the behavior of roots of the BAEs and the physical
behavior of this model. This is exactly what we expect to
happen in quantum phase transitions.

This paper is organized as follows: in Sec. II we analyze
the eTMBH model through bifurcations in a classical analysis.
These are used to indicate potential quantum phase transitions.
We find the fixed points for the special case � = 0, U1 = U2

and build a parameter space of phase transitions. A comparison
is made between the classical predictions and the energy
gap. In Sec. III we present the Bethe ansatz solution and
investigate the distribution of the roots of the Bethe ansatz
equations for the ground state. In Sec. IV we summarize our
results.

II. CLASSICAL ANALYSIS

We start our analysis with a semiclassical treatment. We
study the phase space of this system, in particular, deter-
mining the fixed points. It is found that for certain coupling
parameters bifurcations of the fixed points occur, and we can
determine a parameter-space diagram which classifies the fixed
points.

For this second-quantized model, if the particle number n is
large enough, the system can be well described in the classical
approximation [19], where creation or annihilation operators
can be replaced by complex numbers (nj , θj ) such as

âj → eiθj
√

nj , â
†
j → √

nje
−iθj .

By introducing the canonically conjugate variables population
imbalance z and phase difference θ , defined by

z = 1

n
(n1 − n2), θ = n

2
(θ1 − θ2),

the system can be described by the classical Hamiltonian

H = nJ

4
(λ(1 + z2) − γ (1 − z2) cos(4θ/n)

−2
√

1 − z2 cos(2θ/n) − 2βz), (2)

where

λ= n

J
(U1 + U2), β = n

J

(
�

n
− U1 + U2

)
, and γ = n�

J

FIG. 1. Graphical solution of Eq. (5). The crossing between the
straight line [left-hand side of Eq. (5)] and the curve [right-hand
side of Eq. (5)] for different values of λ + γ and β represents the
solution(s) for each case. There is just one solution on the left
(λ + γ � −1), while there are either one, two, or three solutions
on the right (λ + γ < −1).

are the coupling parameters. Hamilton’ s equations of motion
are given by

ż = −J sin(2θ/n)(2γ cos(2θ/n) − 2γ z2 cos(2θ/n)

+
√

1 − z2), (3)

θ̇ = nJ

2

(
−β + γ z cos(4θ/n) + z cos(2θ/n)√

1 − z2
+ λz

)
. (4)

In the limit γ → 0 we recover the equations of motion of
the TMBH [20]. The fixed points can be readily derived from
the condition ż = θ̇ = 0. Due to periodicity of the solutions,
below we restrict ourselves to 2θ/n ∈ [−π, + π ]. This leads
to the following classification.

(i) θ = 0 and z is a solution of

−β + z(γ + λ) = − z√
1 − z2

, (5)

which has one solution for λ + γ � −1, while it may have
one, two, or three solutions for λ + γ < −1. In Fig. 1 we
present a graphical solution of (5).

(ii) 2θ/n = ±π and z is a solution of

−β + z(γ + λ) = z√
1 − z2

. (6)

This equation has one solution for λ + γ � 1 and has either
one, two, or three real solutions for λ + γ > 1.

(iii) z = β/(λ − γ ) and θ is a solution of

cos(2θ/n) = −1

2γ

√
1 −

(
β

λ−γ

)2
, (7)
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which has two real solutions for γ /∈ [−1/2, 1/2] and
|λ − γ | � 2|βγ |(4γ 2 − 1)−1/2.

From Eqs. (5) and (6) we can determine that there are
fixed point bifurcations for certain choices of the coupling
parameters. These bifurcations allow us to divide the coupling-
parameter space into three regions. A standard analysis shows
that the boundary between the regions obeys the relation

λ + γ = ±(1 + |β| 2
3 )

3
2 (8)

(see [21] for details). Equation (8) leads to a partition of the
parameter space into three regions, depicted in Fig. 2(a). In
the absence of the external potential, i.e., β = 0, we have a
fixed point bifurcation given by λ = ±1 − γ . See Fig. 2(b).
Irrespective of the nature of the bifurcation, it has been
observed in classical analyses [22,23] that fixed points can
be used to identify quantum phase transitions. This model
therefore becomes a promising candidate to study.

The conditions for the existence of solutions to Eq. (7) allow
us to build a parameter-space diagram as depicted in Fig. 2(c).
The boundary between regions satisfies the relation

λ − γ = ±2|βγ |(4γ 2 − 1)−1/2. (9)

A. Fixed points and eigenstates for β = 0

In the following we study the solutions of the fixed point
equations (5)–(7) with β = 0 by the consideration of two main
reasons: (i) nonzero values of � do not significantly alter the
behavior of the system, just shift the energy levels [7]; and
(ii) many of the experimental realizations with these systems
are made on the condition of zero external potential and equal
interaction between atoms in each well [10]. In Fig. 2(b) we see
the parameter-space diagram for Eqs. (5) and (6) with β = 0,
while Fig. 2(d) shows the parameter-space diagram for Eq. (7)
for β = 0.

It has been demonstrated that the fixed points of phase-space
level curves are the points of extreme energy corresponding
to eigenstates of the system [24]. Since the fixed point
bifurcations change the topology of the level curves, qualitative
differences can be observed between each of the three regions.
For further analysis, it is useful to assign to each fixed point
(θFP, zFP) a point Pj in the phase space as follows:

P1 → (0, 0),

P2 → (0, ±
√

1 − 1/(λ + γ )2),

P3 → (±arcsec(−2γ ), 0),

P4 → (±π, 0),

P5 → (±π, ±
√

1 − 1/(λ + γ )2).

Figure 3 shows the typical character of the level curves
in region I. There are three fixed points for θ = 0 and one
fixed point for 2θ/n = ±π . When γ < λ the ground state
is associated with the fixed points P3. These two states
are called phase-locking states, with zero population
imbalance and tunable relative phase unequal to 0 or π

[see Fig. 3(a)]. This phase-locking state was also identified
in [14]. The highest energetic states correspond to the fixed
points P4. At γ = λ the system changes to a special state: the
ground state is over a “ring” instead a of point, as depicted in

FIG. 2. Coupling parameter-space diagrams characterizing the
solutions for the fixed points ż = θ̇ = 0. (a) Parameter space for
Eqs. (5) and (6) with β �= 0. The boundaries between the regions are
given by Eqs. (8). At the boundary between region I and region II there
are two solutions for θ = 0 and one solution for 2θ/n = ±π , while
there is one solution for θ = 0 and two solutions for 2θ/n = ±π at
the boundary between region II and region III. (b) Parameter space for
Eqs. (5) and (6) with β = 0. The boundaries between the regions obey
the equations γ = ±1 − λ. In both cases, there are three solutions
for θ = 0 and one solution 2θ/n = ±π in region I; in region II, we
have one solution for θ = 0 and one solution for 2θ/n = ±π ; and
in region III, there is one solution for θ = 0 and three solutions for
2θ/n = ±π . (c) Example of parameter space for Eq. (7) with β �= 0.
This equation has only one solution for the values of parameters
that lie within the shaded area, with boundaries given by (9), and
|γ | > 1/2. (d) Parameter space for Eq. (7) with β = 0. This equation
has a solution only for the values of parameters that lie within the
gray area, with |γ | > 1

2 and γ �= λ.

Fig. 3(b). This is a transition state, since any small changes in
the values of λ and γ alter its nature. When γ > λ there is an
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FIG. 3. Level curves of the classical Hamiltonian in region I. The
points {P1, . . . , P4} denote the fixed points of the Hamiltonian. (a)
Parameter values are n = 100, λ = −2, J = 1, and γ = −4. There
is a local maximum at P1 and saddle points at P2. Global minima
are at P3, while P4 are global maxima. (b) Parameter values are
n = 100, λ = −2, J = 1, and γ = −2. A “ring” emerges as the
global minimum. The local and global maxima still occur at P1 and
P4, respectively. (c) Now the parameter values are n = 100, λ = −2,
J = 1, and γ = −1. Global minima are at P2. There are saddle points
at P3, a local maximum point at P1, and global maxima at P4.

abrupt change in the ground state: the minimum energy levels
move towards the fixed points P2. We denote those eigenstates
whose corresponding fixed points have a nonzero population
imbalance, z �= 0, self-trapping states, as depicted in Fig. 3(c).
Therefore, now the ground state is a degenerate self-trapping
state. This means that at γ = λ the system undergoes a
quantum phase transition from degenerate phase-locking
states to degenerate self-trapping states. Further changes in
the coupling parameters modify the fixed point configuration
but no longer alter the nature of the ground state. Table I
provides a detailed classification of all the fixed points in
region I as the parameters λ and γ change.

TABLE I. Configuration of fixed points and associated states in
region I. GS, ground state; HES, highest excited state; lmax, local
maximum; sp, saddle point.

Region I P1 P2 P3 P4 P5

γ < λ lmax sp GS HES –
−1/2 > γ > λ lmax GS sp HES –
−1/2 < γ < 1/2 sp GS – HES –
γ > 1/2 sp GS HES sp –

Figure 4(a) illustrates the configuration of the fixed points
when the coupling parameters are tuned to cross over from
region I into region II. There is one fixed point for θ = 0 and
one for 2θ/n = ±π . If γ > −1/2, the fixed point P1 becomes
associated with the ground state, with zero population imbal-
ance and zero relative phase, with the presence of tunneling of
atoms between the wells because of the weak interaction. We
call this state a Josephson state. Therefore, when crossing the
boundary γ = −1 − λ, the system undergoes a quantum phase
transition to a nondegenerate Josephson state. Highest excited
states are related to the global maxima at P3. If γ < −1/2,
there is another quantum phase transition: the global minimum,
related to degenerate phase-locking states, emerges at P3 [see
Fig. 4(b)]. Highest energy states are associated with the fixed
point P4 for any λ < 1/2. Table II summarizes how the fixed
point configurations change along with λ and γ .

FIG. 4. Typical level curves of the classical Hamiltonian in region
II. The points {P1, . . . , P4} denote the fixed points of the Hamiltonian.
(a) Parameter values are n = 100, λ = −2, J = 1, and γ = 2. There
is a global minimum at P1, the global maximum is at P3, and P4 are
saddle points. (b) Parameter values are n = 100, λ = 2, J = 1, and
γ = −2. Now the fixed point P1 turns into a saddle point, while there
are global minima at P3 and global maxima emerge at P4.
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TABLE II. Configuration of fixed points and associated states in
region II. GS, ground state; HES, highest excited state; sp, saddle
point.

Region II P1 P2 P3 P4 P5

−1/2 > γ sp – GS HES –
−1/2 < γ < 1/2 GS – – HES –
γ > 1/2 GS – HES sp –

On crossing the parameter-space boundary to region III,
the fixed point configuration changes again: there is one fixed
point for θ = 0 and three fixed points for 2θ/n = ±π . The
ground state of the system may be associated with P3 as a
degenerate phase-locking state if γ < −1/2. New fixed points
emerge at P5 as highest energetic states. If γ > −1/2, the
global minimum changes to P1 and becomes associated with a
nondegenerate Josephson state. Therefore the line γ = −1/2
defines the boundary for a quantum phase transition [see
Figs. 5(a) and 5(b)].

The above discussion gives a general qualitative description
of the behavior of the classical system in terms of the
three regions identified in the parameter space. Properties
of eigenstates as highlighted in Tables I—III enable us to
depict the quantum phase transition diagram shown in Fig. 6.

FIG. 5. Typical level curves of the classical Hamiltonian in
region III. The points {P1, . . . , P5} denote the fixed points of the
Hamiltonian. (a) Parameter values are n = 100, λ = 4, J = 1, and
γ = −2. In this scenario P1 is a saddle point and the global minima
are at P3. The highest energy levels appear at P5. (b) Parameter values
are n = 100, λ = 4, J = 1, and γ = 2. Now the global minima move
towards P1, while P3 become saddle points. The fixed points P4 are
local minima and the global maxima are still at P5.

TABLE III. Configuration of fixed points and associated states in
region III. GS, ground state; HES, highest excited state; lmin, local
minimum; sp, saddle point.

Region III P1 P2 P3 P4 P5

−1/2 > γ sp – GS sp HES
−1/2 < γ < 1/2 GS – – sp HES
1/2 < γ < λ GS – sp lmin HES
γ > λ GS – HES lmin sp

The parameter space (λ, γ ) is divided into three regions: the
self-trapping, Josephson, and phase-locking phases.

In the next section we restrict ourselves to study of the case
λ > 0 and check the presence of a phase transition as predicted
by the phase transition diagram of the behavior of the energy
gap.

B. Energy gap

Consider the dimensionless energy gap between the first
excited state (FES) and the ground state (GS),

�E = 1

J
(EFES − EGS). (10)

The values of the parameters for which �E goes to 0
identify the location of a quantum phase transition [25].
Using numerical diagonalization of the Hamiltonian, (1), in
Fig. 7(a) we plot �E as a function of the coupling γ ,
for λ > 0 and different values of n. We observe that as n

FIG. 6. Parameter space for quantum phase transitions. The
boundary between Josephson and phase-locking states is given
by γ = −1/2. The system undergoes a quantum phase transition
from phase-locking states to self-trapping states upon crossing the
boundary γ = λ, while the limit between the Josephson phase and
the self-trapping phase is determined by the line γ = −1 − λ. The
threshold coupling occurs at (γ, λ) = (−1/2, − 1/2).
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FIG. 7. Dimensionless energy gap �E as a function of γ =
n�/J (a) for different values of n and λ = 2 and (b) for different
values of λ and n = 100. Values of the parameters are J = 1 and
β = 0. These results indicate that the points at which the gap closes
lie approximately on the line γ = −1/2.

increases the dimensionless energy gap decreases and the
coupling approaches the point γ = −1/2. Figure 7(b) shows
similar results for fixed n and varying λ. We observe that
the occurrence of the vanishing of �E, determining the
quantum phase transition, fits well with the predicted boundary
separating Josephson and phase-locking regions given by
γ = −1/2.

III. BETHE ANSATZ SOLUTION

We now look at obtaining the exact solution of the eTMBH
model to investigate low numbers of particles. Diagrams of
the Bethe root configurations are provided in Figs. 8 and 9
for the cases n = 4, 6, 8, 10, and 12. In Fig. 10 we also
present the energy gap for these low values of n. To obtain
the exact solution of the eTMBH model, we follow the work
of Enol’skii, Kuznetsov, and Salerno [26]. Starting with the
Jordan-Schwinger realization of the su(2) algebra,

Ŝ+ → â
†
1â2, Ŝ− → â

†
2â1, Ŝz → n̂1 − n̂2

2
,

we may write Hamiltonian (1) as

H = k

8
n̂2 + k

2
(Ŝz)2 + αŜz − 1

2
J (Ŝ+ + Ŝ−)

− 1

2
�[(Ŝ+)2 + (Ŝ−)2], (11)

FIG. 8. Solutions of the Bethe ansatz equations (BAE), (15), for
the ground state considering the particular case n = 4, k = 1 and
J = 1 and different values of γ . In (a)–(c) we look at the same set of
solutions at different scales. An abrupt change in the root distribution
occurs at γ � −2.38 and γ � −4.01.

with n̂ = n̂1 + n̂2, k = 2(U1 + U2), and α = (U1 − U2)n −
�. Note that

λ = kn

2J
, β = −α

J
. (12)

If we consider the differential realization of su(2) operators,

Ŝ+ → u2 d

du
− nu, Ŝ− → − d

du
, Ŝz → u

d

du
− n

2
,

the Hamiltonian, (11), can be written as

H = A(u)
d2

du2
+ B(u)

d

du
+ C(u), (13)
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FIG. 9. Solutions of the BAE, (15), for the ground state for n = 6, 8, 10, and 12, respectively. We set the parameters k and α to satisfy
the conditions λ = 2 and β = 0 in each case. There are abrupt changes in the distribution of roots for all values of n. The changes occur at
(a) γ � −2.30 and γ � −2.75; (b) γ � −2.25, γ � −2.54, and γ � −3.12; (c) γ � −2.25, γ � −2.45, γ � −2.75, and γ � −3.54; and
(d) γ � −2.25, γ � −2.35, γ � −2.54, γ � −2.92, and γ � −3.98.

with

A(u) = k

2
u2 − �

2
(u4 + 1),

B(u) = 1

2
{J (1 − u2) + [k(1 − n) + 2α]u

− 2�(1 − n)u3},
C(u) = k

4
n2 − α

2
n + J

2
nu − �

2
n(n − 1)u2.

Solving for the spectrum of the Hamiltonian is then equivalent
to solving the eigenvalue equation

HQ(u) = EQ(u), (14)

where H is represented by (13) and Q(u) is a polynomial
function of u of order n. Next, we express Q(u) in terms of its
roots υj :

Q(u) =
n∏

j=1

(u − υj ).

Evaluating (14) at u = υl for each l leads to the set of BAE

−J
(
υ2

l − 1
) + [k(1 − n) + 2α]υl − 2�(1 − n)υ3

l

kυ2
l − �

(
υ4

l + 1
)

=
n∑

j �=l

2

υj − υl

, l = 1, . . . ,n. (15)

Writing the asymptotic expansion

Q(u) ∼ un − un−1
N∑

j=1

υj + un−2
n−1∑
j=1

n∑
l=j+1

υjυl

and considering the terms of order n in (14), the energy
eigenvalues are found to be

E = kn2

4
+ αn

2
− J

2

n∑
j=1

υj − �

n−1∑
j=1

n∑
l=j+1

υjυl. (16)

Each set of roots {υj , j = 1, . . . ,n} of the BAE leads to the
energy of the Hamiltonian through (16). Note that the change
J → −J is equivalent to the change υj → υ−1

j . For α = 0
this shows that each solution set {υ1, . . . ,υn} is invariant under
υj → υ−1

j . In principle, an analytic solution of these equations
is not possible. Below, we implement numerical techniques to
obtain solutions.

We restrict ourselves to study of the case k > 0, α = 0
[due to relations (12) this is equivalent to λ > 0, β = 0]
to investigate the behavior of the BAE solutions around the
quantum phase transition line γ = −1/2. We start by solving
the BAE with � = 0 for the ground state. In this case, all
the roots must be real and positive [27]. If we decrease the
value of �, the numerical solution of Eq. (15) shows that the
ground state always has real roots, but eventually some roots
have a smooth transition from positive to negative values. As
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FIG. 10. Dimensionless energy gap as a function of the dimensionless coupling γ for (a) n = 4, (b) n = 6, (c) n = 8, (d) n = 10, and (e)
n = 12. We set the parameters λ = 2 and β = 0 in all cases. The presence of nonzero regions for �E indicates that there are level crossings
between the ground state and the first excited state at some particular values of γ .

some roots approach 0, others diverge due to the invariance
υj → υ−1

j . It should be noted that this change from positive to
negative roots has no relation to the quantum phase transition
in this model.

In Figs. 8 and 9 we plot solutions of the BAE for
certain values of the total number of particles n. These
numerical solutions agree with the exact diagonalization of
the Hamiltonian. Starting with Fig. 8, we plot the solutions
to the BAE, (15), with n = 4. The roots generally evolve
smoothly as the value of the parameter γ = n�/J varies,
although for some particular values the trajectories exhibit
jumps. This same characteristic behavior of the ground-state
roots is observed for other values of n (see Fig. 9).

Examination of the energy levels of the system for small
numbers of particles shows that there are crossings of levels
between the ground state and the first excited state, detected

due to the presence of nonzero regions in the energy gap.
Note that the number of nonzero regions in the energy
gap increases along with the number of particles, while its
amplitude decreases (in fact, Fig. 10 shows that the amplitute
of the nonzero regions of the energy gap becomes 10× lower
every time we add two particles to the system). We also note
that, as the number of particles increases, the solutions of the
BAE still predict the crossing of energy levels, despite the
small value of �E.

IV. SUMMARY

In this work we have introduced an eTMBH model with a
nonlinear tunneling interaction term. We found that the model
exhibits quantum phase transitions between three phases: a
Josephson phase, a self-trapping phase, and a phase-locking
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phase. This result was obtained through a classical analysis,
allowing for the identification of the parameter space of phase
transitions as depicted in Fig. 6. For the case λ > 0, we
compared the predictions arising from the classical analysis
with the energy gap. It was found that the boundary between
the Josephson and the phase-locking regimes coincides with
the closing of the gap.

We have then presented the exact solution for this model
using the Bethe ansatz method. Guided by the location of
quantum phase transition boundaries predicted by the classical
analysis, we analyzed solutions of the BAE and the energy gap
for small numbers of particles. Crossing of levels between the
ground state and the first excited state were detected. As we
increase the number of particles, the crossings between these
two states become more frequent, and between crossings the
range of the dimensionless gap �E occurs on a smaller scale.
The onset of these crossings in the few particle system may be
viewed as the analog of the quantum phase transition between
the phase-locking and the Josephson phases identified from
the classical analysis, which assumes a large particle number.
Significantly, the level crossings occur even in the case of
only four particles. It is important to emphasize that the level

crossings are a feature of the atom-pair tunneling interaction,
and they are not present when � = 0 or, equivalently, γ = 0.
This is consistent with the fact that line γ = 0 does not intersect
the phase-locking phase in Fig. 6.

The unusual features uncovered in this study call for
a deeper analysis of the exact solution of the model. In
future work it is planned to extend the methods adopted
in [28] and [29] to the TMBH model to meet this need. It
would also be of tremendous interest to realize a double-well
trap with an enhanced atom-pair tunneling coupling, via the
lattice shaking techniques advocated in [16]. Significantly,
lattice shaking methods have recently been used to success-
fully drive a cold-atom system through a quantum phase
transition [30].
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