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Abstract

Prior to every geostatistical estimation or simulation study there is a need for de-
limiting the geologic domains of the deposit, which is traditionally done manually by 
a geomodeler in a laborious, time consuming and subjective process. For this reason, 
novel techniques referred to as implicit modelling have appeared. These techniques 
provide algorithms that replace the manual digitization process of the traditional 
methods by some form of automatic procedure. This paper covers a few well estab-
lished implicit methods currently available with special attention to the signed distance 
function methodology. A case study based on a real dataset was performed and its 
applicability discussed. Although it did not replace an experienced geomodeler, the 
method proved to be capable in creating semi-automatic geological models from the 
sampling data, especially in the early stages of exploration.
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1. Introduction

The necessary investment to start a 
mine is in the order of tens to hundreds of 
millions of dollars. For the investment to 
be profitable, the potential product in the 
subsurface must be present in adequate 
quantity and quality to justify a decision 
to invest.

All technological and financial de-
cisions are built on the knowledge about 
the mineral deposit. Thus, the estimation 
of grade and location of material in the 
ground (in situ resources) must be known 
with an acceptable degree of confidence. 
A small difference between planned (es-
timated) and realized production have 
a large impact on mine profitability 
(Sinclair and Blackwell, 2002).

The resource evaluation of a min-
ing deposit is composed of two steps 
(Chilès et al., 2004): Delimitation of 
the boundaries of the units correspond-
ing to the various geological formations 
and estimation or simulation of grades 
within each unit.

Therefore, prior to every geosta-
tistical estimation or simulation, there 
is a need for delimiting the geologic 
units, implying a stationarity decision 

for geological and statistical homogene-
ity within chosen domains (McLennan, 
2007). Generating accurate boundary 
models is clearly necessary, as the qual-
ity of the models will influence various 
downstream mine practices, including 
estimations/simulations and mining 
planning (Cowan et al., 2003). These 
boundaries, separating different station-
ary domains, are traditionally modeled 
explicitly by manual digitizing from 
sample data.

First, two-dimensional poly-lines 
are manually drawn on cross sections 
honoring the sample data, and then 
linked by tie lines, these tied poly-lines 
are triangulated to create a wire-frame 
that represents a geologic unit, this 
process has some disadvantages (Cowan 
et al., 2003): its time consuming and 
requires an experienced geomodeler 
to construct complex geometries; the 
model produced is unique to each in-
dividual geomodeler, and cannot be 
replicated, making auditing by external 
personnel a hard task; it is inflexible, 
since modifying the model as new data 
becomes available is time consuming 

and laborious.
For most mines, only a single work-

ing model is maintained because of the 
time constraint. Rarely is there an oppor-
tunity to model alternative interpreta-
tions and compare resource estimations 
based on the alternative models; thus, the 
assessment of mining risks is avoided, 
even though it is inherent in geological 
modeling (Cowan et al., 2003).

Mining software packages have 
provided computational tools to dis-
play drillhole data and to speed up the 
manual digitization of cross sections. 
Despite these advances, explicit model-
ing still suffers from the disadvantages 
presented. Recent novel techniques 
referred to as implicit modeling provide 
algorithms that reduce the level of sub-
jectivity by replacing the digitization 
process with some form of automatic 
procedure (Silva, 2015).

The aim of this article is to inves-
tigate the applicability of the signed dis-
tance function methodology (Deutsch 
and Wilde, 2013; Silva, 2015) as a 
substitute or ancillary method for 
traditional geologic modeling. The 
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2. Geologic modeling

There are two groups of geologic 
modeling techniques available:

1) Deterministic techniques, which 
comprise explicit methods where the 
boundary that separates the geological 
domains is defined explicitly by the 
geomodeler, in vertical and horizontal 
sections, from the drillhole data and 
implicit methods which replace the 
manual digitization of the explicit meth-
ods by an automatic or semi-automatic 

form of domain delimitation. Implicit 
methods are straightforward and com-
putationally fast. Some well-established 
implicit methodologies are reviewed in 
this paper: The Leapfrog© methodology 
(Cowan et al., 2003), potential field 
(Chilès et al., 2004) and signed distance 
function technique (Deutsch and Wilde, 
2013; Silva, 2015). For the latter, a 
special plug-in was developed to run at 
SGeMS. A real case study is presented 

herein to illustrate the methodology.
2) Stochastic techniques require 

more computational effort, and are 
not so straightforward. The established 
algorithms are: sequential indicator 
simulation (Journel, 1989b), trun-
cated gaussian simulation (Journel and 
Isaaks, 1984), plurigaussian simulation 
(Galli et al., 1994) and multi-point 
based methods (Guardiano and Sriv-
astava, 1993).

3. Implicit methods

3.1 Leapfrog© methodology
The subject was introduced in the 

geology field by Cowan et al., (2003), 
based on the work of Savchenko et al., 
(1995) for modeling objects interpolat-
ing volume functions. The definition of 
a volume function is attached to the no-
tion of distance to an interface where the 
interface is defined as the surface sepa-
rating two distinct domains. Distance is 
measured to the nearest interface, and it 
can be negative or positive depending on 
whether the location is inside or outside 
of the domain. The bounding interface 
of interest is the surface corresponding 
to a particular iso-value of the volume 
function, usually the iso-surface zero 

(McLennan, 2007). The volume func-
tion must be interpolated in order to 
define the boundary interface, by imple-
menting a fast scattered interpolator 
method know as radial basis function 
(RBF) (Hardy, 1990). The interpolator 
is represented as the linear combination 
of basic functions similar to dual kriging 
(Journel, 1989a).

Leapfrog© provides one of the first 
implicit boundary modeling implemen-
tations within a commercial software 
package. There are five major steps in 
the methodology (McLennan, 2007): 
(1) data validation and composting; (2) 
interpolation and meshing; (3) incor-

porating geological morphology; (4) 
interpolating the geological morphol-
ogy; (5) morphologically constrained 
interpolation.

RBF functions do not derive the 
covariance functions from the data; 
they correspond to a simple isotropic 
linear covariance function. Therefore, 
there is no possibility of incorporating 
anisotropy into the boundaries through 
RBF interpolation. Instead it is injected 
manually in the form of deterministic 
morphological constraints (McLen-
nan and Deutsch, 2006). Besides this, 
dealing with multiple domains is not 
straightforward (McLennan, 2007).

3.2 Potential field
Presented by Chiles et al., (2004), 

this is an implicit 3D scalar field from 
which a geological interface is extract-
ed as a particular iso-surface. There 
are five major steps to the methodology 
(McLennan and Deutsch, 2006): (1) 
collect surface intersection and struc-
tural orientation data; (2) determine 

the form of the locally varying drift; 
(3) infer the potential field covariance 
function; (4) interpolate the potential 
field with the universal cokriging ap-
proach; (5) visualize the uncertainty in 
the boundary surface placement.

A key feature of the potential 
field method is the use of universal 

cokriging to optimally account for 
both intersection and structural 
dip data. The procedure is not sim-
ple, the covariance of the potential 
field is particularly difficult to infer, 
since there are no hard potential 
field data available (McLennan and  
Deutsch, 2006).

3.3 Distance function modeling
Signed distance function meth-

odology for multiple categories (Silva, 
2015) is a deterministic implicit model-
ing technique where the implicit func-
tion is constructed by interpolating a 
distance measure based on conditioning 
data. This method is based on the vol-
ume function technique, however, some 

interesting modifications were made 
(Silva, 2015).

For each sample, an anisotropic (or 
isotropic) distance between itself and the 
nearest sample belonging to an opposite 
domain is computed and assigned. Nega-
tive values represent the distance to the 
boundary for samples inside the domain. 

The interface that separates the regions 
in space is determined by the sign of the 
estimated signed distance values. The 
algorithm works as follows.

The set of data z(u
α
),α = 1,...,n 

is coded in indicators to specify the 
samples that belong inside or outside of 
the domains (Equation 1).
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algorithm was applied in a real gold de-
posit, results discussed and the implicit 

compared to an explicit model created 
by a geomodeler, in order to check if 

interpreted geological structures were 
reproduced by the algorithm.
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A simple two-dimensional example (Figure 1) proposed by Silva (2015) is presented to illustrate the process.

Figure 1
Simple two dimensional example illustra-
ting Signed distance function modeling 
workflow, adapted from Silva (2015).

Signed distance values are then calcu-
lated for each sample using Equation 2. If 

the sample is inside the domain, the distance 
is negative; if the sample is outside the do-

main, the distance is positive. The euclidean 
norm is used to measure the distance.
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The location u
β 
corresponds to the 

closest sample of the opposite domain to u
α
.

The distances can also be anisotro-
pic, in this case, the set of data coordinates 

x, y and z must be rotated and dilated (or 
contracted), using the Equation 3 trans-
formation, to x'', y'', z'', and then, the eu-
clidean distances are calculated normally. 

Anisotropic distances should be used when 
it is known that the geologic body extends 
more in a specific direction than in the oth-
ers, as in the case of a tabular body.
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Where α, β and φ are azimuth, dip 
and rake respectively, and amax, amin and 
avert are the anisotropy ranges.

The signed distance implicit func-

tion is then interpolated to all locations 
of interest (Equation 4). Ordinary krig-
ing will be used due to its ability to ac-
count for directions of continuity and 

the spatial configuration of data. Others 
techniques, such as inverse distance can 
also be used.
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Deutsch and Wilde, (2013) rec-
ommend the use of global kriging 
(Neufeld and Wilde, 2005), a smooth 
interpolator, to avoid artifacts in the 
implicit model. However the use of 
global kriging is restricted to the num-
ber of samples due to computational 
efficiency. Instead of global kriging, 
ordinary kriging can be used consider-
ing a large neighborhood and a large 
amount of data. Kriging allows us to 
control the run-time by changing the 
number of samples retained in the es-
timates, while methods based on RBF 

always use all samples.
The signed distances have a non-

stationary behavior, namely, the var-
iograms do not have a sill. Also, the 
linearity of the distance makes the 
origin behave close to a quadratic 
form. Thus, the Gaussian model is a 
well-suited structure for modeling this 
type of variogram. Known geological 
trends can be incorporated into the 
model by the variogram, whilst RBF 
based methods are not able to incor-
porate anisotropy. An increment in the 
nugget effect disconnects the domains 

and variations in the range influence 
the shape and spatial extension of the 
geologic domains.

At the end, the domains are classi-
fied at the unsampled location u in func-
tion of the sign of the signed distance 
estimates (Equation 5). If the estimate 
is negative, the location is classified as 
inside the boundary; otherwise, the lo-
cation is considered as outside. Models 
can be created in any resolution at the 
cost of computer resources and time, 
the resolution is controlled by modify-
ing the dimensions of the grid blocks.

=
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3.3.1 Distance function modeling for multiple geologic domains
The described signed distance 

implicit geologic modeling methodol-
ogy may only be applied for binary 
cases. In that which follows, the al-

gorithm developed by Silva (2015) 
to handle multiple domains will  
be presented.

Suppose there exists K multiple 

domains in the deposit. For all sample 
locations z(u

α
),α = 1,...,n, an indicator 

vector of K elements is coded according 
to Equation 6:

=
=

= Kk
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Thus the k element of the vector is 
one while the remainder K-1 elements are 
set to code 0.

In the same manner as in Equation 
6, the signed distance value to the closest 
opposite domain is computed individually 

for each k element of the vector (Equation 
7). The signs of the distances remain equal 
as in the binary case.
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Interpolation is performed individually for each k. Ordinary kriging is applied multiple times (Equation 8).
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Then the final rock type model is determined by the following equation.
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The estimated distance provides a 
measure of proximity to the closest oppo-

site domain. In this sense, the minimum es-
timated signed distance value may be seen 

as the most probable domain to be found 
at an unsampled location (Silva, 2015).

3.3.2 Measure of uncertainty (softmax transformation)
The proposed algorithm does 

not characterize uncertainty. There-
fore, a heuristic measure of uncer-
tainty was proposed by Silva (2015), 
this measure of uncertainty is not 
based on multiple realizations drawn 

from a random function as in sto-
chastic methods; Instead, it is based 
on a post-processing transformation 
method, a widely used approach for 
multiple class classification (McCul-
lagh and Nelder, 1989).

The central idea is to transform 
the estimated signed distance into 
values that can be interpreted as 
posterior probabilities (Equation 10). 
The transformed values lie between 0 
and 1 and sum to 1 for all elements k . 
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P(i(u))=k represents the probabil-
ity at location u to belong to category 
k, d*k (u) is the estimated distance for 
category k and ω is a parameter that 
controls the uncertainty bandwidth for 

K categories, a large parameter leads to 
greater uncertainties.

To illustrate how the transforma-
tion works Figure 2 shows, on the left, 
estimated distances for five different 

rock types on a particular block and on 
the right, the probabilities of this block 
to belong to each of the five categories 
obtained from the distances by the 
softmax transformation.

Figure 2
Estimated distances and probabilities 
obtained by softmax transformation 

for five rock types on a particular block.

The shorter the estimated distance 
for a given category K at an unknown 

location u, the greater is the probability 
of that location to belong to category k.
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3.3.3 Reproducing target proportions (servo system)
To avoid bias introduced by pref-

erential sampling in geologic models, 
Silva (2015) proposed the use of some 
sample declustering techniques and the 
application of a servo system (Strebelle, 
2002), to generate geologic models that 

match the representative proportions on 
the declustered data.

The algorithm is based on the 
probabilities obtained after the distance 
transformation (Equation 10). The core 
of the algorithm (Equation 11) consists 

of updating the probabilities of the do-
mains based on the difference between 
the target and current marginal distribu-
tions. The nodes visited must follow a 
random path to avoid the introduction 
of artifacts.

(11)

(12)

))()(())(())(( uPkpkuiPkuiP c
k

update +=== μ

P(i(u)=k)update represents the updated 
probability at location u to belong to 
category k, P(i(u)=k) is the probability 
obtained by the softmax transformation, 
μ is the servo system correction parameter 

defined as μ=λ/(1-λ) , p(k) and pc
k
 (u) are 

respectively, the target proportion for 
category k and the marginal proportion 
for the category k calculated from the 
blocks already visited. There is more of a 

correction when λ is closer to one, namely, 
the proportions gets closer to the target.

The blocks need to be reclassified, 
now, based on the updated probabilities. 
The classifier becomes Equation 12.

updatedkui )P(i(u)argmax )(* ==

Sometimes, when using a high 
µ factor, the servo system generates 
structures that do not make physical 
sense to reach the target proportions. 
Hence the maps must be corrected by 

a moving window system, similar to 
resources classification methodology 
(Deutsch et al., 1998).

The determination of uncertainty 
and use of the servo system are op-

tional. After all of the post processing 
and corrections, the algorithm assigns 
conditioning data to the corresponding 
grid node.

4. Case study

This case study was conducted on a 
major gold mine operation. The dataset 
presents 9140 data representing 5 differ-
ent lithologies. The area of the deposit is 
approximately 10km2 with 1300m dip.

First, signed distances were calcu-
lated for all 5 lithologies, in practice users 
must only input the categorical dataset. 
Then the distances calculated were vario-
graphed. It may seem a laborious process, 
but the extremely continuous behavior of 
the distances makes the variograms easy 
to model, and are similar to each other. 

Furthermore, in cases where we do not 
know any geologic anisotropic pattern 
a priori, the same variogram model can 
be used for all categories. Figure 3 shows 
the experimental variograms and their 
respective fitted models for all five calcu-
lated signed distances. The distances of 
the experimental variograms never show 
the nugget effect but it can be arbitrarily 
added by the user to control the con-
nection between the lithologies. In this 
case a 10% nugget effect was added on 
all variogram models. All models have 

the same range (1500m) and the same 
proportions between structures contribu-
tion (10% for nugget effect and 90% for 
a Gaussian structure). It can be seen in  
Figure 3 that the non-stationarity behavior 
of the distances makes the modelled range 
somehow arbitrary. 

As the absolute value of each var-
iogram structure contribution does not 
affect kriging results, only the propor-
tion between the contributions, the same 
variogram model (Equation 13) could be 
assumed for all five signed distances.

+=
m

h
gaussh

1500
9.01.0)(

Now, distances calculated for each 
category must be interpolated to each grid 
node, and the category responsible for the 
most negative estimated distance retained 
and assigned. Users must input kriging pa-

rameters and variogram models for each 
lithology. Resolution is the same as the 
explicit model provided. Grid properties 
are in Table 2 and kriging parameters are 
in Table 1; the same kriging parameters 

must be used to interpolate all categories. 
A maximum of 40 samples per estimation 
makes the run-time a few minutes, the 
output model differs a little compared to 
models created using 100 or 200 samples.

Neighborhood Number of samples

Radius (X) Radius (Y) Radius (Z) Min. Samples Max. Samples

Lithology (1-5) 3000m 3000m 3000m 4 40

Number of blocks Block dimensions

Num. X Num. Y Num. Z Dim. X Dim. Y Dim. Z

70 60 57 50m 50m 25m

Table 1
Kriging parameters.

Table 2
Grid properties.

(13)
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Figure 3
Signed distances experimental 

variograms and their respective models.

A categorical scatterplot, pair-
ing each block category defined by the 
geomodeler, on the X axis, and by the 

algorithm, on the Y axis, was constructed 
(Figure 4) showing a linear correlation 
coefficient 0.93, namely, 95% of the 

estimated blocks are consistent in both 
models; these are the points that fall in 
the 45º line.
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Figure 4
Scatterplot of distance 
function and explicit models, 
comparing the rock types assigned 
to each block. Numbers adjacent to 
the dots refer to quantify of blocks paired.

A high linear correlation coefficient is not indicative of a good 
model. More simplistic methods such as nearest neighbor also produce 
highly correlated scattterplots similar to Figure 4; however, produce 
unrealistic models. In Figure 5, both of the model’s sections were 

compared in order to check if interpreted geological structures were 
reproduced by the algorithm. Slices are vertical along X and Y direc-
tions, the block model has 70 sections along the X direction and 60 
sections in the Y direction. Four sections along each axis were chosen.

Figure 5
Comparison between explicit and 
implicit three dimensional geologic 
models, as well as sections along X and 
Y axis showing the categorical models 
and the probabilities for each rock type.
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Some complex structures inter-
preted by geomodeler were reproduced 
satisfactorily by the algorithm as can be 
seen highlighted by green lines (Figure 
5). Conversely, the model mathematically 
generated misses or does not accurately 
reproduce some other structures, as seen 
highlighted by red lines (Figure 5), usu-
ally, because there were not enough 
samples in that region, in those cases the 
geomodeler counted with his/her experi-
ence and/or additional information for 
creating the explicit model. Discordant 
blocks are shown in red and are located at 
lithological transitions. Scattered blocks 
belonging to lithology 5, displayed at 
the upper part of implicit model, are the 
blocks assigned conditioning to data lo-
cations, where probably the geomodeler 
arbitrarily increased its influence in the 
explicit model. This feature is not ex-
pected to be reproduced by the algorithm, 
as there are few samples from lithology 5 
which are surrounded by many lithology 
3 and 4 samples.

A trained professional will never be 
replaced by an algorithm and implicitly 

created models will rarely be final models, 
as they must be refined manually. The 
higher the number of samples, the more 
the implicit model approximates the ex-
plicit model, and in this sense, there is no 
need for much interference. In the case 
where samples are scarce, the implicit 
model serves as a proto model, saving time 
and effort in the early stages of modeling.

Uncertainty was calculated by soft-
max transformation, as the probability 
of each block belonging to each category 
in each Figure 5 section. The plug-in 
default value for the factor that regulates 
the interrelation among the probabilities 
is ω=175. Lower ω values create more 
conservative models. 

The Servo system and the magnitude 
of µ factor are dependent on how much 
you trust your declustered data propor-
tions. In this case study, applying the servo 
system makes the model more discordant 
with the model provided for comparison 
(not necessarily wrong). Border effects 
often occur when there is extrapolation in 
estimates, extending structures exaggerat-
edly beyond the limits of the samples. The 

servo system can also be used to control 
the extent of this kind of structure.

The implicit geologic modeling 
algorithm formulation, description, 
and implementation should be relatively 
straightforward. Too complex algorithms 
will be difficult to implement, explain, 
and justify in practical settings. McLen-
nan (2007) proposed six different criteria 
to evaluate implicit modeling algorithms: 
(1) Simplicity: The signed distance al-
gorithm is extremely simple, where the 
only tough step is variogram modeling 
that can be simplified using the same 
isotropic variogram for all categories. 
Speed: It is quite fast. For the case study 
example where for a dataset with 9140 
samples, the algorithm took a few min-
utes to run. (3) Subjectivity: Using the 
same parameters, the model is perfectly 
replicated. (4) Flexibility: Incorporating 
incremental geological data is easy and 
fast. (5) Uncertainty: The transforma-
tion of distances in probabilities creates 
a heuristic measure of uncertainty. (6) 
Realistic: The algorithm generates geo-
logically plausible boundary models.

5. Conclusions

As could be observed in the case 
study, the algorithm does not replace a 
trained professional, but its simplicity and 
speed justify its usage, especially in the 
early stages of modeling.

As disadvantages of the method, the 
non-stationarity of the distances can be 

mentioned, making the variogram model-
ing arbitrary and questionable. Moreover 
the method is based on kriging, so only 
linear relationships between domains are 
modeled, unless a large amount of data 
is available.

For practical purposes, the heuristic 

measure of uncertainty is satisfactory, but 
it is not an assessment of uncertainty that 
result from multiple realizations of a sto-
chastic model. Knowing this, future work 
may be focusrd on combining some kind 
of boundary simulation with the straight-
forwardness of the deterministic method.
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