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Abstract. Dice throwing is used to illustrate relevant concepts of the statistical theory of
uncertainties, in particular the meaning of a limiting distribution, the standard deviation, and the
standard deviation of the mean. It is an important part in a sequence of especially programmed
laboratory activities, developed for freshmen, at the Institute of Physics of the University of São
Paulo. It is shown how this activity is employed within a constructive teaching approach, which
aims at a growing understanding of the measuring processes and of the fundamentals of correct
statistical handling of experimental data.

1. Introduction

There is by now a consensus in the physics teaching community that the main concepts of
the statistical theory of uncertainties (formerly known as statistical theory of errors) are far
from easy to grasp [1]. On the other hand, there is an increasing awareness, also from outside
the community, about the necessity of a clear understanding of the informational content of
experimental data [2]. The initial training, with the aim of acquiring a critical view of measuring
procedures and the resulting data, is advantageously done in the more easily controlled situation
of experimental physics, where repetitions of measurements are mostly possible. In fact, in
the biological sciences, and even more so in the social sciences, there are usually many more
parameters of importance, whose influence on the outcomes may frequently only be estimated
by a mind trained to look for regularities and irregularities. In the last few years, a reformulation
of the didactic approach to the statistical theory of uncertainties was undertaken at the Institute
of Physics of the University of S̃ao Paulo [3]. Two aspects are now viewed as being of prime
importance:first, give the students the opportunity tofeel the influence of randomness on the
practical outcome of experiments prior to telling them therules which are derived from it;
second, base the whole synthesis of what the students haveseenon a comparative discussion
(guided by the teachers) of the real results of the whole class or even the totality of classes
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(10) of the freshmen majoring in Physics. In this way a constructive approach [4] is pursued
and the students are led to look at their data in a critical and comparative way.

Dice throwing, as the second activity in class, in a sequence of specially programmed
laboratory works, has shown a variety of didactically interesting features which will be
presented in the following sections. However, in order to take advantage of all the potentialities
of such an activity, it is essential that the students have already been introduced to the statistical
fluctuations of measured values. This is worked out in São Paulo in two ways: (i) in the
inaugural lecture, which is in fact their first contact with the University, students are asked to
read their watches simultaneously; these data are collected, histogrammed and presented to
the students, shortly afterwards; (ii) in the first scheduled laboratory activity, the timing of the
period of a pendulum by pairs of students also results in histograms, which the students are
instructed to analyse qualitatively in a comparative way.

2. Dice throwing and the statistical expectation

Perhaps the most important issue in teaching the statistical treatment of data is to make it clear
to the beginner what is meant by a statistical expectation. Dice throwing is familiar to almost
everyone and can be used as a counterpart of a real experiment if conveniently exploited. At
the Institute of Physics of the University of São Paulo special dice with two faces marked with
aspotare in use, but for most purposes commercial dice, if of the same production lot, should
be adequate. For almost all students it is immediately clear that the long-term expectation, or
probability, of having an ace (a spot showing up) is

p = 2
6 = 1

3 = 0.333. (1)

The experimental assessment of this expectation is, therefore, the main problem presented to
the class at the very beginning of the activity.

To allow for the comparative appreciation of all data, the throwing of 10 dice at a time
and the counting of the numbery (y = 0, 1, 2, . . . ,10) of marked faces showing up (aces
or successes) is, after some initial trials (and the ensuing discussion with the class), put as
a common methodology for all students. It is agreed upon to always look for indications of
significant differences in the outcomes, aiming at testing the fundamental hypothesis, which
is to take all dice as equal. Now, the mean value expected fory in the long term turns out to
be 10p = 3.33.

Subsections 2.1 to 2.3, which follow, are organized so as to highlight, in a sequence of
growing difficulty and through the use of the students’ results, statistical concepts which are
cornerstones for the later application of the statistical theory of uncertainties to measurement
results. Although the present work is heavily based upon the outcomes of the gambling
activities of the 1996 freshmen, some results of previous years are also included.

2.1. The meaning of a limiting distribution

It is surely not feasible to come close to the limiting distribution with real data due, among other
factors, to the impossibility of maintaining the same measuring conditions for long periods.
So, the existence of a limiting distribution is ultimately an act of faith, which enables one to
work, in practice, with its consequences. If the hypothesis ofequal dicecan be made for a
large collection of them, it is easy to collect up to some 104 events of simultaneous throws of
10 dice, if one has a group of 100–200 people. Therefore, one is able to study what happens to
the mean,y, which is the best approach to the long-term expectation of 10p when the sample
size,N , is increased. It is also convenient to compare the outcomes of several statistically
equivalent samples, which is a means of putting the fluctuations inherent to such processes
into perspective. In practice, an option was made for having the gamblers collecting the data
of a finalN = 500 sample in smaller samples; to begin with, five timesN = 10 throws of 10
dice, and, in sequence, a further nine collections ofN = 50 repetitions of throws. Students
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are instructed to plot graphs of their cumulatively increasing samples and also to compare
them with the other samples of the same size already obtained. Thus, initially they compare
theirNy × y (Ny being the absolute frequency of each of they possible successes) graphs for
samples withN = 10 andN = 50 and, at the end, the severalN = 500 samples obtained in
each class are jointly discussed on the blackboard. This procedure induces students to note
that something like a limiting distribution is to be expected and is successively better defined
asN increases. The final samples of the several classes (N = 4× 103) and the total sample
of the classes (N ≈ 5× 104) are afterwards made available to the students and their absolute
frequencies are compared with the results of the binomial probability distribution,Pn(y) for
n = 10 trials (dice) and probabilityp = 0.333:

Ny = N P10(y) = N 10!

y!(10− y)!p
y(1− p)10−y. (2)

Figures 1(c) and 1(d) respectively show theNy versusy graphs obtained by eight different
classes forN = 4000 and the global result,N = 46 500, of all classes, the latter being
compared with the theoretical expectation (equation (2)). Figure 1 also displays examples of
comparisons of eight samples ofN = 50 (figure 1(a)), collected by one team of students, and
of N = 500 (figure 1(b)), each of which is the final result of one team of the class. It can be
seen that even theseN = 500 samples are still rather variable and that only the global sample,
obtained by the totality of the 1996 freshmen, seems distinctly equivalent to the binomial
expectation. Statistically allowed fluctuations in each channel (indicated as approximately
68% limits, forming a belt in figures 1(a) and 1(b)), must obviously be taken into account.
These results contain one of the most important messages to be got across: do not expect your
histograms of data collected in actual physics experiments to lookidentical to the expected
probability function, even forvery largesamples ofN ≈ 50, in spite of a possible limiting
distribution of, for instance, Gaussian shape.

To complete the next step, students are further asked to calculate means,y, for their
samples with differentN and to comparepex = y/10 with the probability of obtaining an ace
in a single throw,p (equation (1)). Table 1 shows results ofpex for the data reproduced in
figure 1 and also for eight of theN = 10 samples. The almost correct number of significant
figures fory emerges automatically for the sample sizes chosen and is used in the first place to
indicate the increasing information content ofpex, when calculated from increasing samples.
The technique always employed in the freshman laboratory is to compare, on the blackboard,
the results of the various teams in each class, as they are being obtained: the teacher, now and
then, calls for a pause in the activity and promotes a group discussion. This procedure, besides
uncovering mistakes, offers in this activity opportunity to convince the students that the values
normallydiffer from each other. In particular, they realize the convenience of taking care of
significant figures and, especially, not to neglect zeros at the right of the number.

Besides the averages of the eight values ofpex (pex), table 1 also presents the standard
deviations for eachN , sp(N), which represent the fluctuation of the particularpex values
tabulated about their respective mean. The kind of global overview of the results exemplified
by the last columns of table 1 is discussed with the students in a special activity [3] called a
synthesis classwhich is delivered after about two months of experimental activities. By the
time thissynthesis classis presented, the students have already been exposed to two further
experimental activities dealing with measurements. An analysis of table 1, as done in the
synthesis class, demonstrates that, as expected, the significant figures of the results increase
rather slowly. On the other hand, after a thorough examination of the table, students clearly
grasp the information contained in the significant figures, so that a value ofpex = 0.42 may
be a possible outcome of aN = 10 sample, but a value ofpex = 0.420 should not be a result
of N = 500; that for theN = 4000 samples of each class the first two figures are surely 0.33
but the fluctuation affects the third figure ofpex, meaning that the results of classes 1 and 8 are
no betterthan those of class 3 or, in particular, of class 6.



340 L B Horodynski-Matsushigue et al

0 2 4 6 8 10

0

5

10

15

20

(a)

N = 50

0 2 4 6 8 10

0

50

100

150

200

(b)

N = 500

s

y

0 2 4 6 8 10

0

400

800

1200

1600

(c)

N = 4000

0 2 4 6 8 10
y

0

4000

8000

12000

16000
(d)

N = 46 500

ab
so

lu
te

 fr
eq

ue
nc

y,
  N

y

Figure 1. Absolute frequencyNy , of y sucesses, in the throwing of 10 dice with two
marked faces, for eight different samples obtained by: (a) one team of students throwing
50 times; (b) several teams, each totalling 500 times; (c) eight different classes with
N = 4000. (d) The 1996 global result, forN = 46 500, compared with the binomial
expectation shown as the dotted line connecting the calculated points. In theN = 50
andN = 500 cases the limits within which approximately 68% of the experimental
frequencies are statistically expected to fall are shown by upper and lower dashed lines.
A different symbol is used for each sample. In the samples withN = 500, (b), one
typical mean value,y, and standard deviation,s, are respectively indicated by vertical
and horizontal dashed lines.
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Table 1. Experimental probability,pexi (i = 1, 2, . . . ,8) for a dice to show an ace,
obtained from eight samples ofN = 10, 50, 500, 4000, and one sample of 46 500
throwings of 10 dice with two marked faces compared with the value expected for
N →∞, p. Also indicated in the two last rows are the correspondingmean valuespex
and a measure of the dispersion of the eight values,sp(N).

N

10 50 500 4000 46 500 ∞ (expected)

pex1 0.42 0.332 0.329 0.3331 0.332 884 0.333 333
pex2 0.28 0.334 0.337 0.3342
pex3 0.35 0.332 0.340 0.3348
pex4 0.28 0.318 0.329 0.3344
pex5 0.26 0.326 0.342 0.3324
pex6 0.37 0.366 0.331 0.3295
pex7 0.36 0.310 0.315 0.3318
pex8 0.33 0.382 0.338 0.3331

pex 0.331 0.338 0.333 0.3329
sp(N) 0.055 0.024 0.009 0.0017

It is also important to stress that, without further information, it is impossible to know if
the global result forpex, shown in the fifth row, is compatible with the expected value.

2.2. The width of a distribution as estimated through the standard deviation

Besides the concept connected with the proper existence of a statistical distribution of data,
another difficult concept [1] refers to the meaning attached to its width. Most students see
the width of the distribution of measurements as a direct indication for the uncertainty in the
mean valueand thus anticipate that it should decrease as the numberN of events in a sample
is increased. It is, therefore, of utmost didactical interest to convince the class, at the very
beginning of the experimental activities, that the width of the data distribution reflects the
relevant characteristics of the whole measurement process in each experimental situation and,
ideally, only fluctuates in the vicinity of a constant value. Therefore, making the students
calculate standard deviations for samples of increasingN , and showing the near constancy of
the results, helps them to clarify the concept, especially if the calculated values are displayed
on the respective graphs. On each histogram of their previous experimental results they had
already been prompted to indicate estimates fora best valuefor their measurements and fora
widthof the experimental distribution, meant as an indication of the dispersion of their values,
so as to encompass themajorityof the events. Afterwards, they had been instructed to calculate
the arithmetic meanx and the standard deviation estimate

s =
√∑N

i=1(xi − x)2
N − 1

(3)

and to compare these two quantities with theirpreviously guessed values. No formalization
of a concept for the standard deviation was attempted on that occasion. The values ofx and
±s were simply represented on the histogram by vertical and horizontal arrows, respectively,
and it was stressed that the value 2s gives a result very similar to the value estimated for the
width, while x is certainly not far from the previously guessedbest value.

In this context, calculatings for the dispersion of they successes around their mean value
y and indicating it on the graphs, in a way similar to that already employed, reinforced the
concept that the standard deviation encompasses a region around the mean wheremostof
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the events lie. It was stressed that thismostmay be quantitatively different for each kind
of probability function, in particular for dice throwing and their former measurement results.
A typical standard deviation is indicated in figure 1(b).

All values of s obtained by the students are collected and also discussed during the
aforementionedsynthesis class. It is verified that even for samples ofN = 10, the standard
deviation should be represented with two significant figures if the first digit is a 1 or 2. It is
also seen thats remains constant within its increasing significant figures asN is increased, but
that fluctuations as large as 11% areusual, even forN = 50.

2.3. The standard deviation of the mean, sm

As already stated, students intuitively expect the result of a measurement to be better determined
as the sample sizeN increases. Unfortunately, most students associate this gain in precision
for the final result (that is, the smaller uncertainty of themean value) directly with a decrease
of the standard deviation estimate for the dispersion,s. If repeated samples of sizeN are
taken, theirmeans, yN , tend to obey a limiting distribution (of Gaussian form, in the central
limit theorem situation) with width

σm = σ√
N

(4)

the small sample estimator being

sm = sm(N) = s√
N
. (5)

Since the standard deviation,s, is approximately constant, thewidth of the distribution of
the meansis expected to decrease by a factor 1/

√
N with increasing sample size. To assure

students of this fact and to show them thatsm is to be taken as thestatistical uncertaintyof
the mean, their sample meansyN were collected, histogrammed and presented to them in the
synthesis class. Figure 2 compares the histograms which resulted for 100 means of samples
with N = 10 andN = 50, and for 93 means (the totality of the student teams) forN = 500.
The information contained in figure 2 must be thoroughly discussed, but it is usually possible to
convince the freshmen that the widths of thedistributions of the meansdecrease withN in the
expected proportion. Therefore, there is astatistical expectationfor eachindividual meanto lie
nearer the final expected value, represented by the mean of the meansyN , asN increases and,
hopefully, this message is also grasped by the students. The caption of figure 2 presents, for each
N , the values of the experimental standard deviationssy(N) calculated for the approximately
100 means shown in the figure, as an experimental measure of their fluctuation aroundyN ,
in comparison with the expected value,σm(N), obtained from equation (4). Observing these
values, good accordance may be noted, if allowance is given to the statistical variation of∼7%
expected for the standard deviation for samples of about 100 events [5]. In a future paper,
the authors intend to show how the data collected in the throwing of dice may also be used to
ascertain the statistical accordance of the fluctuations observed, both for theNy frequencies
and for the standard deviations,s, with their respective expectations.

Now the frame is set for returning to a quantitative appreciation of the information contained
in table 1. It may be observed that the standard deviations of the means (notepex = y/10),
presented there, are of the correct magnitude, even if only eight pieces of data were considered,
that issp(N) ' sy(N)/10. It is, by now, also possible to decide that the final result of the
1996 gambling activity should be accompanied bysm(N), calculated through equation (5),
giving pex = 0.332 884± 0.000 694. In the future paper, it will be made clear that three
significant figures should be presented for the uncertainty of this final result. Finally, very
good accordance with the expected value ofp (equation (1)) can, therefore, be claimed.
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Figure 2. Absolute frequency histograms of approximately 100 experimental results
for the means,yN , of the number of successes,y, in 10 simultaneous throwings of
marked dice (p = 1

3), for samples of sizes (a) N = 10, (b) 50 and (c) 500 compared
with their Gaussian representation (dashed curves). The means of the means,yN , and
a measure of their dispersion,sm = sy(N), are respectively indicated by vertical and
horizontal dashed arrows (see text). For comparison, the theoretically expected values
(equation (4)) are given in brackets:sy(10) = 0.47 (0.47),sy(50) = 0.22 (0.21) and
sy(500) = 0.075 (0.067).

In retrospect, in thesynthesis class, with help especially of figures 1 and 2, much emphasis
has to be put on the fact that the standard deviations represents a measure of the half-width
of the original distribution and, as such,x ± s is the interval whereonenew try (with 10 dice
or one new measurement) should lie, with some associatedprobability. On the other hand,
the standard deviation of the mean,sm, represents the half-width of distribution of themeans
of several samples, each containingN repetitions. Thusx ± sm (wherex is the mean of the
means), represents the interval where a newmeanof N repetitions is to be found with about
68% probability, since this distribution is approximately Gaussian.
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3. How to conclude that a systematic difference with expectations exists

Table 2 shows some examples (arbitrarily taken from table 1) of the experimentally verified
probability of having an ace in a single dice throw, as obtained in 1996, for several sample sizes.
The value of the experimental uncertainty, as given bysm(N) calculated through equation (5),
is given in parenthesis with the due significant figures. Next, table 3 compares the final results
of each year, starting in 1991 when this activity began, in fact with a slightly different character
and also differently manufactured dice. What can be concluded about the repeated gambling
activity and about the dice in use?

Table 2 shows that most of the partial results of 1996, as well as the final result, are in
very good agreement with the theoretical expectationp = 0.3333 within the 68% confidence
interval (1sm). Clear exceptions are theN = 10 resultpex1 = 0.42± 0.06 and aN = 500
one,pex7 = 0.3150± 0.0056, the former being encompassed by the 95% confidence interval
(2sm), while the latter is just outside this interval, but well inside the 3sm one, which is about
what is statistically expected. Students are thereby alerted to be cautious with their rejection
impetus, in particular if small samples are examined. Table 3, on the other hand, demonstrates
accordance within 1sm since 1992 with the expectationp = 0.3333 for the same dice, still
in use, leading to the conclusion that there has been fair play for some years. However, the
value obtained in 1991 with the first set of differently manufactured dice is clearly well outside
the 3sm interval, being considerably lower than expected. It must be stressed to the students
that one was able to reach this conclusion only after having gathered theN = 500 results
of manyteams and, in particular, theN ∼ 4000 results of the 10 classes which then gambled
(pex±0.002: 0.321, 0.324, 0.326, 0.331, 0.327, 0.329, 0.331, 0.328, 0.330 and 0.333). Almost
all are below the expected value ofp by severalsm, indicating that something unusual happened
in 1991.

Table 2. Some examples of experimentally verified values (1996) for the probabilitypex

of having an ace showing up with dice having two marked faces, obtained with samples
of increasing sizeN . The associated uncertainty given bysm (equation (5)) is given in
parenthesis.

N pex1 pex4 pex7

10 0.42(6) 0.28(7) 0.36(4)
50 0.332(17) 0.318(20) 0.310(23)

500 0.329 4(61) 0.328 6(70) 0.315 0(56)
4 000 0.333 13(239) 0.334 38(236) 0.331 83(234)

46 500 0.332 884(694)

Table 3. Final experimental results for the probability of having an ace showing up,pex,
and for the width of the associated distribution measured through the standard deviation,
sp = s/10, obtained from the global samples of indicated size (N ), with the same dice
being thrown in lots of 10 in the successive years. In 1991 differently manufactured
dice were in use. Uncertainties of the final valuespex, as given bysm, are presented in
parenthesis, truncated to one figure for ease of comparison.

Year N pex sp

1991 0.3280(7)
1992 43 042 0.3328(7) 0.1492
1993 44 324 0.3334(7) 0.1488
1994 34 446 0.3332(8) 0.1488
1995 35 400 0.3329(8) 0.1492
1996 46 500 0.3329(7) 0.1487
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4. Discussion and conclusion

It has been shown in this work that the activity of throwing dice contains a wealth of statistical
information of didactical interest. The concepts of (i) limiting distribution; (ii) standard
deviation and (iii) standard deviation of the mean and its change by a factor 1/

√
N as the

sample sizeN is increased, were all demonstrated with the aid of the practical results obtained
by the students themselves. Gambling is a very popular activity in Brazil and probably in
most other countries. So, if correctly exploited, it is possible to maintain the interest of the
class in the activity, even during the boring 500 repetitions. For instance, this can be done by
prompting them to see if the somewhat expectedone eventwith 10 aces will show up intheir
class. Moreover, during the activity the students are prompted to explore their partial results,
obtained forN = 10 andN = 50, by drawing comparative graphs and getting a feeling for
the variability of statistical events. The discussion of the results forpex, the experimental
probability of having an ace, as a function of increasing sample sizeN , should be done at
a growing level of sophistication based on statistical grounds and can be used tocalibrate
students’ expectations to reality. In fact, it is thiscalibration of what to expect qualitatively
for the small (usuallyN 6 10, as is well known) samples of actual measurements, that is one
of the most relevant results of the proposed activity. To succeed in his or her task of promoting
a statistical understanding of the data taking process, the teacher must be always alert on this
issue, coming back to the discussion, whenever pertinent, using whatever ‘peg’ presents itself
in future activities.

The final goal of the activity is, of course, to show the freshmen how they can draw
statistically basedquantitativeconclusions. It was stressed that no valid conclusion can be
drawn unless a confidence interval can be stated for the result, at a certain confidence level. In
physics it is usual to take a 68% confidence level and to presume that this corresponds to a ‘±1σ ’
interval, which is, strictly speaking, only valid for purely Gaussian distributions. Students
were convinced that they should go through the trouble of calculating standard deviationss (if
samples of sizeN > 4 are available) and that the correct statistical uncertainty of the mean
values (usually taken as final results) is the standard deviation of the mean,sm = s/

√
N , which

should be substituted for the vagueone sigmaconcept.
Last but not least, students were reminded to be careful with respect to their tendency to

reject unexpected data onfirst impressionand not to forget that any statistical affirmation and
conclusion is made on a certainconfidence level. In this sense the fortunate fact of actually
having an unexpected outcome in the throws of 1991 helped in demonstrating this to the
students. Indeed, no single team could have convincingly argued the 1991 dice to be untrue. It
needed the statistically increased information, provided by the joint examination of the about
hundredN = 500 results, to make the affirmation within a reasonable confidence level. The
results of 1991 were,a posteriori, interpreted as due to the way of marking the dice, with paint
sprayed over two entire contiguous faces, which then adhered slightly preferentially with the
rubber surface over which the dice were thrown, therefore showing an unmarked face ‘up’
with a somewhat increased probability.

Acknowledgments

VRV acknowledges partial financial support from CNPq. JFD acknowledges financial support
from CNPq under grant RD No 301 340/94-3. M-LY acknowledges financial support from
CNPq under grant RD No 301 155/94-1.

References
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Raǐcevíc J J, Merkle M, Ehrhardt J and Ninković M M 1997 Loss of lifetime due to radiation exposure-averaging
problemsHealth Phys.72550–7

[3] Horodynski-Matsushigue L B, Pascholati P R, Vuolo J H, Yoneama M-L, Dias J F, Siqueira P T D andAmaku M
1997 Abstract published inProgramas e Resumosof theSimṕosio Nacional de Ensino de Fı́sica – Novos
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