
CAROL-FI: an Efficient Fault-Injection Tool for

Vulnerability Evaluation of Modern HPC Parallel

Accelerators

∗Daniel Oliveira, ∗Vinicius Fratin, ∗Philippe Navaux, †Israel Koren, ∗Paolo Rech
∗Institute of Informatics †University of Massachusetts

UFRGS UMass
Porto Alegre, Brazil Amherst, US

Abstract—Transient faults are a major problem for large scale
HPC systems, and the mitigation of adverse fault effects need
to be highly efficient as we approach exascale. We developed a
fault injection tool (CAROL-FI) to identify the potential sources
of adverse fault effects. With a deeper understanding of such
effects, we provide useful insights to design efficient mitigation
techniques, like selective hardening of critical portions of the
code.

We performed a fault injection campaign injecting more than
67,000 faults into an Intel Xeon Phi executing six representative
HPC programs. We show that selective hardening can be suc-
cessfully applied to DGEMM and Hotspot while LavaMD and NW
may require a complete code hardening.

I. INTRODUCTION

Accelerators are nowadays extensively used to expedite
calculations in large HPC centers. Intel Xeon Phi devices and
NVIDIA GPUs, for instance, are employed in 5 of the top 10

supercomputers [5]. The main reason to use accelerators are
their high computational capacity, low cost, reduced energy
consumption, and flexible development platforms.

Unfortunately, as accelerators are also extremely likely
to experience transient errors as they are built with cutting-
edge technology, have very high operation frequencies, and
include large amounts of memory and logic resources. The
generated error may corrupt data values or logic operations and
lead to Silent Data Corruption (SDC), Detected Uncorrectable
Error (DUE), or be masked and cause no observable error [14].
As a reference, DOE’s Titan, today’s third most powerful
supercomputer [5] composed of more than 18, 000 Kepler
GPUs, has a radiation-induced Mean Time Between Fail-
ures (MTBF) in the order of dozens of hours [16]. As we
approach exascale, the resilience challenge will become even
more critical due to an increase in system scale [12].

In this paper, we present a detailed analysis of transient
errors vulnerability using an in-house high-level fault injector
tool, named CAROL-FI. Unlike most fault-injection frame-
works, CAROL-FI injections are made at the highest possible
level. CAROL-FI is intended as a tool to help developers to
identify the portions of their code that, once corrupted, are
more likely to affect the output and can then provide pragmatic
information to move towards a solution of the reliability
issue in HPC. The distinction between critical and not critical
portions of the benchmark, in fact, allows to selectively harden
only a subset of instructions or variables. As a result, this

can significantly improve code reliability while introducing
minimal overhead.

In summary, this paper makes the following contributions:

• We present an in-house high-level fault injection tool
for Intel Xeon Phi, which is made publicly avail-
able [1].

• We define a methodology to identify critical portions
of HPC benchmarks and include a discussion on
possible mitigation techniques.

The rest of this paper is organized as follow. Section II
provides a brief background on the impact of transient faults in
HPC and presents related work. Section III describes CAROL-
FI, our in-house fault injector tool. Section IV describes
the methodology used in this work. Section V presents the
evaluation of six HPC benchmarks based on the fault injec-
tion campaign. Finally, Section VI concludes the paper and
proposes future work.

II. BACKGROUND

A. Transient Errors Effects

The pursuit of extreme performance coupled with reduction
of power consumption and an increase in computing resources
makes modern HPC computing devices extremely prone to
transient errors. The main causes of transient errors at the phys-
ical level are voltage-frequency variations, temperature per-
turbations, and electromagnetic interferences. Lately, neutron-
induced transient errors have been shown to be particularly
critical for HPC systems [4], [16].

B. Existing Software Fault Injection Tools

One of the most common approaches to evaluate the
reliability of a component or an application is to use software
fault injection. By injecting a fault it is possible to calculate
the Architectural Vulnerability Factor (AVF), which is the
probability for a corruption to propagate to the output [13],
or the Program Vulnerability Factor (PVF), which is the
probability that a fault at the instruction level will affect the
program output [15]. The high-level fault injector that we
have developed provides information about the most vulnerable
parts of a given code and about the effect of a corrupted
variable on the code output. While high-level fault injection



can not provide realistic error rates, it can identify the critical
portions of the code.

There are several available software fault injection tools
that differ in terms of injection methods and domains of
application. Some examples can be found in [9], [7], [17],
[10], [11]. However, There are still no available fault injection
tools capable of injecting faults into x86 parallel devices (e.g.,
Intel Xeon Phi) and, at the same time, provide information
about the error propagation paths to the application level (i.e.,
the variable and code fragment that generated an error).

III. CAROL-FI

Our fault injector, CAROL-FI (publicly available at [1])
is built upon GDB (the GNU debugger) with Python support.
The goal of CAROL-FI is not estimating the realistic error rate,
but obtain information about the error propagation paths and
provide useful insights to the code designer on how to mitigate
their effects. Compiling the code in debug mode allows to
gather this information. Thus, Debug information is used to
correlate each allocated memory portion with its corresponding
variable in the source code.

CAROL-FI’s workflow consists of the following steps:

1) The evaluated code is launched by GDB.
2) At a random time an interrupt signal is sent to the

program, which stops its execution and the GDB
triggers a python script that examines and change
memory content.

3) The python script navigates the execution stack of the
program to randomly choose a variable. The script
can navigate the current frame up to the main frame
of the program. Thus, variables from the current to
the main scope can be chosen.

4) Based on the fault model one or more bits used by
the selected variable are flipped.

5) After the fault is injected, GDB resumes the execution
of the program.

The current fault model is based on a single bit-flip of
a single variable. However, the fault model can be easily
extended to simulate multiple bit-flips or any other fault model
of interest.

CAROl-FI is quite fast as its only significant overheads are
the ones caused by the GDB and the debug mode that disables
compiler optimizations. On the average, its overhead is about
4x the normal execution time, with a worst case of 8x.

It is important to note that, while we inject faults in
variables, fault injection in the code data is emulating much
more than main memory errors. Errors in the cache, and even
in logic circuits will eventually propagate to the main memory.
Thus, main memory corruption can be the result of faults in
the cache, registers, instructions, or transient spikes in logic
circuits. Therefore, even a memory with an appropriate error
protection mechanism will not protect the component from all
the harmful effects induced by CAROL-FI.

IV. METHODOLOGY

The Xeon Phi board used for evaluating CAROL-FI ca-
pabilities and analyze HPC codes vulnerabilities is the co-
processor 3120A, codenamed Knights Corner. The 3120A

coprocessor has 57 physical in-order cores, and each one
has 32 512-wide vector registers and supports four hardware
threads. The Operating System is the CentOS 7.0 with Intel
MPSS version 3.7 and GDB 7.8 with Intel extensions.

To evaluate the capabilities of CAROL-FI, we selected six
benchmarks from different domains with different computation
and communication patterns. The selected benchmarks are: a
Matrix Multiplication (DGEMM) benchmark, a DOE mini-
app named CLAMR [8], and HotSpot, LavaMD, LUD and
Needleman-Wunsch (NW) which are mini-apps from the
Rodinia benchmark suite [2].

We have injected at least 10,000 faults into each of the
selected benchmarks. For every fault injection experiment, we
compared the output of the program execution to a previously
computed golden copy. CAROL-FI also kill the program if a
user-defined time limit is surpassed, we set the time limit to
be twice the program’s execution time on average.

Four possible outcomes can be observed using CAROL-
FI: Masked, potentially Masked, SDC, and DUE. The po-
tentially Masked classification is important for applications
that can accept small deviations from the correct result. For
instance, a geophysics application [3] tolerates up to 4% of
deviations. Moreover, this concept of acceptable error is in-
trinsic of imprecise computation [6] where a certain deviation
from the correct result is acceptable. Therefore, we choose to
consider as potentially masked executions with a deviation up
to 2%.

V. RELIABILITY AND CRITICALITY

EVALUATION

Figure 1 presents the percentage of faults that are masked,
potentially masked, or cause an SDC or DUE for each of
the six benchmarks presented in Section IV. For most of the
benchmarks, SDCs are less likely to occur than DUEs, while
the majority of injected faults are masked during computation
(except DGEMM).

As shown in Figure 1, about 60% of the faults injected
in DGEMM generate an error (SDC or DUE). Most of the
SDCs and DUEs are the result of faults injected in the input
and output matrices and loop control variables. Analyzing
the outcomes of injections in the matrices we find that on
average only 25% of injections generate an SDC, while 20%
produce a potentially masked error and 19% cause a DUE.
When analyzing the vulnerability of loop control variables we
discovered that 43% of the faults injected in those variables
generate an SDC and 54% cause a DUE. DGEMM creates only
nine loop control variables of integer type. However, each of
the 228 threads active in parallel on the Xeon Phi allocates
those nine integers to have its own copy of the loop control
variables, resulting in a significant memory portion used to
store loop control variables. As a result, the probability of
having a corrupted loop control variable becomes significant,
and the criticality of that corruption is very high.

CLAMR results show that 75% of the injected faults do
not generate an observable error, as shown in Figure 1. We
have discovered that faults injected in the mesh code produce
the vast majority of errors. We can divide the mesh operations
into three parts: Sort, Tree, and others. Of all the injections in

2



0

25

50

75

100

DGEMM CLAMR Hotspot LavaMD LUD NW

P
e

rc
e

n
ta

g
e

Masked Potentially Masked SDC DUE

Fig. 1: Fault injection campaign results per benchmark for Intel
Xeon Phi.

the Sort part of CLAMR, 15% generate an SDC, 12% produce
potentially masked mismatches, and 40% causes DUE. For the
Tree part, only 15% of all the Tree fault injections generate
an SDC, 1% produce potentially masked, and 40% cause a
DUE effect. All the faults in the remaining variables of the
mesh code are classified as others. Only 8% of the faults in
the other code generate an SDC, 23% produce mismatches that
can be classified as potentially masked, and 51% cause DUE.
The fault injection analysis shows that Mesh operations and
structure are the most sensitive. Furthermore, Sort and Tree
operations are equally sensitive, causing the majority of the
harmful outcomes.

Hotspot fault injections show a similar trend to that ob-
served for CLAMR. 75% of the faults are masked and do not
affect the output. As we can see in Figure 1, the percentage of
faults that generate SDCs is low, being less than 22%. Most of
the observed SDCs are caused by faults in constant variables
used during computation. Our fault injection analysis shows
that less than 10% of faults in the Hotspot constant variables
cause an SDC. DUE are caused most of the times by two
control variables that store the number of the grid rows and
columns. The probability of a fault in a grid control variable to
cause a DUE is extremely high, about 96%. Hotspot computes
the temperature of functional blocks in a chip given the power
consumed by these blocks. The temperatures of the different
blocks are calculated in an iterative manner, and errors in
intermediate values can be dissipated out of the system while
the solution is converging. Thus, Hotspot is intrinsically robust
to data errors.

Figure 1 shows that for LavaMD, only 15% of the injected
faults produce SDC or DUE. Faults in the input arrays
and control variables cause the vast majority of harmful
outcomes. The charge and distance arrays used as inputs to
the algorithm are responsible for 25% of the observed SDCs
and 10% of the DUEs. The two arrays are up to 5 orders

of magnitude bigger than the other data structures that cause
harmful effects. Thus, the probability of a fault to occur in the
two input arrays is larger than for the other data structures.
Therefore, The two arrays are the most critical part of the
algorithm.

LUD exhibits a behavior similar to that of DGEMM. Most
of the harmful outcomes are due to faults in the matrices
and control variables. However, the DUE and SDC rate for
LUD are well balanced, LUD has a much lower DUE rate
than DGEMM (see Figure 1). Faults in the main matrix and
the temporary matrices allocated during the computation of the
decomposition generate an SDC for about 40% of the faults
injected into them, and about 30% cause potentially Masked
outcomes. Evaluating the control variables, we observe that
20% of the faults generate an SDC and 40% cause a DUE. We
notice a clear distinction between SDCs and DUEs as faults
in the matrices generate most of the SDCs, and faults in the
control variables are responsible for most DUE.

NW has the most well-balanced rate between SDC and
DUE, as Figure 1 shows. The rates of SDCs and DUEs are
similar because faults that cause the vast majority of errors
are in the matrices used as input and output. We notice that
49% of the injected faults in the matrices generate an SDC,
and 49% cause a DUE.

A. Discussion

CAROL-FI results provide in-depth insights into the
sources of errors. For instance, for DGEMM we find that
protecting all the matrices data is ineffective, but protecting the
loop control variables will greatly benefit the code reliability.
In CLAMR, we can partition the origins of harmful effects into
two basic operations from the mesh code (Sort and Tree), and
find that both are equally responsible for SDC and DUE. Thus,
we can focus on the protection of these operations. Hotspot is
naturally robust, and we should protect only the small portion
of data that can cause harm, saving considerable amounts
of execution time and energy. LavaMD and NW present the
biggest challenges, showing that partial protection may prove
ineffective due to the fact that a significant portion of the data
is critical. Finally, LUD shows a clear distinction between the
types of harmful effects and the sources of such effects. Then,
to mitigate one of the effects we can target only selected data
structures.

CAROL-FI can be used to assess the vulnerability of
each structure in the source code, and to identify the type
of harmful effect that a data structure may produce. This
information is essential when attempting to mitigate the impact
of transient errors in commercial off-the-shelf components
such as consumer server processors and accelerators like Intel
Xeon Phi. As the user is unable to modify the hardware and
make it less sensitive to faults, understanding the potential
impact of faults at a high level of the code is essential to
allow producing a reliable code in today computing systems.
Moreover, our fault injector can provides general hints, such
as the use of partial ECC, to system designers if they wish to
design more reliable hardware that adapts to the user needs.

VI. CONCLUSION AND FUTURE WORK

In this paper we have presented our fault injector tool,
CAROL-FI, and provided an analysis of the vulnerabilities of

3



several HPC programs. Transient faults are one of the main
concerns for today’s and future HPC systems. Our tool is
capable of detecting the high-level sources of harmful effects
and of providing useful insights for mitigating them. With the
insight provided, architecture designers can build more reliable
hardware, and HPC programmers can devise smart mitigation
techniques.

In the future, we will improve further CAROL-FI to collect
more useful data. The improved fault injector will provide a
deeper understanding of the code, such as the dependence of
the impact of faults on the timing of their occurrence. We
also plan to implement the mitigation techniques proposed
and validate them with fault injection campaigns and radiation
beam experiments.

ACKNOWLEDGMENTS

This work received partial funding from CAPES/PVE, the
EU H2020 Programme, and from MCTI/RNP-Brazil under the
HPC4E project, grant agreement n° 689772.

REFERENCES

[1] “Carol-fi.” https://github.com/UFRGS-CAROL/carol-fi, 2017.

[2] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee,
and K. Skadron, “Rodinia: A benchmark suite for heterogeneous
computing,” in Workload Characterization, 2009. IISWC 2009. IEEE

International Symposium on, Oct. 2009, pp. 44–54.

[3] J. de la Puente, M. Ferrer, M. Hanzich, J. E. Castillo, and J. M. Cela,
“Mimetic seismic wave modeling including topography on deformed
staggered grids,” GEOPHYSICS, vol. 79, no. 3, pp. T125–T141, 2014.

[4] D. A. G. de Oliveira, L. L. Pilla, T. Santini, and P. Rech, “Evaluation
and mitigation of radiation-induced soft errors in graphics processing
units,” IEEE Transactions on Computers, vol. 65, no. 3, pp. 791–804,
March 2016.

[5] J. Dongarra, H. Meuer, and E. Strohmaier, “TOP500 Supercomputer
Sites: June 2016,” 2016. [Online]. Available: http://www.top500.org

[6] D. Ernst, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge, N. S. Kim,
and K. Flautner, “Razor: circuit-level correction of timing errors for
low-power operation,” IEEE Micro, vol. 24, no. 6, pp. 10–20, Nov 2004.

[7] B. Fang, K. Pattabiraman, M. Ripeanu, and S. Gurumurthi, “Gpu-qin: A
methodology for evaluating the error resilience of gpgpu applications,”
in Performance Analysis of Systems and Software (ISPASS), 2014 IEEE

International Symposium on. IEEE, 2014, pp. 221–230.

[8] Q. Guan, N. DeBardeleben, B. Artkinson, R. Robey, and W. Jones, “To-
wards Building Resilient Scientific Applications: Resilience Analysis on
the Impact of Soft Error and Transient Error Tolerance with the CLAMR
Hydrodynamics Mini-App,” in Cluster Computing (CLUSTER), 2015

IEEE International Conference on, Sept 2015, pp. 176–179.

[9] S. K. S. Hari, T. Tsai, M. Stephenson, S. W. Keckler, and J. Emer,
“Sassifi: Evaluating resilience of gpu applications,” in Proceedings of

the Workshop on Silicon Errors in Logic-System Effects (SELSE), 2015.

[10] D. Li, J. S. Vetter, and W. Yu, “Classifying soft error vulnerabilities
in extreme-scale scientific applications using a binary instrumentation
tool,” in Proceedings of the International Conference on High Perfor-

mance Computing, Networking, Storage and Analysis, ser. SC ’12. Los
Alamitos, CA, USA: IEEE Computer Society Press, 2012, pp. 57:1–
57:11.

[11] G. Li, K. Pattabiraman, C.-Y. Cher, and P. Bose, “Understanding error
propagation in gpgpu applications,” in Proceedings of the International

Conference for High Performance Computing, Networking, Storage

and Analysis, ser. SC ’16. Piscataway, NJ, USA: IEEE Press, 2016,
pp. 21:1–21:12. [Online]. Available: http://dl.acm.org/citation.cfm?id=
3014904.3014932

[12] R. Lucas, “Top ten exascale research challenges,” in DOE ASCAC

Subcommittee Report, 2014.

[13] S. S. Mukherjee et al., “A systematic methodology to compute the ar-
chitectural vulnerability factors for a high-performance microprocessor,”
in Proceedings of the 36th annual IEEE/ACM International Symposium

on Microarchitecture. IEEE Computer Society, 2003.

[14] G. P. Saggese, N. J. Wang, Z. T. Kalbarczyk, S. J. Patel, and R. K.
Iyer, “An experimental study of soft errors in microprocessors,” IEEE

Micro, vol. 25, no. 6, pp. 30–39, Nov 2005.

[15] V. Sridharan and D. R. Kaeli, “Eliminating microarchitectural depen-
dency from architectural vulnerability,” in 2009 IEEE 15th International

Symposium on High Performance Computer Architecture, Feb 2009, pp.
117–128.

[16] D. Tiwari, S. Gupta, J. Rogers, D. Maxwell, P. Rech, S. Vazhkudai,
D. Oliveira, D. Londo, N. Debardeleben, P. Navaux, L. Carro, and A. B.
Bland, “Understanding GPU Errors on Large-scale HPC Systems and
the Implications for System Design and Operation,” in Proceedings of

21st IEEE Symp. on High Performance Computer Architecture (HPCA).
ACM, 2015.

[17] S. Tselonis and D. Gizopoulos, “Gufi: A framework for gpus reliability
assessment,” in 2016 IEEE International Symposium on Performance

Analysis of Systems and Software (ISPASS), April 2016, pp. 90–100.

4


