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ABSTRACT

A high number of structures uses cables due to their ability to bear large load in the longi-

tudinal direction, for example, prestressed concrete, offshore systems and bridges. Its basic

structure is formed by a central straight element surrounded by strands laid helically. A

variety of geometries can be used, as well as the number of layers. Using the theory of

spatial beams and parameterizing the geometry, the center line of only one of these helixes

was analyzed analytically, since contact and slip are not included in this theory, obtaining a

first approach in order to model these structures and to determine its mechanical behavior.

Thus, the equilibrium equations were deduced and the differential system was solved with the

objective of representing the mechanical behavior of the structure. Using the Frenet-Serret

triad to define a local coordinate system, the boundary conditions were applied aiming the

determination of the integration constants. The expressions obtained were compared with

results obtained by the Finite Element Method (FEM) for validation applying concentrated

and distributed loads. All cases presented good agreement FOR forces, moments, rotations

and displacements. Considering the arc case, its radius was increased until a straight beam.

The proposed model was also used to simulate a spring under compression.

Keywords: Spatial Beam Theory; Curve Parameterization; Differential Geometry; Rod.
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RESUMO

A principal característica de cabos é a sua capacidadede suportar grande carga na direção

longitudinal e são utilizadas em, por exemplo, concreto comprimido, plataformas e pontes.

Usualmente, sua estrutura básica é formada por um elemento central (núcleo) e reto jun-

tamente com outros componentes dispostos ao seu redor em forma de hélice. Existe uma

variedade de geometrias que podem ser utilizadas, assim como número de camadas. Seguindo

a teoria de vigas espaciais e parametrizando a geometria, a linha média de apenas uma dessas

hélices foi analisada analiticamente. Essa simplificação é valida visto que o contato e desliza-

mento não são incluídos nesta teoria, produzindo uma primeira abordagem ao problema da

modelagem dessas estruturas. Sendo assim, as equações de equilíbrio foram deduzidas e seu

sistema diferencial foi resolvido com o objetivo de representar o comportamento mecânico da

estrutura. Utilizando a tríade de Frenet-Serret para definir um sistema de coordenadas local,

as condições de contorno foram aplicadas buscando determinar as constantes de integração

resultantes da solução analítica das equações diferenciais. Essa solução foi comparadas com

resultados numéricos obtidos pelo Método dos Elementos Finitos (FEM) para validação dos

casos de carga concentrada e distribuída em duas geometrias, o arco plano e a hélice. Em

ambos os casos resultados apresentaram boa concordância para forças, momentos, rotações

e deslocamentos. Considerando o caso do arco, o seu raio foi aumentado, de forma que a

geometria se aproximasse de uma viga reta. O modelo proposto também foi utilizado para

simular uma mola sob compressão.

Palavras-chave: Teoria Espacial de Vigas; Parametrização de Curvas; Geometria Diferencial;

Cabos.
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1. INTRODUCTION

1.1 Motivation

The capacity to support a great amount of axial load combined with the high flexi-

bility are cables properties. The efficient material appliance, i.e., the satisfactory force per

weigh relation is another characteristic that can be highlighted. Therefore, several applica-

tions use these components in different engineering areas, either in mechanical or civil, as

stayed bridges, lifts, prestressed concrete cranes and others. Such components, during their

lifespan, are subjected not only to static loads, but also to dynamic, or cyclic, forces that can

lead to premature degradation and cracks associated to corrosion and fatigue. As a result,

determining the mechanical behavior of cables is necessary to predict operation conditions.

The correct design, hence, is fundamental to ensure the safety of users and avoid failure

during its employment. Due to this versatility, different geometries can be used, thus there

are several variables to be determined to set the best configuration for every function.

For a certain period, the theories evolution applied to the determination of the

cable design was based in experiences and experiments, through observation, leading to

empirical formulations, according to Cardou e Jolicoeur, 1997. Therefore, mathematical and

mechanical approaches are essential to decrease the need for experiments, since they are not

only expensive but also specific, i.e., every parameter or work condition are a variable of

the test. This kind of structure can have a large scale factor which means that specific and

overpriced equipment, that may not exist, is necessary [Ghoreishi et al., 2007b]. Furthermore,

every geometry must be studied together with the working condition.

In this context, the analysis using numerical tools as the Finite Element Method

(FEM) is a viable alternative in an early step of the project. However, complex models

may have a high computational cost. In order to perform appropriate and precise simu-

lations may be necessary to consider some requirements, such as nonlinear effects. As a

consequence, mesh generation and other aspects could have a higher computational cost,

increasing significantly the time of analysis [Páczelt e Beleznai, 2011].

Once again, in this case, analytical expressions are tools used to avoid this inconve-

niences. These equations reduce the time of analysis of one geometry, and specially for many

cases in a row, also could be used to validate experiments or FEM models which support the
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concept project, that is, allows to indicate the mechanical behavior before starting complex

studies.

Analytical solutions based a priori in kinematics and other hypothesis are available

in the literature. Some of these works are described in the next section. Nonetheless,

such theories are not fully appropriate to describe the mechanical behavior of application

conditions that are subjected to bending and/or torsion, [Argatov, 2011].

In this work an analytic expression is proposed based on the curved beam theory

differential system solution. Modeling the cable central element as a straight beam and

the strands with the proposed methodology results in an approximate solution for these

structures.

1.2 Literature Review

During the last years many developments have been performed in the study of cables.

Different theories either friction, contact, Poisson’s effect, multi-layers and other hypothesis

were considered to model these structures. Also, various approaches were used considering

experiments, kinematics, Finite Element Method (FEM), spatial beam theory, etc.

Experimental data is limited and difficult to obtain as highlighted by Spillers et al.,

1983. The desired geometry is hard to generate and, even when is reached, several measure-

ments must be performed for each configuration.

Results were obtained by Utting e Jones, 1985, for experiments in a rope with a

single layer. Strain gauges were used together with a developed instrument, called by the

authors as extrometer, to measure extension and rotation simultaneously.

Utting e Jones, 1987, also performed experiments in straight single steel strands

subjected to axial load with different end conditions and lay angles. Also, a model was

proposed to represent the change of helix angle, Poisson’s effect, flattening and friction

presenting good agreement specially for small lay angles.

Analytic expression were obtained by several authors considering different theories.

A strand with twisted wires, forming a spring, was analyzed with the proposed theory by

Costello e Phillips, 1979, considering large deflections. A small non linearity in tension or

compression springs were found for large strains and negligible end condition dependence.

A theory to determine stresses, without friction, in multilayered cables due to axial,
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torsion and bending loads were proposed by Costello, 1983. Superposition effects are used to

determine stresses due to axial and bending. The center wire endures the maximum tensile

stress due to the larger radius and the straight geometry according to the authors.

A model for helical structures based on the spatial beam theory was proposed by

Ramsey, 1988. Cases for uniform bending with and without friction, besides uniform exten-

sion and twist, were analyzed.

As an evolution from the previously model by Ramsey, 1990, an individual wire in a

multilayered cable was treated as a helical structure. The equilibrium equations were used,

together with kinematics, as a uniform extension and twisting. Results demonstrated that

the only friction possible leads to a radially directed couple.

Geometry called 6 × 19, consisting in three layer, was studied, by Velinsky, 1985,

using the nonlinear equilibrium equations for frictionless bending and twisting. Variables to

simulate the strand and each individual wire were used, thus the nonlinear resulting system.

This extension of the linear theory did not demonstrate an improvement in results despite

the higher computational cost.

A helical wire subjected to bending on a frictionless cylindrical surface was studied

by Østergaard et al., 2012. The equilibrium equations of the spatial beam theory were

considered to obtain the response of steel cables. Tangential wire rotation is assumed to

be governed only by the underlying surface. Bending and tension trend to eliminate the

geodesic curvature, i.e., the configuration without it is the limit state.

Axially loaded metallic cables with one layer was investigated and according to

Labrosse et al., 2000, the energy dissipated from the friction, determined from the coulomb

friction, was used to model the friction between a strand and the core. Friction and wear

were shown as negligible. The pivoting model proposed generated results close to other

theories where this phenomena is not considered.

Slippage between the considered layer of the cable was investigated near the termina-

tions when subjected to a bending moment. According to Raoof, 1990, results demonstrated

the fatigue occurring in the socket and that the first structure to fail was the strand that

entered in the neutral bending axis.

Elastic wave propagation in prestressed helical waveguides were analyzed by Treys-

sède et al., 2013. The translational invariant property was used to reduce the 3D elastody-
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namic problem into a two dimensional posed on the deformed cross-section. Results demons-

trated that prestressed effect was more significant at low frequencies. The semi-analytical

finite element (SAFE) model was used.

Similarlly, static behavior for axial loads were studied by Frikha et al., 2013, using an

asymptotic expansion. Three dimensional elasticity problems were reduced, by this metho-

dology, into a 2D microscopic problem in the cross-section and the well-known macroscopic

spatial beam problem on the helix. The two dimensions solution was implemented to be

used by FEM and proved to be efficient according to the authors.

An independent wire rope core model was proposed by Elata et al., 2004. Axial load

and torque were applied in the structure that considers two layers of helices surrounding the

straight core. Experimental data was obtained to validate the two kinematics alternative.

The methodology can be used for global features determination such as force between wires,

rope stiffness and fatigue.

Another approach to study these structure is the Finite Element Method. With the

development of computational resources this methodology became highly used. Complex

geometries as cables demand the use of a numerical tool without mathematical simplifications

[Stanova et al., 2011], specially for non linearities as contact.

Transverse contraction from Poisson’s effect along contact was investigated by Ar-

gatov, 2011. Local elastic contact deformations considering angles lower than 15◦ are small,

while the flattening is dominant over the Poisson’s effect for α > 25◦. The asymptotic mo-

del applied to determine contact between strand-strand and core-strand resulted in a FEM

analysis with good results.

According to Jiang et al., 1999, a complete model capable of representing localized

non-linearity behaviors, as contact, residual stresses, friction and plastic deformations was

developed. Symmetry and precise boundary conditions were applied to simulate tension,

shear and torsion in a wire rope.

One layer of helical wires, in contact with the core and other wires, was analyzed

using a similar approach by Jiang et al., 2008, with the same
1

6
symmetry methodology

allowing a much more complex model, as mentioned before, with an acceptable computati-

onal cost, according to the authors. Contact can happen simultaneously in both places and

local deformations should be accounted in theories were conclusions. Also elliptical helix
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cross-sectional shape was accurate for lay angles smaller than 20◦.

Jiang, 2012, applied the model again considering effects of torsion, shear, bending,

torsion, contact, friction and local plastic yielding. Results were compared to analytic so-

lutions and experimental data available, reaching good agreement for global behavior of

stress distribution. The simplified model, according to the authors, can provide information

regarding nonlinear effects aforementioned.

Large displacements and rotations on curved beans were studied using updated

Lagrangian and Total Lagrangian formulations by Bathe e Bolourchi, 1979. A geometric

nonlinear element was proposed and both methodologies yield identical element stiffness

matrices. However, the first proved to be computationally more effective.

The model proposed by Nawrocki e Labrosse, 2000, allowed the evaluation of all

the interwire motions, according to the authors. Contact between strands when subjected

to axial load and to axial and bending effects simultaneously, was investigated. Pivoting

proved to govern the response for axial load while sliding affects the bending.

Interwire motion, contact and dry friction was analyzed by Páczelt e Beleznai, 2011,

using FEM. A p-extension method was applied to obtain a nonlinear formulation in the

normal direction. Tension, torsion and bending were considered in the kinematics together

with Hertz-theory. A special nonlinear spring element and spring foundation were developed

to study the proposed cases.

A comparison between theories was performed by Ghoreishi et al., 2007b. Different

methodologies have been proposed to determine the mechanical response of cables. Nine of

them were tested considering a stiffness matrix obtained from the coupling between torsion

and tension. Results showed a good agreement from the models and 3D FEM analysis for α

up to 20◦. The difference from the approach increases significantly for higher helix angles.

Although Poisson’s effect raise the response accuracy, it turns the matrix asymmetric.

1.3 Objectives

In this work it is proposed a model to determine the mechanical behavior of one

wire of a cable based on the spatial beam theory.

The mechanical behavior of one helix is analyzed in order to define the model, since

the structure is symmetric and the rotation of the results can define the other strands and
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the contact between elements is disregarded. Hence, it is necessary to fulfill some specific

objectives to obtain the analytic model:

• Characterize one strand by its center line, geometrically defined by the helix parame-

trization;

• Define a local system to analyze the stress equivalents (force/moment) using the diffe-

rential geometry;

• Solve the differential equilibrium equations for forces, moments, rotations and displa-

cements;

• Determine the integration constants by the application of the boundary conditions;

• Validate the obtained expressions with FEM.

To complete these objectives the work was divided into sections as follows.

1.4 Work Organization

Differential geometry was used in order to build a helix parameterization. This

simplifies the analysis and allows the application of a local system. The transformation to a

global system, and back, was also achieved using this theory. The second chapter explores

these concepts.

Equilibrium equations of three dimensional spatial beam to be solved are introduced

in the third chapter. The parameterized strand, as a helix, was analyzed according to the

forces and moments acting on an infinitesimal portion of a spatial beam. With the strains

and stresses determined, by applying the kinematics in the Principle of Virtual Work (PVW),

another system of equilibrium equations with respect to displacements and rotations were

obtained.

With these simplifications, the proposed model was stabilished. Chapter 4 presents

the solved system of equations, not only for forces and moments but also for displacements

and rotations. This model considered the parameterized geometry obtained previously.

The cable mechanical behavior from the proposed model were compared to numerical

results obtained from the Finite Elements Method (FEM). Applying the boundary conditi-
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ons, the constants of integration were calculated and then used in the derived expressions.

The fifth chapter presents the results.
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2. DIFFERENTIAL GEOMETRY

The study of local properties of curves and surfaces is known as differential geometry.

The geometric characteristics are those that depend only on the behavior of the structure

near a given point. The methodology used to perform this study comes from the differential

calculus, according to Do Carmo, 1976. Therefore, the planes and curves analyzed with

this technique must be differentiable, or smooth, a certain number of times so that no

discontinuity is generated in the region of interest.

The concepts of parameterization are introduced in the following sections along with

the necessary properties to completely define and analyze a spatial curve. Then, an example

of this theory application is presented for the particular form of a helix.

2.1 Parametrization of Curves

Two points in a space R2 must necessarily be assigned to define one line in a co-

ordinate system. The well-known first order equation for a straight line that characterize

it algebraically is then described. However, the definition of these parameters in a three-

dimensional space, or R3, cannot be straightforward obtained, since the system is not con-

tained in a plane anymore.

a

b
A

B

B-A

y

x

Figure 2.1 – Parameterized line between two points

Initially, two vectors (A and B) can be used to describe a line between two points.

These vectors define where the points are placed in the two-dimensional space, x and y, as

shown in Figure 2.1. The subtraction of these entities produce a new vector pointing from a

to b. Setting a new parameter S which defines the distance along the line, and considering



9

a as the initial position, one can obtain:

α(S) = a + S(B−A). (2.1)

Hence, the straight line α(S) is parameterized as a function of S. In general, a

curve in any space can be defined by mapping α : I → Rn, with I determining the interval

of interest and α the differentiable curve in this gap. Then, one can write the function

r(S) = [x1(S) x2(S) x3(S)] (2.2)

where x1(S), x2(S), x3(S) is a one dimensional triplet in which the differential calculus can

be used. Therefore, to parameterize a curve can be defined as to represent its behavior

through one or more parameters [Kobayashi e Nomizu, 1963]. Analyzing geometries with

this methodology is a procedure that streamline the process, facilitating the derivatives and

the reproduction in the Rn, for example.

One can write the derivative of r(S) as
d(r(S))

dS
and the function rate of change is

indicated by it. This can also be interpreted as a particle speed traveling through the curve

[Pressley, 2010]. Applying the derivative on the components of r(S) results in,

d(r(S))

dS
=

[
d(x1(S))

dS

d(x2(S))

dS

d(x3(S))

dS

]
. (2.3)

This variation results in an important vector pointed to the tangent direction of the

curve, denoted from now on as the tangent vector t(S). This entity is one component of the

Frenet-Serret triad, the other two elements are described in the following section.

2.2 Frenet-Serret Triad

To completely describe the curve geometry it is necessary to analyze the parame-

trization behavior (r(S)) near a given point. Hence, not only the parameter S, but also a

local system that moves along the curve as the position changes, prospecting its trends and

variations.
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The vector defined previously, and represented from now on as t, is set as the

parametrization derivative and represent one axis of this local system. Applying the diffe-

rentiation again on (r(S)), that is, on the tangent vector, the rate of change of the direction

is set. Since t is a unitary vector, one can demonstrate that the result is perpendicular to

the first entity [Do Carmo, 1976] as:

d(t · t)
dS

= 0

d(t)

dS
· t+ t·d(t)

dS
= 0

2t · d(t)

dS
= 0

t · d(t)

dS
= 0,

(2.4)

therefore, as expected, the vectors
d(t)

dS
and t are orthogonal. This rate has the opposite

direction of the radius formed by a circle between two neighbors points. Consequently, a new

parameter, called the curvature κ, can be defined. It denotes not only the tangent vector

direction change, but also indicates the curvature radius of the curve at S:

κ(S) =

∣∣∣∣∣d(t(S))

dS

∣∣∣∣∣. (2.5)

Although the vector derived is unitary, no information is given that implies κ to be

unitary as well, since it is calculated as the tangent vector norm. From now on this geometric

property is written only as κ.

Hence, one can see that t can change direction rapidly or slowly, depending on the

radius. As an example, the two-dimensional system is used, so that for a small circular

radius the change rate is high and considering a large arc the variation is low. Therefore, the

curvature κ is calculated as the inverse of the arc radius formed by two points sufficiently

near. That way, the differentiation of the tangent vector forms a new vector, perpendicular to

the original, however not unitary. Using a constant to scale a normalized entity, and setting

it as the curvature, a new axis of the local system can be defined. The second derivative

of the parameterization represents the normal vector, n, pointing to the center of the arc

formed for two close points, or in other words, to the change of t and is written as:
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n(S) =
d2(r(S))

dS2

1

κ
=
d(t)

dS

1

κ
. (2.6)

From these definitions, a few important properties can be highlighted. The first

shows that for a null curvature, a circle with infinity radius is formed, i.e. a straight line.

Therefore, the local system is one dimensional and all information required to define a

geometry is known, since:

r(S) = dS + e, (2.7)

d(r(S))

dS
= t(S) = d, (2.8)

d2(r(S))

dS2
=
d(t(S))

dS
= κ = 0. (2.9)

Also, as one can note, for a constant curvature, that is, if κ does not depend on S,

the vector change of the tangent direction is always the same, consequently the geometry

analyzed forms a circle in a plane, which is defined by t and n. This is called osculating and

determines the direction and the plane of the change.

One more entity is needed to complete the local system, knowing that the last two

vectors are orthogonal and unitary, the cross product can be performed. Hence, the result is

also a vector with the same properties. Calling this as the binormal vector (b), the procedure:

b(S) = t(S)× n(S), (2.10)

determines the final axis. Therefore, the local coordinate system is accomplished and esta-

blished as [t,n, b] (although, not explicit, all depending on S). Moreover, two more planes

are defined: rectifying, between t and b, and normal, containing n and b. Nevertheless,

to completely define the geometry behavior, the variation of the two last vectors must be

explored. Starting by the latter, the chain rule needs to be used in the cross product so,
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d(b(S))

dS
=
d(t(S))

dS
× n(S) + t(S)× d(n(S))

dS
, (2.11)

with the property from Equation 2.6, where
d(t)

dS
is defined as n, the cross results in zero,

hence, the first term on the right hand side is defined.

Since the normal vector variation is not defined yet two possibilities can be consi-

dered: a result aligned to t or b. The first option implies t × t which is zero. So,
d(n)

dS
is already defined as aligned to b [Kreyszig, 1968] and the cross product with the tangent

vector results in a scalar combination with the normal vector (since it does not need to be

unitary) written as:

d(b)

dS
= −τn(S), (2.12)

where τ is defined as the torsion on the position S. This parameter indicates the tangent

vector trend to deviate from the osculating plane (the variation stays in the rectifying plane),

just as κ defines the variation from the rectifying. So, the geometry and the tendencies of

any curve, being smooth during the interest interval, can be studied by the application of

the derived equations.

Equation (2.12) shows that if the torsion is zero,
d(b)

dS
is also null and, consequently,

the system remains in the osculating plane, which means that the curve is contained in R2.

One may conclude that the curvature indicates the tendency of the curve not to be

a line, i.e., the lowest the value the straighter is the geometry, while the torsion demonstrate

the propensity to be contained in a plane, or, to have two or even one dimension.

The last entity to be defined is the variation of the normal vector that, according to

what was presented before, is orthogonal to n and written as

d(n)

dS
=
d(t)

dS
× b(S) + t(S)× d(b)

dS
, (2.13)

Once again, using the properties defined in Equations (2.6) and (2.12) and knowing

the characteristic of the cross product n(S)× b(S) = −t(S) and n(S)× t(S) = −b(S), the
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last variation of the canonical vectors is

d(n)

dS
= −κt(S) + τb(S). (2.14)

Finally, the local system is determined and is called the Frenet-Serret triad (FS). In

a matrix form, FS can be written as



d(t)

dS

d(n)

dS

d(b)

dS


=


0 κ 0

−κ 0 τ

0 −τ 0



t

n

b

 . (2.15)

These equations describe the properties of a differential curve along the local coor-

dinate S, as shows Figure 2.2. The variations of the canonical vectors are always orthogonal

to the original and can be represented as a linear combination of the respective entity that

has the same orientation.

S

τ
t

n

b

Osculating

Normal

Figure 2.2 – Generic curve containing the local system indicated and the respective planes

together with the curvature and torsion.

This theory was used in the example developed next, where the differential geometry

is employed to parameterize a helix. This configuration can be used to model different types

of structure as springs, strands, etc.
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2.3 Cable Geometry

A basic geometry of a cable is presented in Figure 2.3 . It consists in a central

straight core and one layer of helical wires as indicated. The central line of one wire is

highlighted together with the FS triad (also the geometric parameters κ and τ) and the local

coordinate S.

α

α

r

c

Pϴ

S
max

x
1

x
2

x
3

S

t
nb

κ
τ

Figure 2.3 – Basic cable structure and the geometric features.

The global system is also indicated by x1, x2 and x3 passing through the center core.

α represents the helix angle, formed between the x1x2 plane and the central line. Note that

this angle is the same at the beginning and the final coordinate (Smax) at the end of, in this

case, one pitch (P ). The angle in the x1x2 plane is also indicated as θ. Also, r denotes the

wire and Rc the core radius. The central line of the wire has a starting point in the radius

indicated by R.

Some simplifications on the geometry, boundary conditions, material and others

were made to simplify the study. Therefore, the central line of the wire can be used to

study its behavior. An helix parameterization was defined in the next section to allow the

structure mechanical response.



15

2.4 Helix Parametrization

An helix can be parametrized as:

x1 = R cos

(
S cos(α)

R

)
, (2.16)

x2 = R sin

(
S cos(α)

R

)
, (2.17)

x3 = S sin(α), (2.18)

where R corresponds to the radius, S is the position along the curve and α denotes the helix

angle, i.e., the angle formed by the helix and the x1x2 plane as shown in Figure 2.4, where

only one revolution, is represented. Since α is constant, in this particular case, the tangent

vector inclination is also unchanged and the angle is also equal to α.

R

x3

x2x1

�

Smax

t

n
b

t

n
b

S

Figure 2.4 – Helix parameterization represented with the Frenet-Serret triad

This parametrization describes an helix with a left hand turn, or counter clockwise.

To generate a rotation with a contrary orientation, it is necessary to multiply Equation (2.17)
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by −1 (this configuration will not be analyzed here). Thus, writing the geometry in this

fashion, it allows understanding not only a point in the coordinate (S), but also to measure

the angle formed by this position and starting point in the x1x2 plane. Represented by θ, in

Figure 2.5, it is calculated as,

θ =
Scos(α)

R
, (2.19)

R

x

y

t

t

t

t

n

n

n

n
S

Figure 2.5 – Parameterized helix represented in the osculator plane.

denoted by the Frenet-Serret triad obtained previously, the local system, is also indicated in

Figure 2.5. The tangent vector was calculated using the parametrization and the methodo-

logy aforementioned.

The geometric parameter κ was determined by the norm of t. Using this result and

dividing by the derivative of the tangent vector n was obtained.

The binormal vector was generated by the cross product between the other two

entities. Therefore, a transformation matrix was formed by these components that allows

the transition from the local system to the global. This matrix was written as

T =



−sin

(
S cos(α)

R

)
cos(α) cos

(
Scos(α)

R

)
cos(α) sin(α)

cos

(
S cos(α)

R

)
sin

(
S cos(α)

R

)
0

−sin

(
S cos(α)

R

)
sin(α) cos

(
S cos(α)

R

)
sin(α) −cos(α)


. (2.20)

The helix representation is defined by a local system which is not aligned to the
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global coordinates. Results obtained in either systems can be used, or analyzed, in a different

canonical entity. Therefore, since T is formed by the local quantities, the multiplication of

it by any effect performs the transformation from local to global as:

RGlobal = TRLocal, (2.21)

hence, the opposite transformation, from the global to local system, RGlobal is divided by T

Equations (2.5) and (2.12) were used to obtain κ and τ , respectively. Since the

parameterization is n-times differentiable in the chosen interval, the parameters could be

determined. Calculating the norm of the vectors t′ and b′, it is possible to write

κ =
−cos2(α)

R
, (2.22)

τ =
sen(α)cos(α)

R
. (2.23)

One important property of these parameters is that, since α and R are geometrical

properties and constants, that they are constants throughout the domain as well. Therefore,

one pitch, or one revolution, is sufficient to represent the cable complete behavior, due to

the parameters repetition. Also, using this parameterization, it implies that it is possible to

have curvature without torsion, however the opposite is never true.

The negative sign of the curvature was used to position the global system in the

center of the helix. This changes the direction of the local system producing an inside-out

normal vector and a downwards b. The results are not influenced by this choice, only the

sign exchange of the second and third components.

One turn of the helix sets the maximum distance from the beginning to ending point

as a function of S. Knowing the parameter θ calculated in Equation (2.19) (defining the

angle in the osculating plane) the maximum position is determined when θ = 2π, so

Smax =
2πR

cos(α)
. (2.24)
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A particular case of this parametrization is the so-called plane arc. Considering

α = 0 the equation 2.18 is null. As the variation of the curve in this direction occurs

due to this parameter, the geometry becomes contained in a plane. The other two terms

are responsible for a circular movement, i.e., an arc in the osculating plane. Thus, if one

determine the terms κ and τ , it results in a constant value, equal to
1

R
, and, as explained

before, in a null value, respectively. This situation is represented in the Figure 2.6.

x2

x3

x1 t

n
b

t
n

b

S

Figure 2.6 – Arc parameterized representation.
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3. SPATIAL BEAM THEORY

The mechanical response of a long thin rod can be obtained from the spatial beam

theory [Love, 2013]. The equilibrium equations for such theory were obtained considering

an infinitesimal portion of the beam.

A curved beam, in a global basis (three dimensional), was modeled according to its

center line. Parameterizing the geometry introduced a local coordinate system, the Frenet-

Serret triad, and a coordinate S defining the position along the curve [Luongo e Zulli, 2013].

In this chapter, the equilibrium equations were obtained for forces and moments by

the analysis of a differential element. The Principle of Virtual Work was also used, with the

kinetic assumptions, to determine the expressions for displacements and rotation.

3.1 Equilibrium Equations

The equilibrium equations of the spatial beam theory were obtained considering a

generic beam represented spatially by its central line (Figure 3.1) where the Frenet-Serret

triad is represented in the central line with the curvilinear coordinate S along the curve. The

geometry is subjected to the generic loadings N and M , representing concentrated forces

and moments, together with q and m, denoting distributed forces and moments.

Nb

-Na

Nb

-Na

dSa

bq

dS
a

b

m

q

-Ma

-Mb

ra

rb

Figure 3.1 – Generic curve and loads applied in the beam central line representation.

A differential element of the curve, dS, represented in Figure 3.1 was verified by the
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sum of forces (ΣF = 0) and moments (ΣM = 0).

The distributed load is integrated from a starting point, a, to the end point, b, and

added to the internal forces Na and Nb so that the equilibrium is written as:

ΣF = Nb −Na +

∫ b

a

q(S) dS (3.1)

Since it is considered an infinitesimal element, the difference between the components

of force is represented as a derivative. The equilibrium is then expressed as

∫ b

a

[
dN(S)

dS
+ q(S)

]
dS = 0, (3.2)

or

dN(S)

dS
+ q(S) = 0. (3.3)

Assuming, in a local basis, that the loads produce effects in different directions,

the transformation matrix is used to decompose these components, so that N and q are

expressed as

N(S) = N1t +N2n +N3b, (3.4)

q(S) = q1t + q2n + q3b, (3.5)

where N1 represents the normal force while N2 and N3 the shear forces, in n and b, respec-

tively,

d

dS
(N1t +N2n +N3b) + q1t + q2n + q3b = 0. (3.6)

expanding Equation (3.6) results in



21

dN1

dS
t +

dt
dS
N1 +

dN2

dS
n +

dn
dS
N2 +

dN3

dS
b +

db
dS
N3 + q1t + q2n + q3b = 0, (3.7)

and with the components of the triad (properties obtained in Equations (2.5), (2.13) and

(2.14)), one can write

(
dN1

dS
− κN2 + q1

)
t +

(
dN2

dS
+ κN1 − τN3 + q2

)
n +

(
dN3

dS
+ τN2 + q3

)
b = 0, (3.8)

therefore, the local system of equilibrium equations, obtained in the local system, for each

direction of the triad can be written as

dN1

dS
− κN2 + q1 = 0,

dN2

dS
+ κN1 − τN3 + q2 = 0,

dN3

dS
+ τN2 + q3 = 0.

(3.9)

The equilibrium equations for the moments are obtained using the same approach.

The sum of the moments is performed, noticing that the forces also produce moments with

the brace r. One can write,

ΣM =

∫ b

a

m + r× qdS −Ma + Mb − ra ×Na + rb ×Nb. (3.10)

The integral form is expressed as,

∫ b

a

[
m + r× q +

dM
dS

+
d

dS
(r×N)

]
dS = 0. (3.11)

The product rule and the derivative were applied and the expression is now written

as,

m + r× q +
dM
dS

+
dr
dS
×N +

dN
dS
× r = 0, (3.12)
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applying the property of Equation (2.3), where the derivative of the position vector is equal

to the tangent vector t, and manipulating the expression one can write

m +
dM
dS

+ t×N + r×
(
dN
dS

+ q
)

= 0, (3.13)

where the component inside the parenthesis is the same as found in the the equilibrium of

forces, Equation 3.3, so it is equal to zero. Using the same methodology for the moments,

where the local effects are expressed as

M = M1t +M2n +M3b, (3.14)

therefore, in terms of components, the equilibrium for moments is written as, after the

derivatives,

dM1

dS
t +

dt
dS
M1 +

dM2

dS
n +

dn
dS
M2 +

dM3

dS
b +

db
dS
M3 + t× (N1t +N2n +N3b) +

+m1t +m2n +m3b = 0.

(3.15)

Once again, using the properties of the parametrization in Equations 2.5, 2.13 and

2.14 the expression is now written as,

(
dM1

dS
− τM2 +m1

)
t +

(
dM2

dS
− κM1 − τM3 −N3 +m2

)
n+

+

(
dM3

dS
+ τM2 +N2 +m3

)
b = 0.

(3.16)

Therefore, the system of equilibrium equation for moments is given by,

dM1

dS
− κM2 +m1 = 0,

dM2

dS
+ κM1 − τM3 −N3 +m2 = 0,

dM3

dS
+ τM2 +N2 +m3 = 0.

(3.17)
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With forces and moments expressions in the local system, geometry parameters were

used to determine stresses and the constitutive model can be applied to obtain strains of the

structure.

The geometric parameters are defined: A wire cross section area; I moment of

inertia; J polar moment of inertia and y rod radius. Therefore, considering an isotropic

material, the strains were determined so that six components are written as

ε1 =
N1

EA
, (3.18)

ε2 =
−M2y

EI
, (3.19)

ε3 =
−M3y

EI
, (3.20)

ρ1 =
M1y

GJ
, (3.21)

ρ2 =
N2

GA
, (3.22)

ρ3 =
N3

GA
, (3.23)

where E is the material’s elastic modulus and G its shear modulus.

3.2 Kinematics Relations

With the variables described above (forces, moments, strains and stresses), together

with the geometric parameters that define the structure, the displacements can also be de-

termined. To obtain these components it is necessary to apply some kinematics assumptions.
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Using an admissible field for displacements that can be written as,

u =
[
u1 u2 u3

]T
(3.24)

and for the rotations

φ =
[
φ1 φ2 φ3

]T
(3.25)

Considering these vectors representing each direction in a global system, the Frenet-

Serret triad must be used to analyze the effects in the local system. Therefore, multiplying

Equation (2.15) and the local displacements one can express,

u = u1t + u2n + u3b, (3.26)

analogously,

φ = φ1t + φ2n + φ3b. (3.27)

In order to derive such variables the Principle of Virtual Work (PVW) is applied.

The general form of the PVW, considering infinitesimal displacements,

∫
V

σδε dV =

∫
V

bδu dV +

∫
S

tδu dS. (3.28)

That way, the axial and transverse (ε) and the torsional and bending (ρ) strains,

expressing the local effects by the application of the same methodology as for the displace-

ments, must be used.

ε = ε1t + ε2n + ε3b, (3.29)

ρ = ρ1t + ρ2n + ρ3b. (3.30)
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Considering that no body force is acting and the one dimensional problem (S), the

PVW can be expressed as

∫ b

a

[Nδε+ Mδρ ] dS =

∫ b

a

[qδu + mδφ] dS + Nδu
∣∣b
a

+ Mδφ
∣∣b
a
, (3.31)

so, using the results obtained above the right-hand side can be rewritten as

∫ b

a

[
qδu + mδφ+

d

dS
(Nδu) +

d

dS
(Mδφ)

]
dS, (3.32)

which, after the derivatives and rearranging the terms become,

∫ b

a

[(
q +

dN
dS

)
δu +

(
m +

dM
dS

)
δφ+

dδu
dS

N + M
dδφ

dS

]
dS, (3.33)

so, using the equilibrium Equation (3.3) the expression in the first parenthesis is zero and

manipulating Equation (3.13) the second is equal to (−t×N),

∫ b

a

[
(t×N) δφ+

dδu
dS

N + M
dδφ

dS

]
dS. (3.34)

Therefore, since (N× t)δφ = (δφ× t)N, the Equation (3.31) is written as,

∫ b

a

[Nδε+ Mδρ ] dS =

∫ b

a

[
N
(
δφ× t +

dδu
dS

)
+ M

dδφ

dS

]
dS, (3.35)

and, as long as both sides are equal, consequently the strains are now related to the displa-

cements

δε = δφ× t +
dδu
dS

, (3.36)

δρ =
dδφ

dS
. (3.37)
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The results show that the strains are dependent not only on the displacements but

also on the rotations, while the angle is regulated exclusively by the rotations.

Expressing these relations in terms of components, using the same methodology

applied to the determination of the equilibrium equations, it is possible to write,

δε1t + δε2n + δε3b =
d

dS
(δu1t + δu2n + δu3b) + (δφ1t + δφ2n + δφ3b)× t, (3.38)

knowing that the vectors of the triad are mutually orthogonal to each other (i.e, t× t = 0,

t × n = b and t × b = −n), after the derivatives and the parameterization properties the

products are represented as

δε1t + δε2n + δε3b =

(
d

dS
δu1 − κδu2

)
t +

(
κδu1 +

d

dS
δu2 − τδu3 + δφ3

)
n+

+

(
τδu2 +

d

dS
δu3 + δφ2

)
b,

(3.39)

consequently, the system of equations can be described as

ε1 =
du1
dS
− κu2,

ε2 =
du2
dS

+ κu1 − τu3 + φ3,

ε3 =
du3
dS

+ τu2 + φ2.

(3.40)

Analogously, the rotations are defined in terms of the components as

δρ1t + δρ2n + δρ3b =
d

dS
(δφ1t + δφ2n + δφ3b) , (3.41)

hence, with the derivatives and properties applied the system is formed

ρ1 =
dφ1

dS
− κφ2,

ρ2 =
dφ2

dS
+ κφ1 − τφ3,

ρ3 =
dφ3

dS
+ τφ2.

(3.42)
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With these expressions, one can analyze mechanically a structure as a beam, either

straight or in a spring shape. The solution of the systems of equations provides the required

information to determine its behavior independently of the shape.

The boundary conditions (BC), the material model (or constitutive relations) and

the geometry must also be set to provide numerical results. Solving the first two systems

(Equations 3.9 and 3.17) produce six constants due to the integration that are determined

by the BC (reactions).

These steps were used, in the following sections, to built a mathematical model in

order to simulate an helical structure.
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4. PROPOSAL OF AN ANALYTIC MODEL

The equilibrium equations determined previously were used to model one of the

strands of the cable. Considering a cable formed by a straight core surrounded by n heli-

ces, with one layer, the mechanical behavior of one strand can be obtained simplifying its

geometry regarding the center line through a parametrization [Lee, 1991].

Equations (2.16), (2.17) and (2.18) define the helix geometry and the hypothesis of

no contact between strand-core and strand-strand and friction [Labrosse et al., 2000] and no

slipping were considered. The results could be used in the remaining structures adding an

angle to the starting point ϕ = θ+(
2π

ndc

), where ndc is the number of strands in the structure

[Usabiaga e Pagalday, 2008].

Based on this geometric definition, the properties κ and τ were defined as Equations

(2.22) and (2.23), respectively. Together with the Frenet-Serret triad and the transformation

matrix (T), that allows the transference from a global system to a local system and vice-verse

and to apply the boundary conditions.

The equilibrium equations for forces, moments, rotations and displacements (Equa-

tions 3.17, 3.9, 3.42 and 3.40, respectively) were solved for two different geometries. With

the geometric parameter α indicating the helix angle, it is possible to represent a plane arc,

an helix and a straight beam (α = 0◦, 0◦ < α < 90◦ and α = 90◦, respectively). These sets

are explored in this chapter.

4.1 Plane Arc

As demonstrated previously, if the helix angle is set as zero, the geometry is contai-

ned in a plane. The torsion (τ) becomes null and, consequently, the equilibrium equations

of forces are reduced to

dN1 (S)

dS
− κN2 (S) + q1 = 0, (4.1)

dN2 (S)

dS
+ κN1 (S) + q2 = 0, (4.2)
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dN3 (S)

dS
+ q3 = 0. (4.3)

One can conclude that, in this case, the first two equations are coupled due to the

FS, where the decomposition of loads produces effects in both directions. Therefore, the

above differential equation system was solved.

Initially, isolating N2 in Equation (4.1) and substituting in to the Equation (4.2),

a second order differential equation emerges
(
d2N1

dS2

)
. Solving the homogeneous differential

part first, it is produced as a result a complex conjugate pair, thus, a combination of sines

and cosines. The non-homogeneous part generates the terms that does not depend on S,

N1 (S) = C 1 cos (κS) + C2 sen (κS)− q2
κ
. (4.4)

The resulting equation is derived and the term N2 was defined as,

N2 (S) = −C1 sen (κS) + C2 cos (κS)− q1
κ
, (4.5)

the solution of the third equation was performed by the integration of the terms, since it is

linearly independent of Equations (4.1) and (4.2).Therefore, it is written as,

N3 (S) = −q3S + C3. (4.6)

The equilibrium equations that describe the moments are dependent on the forces.

Thus, using the expressions obtained in Equations 4.5 and 4.6, the reduced system, due to

the null torsion, one can write

dM1 (S)

dS
− κM2 (S) +m1 = 0, (4.7)

dM2 (S)

dS
+ κM1 (S)− (−q3S + C3) +m2 = 0, (4.8)
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dM3 (S)

dS
+
(
−C1 sen (κS) + C2 cos (κS)− q1

κ

)
+m3 = 0. (4.9)

In order to determine the moments equations, the same methodology is applied, i.e.,

isolating M2 in the first equation, replacing it in the second and, once again, solving the ho-

mogeneous characteristic equation, M1 was determined. Consequently, using the derivative,

M2 was set. The term M3 was obtained by the integration. Hence, it is possible to write

M1 (S) = C4 cos (κS) + C5 sen (κS) +
C1 −m2 − q3S

κ
, (4.10)

M2 (S) = −C4 sen (κS) + C5 cos (κS) +
m1κ− q3

κ2
, (4.11)

M3 (S) =
−C1 cos (κS)− C2 sen (κS)− q1S −m3κS + C6 κ

κ
. (4.12)

From the expression obtained previously, the stresses and strains, on the strand,

were determined using the spatial beam theory and the Hooke’s law, generating a result

considering a linear material. This hypothesis is coherent with the steel cable proposed.

Different materials are currently used to produce this kind of structure. With the

reinforced fiber in the direction of interest, composite materials are an alternative vastly

applied. Works using this theory are found in the literature in Pan, 1992 (parts I, II, III and

IV), Ghoreishi et al., 2007a (parts I and II) and Pidaparti et al., 2001 for example.

The proposed methodology was used and, considering the strand radius (r) as the

worst case for the strains, Equations (3.18), (3.19), (3.20), (3.21), (3.22) and (3.23) are

rewritten as,

ε1 =
C1 cos (κS) + C2 sen (κS)− q2

κ
EA

, (4.13)

ε2 =
−C1 sen (κS) + C2 cos (κS)− q1

κ
AG

, (4.14)
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ε3 =
−q3S + C3

AG
, (4.15)

analogously, the equations for deflection, in the local system, are defined as

ρ1 =
C3 cos (κS) + C4 sen (κS) +

C1 −m2 − q3S
κ

GJ
, (4.16)

ρ2 =
(C1 cos (κS) + C2 sen (κS) + q1S +m3κS − C5 κ) r

κEI
, (4.17)

ρ3 =

(
C3 sen (κS)− C4 cos (κS) +

q3 −m1κ

κ2

)
r

EI
(4.18)

In this case, the local areas were calculated as circles, since the variables Ni and Mi

were determined in a local basis and the tangent vector is orthogonal to the section.

Therefore, the system in Equation 3.42 can be rewritten, for this case, replacing the

values found for strains as

dφ1 (S)

dS
− κφ2 (S) +

−C3 κ cos (κS)− C4 κ sen (κS)− C1 +m2 + q3S

κGJ
= 0

dφ2 (S)

dS
+ κφ1 (S) +

(−C1 cos (κS)− C2 sen (κS)− q1S −m3κS + C5 κ) r

κEI
= 0

dφ3 (S)

dS
+

(−C3κ
2 sen (κS) + C4κ

2 cos (κS)− q3 +m1κ) r

κ2EI
= 0.

(4.19)

Displacements were calculated after the rotations due to the coupling. Consequently,

there is an influence of forces and moments into this variable, so that:
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du1 (S)

dS
− κu2 (S) +

(
−C1 cos (κS)− C2 sen (κS) +

q2
κ

)
EA

= 0,

du2(S)

dS
+ κu1 (S) +

∫ S

0

(C4 κ
2 cos (κS) + C5κ

2 sen (κS) + κm1 − q3) r
κ2EI

dS+

+
C1κ sen (κS)− C2κ cos (κS)− q1

κAG
= 0,

du3(S)

dS
+

∫ S

0

κφ1 (S)− (C1 cos (κS) + C2 sen (κS) + (q1 −m3κ)S − C5 κ) r

κEI
dS+

+
q3S − C3

AG
= 0,

(4.20)

The expression to determine u3 has the rotation φ2 coupled, which also depends on

the other components, φ1 and φ3, Consequently, one can not isolate the terms of Equation

(4.20) (b), and solving the full system is necessary to describe the displacement as a function

of S only.

4.2 Helix Model

As mentioned before, the helix angle defines the parameters κ and τ , i.e., considering

the case in which both are different than zero one gets 0◦ < α < 90◦. This means that the

geometry generated by Equations 2.16, 2.17 and 2.18 is an helix.

The equilibrium equations, for this case, are complete. In other words, there is no

null term and the equations are coupled:

dη

dS
−TFSη + q = 0, (4.21)

dµ

dS
−TFSµ−Ψ23η + m = 0. (4.22)

where TFS is the Frenet-Serret geometry properties matrix,
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TFS =


0 κ 0

−κ 0 τ

0 −τ 0

 , Ψ23 =


0 0 0

0 0 1

0 −1 0

 , (4.23)

η =


N1

N2

N3

 , µ =


M1

M2

M3

 , q =


q1

q2

q3

 , m =


m1

m2

m3

 . (4.24)

Differently from the system formed by the equilibrium equations in the plane case,

the system from Equation (4.21) presents the different directions components influence.

Consequently, it is necessary to solve all the components simultaneously, therefore a third

order differential equation. Solving it analogously as performed for the Equations (4.1),

(4.2) and (4.3) a negative root of the characteristic equation was found generating sines and

cosines terms. Hence, the solution can be written as

N1 (S) = −
C1 sen

(√
PS
)

+ C2 cos
(√

PS
)

√
P

− ZS + C3, (4.25)

N2 (S) =
C1 cos

(√
PS
)

+ C2 sen
(√

PS
)
− Z + q1

κ
, (4.26)

N3 (S) =
−C1 τ sen

(√
PS
)

+ C2 τ cos
(√

PS
)

κ
√
P

+
κ

τ
(−ZS + C3) +

q2
τ
, (4.27)

where P and Z are defined as

P = κ2 + τ 2,

Z =
τ (τ q1 + q3κ)

P
.

(4.28)

Analogously, to obtain the moment equations solution the expressions found for N2

and N3, in Equations (4.22), were used producing:
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M1 =

(
C1 2 τ√
P
− C2 τ S − C4

√
P

) sen
(√

PS
)

P
+

+

(
−C1 τ S −

C2 τ√
P

+ C5

√
P

) cos
(√

PS
)

P
+

+
(
m3τ κP + 2κ2q1τ + τ 2m1P + q3κP

) S
P 2

+ C6 ,

(4.29)

M2 =
(
−C1 τ P + C2 τ SP

3/2 + C4 P
2
) cos

(√
PS
)

P 2κ
+

+
(
C5 P

2 − C1 τ P
3/2S

) sen
(√

PS
)

P 2κ
+

+
m1κ

2P −m3τ κP − q3κP − 2κ2q1τ

P 2κ
,

(4.30)

M3 =

(
−C1τ

2S +
C2κ

2

√
P

+ C5τ κ
√
P

) cos
(√

PS
)

Pκ
+

+

(
C1 (τ − κ) (τ + κ)√

P
− C2τ

2S − C4

√
Pτ

) sen
(√

PS
)

Pκ
+

+
(−m1τ P −m3κP − q1 (τ − κ) (τ + κ) + 2 q3τ κ)κS

P 2
+

+
−q2 +m2τ + κC6 τ − κC3

τ 2
.

(4.31)

With these equations of Ni and Mi internal forces and moments can be determined

for any geometry considering κ and τ constants. Thus, one can determine the wire behavior

using the desired geometry and boundary conditions.

Once again, in order to determine the mechanical behavior of the model, the stresses

and strains were calculated. Substituting the results obtained previously the strains are

written as
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ε1 =
C1 P sen

(√
PS
)
− C2 P cos

(√
PS
)

+ C3 P
3/2 + (−τ q1 − q3κ)S

√
Pτ

P 3/2EA
, (4.32)

ε2 =
cos
(√

PS
)
C1 P + sen

(√
PS
)
C2 P + κ (κ q1 − τ q3)

PκAG
, (4.33)

ε3 =

−C1 τ sen
(√

PS
)

+ C2 τ cos
(√

PS
)

κ
√
P

− κ

τ

(
τ (τ q1 + q3κ)S

P
− C3

)
+
q2
τ

AG
,

(4.34)

and for the deflections, analogously to the arc case, were calculated as

ρ1 =

(
C1 2 τ√
P
− C2 τ S − C4

√
P

) sen
(√

PS
)

P GJ
+

+

(
−C1 τ S −

C2 τ√
P

+ C5

√
P

) cos
(√

PS
)

P GJ
+

+
(
m3τ κP + 2κ2q1τ + τ 2m1P + q3κP

) S

P 2GJ
+

C6

GJ
,

(4.35)

ρ2 =

(
C1τ

2S − C2κ
2

√
P
− C5τ κ

√
P

) r cos
(√

PS
)

PκEI
+

+

(
−C1 (τ − κ) (τ + κ)√

P
+ C2τ

2S + C4

√
Pτ

) r sen
(√

PS
)

PκEI
+

+
(m1τ P +m3κP + q1 (τ − κ) (τ + κ)− 2 q3τ κ) rκ S

P 2EI
+

+
(q2 −m2τ − κC6 τ + κC3) r

τ 2EI
,

(4.36)
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ρ3 =
(
C1 τ P − C2 τ SP

3/2 − C4 P
2
) r cos

(√
PS
)

P 2κEI
+

+
(
C1 τ P

3/2S − C5 P
2
) r sen

(√
PS
)

P 2κEI
+

+
(−m1κ

2P +m3τ κP + q3κP + 2κ2q1τ) r

P 2κEI
.

(4.37)

From this expressions, the rotations were initially determined. Using the equations

of equilibrium (3.42) and the results obtained one can write,

dφ1 (S)

dS
− κφ2 (S) =

(
C1 2 τ√
P
− C2 τ S − C4

√
P

) sen
(√

PS
)

P GJ
+

+

(
−C1 τ S −

C2 τ√
P

+ C5

√
P

) cos
(√

PS
)

P GJ
+

+
(
m3τ κP + 2κ2q1τ + τ 2m1P + q3κP

) S

P 2GJ
+

C6

GJ
,

(4.38)

dφ2 (S)

dS
+ κφ1 (S)− τ φ3 (S) =

(
C1τ

2S − C2κ
2

√
P
− C5τ κ

√
P

) r cos
(√

PS
)

PκEI
+

+

(
−C1 (τ − κ) (τ + κ)√

P
+ C2τ

2S + C4

√
Pτ

) r sen
(√

PS
)

PκEI
+

+
(m1τ P +m3κP + q1 (τ − κ) (τ + κ)− 2 q3τ κ) rκ S

P 2EI
+

+
(q2 −m2τ − κC6 τ + κC3) r

τ 2EI
,

(4.39)

dφ3 (S)

dS
+ τ ϕ2 (S) =

(
C1 τ P − C2 τ SP

3/2 − C4 P
2
) r cos

(√
PS
)

P 2κEI
+

+
(
C1 τ P

3/2S − C5 P
2
) r sen

(√
PS
)

P 2κEI
+

+
(−m1κ

2P +m3τ κP + q3κP + 2κ2q1τ) r

P 2κEI
.

(4.40)
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To determine the complete mechanical response of the strand, the differential system

of equations must be solved. Thus, the solution of the rotation system [Zhu e Zhao, 2008]

can be obtained as,

φ = φ0 +

∫ S

0

T−1ρ dS. (4.41)

Each component of deflection, in the local system so far, were represented in the

global system, after the multiplication by T−1, and then integrated. The result was added

to a constant φ0, result from the integration, and the global response set. To obtain local

outcomes, the multiplication by T could be performed.

The displacements were calculated using the same procedure. The expression for

the solution of the system (3.40) is written as,

u = u0 +

∫ S

0

φ+ T−1ε dS. (4.42)

The results from the global rotation (φ) were used, therefore, when added to the

strains, transformed to the global system as well. Again, u0 denotes the integration constant.

Hence, the following set of equation the displacement equilibrium system, was solved:

du1 (S)

dS
− κu2 (S) =

=
C1 P sen

(√
PS
)
− C2 P cos

(√
PS
)

+ C3 P
3/2 + (−τ q1 − q3κ)S

√
Pτ

P 3/2EA
,

du2 (S)

dS
+ κu1 (S)− τ u3 (S)− ϕ3 =

=
cos
(√

PS
)
C1 P + sen

(√
PS
)
C2 P + κ (κ q1 − τ q3)

PκAG
,

du3 (S)

dS
+ τ u2 (S) + ϕ2 =

=

−C1 τ sen
(√

PS
)

+ C2 τ cos
(√

PS
)

κ
√
P

− κ

τ

(
τ (τ q1 + q3κ)S

P
− C3

)
+
q2
τ

AG
,

(4.43)
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The expressions obtained were very difficult to handle and demonstrated the com-

plexity of the analyzed theory. Numerical results were generated, in the next chapter, in

order to validate the methodology used.

An expression to characterize a wire was obtained analytically using the spatial

beam theory. Moreover, this expression present a reference point for other methodologies,

to be used either as a validation tool (combined with other methodologies) or a rapidly

evaluation of the mechanical behavior. Since the equations depend on the material and

geometry, though having some considerations, they could be applied for different cases and

applications.

Time of analysis is a relevant parameter to be considered in a study. The compu-

tational cost or the experiment difficulty could be used only for complex cases and to if one

uses this set of equations for different project demands on distinct cases.

Application of analytic models are necessary in engineering. Every method, either

numerical or experimental are dependent on posterior validation before begining complex

simulations. Any software, at certain point, was compared to this kind of benchmark solution

[Feyrer, 2007]. The solutions obtained allow the mechanical behavior understanding when

the application of such structures is considered.

Not only the geometry and material could be modified for a different case, but

also the boundary conditions. Since no information regarding the fixation was given, the

constants of integration must be determined accordingly. This versatility is one of the

great aspects of the proposed methodology. Without mentioning that strains and stresses,

formulated here, can be applied in optimization methods, allowing determination of analytic

sensibilities.

As any other methodology, there are some limitations imposed to provide these

results. It is important to understand that the hypothesis used are

• No body forces;

• No contact or slippage between strands or core;

• Isotropic and linear material;

• A strand parameterized as an helix, or, parameters κ and τ constants;
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The expressions were obtained applying the spatial beam theory. Consequently,

using these equations are not restricted to model cables. Any structure that can be parame-

terized as an helix, or a geometry with κ and τ as constants, e. g.,springs are an example.

4.3 Straight Beam

Another particular case of the methodology used is obtained when α = 90◦. As

a result, both curvature and torsion are null. Since Equations (2.22) and (2.23) depend

on a cosine, and cos(90◦) = 0, they are also zero. Therefore, there is no change in the

direction or sense of the tangent vector, i.e., the normal and binormal vector does not exist.

Consequently, the parametrization results in a straight line.

With the equations system formed by (2.16), (2.17) and (2.18) and adopting S =

z, all the parameters needed to study this geometry is known. Consequently, the matrix

TFS = 0 and the remaining terms are

dη

dS
+ q = 0, (4.44)

dµ

dS
−Ψ23η + m = 0. (4.45)

The spatial beam theory when reduced to this case represents the Euler-Bernoulli

beam equation, that is, not only the parametrization, but also the equilibrium equations can

be written for the simplest cases.

This configuration set can be used to analyze the center of the cable, since it is

considered straight and may not present curvature and torsion. In this work, the core was

not focused due to the triviality of this solution.

To determine the mechanical behavior of the proposed method, the boundary con-

ditions were applied to calculate the constants. Using the Frenet-Serret triad, the loads were

applied in the local system. The next chapter presents this methodology and the results

validation.
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5. RESULTS

With the expressions obtained analytically it is possible to analyze the mechanical

behavior of the strand facing several types of loading. In order to determine the validity of

the theory, four cases were simulated using FEM and the proposed methodology. To do so,

not only the geometry must be informed, but also the constants of integration need to be

derived.

The analysis of all the cases start from the clamped end (S = 0) and develops to

the free edge, where the loads are applied. This chapters explore the results obtained and

the comparison with FEM.

5.1 Determination of Constants

The expressions obtained in the solution of the Equations (3.9) and (3.17) with the

boundary conditions were used to determine the first three integration constants, generated

by the integration of the differential equilibrium equations. In this case, one end is considered

clamped and different loads are applied at the other end.

It is important to notice that the equilibrium equations are presented in a local

system, i.e., the mechanical response generated by the methodology here presented is not

in the same coordinate system that the force and BC are applied (global). Consequently,

the calculation of the constants is not direct - the transformation of the BC must be firstly

performed. As the Frenet-Serret basis was defined in Equation (2.20), the load vector can

be written as,

F =


Vx

Vy

Vz

 , (5.1)

the multiplication of these entities produce the effect of the applied force in the local system,

so
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FL =



− sen

(
S cos (α)

R

)
cos (α)Vx + cos

(
S cos (α)

R

)
cos (α)Vy + sen (α)Vz

cos

(
S cos (α)

R

)
Vx + sen

(
S cos (α)

R

)
Vy

− sen (α) sen

(
S cos (α)

R

)
Vx + sen (α) cos

(
S cos (α)

R

)
Vy − cos (α)Vz


+



Qx

Qy

Qz


.

(5.2)

And the second vector is used in case of a distributed load represented as:

Qx =

∫ Smax

0

[
− sen

(
S cos (α)

R

)
cos (α) q1 + cos

(
S cos (α)

R

)
q2+

− sen (α) sen

(
S cos (α)

R

)
q3

]
dS

(5.3)

Qy =

∫ Smax

0

[
cos

(
S cos (α)

R

)
cos (α) q1 − sen

(
S cos (α)

R

)
q2+

sen (α) cos

(
S cos (α)

R

)
q3

]
dS

(5.4)

Qz =

∫ Smax

0

[ sen (α) q1 (S)− q3 cos (α)] dS (5.5)

Once the distributed loads q1, q2 and q3 are defined, the integration can be performed

in order to define the boundary condition for this case. Therefore, N1, N2 andN3 (expressions

obtained for each case in Chapter 4) are set equal to the reaction at the clamped end (S = 0).

Consequently, the equations have no dependence on S anymore, and the only unknown

parameters are C1, C2 and C3.

It is possible to observe that the second term of Equation 5.2 has no influence of

the component Vz, consequence from the orthogonality of n and x3 on every S.

In view of the helix angle, the triad (t, n, b) is also rotated in reference of the global

system. Therefore, there is a component of Vz in the x1 direction, otherwise, there should

be only one component in x3 due to the parallelism of the local and global systems. The

boundary conditions for the moments can be obtained adopting the same procedure. The

remaining three constants (C4, C5 and C6) from the integration of moments were obtained
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similarly.

The position vector, defined by the parameterization in Equations (2.16), (2.17) and

(2.18), was used to determine the local length between the force vector in Equation (5.1) and

the clamped end. To do so, S is defined as the final position (Smax from Equation (2.24)).

By the same procedure used to define the Equation(5.2), using the transformation matrix it

is possible to analyze the local effects as:

MBCL
=


M1

BCL

M2
BCL

M3
BCL

+


M1

d

M2
d

M3
d

 . (5.6)

where,

M1
BCL

=
[

cos (α)Smax − sen (θmax)R
]

sen (α) Vx +
[

cos (θmax)− 1
]

sen (α)R Vy+

+
[
1− cos (θmax)

]
cos (α)R Vz,

(5.7)

M2
BCL

= −Smax sen (α) Vy +R sen (θmax) Vz +ReVz, (5.8)

M3
BCL

=
[
Smax − Smax cos2 (α) + cos (α)R sen (θmax)

]
Vx+

+
[
1− cos (θmax)

]
cos (α)R Vy +

[
1− cos (θmax)

]
sen (α)R Vz.

(5.9)

Considering Re as the eccentricity in case of a load applied out of the helix, producing

a resultant, and constant, moment in the componentM2
BCL

. If the load is acting at the center

Re = R and if the load is at the helix Re = 0.

The second vector is used in case of a distributed load. The transformation matrix

was used to obtain the local components, then it was multiplied by the position vector (the

lever arm that produces the moment). Finally, the integration was performed to account for

all the effect from the clamped end to the free end, so
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M1
d =

∫ Smax

0

[(
cos

(
S cos (α)

R

)
cos (α) +R sen

(
S cos (α)

R

)
sen (α)

)
q1+

+ sen

(
S cos (α)

R

)
q2 + cos

(
S cos (α)

R

)
S sen (α)2 q3−

− cos (α)R sen

(
S cos (α)

R

)
q3

]
dS,

(5.10)

M2
d =

∫ Smax

0

[(
R

(
cos

(
S cos (α)

R

)
− 1

)
− sen

(
S cos (α)

R

)
cos (α)S

)
sen (α) q1+

+ cos

(
S cos (α)

R

)
S sen (α) q2 − sen

(
S cos (α)

R

)
S sen (α)2 q3+

(
R cos

(
S cos (α)

R

)
−R

)
cos (α) q3

]
dS,

(5.11)

M3
d =

∫ Smax

0

[(
1− cos

(
S cos (α)

R

))
R cos (α) q1 −R sen

(
S cos (α)

R

)
q2

(
1− cos

(
S cos (α)

R

))
R sen (α) q3

]
dS.

(5.12)

Therefore, one must solve firstly the three equations (Ni) where only C1, C2 and

C3 are present, and then the remaining constants. This is due to the couple effect of the

moments and forces for any condition, even if the curvature (κ) and/or the torsion (τ) are

zero. The constants determination is dependent to the boundary conditions.

5.2 FEM Model

The helix parameterization, Equations (2.16), (2.17) and (2.18), was used to generate

the geometry on a commercial finite element software [ANSYS, 2012]. To do so, 100 elements

were used since the selected beam element presents a mid node which means the element has

a quadratic interpolation function. A sufficient quantity was used to generate the structure

and to does not influence the numerical results.
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Concentrated forces and moments were applied globally at the last node and the

clamped end was set in the first node. Distributed loads were introduced in the model

according to the element, or local, system.

Two sets of geometry were analyzed (with different loads), as mentioned before, by

changing the helix angle α. The FEM and analytical results are compared in the following

sections.

5.3 Concentrated Loads

Results from the proposed methodology were obtained considering the local coordi-

nate S. This parameter defines the position along the parametrized geometry.

5.3.1 The Plane Arc Case

Initially, the arc geometry was defined. To generate the structure, α was defined

as zero, so parameters κ (Equation 2.22), τ (Equation 2.23), Smax (Equation 2.24), were

defined as shown in Table 5.1, which resulted in θmax = 360◦. The values for I and J are

shown ass well so that the geometry is defined.

Table 5.1 – Plane arc geometric parameters.

α [◦] κ [m−1] τ [m−1] Smax [m] I [m4] J [m4]
0 10 0 0.628316 7.85398× 10−9 1.57080× 10−8

The material parameters used to obtain the results are shown in Table 5.2.

Table 5.2 – Plane arc material parameters.

ν [ ] E [GPa] G [GPa]
0.3 210 80.7692

Also, the Frenet-Serret basis was completely defined as
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Tarc =


− sen (10S) cos (10S) 0

cos (10S) sen (10S) 0

0 0 −1

 (5.13)

Equation (5.13) shows that all the values concerning the x3 axes are constant, that

is, the rotation is in this direction and there is no change in the angle formed by the arc and

the x1x2 plane (α = 0◦).

So, the boundary condition on the clamped end can be applied. Equation (5.2) are

used with the arc geometry (null helix angle), therefore one can write:

Farc =


− sen (10 S)Vx + cos (10 S)Vy

cos (10 S)Vx + sen (10S)Vy

−Vz

 (5.14)

Component Vz is parallel to x3, consequently, its effect is only present in the last

term. Also, once more, because of the orthogonality, the loads contained in the osculating

plane affect only t and n. Equations (5.13) and, consequently, (5.14) show the decoupling

between in-plane and out-plane effects, resulting in the possibility of solving the problem

separately, a consequence of the arc’s geometry.

At the clamped end S is defined as zero. Therefore, this value was an input in the

equilibrium equations. The remaining parameters were calculated as equal to the boundary

condition. So, C1, C2 and C3 are expressed as:

C1 = Vy − 0.1 q2

C2 = Vx + 0.1 q1

C3 = − Vz

(5.15)

Analogously, substituting S = 0 in Equations (4.10), (4.11) and (4.12) and using the

moment boundary condition, defined in Equation (5.6), the remaining constants are found

to be:
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C4 = −0.1 Vz − 0.1 m2

C5 = 0.01 q1 + 0.1 m1

C6 = −0.1 Vy + 0.01 q2

(5.16)

Therefore, the expressions can be compared against the results from FEM (there

results are presented as num in the plotted graphics. ). The full expressions considering the

constants are written as

Narc =


− sen (10S)Vx − 0.1 sen (10S) q1 + cos (10S)Vy − 0.1 cos (10S) q2 + 0.1q2

cos (10S)Vx + 0.1 cos (10S) q1 + sen (10S)Vy − 0.1 sen (10S) q2 − 0.1q1

−q1S − Vz

 , (5.17)

and the moments

Marc =


M1arc

M2arc

M3arc

 . (5.18)

where

M1arc = −0.01 sen (10S) q1 − 0.1 sen (10S)m1 + 0.1 sen (10S)Vz−

+ 0.1 cos (10S)m2 + Vz + 0.1m2 + 0.1q1S + 0.1Vz,
(5.19)

M2arc = 0.01 cos (10S) q1 + 0.1 cos (10S)m1 − 0.1 cos (10S)Vz−

+ 0.1 sen (10S)m2 + Vz − 0.01q1 − 0.1m1,
(5.20)

M3arc = −0.1 sen (10S)Vx − 0.01 sen (10S) q1 + 0.1 cos (10S)Vy−

+ 0.01 cos (10S) q2− 0.9q1S + 0.01q1 − 0.1Vx.
(5.21)

As stated before, with respect to the loading and the local-global transformations

matrix, the results for forces and moments follow the expected decoupling: in-plane normal
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and shear forces (N1 and N2) are coupled and generateM3; out-plane shear force N3 develops

both M1 and M2.
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Figure 5.1 – Vx, Vy and Vz applied to the arc with (a) local and (b) global forces and (c)

local and (d) global moments.

In Figure 5.1, both local and global results are plotted for concentrated unitary

loads Vx, Vy and Vz applied together. The first graphic, Figure 5.1 (a), shows the local force

at the clamped end the components are equal to the reaction. As the coordinate S develops,

N1 decreases due to the local decomposition until zero, where it is orthogonal to the load

resultant. Once aligned to the applied force the values are maximum, in modulus.

Whenever N1 is parallel to the load, N2 is orthogonal, and vice-versa. This means

that once one component reaches its maximum the other is zero. Both variables presented
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Figure 5.2 – Arc (a) local and (b) global rotations and (c) local displacements and (d)

global.

a similar behavior while N3 is constant or aligned to Vz along the arc.

Global forces were determined as constants in Figure 5.1 (b). No decomposition is

needed since the loads are parallel to x1, x2 and x3. Therefore, the effect is constant along

S.

Local moments are analyzed in Figure 5.1 (c). The first component reaches the

maximum value at the mid point, where the distance from the clamped end is higher (2R).

At S =
Smax

4
and S =

3Smax

4
, M2 is maximum, though with opposite sign, since the force

decomposition results in the unitary load applied in this direction. Three forces together

produced a load not aligned to any axis and M3 is only affected by this lack of parallelism.
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Figure 5.3 – Forces diagram for the arc radius growing (a) N1 (b) N2 and (c) N3.

Therefore its maximum value is not in any quadrant end, but dislocated, and greater than

the others.

To determine the global moments the transformation matrix is used. Since α = 0

the osculating plane is contained in to x2x1 and b is always parallel to x3. Consequently, the

behaviors are similar as shown in Figure 5.1 (d).

Strains and stresses were defined by the presented methodology (Equations (4.13),

(4.14), (4.15), (4.16), (4.17) and (4.18)). These values were then applied to determine

rotations and displacements. Using these expression in the equilibrium Equations (4.19) the

boundary conditions were applied.

As the end is clamped, the value for local and global displacements and rotations
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Figure 5.4 – Local moments considering the components (a) M1, (b) M2 and (c) M3.

at S = 0 are also zero, as shown in Figure 5.2 (a). The components φ1 and φ3 reach

approximately the same maximum, in modulus at the free end while φ2 is zero.

Global rotations are shown in Figure 5.2 (b). While φ2 and φ3 increase from the

clamped end to the applied load position, the first component reaches the highest value at

the middle of the arc and decreases until zero.

The displacements in local coordinates are plotted in Figure 5.2 (c) while the global

response is shown in Figure 5.2 (d). All the cases analyzed were plotted with three loads

acting together (Vx, Vy and Vz).

Curvature is responsible for forming the arc. If this parameter was zero the parame-

terization would be a straight line. Therefore, if the arc radius increases, with a fixed length
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Figure 5.5 – Arc radius growth considering local displacement (a) u1, (b) u2 and (c) u3.

(Smax = 0.628316 m), the problem tends to be a straight beam. Considering the same case

analyzed previously, the term R, initially calculated as 0.1 m, was multiplied by two in every

new analysis. Thus, local effects were analyzed.

Figure 5.3 (a) demonstrates the evolution of force element N1 as the arc radius

grows, from the results obtained previously to a constant value equal to the applied load.

The component N2 is represented in Figure 5.3 (b). A similar behavior is observed in which

the component tends to a constant value. Figure 5.3 (c) represents N3 that was already

constant since the binormal vector is always aligned to Vz.

The same behavior is found for the moments (Figure 5.4). Locally, for the arc case

M1 has the highest value at the middle, as the radius grows the component decreases to

zero. This happens because the load becomes aligned to the tangent vector. M2 and M3
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(Figures 5.4 (b) and (c)) have similar behaviors from the arc result to the linear response

once it trends to a straight beam.

Displacement u1 is plotted in Figure 5.5 (a) which, once the load is aligned to the

tangent vector due to the radius growth, decreases to a small value, however different than

zero since its a tensile load in the straight configuration.

Figure 5.5 (b) and (c) presents the components u2 and u3, respectively. The final

analyzed radius is R = 22.6 m (for every analysis) which, for the defined Smax configures,

approximately, a straight line.

Another configuration achieved by this parameterization is the aforementioned helix.

Cases considering α different than zero are analyzed in the next section.

5.3.2 The Helix Case

The geometry of an helix, obtained with the parametrization in Equations (2.16),

(2.17) and (2.18), was analyzed. The constants are determined for the same condition and

the geometric parameters detailed in Table 5.3. The material are the same as the arc in

Table 5.2.

Table 5.3 – Helix geometry parameters.

α [◦] κ[m−1] τ [m−1] Smax [m]

0.654498 -6.29409 4.82963 0.791978

The FS basis is represented as

Thelix =


−D sen (10DS) D cos (10DS) G

cos (10DS) sen (10DS) 0

−G sen (10DS) G cos (10DS) −D


, (5.22)

where D = 0.793353 and G = 0.608761.

With this result, the expressions can be studied in the global or local system, since

this matrix allows the transformation of any variable to both systems (global to local and



53

vice-versa). Multiplying Equation (5.22) and, once again, the concentrated forces in Equation

(5.1) the local forces are written in the local form as

Fhelix =


−D sen (10DS)Vx +D cos (10DS)Vy +GVz

cos (10DS)Vx + sen (10DS)Vy

−G sen (10DS)Vx +G cos (10DS)Vy −DVz


(5.23)

Because of the parametrization, the local force acting on the normal direction (n)

has no influence of Vz. In view of the helix angle the triad is never aligned to the global

system, hence this component is present in two directions (as expected, there is an influence

in x3, however, here, the decomposition produces an effect in x1 as well). Nevertheless, (n)

is always parallel to the x1x2 plane, which is orthogonal to the applied load, thus no reaction

is generated.

Assuming, initially, only concentrated loads on the free end, the terms q1, q2, q3,

m1, m2 and m3 are equal to zero. In each case analyzed the loads are defined as Figure

5.6, where Vx is applied aligned to x1, Vy to x2, Vz to x3 and all loads together. So all the

constants are determined as,

C1 = −6.29409 Vx,

C2 = −6.29409 Vy,

C3 = 0.608761 Vz,

C4 = −0.482962 Vx + 3.03454 Vy,

C5 = −3.03454 Vx + 0.629409 Vz,

C6 = 0.0608761 Vy,+0.793353 Vz.

(5.24)

Consequently, Equations (4.25), (4.26) and (4.27) are fully defined as a function of

S only. The forces in the local coordinates are:
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Nhelix =


−D sen (10DS) Vx +D cos (10DS)Vy +G Vz

cos (10DS)Vx + sen (10DS)Vy

−G sen (10DS)Vx +G cos (10DS)Vy −DVz


. (5.25)
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Figure 5.6 – Concentrated loads applied in the helix considering (a) Vx aligned to x1, (b)

Vy to x2, (c) Vz to x3 and (d) all components simultaneously

And the moments (Equations (4.29), (4.30) and (4.31) are written as

Mhelix =


M1helix

M2helix

M3helix


, (5.26)

where

M1helix = 0.1GVy + 0.1DVz − 0.1DVz cos (10DS) +H sen (10DS)Vy+

+H cos (10DS)Vx −WSVx cos (10DS)−WSVy sen (10DS) +

+ 0.1G sen (10DS)Vx − 0.1G cos (10DS)Vy

(5.27)
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M2helix = −GS sen (10DS)Vx +G cos (10DS)SVy − 0.1 sen (10DS)Vz+

+W sen (10DS)Vx −W cos (10DS)Vy − 0.1DVy + 0.1GVz+

+ L cos (10DS)Vx −KSVx cos (10DS)

(5.28)

M3helix = −0.1GVz cos (10DS)− 0.1D sen (10DS)Vx + 0.1D cos (10DS)Vy+

+ L sen (10DS)Vy −KSVy sen (10DS)
(5.29)

and H = 0.382496, W = 0.482962, K = 0.370590 and L = 0.293499. Hence, the forces

can be graphically expressed as in Figure 5.7, where four cases are analyzed. The first case,

Figure 5.7 (a), is a force aligned to x1, the second (Figure 5.7 (b)),has a load Vy parallel to x2,

Vz is applied in the x3 direction in Figure 5.7 (c) and the last case (Figure 5.7 (d)) represents

the response when all three unitary loads are present. These four cases are repeated through

this section.

Analyzing the figures it is possible to notice the local force behavior acting on the

helix. For the first case, Figure 5.7 (a), the load is set parallel to the vector n of the FS triad.

This means that all the magnitude is accounted in the N2 component, since the component

is also parallel to it, at the point where the force is applied.

The other forces are zero at the beginning because they are orthogonal to the applied

force. Along the local system this behavior changes, i.e., N2 decrease until zero while the

other components reach their maximum.

Since the triad is not coincident to the global system, once the force is orthogonal

to the FS basis (at approximately S = 0, 2m) the parameter α is responsible to the decom-

position of Fx into N1 and N3. Performing the vector sum of the components it gives the

unit vector. In fact, for all the cases and at any point of the curvilinear coordinate (S), this

operation returns the applied load magnitude.

The value change has a cosine function for N2 and as sine considering N1 because

of the Nhelix vector, Equation 5.25, caused by the application of only Vx. The alternation of

signs is due to the change of orientation with the triad.

In the second case, Figure 5.7 (b), a unitary load is applied parallel to x2. The

same behavior is observed in this case where the load is decomposed in to N1 and N3 while
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Figure 5.7 – Local forces for the helix case with unitary loads (a) Vx in the x1 direction, (b)

Vy aligned to V2 axis, (c) Vz parallel to x3 and (d) all loads applied

N2 remains zero. Since the triad component t is positioned aligned to x2 and the force is

orthogonal to it there is no effect in this direction on N2.

Once more, the maximum of N2 occurs at the same position as the minimum for

the other variables (in modulus). The opposite is also true, this alternation happens due to

the local system analysis, which changes with the angle where the section is evaluated.

The third case is a simple case where only Vz is acting. The load is orthogonal to

x1x2 plane, consequently, there is no decomposition that makes effect on N2. Likewise, every

position has the same outcome, generating a constant value of N1 = 0.6N and N3 = 0.8N .

The final case, Figure 5.7 (d), is an assembly of the other three. This means that all
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Figure 5.8 – Local moments considering unitary loads (a) Vx in the x1 direction, (b) Vy

aligned to V2 axis, (c) Vz parallel to x3 and (d) all loads applied.

the loads, analyzed separately, are now considered together and applied in the same direction

as before, in other words the resultant is not aligned to any axis.

Initially (at S = 0m), no component is null since the resultant is not orthogonal

to any vector of the FS basis. The superposition is also present in this analysis and can

be verified in any position of S. Adding the three results obtained previously generates the

same effect as applying the forces together, e. g., N3 at the same beginning point is set as

N3 = 0 + 0.6N + (−0.8N) = −0.2N .

One can notice as well that the highest values (in modulus) does not occur at the

same points as the previous examples (S = 0.2m, S = 0.4m, S = 0.6m and S = 0.8m or at
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the quadrants), they are now translated to where the planes t× b and n× b are orthogonal

to the resultant load.

Using the transformation matrix to change the local to the global system (multi-

plying Nhelix for the inverse of T), the reacting forces are now constants and equal to the

load applied.

Once the forces are determined, the moments can be analyzed. Using the values from

the local analysis and multiplying it by the respective lever arm it is possible to calculate

each local component.

Again, the same four cases are studied. Figure 5.8 shows the moments for each

situation. Initially, only Vx is considered (5.8 (a)) and, according to the local forces, only N2

is not null. This value, multiplied by the distance between the point of analysis (position of

the Frenet-Serret triad), gives the moment. That way, there are 2 components affected by

N2, M1 and M3, since the local system is inclined by the helix angle (α).

At the end of the first quadrant one can see the maximum value for M2, that

increased from the clamped end. The top values take place, for the moments, always when

the FS is orthogonal to the applied load. The other two components decrease and are equal

to zero in different points. For M1, it occurs in the second quadrant, as the tangent vector

is inclined and its axis becomes aligned to the load. As the local system approximate to the

position of the applied force all values of moments decline until zero, considering that there

is no distance to generate moment.

The second case (Vy applied) has the same behavior of the last case for the same

reasons (Figure 5.8 (b)). Starting at the clamped end, the load is contained in the t × b

plane, therefore, it does not produce any effect on these components. The only moment

present is M2, which has the highest value, since the distance is the largest.

At the end of the first quadrant, M2 decreases to zero, while M1 reaches its maxi-

mum. M3 grows until the distance between the applied force and the component b, which

falls down because of the new alignment of the entities (at S = 0.3). The correspondent

value of this variable for S = 0.5 is higher since the projection of b is now pointed in the

opposite direction.

If only an upwards force is applied (Figure 5.8 (c)), or Vz, the decomposition into

the local system is never aligned to n, and although, no force component is generated, the
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Figure 5.9 – Global moments for the helix case (a) Vx applied aligned to x1, (b) Vy to x2,

(c) Vz parallel to x3 and (d) all loads applied.

FS becomes orthogonal to the component and M2 oscillates as a negative sine (as seen in

Mhelix). The other moments reach their maximum when the distance is equal to two times

the radius, since the inclination of the triad does not affect the length used to calculate the

moments.

For the last case, where three forces are applied together, Figure 5.8 (d), there is a

resultant not contained in or orthogonal to any plane formed in the local or global system.

The resultant is, again, a sum of the three cases, as expected. Therefore, either using the

superposition or the loads simultaneously applied results in the same outcome.

Since the moments on the third case are significantly smaller than the other two
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cases, the effect of the respective loading is barely noticed.

Moments are globally represented in Figure 5.9. The linearity ofM2, in the first case

(Vx applied), is due to the constant change in the height and M3 grows to the maximum and

decreases to zero, since the applied force is initially parallel, becomes orthogonal (S = 0.2

and S = 0.6) and in the end is, again, aligned. The other component is null because in the

decomposition the resultant is always orthogonal.

Figure 5.9 (b) represents the global response when the load Vy is applied. An

analogous behavior, from the last case analyzed, was expected. The linearity is present

as M1 decreases, in modulus, to zero. The second component is always zero, since it is

perpendicular to the force, and M3 increases from zero to the maximum value (at the end

of second quadrant) and back to zero where the force is present.

The last case with only one force, Figure 5.9 (c), showed a moment distribution

just in M1 and M2. This means that Vz is aligned to the binormal vector. The components

change their value according to the distance between the section in analysis and the load

position.

With the full set of loads, where all forces are considered together, the global mo-

ments have no null component (Figure 5.9 (d)). In this case the resultant is inclined and

the projection passes through S = 0.6m, consequently this is the only point where any

component can have zero value.

The application of more than one load, parallel to an axis, generates a resultant not

aligned to the global system. As a consequence, the positions where the largest distances

occur change, generating the highest moments elsewhere, and the point of alignment to the

global axes.

The cases analyzed were produced by the geometry in Table 5.3. Nonetheless,

although the results of each parameter change for other physical sets, the properties of the

local system are similar. The loads were also used as unitary because of two reasons: the

system is linear and any change in the force affects proportionally all the results.

In order to analyze stresses and strains in the helix, the expressions obtained in

Equations (4.32), (4.33),( 4.34), (4.35), (4.36) and (4.37) are now written with the geometry

in Table 5.3.

With the strains calculated, the second system of differential equations were used
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to solve rotations and displacements (Equations 4.38, 4.39, 4.40 and 4.43, respectively). Six

more constants were determined from the boundary conditions. The clamped end implies

that rotation and displacements are set to be zero.

Local rotations were determined and are shown in Figure 5.10. Analyzing the first

case, Figure 5.10 (a), with only one load parallel to x1 it is possible to notice the similar

behavior of φ1 and φ3 because of the local decomposition. After the first quadrant and the

third quadrant φ2 reaches two peaks, when the applied force is aligned to the normal vector.

The other two rotations are zero at the same positions, where the load is orthogo-

nal to the rectifying plane. The similar behavior of u1 and u3 happens because both are

orthogonal to the loading, which means that they are always affected analogously.

In the second case another bending moment produced was applied , however aligned

to x2 (Figure 5.10 (b)). Again, φ1 and φ3 had resembling properties. In fact, due to the

decomposition of the loads into the triad, locally, there is always a component affecting

both t and b. Similar behaviors, though inverted, can be seen in Figure 5.10 (b) where, at

(S = 0.2 m) and (S = 0.6 m), φ2 is zero and other components show an inflection point.

Figure 5.10 (c) presents Vz as loading. The greatest values for φ1 and φ3 happen in

S = 0.4 m and at the free end since the load is orthogonal to x1x2 plane.

When the full load case is considered, Figure 5.10 (d), the positions where the peaks

and zero occur change due to the resultant. The reasons are, likewise, the same as in other

conditions. The higher the distance between the point of analysis and the load, the greatest

is its value. The tensile case (third analysis) is the one that least contributes to the final

rotation value, i.e., the cable has small rotations with this kind of load which is the most

common in practice. Showing that the structure has its major resistance aligned to x3

direction.

With the results of local rotations obtained previously, the global effects were deter-

mined. Applying the methodology described in section 2.4, using the transformation matrix,

the results were plotted in Figure 5.11.

Globally, the load aligned to x1 produced a small and negative rotation on φ1. The

effect in the third component is also small for the same reason. Nevertheless, φ2, due to the

bending, increases until the maximum value at the free end (S = 0.8 m).

Again, even considering only the load Vy (Figure 5.11 (b)), one component increases,
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Figure 5.10 – Local rotations generated by unitary loads applied with (a) Vx aligned to x1,

(b) Vy to x2 axis, (c) Vz to x3 and (d) all loads applied.

to a similar value as the last case, until its maximum value (φ2). Once more, the bending

produced this effect. Although one component is still close to zero, φ3 has a different behavior

and grows along the coordinate (S).

A tensile load, in the third case (Figure 5.11 (c)), makes the torsion in the x2

direction increase, due to the tendency to reduce the helix radius. The component φ1 reaches

its maximum in the middle of the S coordinate, due to the distance from the load applications

to the clamped end.

When all the loads are considered together, Figure 5.11 (d), the resultant changes

its alignment with the axes, so that the quadrants end are no longer a reference point.
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Figure 5.11 – Global rotations determined from a load (a) Vx pointed in the x1 direction,

(b) aligned to x2, (c) aligned to x3 and (d) with all the loads applied together.

The components behavior were similar to the second case. Analyzing first φ1, the torsion

produced by the decomposition of the force in t is approximately the opposite of the result

from the component acting in b. Actually, this happens for all rotations.

To generate the last case three, loads are accounted for. No rotation component is

null or close to zero. The maximum value was presented by φ1, at the load application, since

the bending ant the tension contribute to it. The other variables demonstrated a similar

behavior.

Using the methodology demonstrated in Section 4.2 to calculate the displacements,

the three last constants of integration must be determined. This implies the application of
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Figure 5.12 – Local displacements for the helix case with unitary loads (a) Vx in the x1

direction, (b) Vy aligned to V2 axis, (c) Vz parallel to x3 and (d) all loads applied

the boundary conditions, still considering a clamped-free case.

Rotations influence directly on the calculation of the displacements, since the effects

are coupled. Thus, the components u1, u2 and u3 were determined with the methodology of

Equation 4.42. The last three integration constants were determined by the imposition of

the aforementioned BC.

Local results are presented in Figure 5.12. The cases presented the same metho-

dology as the other analysis. Starting with the load parallel to x1 the local displacement

are zero, as explained before, at S = 0 (Figure 5.12 (a)). The component u2 presented

the highest value, at the free end, since the bending is in this direction. The other compo-
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nents reach their maximum close to the end of the third quadrant due to the distance and

orthogonality of the load.

In the second case,Figure 5.12 (b), with a load aligned to x2, the bending occurs in

the other direction, compared to the first case, thus the highest value of u1.

Tensile load applied produced the graphic in Figure 5.12 (c), where the first and

second displacements components present, in modulus, the higher values. This is due the

curvature and the helix angle, i.e., the load tends to straighten the strand, consequently u1

and u2 are the most affected.

With all the loads together, Figure 5.12 (d), the local displacements presented results

close to the first two cases, since the third case had values smaller than the others.

To analyze the effects on the displacements produced by the concentrated loads

applied to the strand in global coordinates, the transformation must be performed again.

The application of a load perpendicular to x3 and x2 produce displacements on the first

component that increases as the coordinate S develops until the highest value, Figure 5.13

(a). Although never negative, it grows approximately linearly after the middle of the strand,

due to the curvature. Along S, the second component remains close to zero. Because of

the decomposition of loads, no effect is generated in n, so all the calculated displacement is

caused by the bending.

With the load aligned to x2, Figure 5.13 (b), the second component becomes the

greatest value at the free end. The other components presented similar behaviors to the first

case since the force orientation change did not produce any significantly effect.

For the third case, Figure 5.13 (c), once again the load produced effects in all the

components. The highest values were produced at the free end for all the cases, differently

than the previous two cases. Even though there is no component meaningfully larger, adding

the effects produce a smaller value when compared to the other cases. This result is significant

and coherent, since it is considered the study of a cable, and the low displacement of this

case shows the expected result for such structure.

Regarding the alignment of the load with x3, one could expect the largest displace-

ment value (in modulus) from u3. However the decomposition of the load together with the

flexure caused by the geometry contributes to the maximum value of u1.

The last case, Figure 5.13 (d), shows the initial positive slope of all the components.
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Figure 5.13 – Global displacements of the helix considering (a) Vx aligned to x1, (b) Vy

parallel to x2, (c) Vz in x3 direction and (d) all components applied together.

While u2 reaches the maximum value at the free end u3 decreases, after the peak, due to the

bending in the other directions.

Four cases were analyzed in this sections. Graphics for forces, moments, rotations

and displacements were generated and studied. Numerical results were obtained with FEM,

presenting good agreement in the local system for forces and moments and globally for

rotations and displacements, with the analytical ones.

The theory of spatial beams proved to be efficient to analyze a single strand. The

results obtained can be used for the other five similar helix structures that compose the cable

analyzed here.
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5.4 Distributed Loads

Forces and moments were obtained using, again, the geometry in Table 5.3 for

distributed loads. The same appoach was considered, where Equations (4.25), (4.26), (4.27),

(4.29), (4.30) and (4.31) were set as the reaction produced by the clamped condition at

S = 0.

x3

x2x1

S

q1

x3

x2x1

S

q2

x3

x2x1

S

q3

x2

q2

x3

x1

S

q3

q1

(a) (b) (c) (d)

Figure 5.14 – Distributed loads applied in the helix considering (a) q1 aligned to t, (b) q2 to

n, (c) q3 to b and (d) all components simultaneously

Unitary loads were applied in the local system to simplify the analysis, as shown

in Figure 5.14. Constant distributed load was used. Consequently, the boundary condition

integrated to account for all its effects. The result was used to calculate the first three

constants.

Figure 5.15 presents the force results for the four cases mentioned before. Initially,

only a load aligned to the tangent vector is considered (Figure 5.15 (a)).

A normal load is applied in the second case, Figure 5.15 (b). It is interesting to

notice that there is no reaction on the clamped end. Since the load is equally distributed

radially, the equilibrium is verified without the BC. At S = 0.2 m N2 reaches its maximum,

since a quarter of the helix is set and the integral of the load account only for the effect in

one direction. As one moves along the curve this component decreases and at (S = 0.4) half

the strand is considered, therefore, there are components in two opposite directions which

cancel each other.
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Figure 5.15 – Local forces of the helix considering (a) q1 aligned to t, (b) q2 to n, (c) q3 to

b and (d) all components applied together

Analogously, for N1 and N3 their maximum occurs at the middle of the wire and

as the position S develops, the components change direction and, when considered the full

structure, its effect is consequently annulled.

A load distributed in the binormal direction is represented in Figure 5.15 (c) where,

at the clamped end, the integrated load is decomposed. N2 demonstrate a similar behavior

from the last case, where when the effect from the whole strand is considered, its modulus is

zero. The other components decrease, in modulus, as the position of analysis approximate

to the free end.

Once all the distributed loads are considered together (Figure 5.15 (c)) the superpo-
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Figure 5.16 – Global forces of the helix with (a) q1 aligned to t, (b) q2 to n, (c) q3 to b and

(d) all components applied together

sition is, once again, verified. The normal vector is the only entity that, when considered the

complete effect of the load (or one turn), is null and presents no value at the BC application.

The other components have defined reactions due to the helix angle.

The global effects of the distributed load are shown in Figure 5.16. The components

N1 and N2 do not present any reaction component at the clamped end. In fact, the only

value different than zero occurs for N3. Globally, the first and third cases are similar (Figures

5.16 (a) and (c), respectively), since the tangent and normal vectors are orthogonal, and

considering the helix angle, the decomposition in the x1x2 plane are in opposite directions

with different modulus.
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Figure 5.17 – Local moments of the helix considering (a) q1 aligned to t, (b) q2 to n, (c) q3

to b and (d) all components applied together

When all three loads are applied together, the behavior of N1 and N2 are determi-

ned mostly by the normal force (Figure 5.16 (b)), which does not influence N3, since it is

orthogonal to it. A uniformly distributed load was applied, consequently the global effect on

N3 increases linearly from the point of application of the force (free end) until the clamped

end.

Moments were also determined by multiplying the applied loads by the position

vector and then performing the defined integral from zero to Smax the boundary condition

can be defined. Figure 5.17 presents the local moments components.

The second case is the load distributed aligned to n. Although no force was genera-
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Figure 5.18 – Global moments considering (a) q1 aligned to t, (b) q2 to n, (c) q3 to b and

(d) all loads simultaneously

ted in the clamped end, there is a moment at S = 0. The distance considered to determine

M1 andM2 is the component parallel to x3 , therefore, they represent the higher values while

M3 depends on the radius.

5.5 Spring Modeling

Springs are an important class of structures that can be modeled with the proposed

methodology. In order to simulate one of such cases, two more turns were added to the

geometry analyzed before. The same procedure was adopted and initially the boundary

conditions were used to define the constants.
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One unitary load was applied in the helix main axis, that is, aligned to x3 in the

global system. As a consequence of this eccentricity a moment must be considered in the

other end to respect the equilibrium. So, the final configuration is the one presented in

Figure 5.19 with the center line indicated by the dotted line.

Vz

Vz

T = VzDi/2

Di

d

Figure 5.19 – Spring analyzed with a force applied in the center.

Only a moment in the second component was accounted for multiplying the radius

R by the force. Once again, the effects were brought to the local system and the solution is

represented in Figure 5.20.

Locally, both forces (Figure 5.20 (a)) and moments (Figure 5.20 (c)) diagrams are

constants, the first presents the same decomposition as analyzed in Figure 5.7 (c) case. Ana-

logously, the moments are invariant since the distance from the load, which is decomposed

in t and b, does not change.

Figure 5.20 (d) shows the global moment development. Although the behavior is

similar to other cases, its final value (at S = 2.4 m) is different than zero due to the

concentrated moment applied.

Strains and stresses were determined using the theory proposed by Shigley et al.,

2004. Maximum shearing was also calculated as:

σsh = ξ
8VzDi

πd3
, (5.30)

where Vz is the applied load, Di the internal diameter of the spring (Di = 2R) and d the

diameter of the wire (d = 2r). The parameter ξ is a curvature adjustment:



73

0 0.5 1 1.5 2 2.5
1

0.5

0

0.5

1

N

S

 

N
1L

N
2L

N
3L

[N
]

[m]
0 0.5 1 1.5 2 2.5

0.2

0

0.2

0.4

0.6

0.8

1

1.2

N

S

 

N
1G

N
2G

N
3G

[N
]

[m]

(a) (b)

0 0.5 1 1.5 2 2.5
0.02

0

0.02

0.04

0.06

0.08

M

S

 

M
1L

M
2L

M
3L

[N
m

]

[m]
0 0.5 1 1.5 2 2.5

0.1

0.05

0

0.05

0.1

M

S

 

M
1G

M
2G

M
3G

[N
m

]

[m]

(c) (d)

Figure 5.20 – Force diagram (a) local and (b) global for a tensile load and moments (c)

local and (d) global.

ξ =
2Cd(4Cd + 2)

(4Cd − 3)(2Cd − 1)
, (5.31)

and Cd is the relation between diameters, i.e., Cd =
Di

d
. For the geometry used in this case,

Cd = 10 and the stress is calculated as σsh = 76068.36 Pa.

With the present methodology applied, the stress was 77509.91 Pa for the same

analysis. Three turns were considered to obtain the results, however, using larger or smaller

length to represent the spring would not affect it. Since the local moments are constants, in

this case, so is the stress.
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Vz

Vz

T

Vz

(a) (b)

Figure 5.21 – Deformed (solid line) and undeformed (dashed line) spring considering a load

(a) applied in the axis center and (b) at the free end in the helix.

Figure 5.21 (a) shows the deformed shape (dashed line) for the case of a load ap-

plied over the helix axis. An amplification factor of five times was used to allow better

visualization. As expected, the u3 component is larger than the other components.

Figure 5.21 (b) shows the counterpart when the load is applied at the free end of

the coil. The clamped-free boundary conditions make the bending behavior of the spring

more conspicuous than in the pure compression case. Hence, not only u3 is a noticeable

component,but also u1 and u2 as already demonstrated in Figure 5.13 (c)

Local and global effects were analyzed for different cases. More spring turns also

were explored in this section and presented periodic results or a predicted growth. Other

interesting effects are presented in the next section.

5.6 Periodicity

As mentioned previously, the presented structure was analyzed with only one turn.

The effects are expected to be repeated when θ (Equation 2.19) reaches values higher than

2π. Five turns were simulated and the results are plotted in Figure 5.22, for bending and

tensile loads applied together.
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Figure 5.22 – Global and local effects considering Vx and Vz applied together for (a) forces,

(b) moments, (c) rotations and (d) displacements.

As expected, the tensile effects are periodic (Figure 5.22 (a)). The consideration

of more than one turn is irrelevant in the analysis. However, the bending effect produces

components that increase with the structure which is explained by the distance between the

applied load and the clamped end.

As it can be seen, the response from the local system is contained in the global. The

global system involves the local effects, so that the higher values determined in the local

basis are equal to the global ones and the

Figure 5.22 (a) represents the forces and although the local values are not explicit

contained, the vector sum resultant must be observed, so that this property is observed.
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An offspring result observed in Figure 5.22 is the envelope curves for forces and dis-

placements. Apparently, these envelopes are not reported in the machine element literature,

and their importance is related to the possibility of applying them as an aid to the designer.

Once obtained, these curves can be used to retrieve the maximum values for a given number

of twists, and allow for overall stiffness/flexibility and/or safety margin dimensioning.

Interestingly enough, these envelopes are not "contaminated" by the oscillatory

behavior of the trigonometric functions presented in the individual components of forces

and displacements.
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6. FINAL REMARKS

The final remarks are exposed in this final chapter. The results conclusions are pre-

sented considering the proposed model. Also a verification of the objectives and suggestions

for further analysis, considering the model upgrade, are introduced.

6.1 Conclusions

A mathematical model was proposed to obtain the mechanical response of a curved

beam . Some simplifications were explored, were the wire was parameterized, by its center

line, as an helix as in cable strands.

To explore the local and/or global results the Frenet-Serret triad was used along the

parametric coordinate. A transformation matrix was defined and allowed the change in the

coordinate system. Geometrical properties as curvature and torsion were also determined

using differential geometry.

The differential equilibrium equations of forces and moments were determined. Af-

ter applying the boundary conditions, geometry and constitutive relations, the strains and

stresses expressions were also obtained.

Using the Principle of Virtual Work the equilibrium differential equations for rota-

tions and displacements were determined. This system was also solved to produce results

regarding the strand behavior.

The results were compared to numerical solutions from the Finite Element Method,

showing good agreement. The validation concerning bending and tensile load was verified and

a methodology to characterize the mechanical behavior of helical structures was presented.

6.2 Future Research

The proposed is not complete and must be further developed. Among the research

developments which can follow from the present work, it is worthy to mention:

• Distributed loads were considered and could provide a mechanism to include contact

between strand or from strand core;
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• Different parametrizations to represent another geometry, since cables presents an enor-

mous range of options, could be introduced. This means that the parameters curvature

and torsion, here considered constants, could be presented as a function of S;

• Extend the formulation to constitutive relations other than the isotropic, in particular

transversally isotropic material which is commonly used to model cables;

• Multi-layered cables are structures commonly used and could be analyzed in further

research as well;

• To study the dynamic behavior of spatially oriented curved beams.
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