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This study aimed at analyzing the performance of four forecasting models in predicting the demand for medical care in terms of
daily visits in an emergency department (ED) that handles high complexity cases, testing the influence of climatic and calendrical
factors on demand behavior. We tested different mathematical models to forecast ED daily visits at Hospital de Clinicas de Porto
Alegre (HCPA), which is a tertiary care teaching hospital located in Southern Brazil. Model accuracy was evaluated using mean
absolute percentage error (MAPE), considering forecasting horizons of 1, 7,14, 21, and 30 days. The demand time series was stratified
according to patient classification using the Manchester Triage System’s (MTS) criteria. Models tested were the simple seasonal
exponential smoothing (SS), seasonal multiplicative Holt-Winters (SMHW), seasonal autoregressive integrated moving average
(SARIMA), and multivariate autoregressive integrated moving average (MSARIMA). Performance of models varied according to
patient classification, such that SS was the best choice when all types of patients were jointly considered, and SARIMA was the most
accurate for modeling demands of very urgent (VU) and urgent (U) patients. The MSARIMA models taking into account climatic

factors did not improve the performance of the SARIMA models, independent of patient classification.

1. Introduction

Emergency department (ED) crowding results from mis-
match between existing capacity and various input, through-
put, and output factors. On such context, forecasting the
demand may provide useful inputs for planning available
resources [1]. ED demand prediction, expressed in terms
of daily visits, has been assessed by different time-series
approaches employed to develop forecasts models, with no
supremacy of one method over others [2]. Studies com-
pared several different methods for forecasting ED daily
visits including ARIMA, SARIMA, multiple linear regression,
time-series regression, and exponential smoothing [2-4].
Published literature assessing the impact of climate vari-
ables on ED demand (i.e., ED daily visits) provides conflicting
results. While some studies indicate that climate variables
such as mean daytime air temperature positively correlate
with demand for ED services [4, 5], others show that climate

variables add little predictive value to models of daily patient
volumes [2, 6]. Temperature and calendar variables may pro-
vide different forecasting abilities, although in general fore-
casting accuracy of models including those variables tends
to be better for the short-term horizon (7 days in advance)
than for the longer term (30 days in advance) [2]. Several
studies demonstrate that daily demand for ED is character-
ized by seasonal and weekly patterns [2, 4, 6, 7]. Daily patient’s
volumes show a weekly seasonal distribution, especially on
Mondays [4, 6], although published studies demonstrate little
variation in daily visits by month [2, 7].

In such context, accurate prediction of ED services
demands emerges as a powerful tool to support resources
planning decisions [8, 9]. For example, long-term demand
forecasts may be used to analyze infrastructure and personnel
expansion plans [6], while short-term forecasts may support
the operational planning of available resources on a daily
basis [10]. The use of forecasting models to estimate the
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demand for ED services may improve the quality of the care
offered to patients [9, 11]. ED managers may, for instance,
identify the day in the week with the heaviest demand
and align materials and personnel resources to attain better
patient service levels [12]. The higher forecasting accuracy the
better; therefore, factors that may influence demand in EDs
should be considered as potential explanatory variables in the
prediction models [13].

As reported above, studies have shown that demand fore-
casts in EDs may be improved by considering in the models
factors such as day of the week and month and proximity to
holidays [11, 12], in addition to climatic characteristics [2, 14,
15]; other studies, however, show the opposite [4, 16]. One
explanation for that is the fact that each ED analyzed has its
own characteristics. The effect of climate variables, for exam-
ple, is dependent on the geographic location of the ED from
which data were collected. In any case it is always advisable
to test the influence of potential explanatory variables when
developing an ED demand forecasting model [2]. Accurate
forecasting according to categories of patient acuity (which
indicates the degree in which healthcare services will be
demanded to provided appropriate care to patients) may also
provide a valuable tool for resources planning. In a study held
in an ED in Singapore, attendances of lower acuity patients
were significantly correlated with day of the week, month of
the year, public holiday, and ambient air quality [14].

In this paper we analyze the performance of four fore-
casting models in predicting the demand for medical care
according to patient classification using the Manchester
Triage System (MTS) in the ED of a Brazilian University
hospital.

2. Methods

2.1. Study Design and Setting. This is a retrospective study
that uses historical data on medical care demands from an
ED to develop and compare forecasting models able to predict
future demands. The study was conducted at Hospital de
Clinicas de Porto Alegre (HCPA), a 842 bed, tertiary care
teaching public hospital in Southern Brazil. The HCPAs
Ethical Committee has approved the study and authors have
complied with the recommendations of the Declaration of
Helsinki. Data were extracted from the hospital’s manage-
ment system. Patients’ personal data were preserved.

2.2. Selection of Participants. The study was carried out in the
HCPA’s ED. The department operates 24 hours a day, 7 days
a week, throughout the year. It receives patients from the city
of Porto Alegre and its metropolitan region, corresponding
to a population of approximately 2 million. Daily data on the
number of patients who were admitted to the ED comprised
the period starting on January 1, 2013, until May 31, 2015,
including all patients processed between 00:00 and 24:00
hours. Medical care was provided to 57,128 individuals during
that period.

Historical weather data were obtained from the Instituto
Nacional de Meteorologia (INMET) [17], which monitors
weather conditions 24 hours a day throughout the year in
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Brazil. We used weather information aggregated on a daily
basis, to match with the dependent variable in the prediction
models (i.e., ED daily demand). INMET methods comply
with international standards defined by the World Meteorol-
ogy Organization.

2.3. Study Protocol. Input data were the daily sum of patients
that received care in the ED. Classification of patients that
seek medical assistance at the ED follows the MTS criteria
[18]. This system organizes care delivery into five levels of
priority. Categories are identified by colors, case description,
and the estimated time to service (ETS); they are (i) red:
emergency (EM), needing immediate assistance in emer-
gency service, ETS = 00 minutes; (ii) orange: very urgent
(VU), need for care in emergency service, ETS < 10 minutes;
(iii) yellow: urgent (U), patient displaying clinical condition
that enables waiting for care in emergency service, ETS <
60 minutes; (iv) green: standard (ST), patient who may be
directed to outpatient service such as ambulatory consul-
tation, ETS < 120 minutes; and (v) blue: nonurgent (NU),
patient who should be directed to outpatient service such as
ambulatory consultation, ETS < 240 minutes. The color white
is also used to indicate patients that were not classified and for
which no case description or ETS is available.

The database of ED visits was divided into two periods,
one for training, and the other for test. The first period, from
January 1, 2013, to March 2, 2015, was used to analyze data
and test forecasting models (training set). The second period,
from March 3, 2015, to May 31, 2015, was used in the validation
of models and for accuracy checking (postsample forecasting
set). Approximately 94% of the patients triaged in the ED in
the two periods were classified in categories VU or U. We ana-
lyzed series comprised of patients of all categories, in addition
to individual series containing only patients in categories VU
or U.

The postsample forecasting set was divided into three test
intervals of 30 days: (i) 03/03/15 to 04/01/15, (ii) 04/02/15
to 05/01/15, and (iii) 05/02/15 to 05/31/15. Model accuracy
was evaluated considering forecasting horizons of 1, 7, 14, 21,
and 30 days. Forecasting models had their accuracy initially
verified for the first interval of 30 days. Then, the first test
interval was added to the training set, models were recali-
brated considering the new data, and accuracy was verified
for the second test interval. The same procedure was repeated
when testing the third interval. The idea here was to continu-
ously update the training set with more recent demand values.

2.4. Data Analysis. Considering that the superiority of a
given forecasting model over others depends on the data
under analysis [19, 20], we chose to evaluate the performance
of several models and to search for explanatory variables that
could influence the demand for care in the ED. We evaluated
the performance of four forecasting models based on the
analysis of time series of demand data. They comprised (a)
simple seasonal exponential smoothing (SS), (b) seasonal
multiplicative Holt-Winters (SMHW), (c) seasonal auto-
regressive integrated moving average (SARIMA), and (d)
multivariate autoregressive integrated moving average
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TABLE 1: MSARIMA explanatory variables.

Variables Explanation
Calendrical Month January, February, March, April, May, June, July, August, September, October, November, December
Day of the week Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday

Average temperature
Minimal temperature
Maximal temperature
Climatic Temperature gap
Rain
Air-velocity
Relative humidity
Insolation

Average temperature in Celsius
Minimal temperature in Celsius
Maximal temperature in Celsius

Maximum-minimum temperature in Celsius

Amount of rainfall
Wind speed in meters/second
% relative humidity
Hours of insolation

(MSARIMA). The MSARIMA model was tested incorpo-
rating climatic and calendrical influencing factors as inde-
pendent variables, as shown in Table 1. Models (a) to (c)
use as input data only the time series of past demands,
while model (d) tests the benefits of including climatic and
calendrical factors on the prediction accuracy. All analyses
were performed using PASW Statistics 18 and Minitab 14.

The first and second models tested are based on exponen-
tial smoothing coefficients. Such models are able to capture
systematic variation in the time series due to seasonality
and/or trend, as well as sudden changes in the demand
pattern, which are common in ED data [4]. On that study,
models that best fitted the data were the simple seasonal expo-
nential smoothing (SS), and the seasonal multiplicative Holt-
Winters (SMHW) [4]. SMHW presents two variations: the
additive model form is preferred when seasonal variations are
constant through the series, while the multiplicative model
form is preferred when seasonal variations are changing
proportional to the series’ level [7, 21, 22]. In our work,
multiplicative form displayed a better fit to the data, with
smaller associated prediction errors.

SARIMA, an extension of the traditional ARIMA (autore-
gressive integrated moving average) model that accounts
for seasonal components, was the third method analyzed.
The model captures the behavior of demand variables using
historical data from the time series, being the one most widely
used in healthcare-related forecasts [2, 15, 23]. The SARIMA
model is described by seven parameters: (p,d, q) (P, D,Q),,
where p represents the order of the autoregressive factor
(AR), d represents the order of differentiation required to
reduce nonstationarity in the data (I), and g represents the
order of the moving-average model (MA). Parameters P,
D, and Q are analogous to p, d, and g, however describing
the seasonal portion of the model; finally, s represents the
seasonal lag [24]. Definition of the best values for the model
parameters may be carried out analyzing the autocorrelation
function (ACF) and the partial autocorrelation function
(PACF) plots. The models that offered the best fit to the
training time series of historical medical care demands in the
ED were (1,0,4) (0,1, 1), when all patients were considered,
(0,0,4) (1,0, 1), considering only VU category patients, and
(1,0,2) (1,0, 1), considering only U category patients.

An extension of SARIMA, the MSARIMA model, was
also tested to predict ED patient visits. MSARIMA incor-
porates independent (explanatory) variables to SARIMA in
search of a better characterization of the demand time series
[14, 15]. In our study ED demand was used as dependent
variable and climatic and calendrical factors as independent
variables. In addition to the climate variables presented in
Table 1, we tested the influence of those same variables in
a 1- to 7-day lag. Thus, a total of 64 climate variables and 2
calendrical variables were tested as independent variables in
the MSARIMA model; only those displaying p values < 0.05
were kept.

Accuracy of the prediction models was measured com-
paring actual and predicted values during the test period.
For that, we calculated the mean absolute prediction error
(MAPE) for each forecasting horizon (1, 7, 14, 21, and 30
days). Being a scale-independent measure, MAPE allows
comparison of results from different models applied to
different time series. The statistic represents the average of
absolute differences between predicted and observed values,
given as a percentage; a small MAPE value indicates a model
well fitted to data. Consider a series of m predicted val-
ues (¥, ¥,»---»¥,,) and the corresponding observed values
(¥1> Y35 -+ -» ¥); the MAPE statistic is calculated as follows:

n

>

t=1
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3. Results

During the interval considered in this study 57,128 patients
sought medical care in the ED, being 51,046 during the 755
days that comprise the training period and 6,082 during the
90 days that comprise the test period. On average, 68 patients
sought medical care daily, ranging from 26 to 119. During the
same interval the average temperature was 21.08°C, varying
from 0°C to 40.6°C, with an average daily range of 9.68°C.
The scatter plot of the daily demand for medical care in
the ED (Figure 1) displays a change in the series level around
day 165 (July 14, 2013). That corresponds to the beginning
of a new mechanism, entitled “right patient in the right
place,” for referral of patients with minor acute illnesses (low
acuity) to retail clinics and urgent care centers. The protocol
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FIGURE I: Scatter plot of total emergency department (ED) visits.

was implemented as a partnership between the hospital and
Porto Alegre’s Health Department. After the new protocol
was adopted the demand time series remained stationary,
with no visible trends.

Figure 2 presents demand variations within the week
(Figure 2(a)) and the year (Figure 2(b)) in the form of box-
plots. One-way ANOVAs were used to detect differences
in weekdays and months, yielding the results in Figure 2.
Demand is at its peak on Monday, followed by decrease until
Wednesday; on Thursday it rises again, decreasing steadily
until Sunday. However, statistically significant differences
could only be found between weekdays and weekends.

To analyze variations in ED demands throughout the
year (Figure 2(b)) we used the data series starting in August
2013, when the series mean stabilized after introducing the
new mechanism for referral of patients with minor acute
illnesses to retail clinics and urgent care centers. We also
removed from the analysis the month of October 2014, when
maintenance carried out in the department’s air conditioning
system led to an atypical reduction in demand during a period
of 15 consecutive days. There were no differences in demand
throughout the months, except for October, assigning to it
the fact that only 2013 data were used to analyze this month.
We also checked for differences in demand in holidays and
regular weekdays; no differences were found.

Table 2 gives each model’s MAPE value, considering all
patients (TOTAL), and those in the very urgent (VU) and
urgent (U) categories, and 5 different forecasting horizons (1,
7, 14, 21, and 30 days). In general, the shorter the horizon,
the more accurate the forecast. Models” performances varied
according to MTS patient classification, such that SS showed
the best performance when all patients were considered,
and SARIMA was the most accurate for modeling demands
of high acuity (VU and U patients). Parameters of models
presenting best fit to each patient category are given in
Table 3. The MSARIMA models taking into account climatic
factors did not improve the performance of the SARIMA
models, independent of patient classification. In other words,
the best MSARIMA models for every combination of patient
category and horizon did not include climatic variables.
When that is the case, MSARIMA reduces to SARIMA
yielding identical MAPE values, and we chose SARIMA as
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FIGURE 2: Demand variations within week (stratified per day)
and year (stratified per month). “p < 0.05 (ANOVA, repeated
measures).

best models. Table 4 gives the p values for all climatic factors
included in the models, for different time lags.

4. Discussion

In this study we analyzed the performance of four forecasting
models in predicting the demand for medical care in an ED,
testing the influence of climatic and calendrical factors on
demand behavior. To the best of our knowledge, our study
innovates by stratifying the demand time series according to
patient acuity, according to the Manchester Triage System’s
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TABLE 2: MAPE values for each method and 5 different forecasting horizons.
Forecasting horizon 1 7 14 21 30
MSARIMA 6.23% 12.01% 11.79% 12.29% 11.51%
Total SARIMA 6.23% 12.01% 11.79% 12.29% 11.51%
SS 2.91%" 10.67%" 10.67%" 11.35%" 11.07%"
SMHW 3.02% 10.80% 10.85% 11.54% 11.11%
MSARIMA 719% 17.65% 16.89% 17.23% 17.21%
VU SARIMA 7.19%" 17.65% 16.89%" 17.23%" 17.21%"
SS 11.16% 17.79% 17.36% 18.13% 19.14%
SMHW 9.40% 16.82%" 16.89% 17.56% 18.18%
MSARIMA 3.98% 12.79% 15.71% 14.74% 14.54%
U SARIMA 3.98%" 12.79%" 15.71%" 14.74%" 14.54%"
SS 7.18% 15.72% 18.04% 16.41% 16.60%
SMHW 5.57% 14.24% 16.56% 15.50% 15.57%
*Models with best fit

MSARIMA: multivariate seasonal autoregressive integrated moving average; SARIMA: seasonal autoregressive integrated moving average; SS: seasonal
exponential smoothing; SMHW: seasonal multiplicative Holt-Winters; VU: very urgent; U: urgent.

TABLE 3: Parameters of models with best fit in each patient category.

Model Coefficients Lag Estimate SE t Sig.
Total sS Alpha (level) NA 0.200 0.021 9.436 0.000
Delta (Season) NA 0.212 0.018 6.090 0.000
Constant NA 30.356 1.879 16.151 0.000
MA 1 -0.170 0.035 —4.872 0.000
VU SARIMA MA 3 -0.166 0.035 -4.753 0.000
MA 4 -0.94 0.035 —-2.660 0.008
AR (Seasonal) 1 0.983 0.008 119.03 0.000
MA (Seasonal) 1 0.885 0.023 38.324 0.000
Constant NA 32.274 3.702 8.717 0.000
AR 1 0.913 0.032 28.349 0.000
U SARIMA MA 1 0.576 0.049 11.769 0.000
MA 2 0.140 0.041 3.412 0.001
AR (Seasonal) 1 0.986 0.007 137.952 0.000
MA (Seasonal) 1 0.905 0.022 41.077 0.000

SS: seasonal exponential smoothing; SARIMA: seasonal autoregressive integrated moving average; VU: very urgent; U: urgent; NA: not applied; SE: standard

error; t: t-value; Sig.: significance; MA: moving average; AR: autoregressive.

(MTS) classification. In opposition to other studies that inves-
tigate the use of forecasting techniques to predict demand for
medical care in EDs [4, 15, 23], we analyzed data from an ED
that only provides care to high complexity cases.

A study held in an ED in Singapore assessed forecasting
models where patients where stratified into three acuity
categories (i.e., P1, P2, and P3), with P1 being the most acute
and P3 being the least acute. P1 attendances did not show
any weekly or yearly periodicity and were only predicted by
ambient air quality. P2 and total attendances showed weekly
variation and were predicted by holidays. P3 attendances
correlated with day of the week, month, holiday, and ambient
air quality. Higher total attendances on Monday were contrib-
uted mainly by P2 and P3 cases, while higher attendances on
Sunday were essentially P3 cases [14]. Although resembling
our study in that acuity of patients was taken into account
when building forecasting models, the use of a local acuity

scale by Sun et al. [14] does not allow us to directly compare
their results with ours. Moreover, it is clear, considering the
number of patients belonging to each category, that cases in
the study of Sun et al. were less complex than those consulting
our ED.

Regarding model accuracy, SS yielded the smallest MAPE
values, independent of the forecasting horizon chosen, when
all MTS classes of patients were considered in the demand
series. For a 1-day horizon, SS yielded a MAPE of 2.91%,
deemed excellent if compared to results obtained by Jones
et al. [4]; for all remaining horizons investigated, the model
yielded an average MAPE of 11%, which is aligned with results
reported in similar works [2, 4]. Despite their complexity, the
ARIMA models displayed the poorest performance in model-
ing ED demands, when all classes of patients were considered.
As reported by Marcilio et al. [2], Tandbgerg and Qualls [3],
and Jones et al. [25], depending on the characteristics of



TABLE 4: Significance of climate variables by classification of patients

and for different time lags.

Total VU U

Average temperature (0) 0.293 0.379 0.183

Minimal temperature (0) 0.007" 0.64 0.000"
Maximal temperature (0) 0.048" 0.441 0.000"
Temperature gap (0) 0.098 0.1 0.260
Rain (0) 0.178 0.534 0.001*
Air-velocity (0) 0.060 0.462 0.000"
Relative humidity (0) 0.593 0.309 0.020"
Insolation (0) 0.477 0.243 0.458
Average temperature (1) 0.828 0.888 0.876
Minimal temperature (1) 0.016" 0.903 0.000"
Maximal temperature (1) 0.010" 0.611 0.000"
Temperature gap (1) 0.618 0.423 0.902
Rain (1) 0.942 0.627 0.248
Air-velocity (1) 0.031" 0.49 0.000"
Relative humidity (1) 0.359 0.144 0.719

Insolation (1) 0.211 0.079 0.388
Average temperature (2) 0.818 0.809 0.948
Minimal temperature (2) 0.096 0.453 0.000"
Maximal temperature (2) 0.061 0.149 0.000"
Temperature gap (2) 0.819 0.533 0.555
Rain (2) 0.829 0.547 0.266
Air-velocity (2) 0.169 0.081 0.000"
Relative humidity (2) 0.272 0.033" 0.755
Insolation (2) 0.773 0.346 0.426
Average temperature (3) 0.480 0.796 0.077
Minimal temperature (3) 0.392 0.078 0.000"
Maximal temperature (3) 0.349 0.042" 0.000"
Temperature gap (3) 0.885 0.862 0.732
Rain (3) 0.699 0.496 0.100
Air-velocity (3) 0.591 0.01" 0.000"
Relative humidity (3) 0.639 0.236 0.410

Insolation (3) 0.356 0.335 0.445
Average temperature (4) 0.652 0.613 0.080
Minimal temperature (4) 0.522 0.024" 0.000"
Maximal temperature (4) 0.518 0.018" 0.000"
Temperature gap (4) 0.861 0.602 0.464
Rain (4) 0.761 0.063 0.005"
Air-velocity (4) 0.771 0.004" 0.000"
Relative humidity (4) 0.461 0.016" 0.072
Insolation (4) 0.884 0.863 0.753
Average temperature (5) 0.657 0.779 0.436
Minimal temperature (5) 0.652 0.058 0.000"
Maximal temperature (5) 0.262 0.03" 0.000"
Temperature gap (5) 0.487 0.847 0.204
Rain (5) 0.767 0.268 0.039"
Air-velocity (5) 0.678 0.011" 0.000"
Relative humidity (5) 0.876 0.237 0.094
Insolation (5) 0.677 0.884 0.634
Average temperature (6) 0.788 0.791 0.211

Minimal temperature (6) 0.485 0.034" 0.000"
Maximal temperature (6) 0.374 0.036" 0.000"
Temperature gap (6) 0.964 0.544 0.674
Rain (6) 0.468 0.36 0.019"
Air-velocity (6) 0.786 0.005" 0.000"
Relative humidity (6) 0.570 0.164 0.009*
Insolation (6) 0.891 0.779 0.798
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TABLE 4: Continued.

Total VU 6]

Average temperature (7) 0.059 0.067 0.235
Minimal temperature (7) 0.191 0.116 0.000"
Maximal temperature (7) 0.744 0.011" 0.000"
Temperature gap (7) 0.119 0.441 0.133
Rain (7) 0.152 0.888 0.004"
Air-velocity (7) 0.679 0.006" 0.000"
Relative humidity (7) 0.913 0.134 0.022"
Insolation (7) 0.774 0.857 0.549
(x) days of lags

*p < 0.05.

the demand time series analyzed simpler models, may lead
to more accurate results.

As expected, models that forecasted the ED demand from
patients classified as VU and U displayed larger MAPE values,
in view of the smaller number of patients in the series and
the larger variability. For those classes of patients, the model
with the best performance was the SARIMA, except when VU
patient demands where predicted for a 7-day horizon; in that
case, SHWM vyielded the smallest error (see Table 2). For a
1-day forecasting horizon it was possible to obtain a MAPE
value of 719% for VU patients, and 3.98% for U patients,
which are deemed acceptable and useful to support next
day’s managerial decisions in the ED. For larger forecasting
horizons (7 to 30 days) MAPE values were larger, varying
from 16.82% to 17.21% for VU patients and 12.79% to 15.21%
for U patients. Considering that those patients are the ones
that demand ED resources more intensely and frequently
require inpatient beds, focusing the analysis on those classes
of patients, as done here, is extremely relevant in practice. It is
important to note that the results above were similar to those
reported in other forecasting studies carried out using data
from EDs that provide specialized and complex care [2, 14].

Regarding external information analyzed and incorpo-
rated to the models, only the day of the week showed a
systematic effect on ED demand, independently of the patient
classification considered. Day of the week has an effect on
demand, while month of the year has not, as displayed in
Figure 2. The effect of holidays and days following holidays on
ED demand was also not significant. Demand peaks verified
on Mondays, and demand valleys on weekend were aligned
with results reported by several studies on ED demand
available in the literature [2, 6, 14, 25]. There is a strong
decrease in demand on weekends that could contribute to the
optimization of ED resources and workforce management.

Some climatic factors displayed significant correlation
with demand series from different classes of patients (see
Table 4). However, when comparing the MAPE performance
of MSARIMA models (that take such factors into account)
and SARIMA models (that do not take them into account),
the latter systematically outperformed the former. That may
be due to the fact that the ED under analysis provides medical
care to critical emergency situations in a teaching hospital,
which seem to be less affected by climatic conditions.

Table 4 shows that VU and U classes displayed significant
time lag terms for all lag instances. However, the same was
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not true for models considering the total number of visits.
That is justified by the lack of identifiable pattern in the arrival
of cases whose acuity classification leads to redirecting of
patients to other types of care (i.e., all patient classes, except
VU and U). Those are highly variable cases which, although
representing a small percentage of the total number of visits,
interfere in the prediction models’ structure.

It is known that using forecasting techniques to predict
demand in EDs may contribute directly to the reduction both
in the number of patients that leave the unit without being
served and in the number of complaints made by patients
[6]. In the present study it was observed that models fitted
to the demand series that considers all classes of patients
displayed smaller prediction errors than those fitted to classes
of patients. In addition, it was verified that the best forecasting
model when demand from all classes of patients is considered
(SS) is different from the model type that best fitted demands
from individual classes of patients (SARIMA). It is important
to remark that SS models are easier to implement in practice
and that its superior performance in modeling ED demand
has been reported in the literature [7].

The comparison between forecasting methods presented
here indicates that, in the high complexity ED investigated,
SARIMA models provide the most accurate prediction of
demand for medical care for patients classified as VU and
U. In other words, the inclusion of climatic factors as inde-
pendent variables in the prediction model does not increase
its accuracy. In short, results in this study do not support
the common belief that daily demand for ED medical care
is influenced by climatic factors [2, 14, 15].

Finally, results of the present study shall be viewed in
the perspective of tertiary teaching hospitals, where usually
overcrowded EDs are substantially affected by frequent bed
shortages and seasonal variation of the number of patients
referred by medical specialties. On such context, short-term
horizon forecasting models may provide valuable informa-
tion not only to optimize patient flow, but also to establish
interventions in order to maintain the smooth and timely
flow of patients throughout hospital facilities.

5. Limitations

We investigated data from a single hospital located in a
specific region of Brazil. The test period comprised 25 days
of summer and the first period of winter and therefore may
not reflect the full variations in climate. Thus, our results
are valid for highest level EDs located in the same region
or in regions with similar climatic characteristics. For more
generalizable results, the study should be extended to regions
with different climatic characteristics. Also, the study did not
assess the frequency of patients left without seeing. The same
recommendation applies to the sample of patients.

6. Conclusions

Our study confirms that daily demand for ED services is
characterized by seasonal and weekly patterns. Furthermore,
it indicates that time-series models can be used to provide

accurate forecasts of high complexity ED patient visits, espe-
cially short-range forecasts horizons. Forecasting accuracy
depends on the model employed, length of the time horizon,
and classification of the patient at MTS. In our analyses,
SS vyielded the smallest MAPE values, independent of the
forecasting horizon chosen, when all classes of patients were
considered in the demand series. For VU and U classes
of patients, the model with the best performance was the
SARIMA, except when VU patient demands where predicted
for a 7-day horizon; in that case, SHWM vyielded the smallest
error. Some climatic factors displayed significant correlation
with demand series from different classes of patients but do
not increase the accuracy of prediction when incorporated
into the model.

Competing Interests

The authors declare that they have no competing interests.

References

[1] N.K.Rathlev,]. Chessare, J. Olshaker et al., “Time series analysis
of variables associated with daily mean emergency department
length of stay,” Annals of Emergency Medicine, vol. 49, no. 3, pp.
265-271, 2007.

[2] 1. Marcilio, S. Hajat, and N. Gouveia, “Forecasting daily emer-
gency department visits using calendar variables and ambient
temperature readings;,” Academic Emergency Medicine, vol. 20,
no. 8, pp. 769-777, 2013.

[3] D. Tandbgerg and C. Qualls, “Time series forecasts of emer-
gency department patient volume, length of stay, and acuity;’
Annals of Emergency Medicine, vol. 23, no. 2, pp. 299-306, 1994.

[4] S.S.Jones, A. Thomas, R. S. Evans, S. J. Welch, P. ]. Haug, and G.
L. Snow, “Forecasting daily patient volumes in the emergency
department,” Academic Emergency Medicine, vol. 15, no. 2, pp.
159-170, 2008.

[5] S. S. Jones, R. S. Evans, T. L. Allen et al., “A multivariate time
series approach to modeling and forecasting demand in the
emergency department,” Journal of Biomedical Informatics, vol.
42, no. 1, pp. 123-139, 2009.

[6] H. Batal, J. Tench, S. McMillan, J. Adams, and P. S. Mehler,
“Predicting patient visits to an urgent care clinic using calendar
variables,” Academic Emergency Medicine, vol. 8, no. 1, pp. 48-
53,2001

[7] R. Champion, L. D. Kinsman, G. A. Lee et al, “Forecast-
ing emergency department presentations,” Australian Health
Review, vol. 31, no. 1, pp. 83-90, 2007.

[8] S.J. Davidson, K. L. Koenig, and D. C. Cone, “Daily patient flow
is not surge: ‘management is prediction]” Academic Emergency
Medicine, vol. 13, no. 11, pp. 1095-1096, 2006.

[9] E Kadri, S. Chaabane, and C. Tahon, “A simulation-based deci-
sion support system to prevent and predict strain situations in
emergency department systems,” Simulation Modelling Practice
and Theory, vol. 42, pp. 32-52, 2014.

[10] G. Abraham, G. B. Byrnes, and C. A. Bain, “Short-term
forecasting of emergency inpatient flow;” IEEE Transactions on
Information Technology in Biomedicine, vol. 13, no. 3, pp. 380-
388, 2009.

[11] J. Boyle, M. Jessup, J. Crilly et al., “Predicting emergency
department admissions,” Emergency Medicine Journal, vol. 29,
no. 5, pp. 358-365, 2012.



(12]

(16]

(17]
(18]
(19]

(20]

(21]

(22]

Z. Rotstein, R. Wilf-Miron, B. Lavi, A. Shahar, U. Gabbay, and
S. Noy, “The dynamics of patient visits to a public hospital ED: a
statistical model,” The American Journal of Emergency Medicine,
vol. 15, no. 6, pp. 596-599, 1997.

N. R. Hoot and D. Aronsky, “Systematic review of emergency
department crowding: causes, effects, and solutions,” Annals of
Emergency Medicine, vol. 52, no. 2, pp. 126-136.el, 2008.

Y. Sun, B. H. Heng, Y. T. Seow, and E. Seow, “Forecasting
daily attendances at an emergency department to aid resource
planning,” BMC Emergency Medicine, vol. 9, article 1, 2009.
H.J.Kam,J. O. Sung, and R. W. Park, “Prediction of daily patient
numbers for a regional emergency medical center using time
series analysis;,” Healthcare Informatics Research, vol. 16, no. 3,
pp. 158-165, 2010.

L. M. Zibners, B. K. Bonsu, J. R. Hayes, and D. M. Cohen, “Local
weather effects on emergency department visits: a time series
and regression analysis,” Pediatric Emergency Care, vol. 22, no.
2, pp. 104-106, 2006.

Instituto Nacional de Meteorologia, http://www.inmet.gov.br/
portal/index.php?r=estacoes/estacoesConvencionais.

K. Mackway-Jones, Emergency Triage, 1997.

J. S. Armstrong and R. Fildes, “Making progress in forecasting,”

International Journal of Forecasting, vol. 22, no. 3, pp. 433-441,
2006.

J. G. De Gooijer and R. J. Hyndman, “25 Years of time series
forecasting,” International Journal of Forecasting, vol. 22, no. 3,
pp. 443-473, 2006.

A. B. Koehler, R. D. Snyder, and J. K. Ord, “Forecasting models
and prediction intervals for the multiplicative Holt-Winters
method,” International Journal of Forecasting, vol. 17, no. 2, pp.
269-286, 2001.

P. R. Winters, “Forecasting sales by exponentially weighted
moving averages,” in Mathematical Models in Marketing: A
Collection of Abstracts, vol. 132 of Lecture Notes in Economics and
Mathematical Systems, pp. 324-343, Springer, Berlin, Germany,
1959.

M. Wargon, E. Casalino, and B. Guidet, “From model to
forecasting: a multicenter study in emergency departments,”
Academic Emergency Medicine, vol. 17, no. 9, pp. 970-978, 2010.
G. E. P. Box and G. M. Jenkins, Time Series Analysis: Forecasting
and Control, Holden-Day, San Francisco, Calif, USA, 1976.

S. A.Jones, M. P. Joy, and J. O. N. Pearson, “Forecasting demand
of emergency care,” Health Care Management Science, vol. 5, no.
4, pp. 297-305, 2002.

Computational and Mathematical Methods in Medicine



