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“Contrariwise, if it was so, it might be;

and if it were so, it would be;

but as it isn’t it ain’t. That’s logic.”

(Tweedledee - ‘Through the Looking Glass’)





Abstract

In this work a quantitative and qualitative analysis of the dynamical stabilization of

an inverted pendulum with a sinusoidal external perturbation applied at the suspension

point is made. Initially, the external perturbation is composed of a single cosine, then a

generalization is made using a sum of N cosines with different amplitudes and frequencies.

Approximations are tested, and the time for which the inverted pendulum remains stable

is explored when N is large, in order to recover the pattern of the case when N = 1. The

specific case of periodic and almost periodic oscillations, when N = 2, is analysed and

stability diagrams considering different frequencies and amplitudes are studied. Later, an

additive Gaussian noise is added to the system so the degradation of the stability diagrams

generated by different variances can be studied. All points of this work are corroborated by

simulations, which numerically integrate the system’s equation of motion through a fourth

order Runge-Kutta method. Algorithms and extra details on the integration methods used

are explored in a publication of this work, which is presented in this thesis as an appendix.

Keywords: Inverted pendulum. Dynamic stabilization. Parametric excitation. Gaussian

noise.





Resumo

Neste trabalho, uma análise quantitativa e qualitativa para a estabilização dinâmica de

um pêndulo invertido com uma força externa senoidal aplicada no ponto de suspensão é

feita. Inicialmente, a perturbação externa é composta de um único cosseno, então uma

generalização é feita, usando uma soma deN cossenos com diferentes amplitudes e frequên-

cias. Aproximações são testadas e o tempo durante o qual o pêndulo invertido permanece

estável é explorado quando N é grande, a fim de recuperar o padrão do caso onde N = 1.

O caso específico de oscilações periódicas e quase periódicas, quando N = 2, é analisado e

diagramas de estabilidade considerando diferentes frequências e amplitudes são estudados.

Depois, um ruído Gaussiano additivo é adicionado ao sistema para que a degradação dos

diagramas de estabilidade gerados por variâncias diferentes possam ser estudados. Todos

os pontos deste trabalho são corroborados por simulações, as quais integram numerica-

mente as equações de movimento do sistema através do método de Runge-Kutta de quarta

ordem. Os algoritmos e detalhes extras dos métodos de integração usados são explorados

numa publicação deste trabalho, a qual está apresentada, nesta dissertação, como um

apêndice.

Palavras-chave: Pêndulo invertido. Estabilização dinâmica. Excitação paramétrica. Ruído

Gaussiano.
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1 Introduction

The pendulum is a widely known physical model that has been studied in many

textbooks and papers due to its importance in the history of Physics. One of the many uses

of a pendulum is the pendulum clock. The fact that the simple pendulum is a harmonic

oscillator is its main advantage; it swings back and forth in a precise time depending on

its length. It was conceived by Galileo Galilei and invented by Christiaan Huygens in

1656.

A pendulum has two equilibrium positions: one stable and one unstable. The latter

is located above the suspension point. The system at this position is generally known as

an inverted pendulum. Since this is an unstable equilibrium position, any perturbation

on the system will cause the pendulum to leave its original configuration and turn into a

pendulum. But by applying a suitable choice of force at the suspension point, the inverted

position may be stabilized, so the system oscillates around the now stable equilibrium

position.

Oscillations can be classified into three different categories (BUTIKOV et al., 1999):

• Free (natural): occurs when a system is left isolated after an initial action.

• Forced: when an oscillator is subjected to an external influence whose effect over

the system can be expressed by an extra term (a time-dependent periodic or quasi-

periodic function, for example) on the differential equation of motion which describes

the system. After a transient period, the forced oscillation becomes stationary and

acquires the period of the external influence. When the frequency of the external

force is close to the natural one, the final amplitude may assume high values. This

phenomenon is called resonance.

• Parametric: consists of a periodic variation of a system’s parameter, to which the

motion is sensible.

The inverted pendulum and its stability are largely explored in Physics, Engi-

neering, Biology and many other areas due to its technological importance (IBRAHIM,

2006). It is related to rocket or missile guidance, where the center of gravity is located

behind the center of drag, causing aerodynamic instability (NASA, 2014); the interac-

tion of inertia forces, hydrodynamic forces, and drag contributions makes the dynamical

analysis of ocean structures similar to an inverted pendulum (SHLESINGER; SWEAN,

1998); the body posture of a biped walking can be regarded as a simple linear inverted

pendulum, which has been the focus of many robotics studies (YANG; PENG; SONG,
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2013; KAJITA et al., 2010); random fluctuations in the spatial curvature provide an addi-

tional steadying mechanism to the stability of photons trajectories in cosmological mod-

els, and behave as an inverted pendulum with an excitation at its point of suspension

(DETTMANN; KEATING; PRADO, 2004).

There are two ways of stabilizing an inverted pendulum: by feedback or controlling

mechanism (YANG; PENG; SONG, 2013; YAMAKAWA, 1989), or by rapidly oscillating

the pivot (KAPITZA, 1965). The latter is called the Kapitza’s pendulum, and when

the oscillation is sufficiently strong, the pendulum may recover from perturbations in a

counterintuitive way.

Considering an inverted pendulum composed of a light rod of length l with a heavy

small bob of mass m, as can be seen in Figure 1, and assuming the rod has negligible

mass, so all the mass of the system is concentrated on the bob, the Lagrangian of the

system can be written as:

L(θ, θ̇, f, ḟ) =
1

2
ml2θ̇2 +

1

2
mḟ 2 −mlḟ θ̇ sin(θ) −mgl cos(θ) −mgf(t). (1.1)

Thefore, most general equation, which describes the motion of the bob is given by:

d2θ

dt2
+ β

dθ

dt
− ω2

0

(

1 − 1

g
f̈(t)

)

sin(θ) = ξ(t), (1.2)

where β is the damping constant, ω0 =
√

g/l is the angular frequency of free oscillations

(natural frequency), f̈(t) is an acceleration caused by an external perturbation f(t), which

has only a vertical component applied at the suspension point, and ξ(t) is an additive

noise. In this present work, damping effects will be neglected (β = 0). Therefore, the

system is conservative, if there is no additive noise (ξ(t) = 0).

m

l

θ

f x

y

A

Figure 1 – Inverted pendulum composed of a heavy bob of mass m, a light rigid rod of

length l, and f is the external perturbation applied at the suspension point.
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When the frequency of the external force is approximately twice the natural fre-

quency of the system, the lower state of equilibrium (y < 0) becomes unstable and the

system leaves it, and the upper state of equilibrium (y > 0) becomes stable. This phe-

nomenon is known as parametric resonance. This type of dynamic stability was first

pointed out by Stephenson (1908). Kapitza (1965) has the first known work with a simple

theoretical solution that he himself experimentally investigated.

However, oscillatory motions of the support are not the only way of stabilizing the

system (SETHNA, 1973). Liu & Willms (1994) stabilized an inverted undamped pendu-

lum by applying impulses in the y-direction corresponding to kicking it. This perturbation

causes a change on angular velocity without changing the position: every time the pendu-

lum starts to fall from the upper stability position, it is kicked back so it may stay close

to the equilibrium position.

The main purpose of this work is to understand the stabilizing patterns of an in-

verted pendulum over infinite periods of time by using a deterministic periodic or almost

periodic external perturbation (f(t) 6= 0) applied at the pivot. Stability diagrams will be

constructed to study the permanence of the system at the upside-down position consid-

ering different sets of parameters. A Gaussian additive noise will be added to the system

(ξ(t) 6= 0) and the effects on the diagrams will be analysed.

Since the inverted pendulum with an external force composed of one cosine has

already been studied by several authors (KAPITZA, 1965; BUTIKOV, 2001; IBRAHIM,

2006; BUTIKOV et al., 1999; LANDAU; LIFSCHITZ, 1966; FENN; BAYNE; SINCLAIR,

1998), in Chapter 2, a review of these papers is presented and complemented by simula-

tions and additional results.

On Chapter 3 a generalization of the calculations performed in the previous Chap-

ter will be extended for a sum of N cosines, instead of a single one. Simulations will

corroborate the mathematical results found. Two different aspects of the problem will be

analysed: by randomly sorting frequencies, with the proper amplitude scaling, it will be

shown that the time for which the system remains stable reproduces the same pattern as

the behaviour of one cosine of Chapter 2; and by randomly sorting frequencies and ampli-

tude inside defined ranges the optimal value of N so the system has a higher probability

of stabilization will be found.

Chapter 4 presents the inverted pendulum with periodic or almost periodic external

forces. Using the generalized results found on Chapter 3, the specific case of two cosines

N = 2 is studied, and stability diagrams for the parameters of amplitude and frequency are

constructed. The results will be compared to the ones established by Bogdanoff & Citron

(1965). Since for almost periodic external forces there is no defined period, an analysis of

possible choices of period will be performed to check if there is any that better reproduces

the numerical results.
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At last, on Chapter 5, a study of additive external Gaussian noise is presented.

First a review of the works made by Bogdanoff & Citron (1965), Mitchell (1972), Sethna

(1973) and Howe (1974), which presented only a stochastic external perturbation applied

at the suspension point. Then, a Gaussian noise is added to the inverted pendulum along

with the deterministic external force of a sum of cosines, differently from previous works,

which only consider the stochastic component, so the examination of the destruction of

the stability diagrams can be made.

Final remarks and comments are made on Chapter 6, where prospects for the

continuity of this work will be presented.
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2 The Inverted Pendulum under a Periodic

Excitation of a Single Cosine

This Chapter is focused on an inverted pendulum with an external periodic exci-

tation applied at the suspension point in the form of a single cosine of amplitude a and

frequency Ω. Characteristics and some analysis of this system will be presented here.

2.1 The System

The equation of motion of an inverted pendulum considering a periodic external

perturbation f(t) = a cos(Ωt) only on the y-direction applied at the suspension point A

(Figure 2), in the absence of friction (β = 0), from (1.2) is given by:

θ̈ −
[

ω2
0 − aΩ2

l
cos(Ωt)

]

sin(θ) = 0 (2.1)

where a is the amplitude of the external perturbation and Ω is its frequency. Using the

approximation sin(θ) ≈ θ for small angles, equation (2.1) can be rewritten as:

θ̈ −
[

ω2
0 − aΩ2

l
cos(Ωt)

]

θ = 0. (2.2)

m

l

θ

f x

y

A

Figure 2 – Inverted pendulum composed of a heavy bob of mass m and a light rigid rod of

length l with a vibration f applied at the suspension axis A, commonly known

as “Kapitza’s Pendulum”.
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Figure 3 shows the evolution of the angular position of an inverted pendulum for

arbitrary angles (top plot, by numerically integrating equation (2.1)), and the behaviour

of the external perturbation applied at the pendulum’s suspension point. The parameters

chosen for this figure were: amplitude a = 0.17 m, and frequency Ω = 30 rad/s. The

time evolution of equation (2.2), is not shown in Figure 3 because it has the exact same

behaviour as the equation for arbitrary angles.
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Figure 3 – Plots of the position versus time of the bob of an inverted pendulum for arbi-
trary angles (top), and the behaviour of the external perturbation composed of
one cosine of amplitude a = 0.17 m and frequency Ω = 30 rad/s. (Simulation
parameters: g = 9.81 m/s2, l = 1.2 m, ω0 = 2.86 Hz, θ0 = 0.018 rad.)

2.2 Stabilizing an Inverted Pendulum

To explain the stability of an inverted pendulum whose pivot is oscillating at a high

frequency, consider that gravity provides a restoring torque τgr = mgl sin(θ). When the

suspension point has a vertical acceleration it is convenient to analyse the motion using

a non inertial reference frame. Due to the acceleration of the reference frame, another

force acts on the pendulum: the force of inertia −mf̈ , where f(t) = a cos(Ωt) is the time

dependent external perturbation. The minus signal appears due to the relative movement

of the coordinate system in which the bob moves (ARNOLD, 1989). This force of inertia

is given by:

Fin(t) = −mf̈
= maΩ2 cos(Ωt) (2.3)

The torque generated by this force Fin must be added to the torque of the gravitational

force. The direction of this force of inertia is:



2.2. Stabilizing an Inverted Pendulum 17

• Downward: when f(t) < 0, i.e., when the axis is below the middle point of the

oscillation. Therefore during the corresponding of half the period of oscillation, this

additional is equivalent to a strengthening of the gravitational force.

• Upward: when f(t) > 0. During the other half-period the action of the external

force is equivalent to weakening the gravitational force.

In the case of rapid oscillations, the mean value of the force of inertia evaluated

over the small period of an oscillation is zero, but the mean value of the torque is not.

This nonzero mean torque explains the stabilization of the pendulum at the upside-down

position.

Figure 4 – Forces of inertia exerted on the pendulum in the noninertial reference frame at
the extreme positions 1 and 2 of the oscillating axis A (adapted from Butikov
(2001) “On the dynamic stabilization of an inverted pendulum” Am. J. Phys.;
Vol 69, No. 6, June 2001, page 3).

To better understand the influence of the force of inertial upon the system, gravity

must be disregarded. The rod is displaced by an arbitrary angle ψ from the direction

of the oscillation, and the axis sways between the extremes 1 and 2, as can be seen in

the upper part of Figure 4. In the noninertial reference frame (lower part of Figure 4)

associated with the vibrating line the bob moves between positions 1 and 2 on an arc of a

circle whose centre coincides with the axis A of the pendulum. When the pivot is moved

below the point of suspension A, the force of inertia F1 on the bob is directed downwards.

On the other extreme (position 2), the force of inertia F2 has the same magnitude but is

directed upwards. However, the torque of force F2 is larger than the torque of force F1,
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since the arm of force in position 2 is larger. Therefore the mean force of inertia creates

a torque that tends to turn the pendulum up, on the direction in which the rod stays

parallel to the axis of oscillation. This torque depends only on the deflection angle of the

pendulum to the direction of vibration of the pivot.

2.3 Lower Boundary of Stability and Maximum Angle Deflection

Taking gravity into consideration, the inverted pendulum is stable given that the

mean torque of the force of inertia τin is larger than the torque of gravity τgr, so the

stability condition is:

|τin| > |τgr|.

Considering that the motion of a pendulum whose axis vibrates with high frequency

is a superposition of “slow” ψ and “fast” δ components, the main interest is on the “slow”

component, whose variation during a period of constrained vibrations is small.

The bob is deflected by an instantaneous value θ(t), that is a sum of the compo-

nents ψ(t) = 〈θ(t)〉 and δ, which has mean value equals to zero. This angle δ oscillates

with high frequency Ω and has an amplitude proportional to sin[ψ(t)]:

θ(t) = ψ(t) + δ(t)

= ψ(t) − f(t)

l
sin(ψ)

= ψ(t) − a

l
cos(Ωt) sin(ψ).

Considering a small δ, the following expansion is valid:

sin(θ) = sin(ψ + δ)

= sin(ψ) cos(δ) + cos(ψ) sin(δ)

≈ sin(ψ) + δ cos(ψ).

Time averages will be taken on the interval of a period T by using:

〈g(t)〉 =
1

T

∫ T

0
g(t)dt (2.4)

The torque of the force of gravity τgr is taken as the time average over a period of rapid

oscillations of the axis:

〈−mgl sin(θ)〉 = −mgl〈sin(ψ + δ)〉
= −mgl sin(ψ), (2.5)
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while the torque of the inertial force is given by:

τin = −l〈Fin〉〈sin(ψ + δ)〉
= −l[maΩ2 cos(Ωt)]

[

a

l
cos(Ωt) sin(ψ)

]

cos(ψ)

= −1

2
ma2Ω2 sin(ψ) cos(ψ). (2.6)

The minus sign in (2.6) shows that it is a restorer torque. This explains the physical reason

for the dynamic stabilization of the inverted pendulum, and that it does not depend on

the restriction for small values of the angle θ.

Comparing the right-hand sides of equations (2.5) and (2.6) it can be observed

that the torque of the force of inertia can exceed, in magnitude, the gravitational’s one,

which tends to tip the pendulum down, when the following condition is satisfied:

aΩ >
√

2gl. (2.7)

This condition gives the lower boundary of the dynamical stability (BUTIKOV, 2001).

The maximum value for the angle of deflection from the inverted vertical position

θmax = ψ0 for which the pendulum will not return to that position can be estabilished by

equating both right-hand sides of (2.5) and (2.6) considering ψ = ψ0:

−mgl sin(0 − ψ0) = −1

2
ma2Ω2 sin(0 − ψ0) cos(0 − ψ0)

cos(ψ0) =
2gl

a2Ω2

cos(θmax) =
2gl

a2Ω2
. (2.8)

When the pendulum is displaced from the vertical by an angle that does not exceed θmax

it executes relatively small oscillations around the inverted position. This slow motion

occurs under both mean torques from the forces of inertia and gravity. Rapid oscillations

have the frequency of the forced vibrations of the axis and they overlap the slow motion

of the pendulum.

All these results concern the smooth motion of the pendulum with an axis that

vibrates quickly and were found without the use of the differential equation for the system

under consideration. As they were found by the decomposition of the motion on slow

oscillations and fast vibrations, these results are approximated and valid only when the

amplitude of the vibration restricted to the axis is small in comparison to the pendulum’s

length (a ≪ l), and when the driving frequency is much larger than the natural frequency

(Ω ≫ ω0).

It cannot be expected from this approach an explanation for the chaotic modes

and parametrical instability. This approach forecasts the lower limit of the pendulum’s

stability but does not give an upper boundary, which is related to the ordinary parametric

resonance of the non inverted pendulum, which will be explored in the next section.
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2.4 Upper Boundary of Stability and Parametric Resonance

In previous studies (BUTIKOV, 2001), it was shown that in certain parts of the

parameter space, the pendulum whose axis vibrates with high frequency is trapped in an

n-periodic oscillation instead of gradually approaching the equilibrium position by the

process of damped oscillations. In these oscillations, the phase trajectory repeats itself

after n driving periods T . Since these motions have period nT , this phenomenon is called

a subharmonic resonance of nth order. The origin of these oscillations does not depend

on gravity.

Simulations show (BUTIKOV, 2001) that, for small angles, period-2 oscillations

have a very simple spectral composition and they occur at the upper boundary of dynamic

stability: the fundamental harmonic whose frequency equals Ω/2 with a small addition of

the third harmonic with frequency 3Ω/2. Hence, a possible periodic solution to equation

(2.2) which corresponds to the upper boundary of stability can be written as:

θ = A1 sin

(

Ωt

2

)

+ A3 sin

(

3Ωt

2

)

. (2.9)

It is important to notice that equation 2.2 does not necessarily have a periodic solution,

equation (2.9) is an Ansatz for a periodic solution given by Butikov (2001).

The Ansatz (2.9) suggested by Butikov (2001) is due to the behaviour of the

pendulum at the upper boundary condition. This leads to the attainment of a critical

amplitude:

a =

l

(

[

117 + 232
(

ω0

Ω

)2
+ 80

(

ω0

Ω

)4
]1/2

− 9 − 4
(

ω0

Ω

)2
)

4
. (2.10)

It is important to notice that this equation is being pragmatically used as a suitable

comparison with numerical results in this work. Further investigations of equation (2.10)

are still required.

Diagram on Figure 5 shows numerical results and theoretical boundaries of stability.

Green points are sets of parameters for which the system is stable while red dots represent

unstable sets. Black curve shows the lower boundary and the blue one, the upper boundary.

It can be seen that there is a great agreement between theory and simulation on the limit

a ≪ l. The diagram was constructed following the procedure presented on Tables 1 and

2 of Appendix C (SILVA; PERETTI; PRADO, 2016).

The phenomenon known as parametric resonance happens when the amplitude

of oscillation of the system caused by the periodic modulation of a parameter increases

consistently, so the equilibrium becomes unstable and the system is no longer steadily

executing oscillations, with increasing amplitude.

Parametric excitation can only occur if there exists already a natural oscillation

in the system. The strongest parametric vibration happens when the modulation cicle



2.5. Effective Potential 21

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25  30  35  40

A
m

pl
itu

de
 o

f O
sc

ill
at

io
n 

a(
m

)

Frequency of Oscillation Ω(rad/s)

Figure 5 – Stability diagram for the parameters a and Ω for small angles (simulation
parameters: l = 1.2 m, g = 9.81 m/s2, ω0 = 2.86 Hz, and θ0 = 0.018 rad).
Green points are sets of parameters for which the system is stable while red
dots represent unstable sets. Black curve shows the lower boundary and blue
curve, the upper boundary.

repeats itself twice during one period of the natural oscillation of the system, i.e. when

parametrical modulation of frequency is twice the system’s natural frequency. Thus, the

condition for parametric resonance to happen is

Ω =
2ω0

n
(2.11)

where n = 1, 2, ... is the order of parametrical resonance. The larger the order of parametric

resonance, the smaller the quantity of energy delivered to the oscillatory system over a

period is. Resonances of even order are weaker (BUTIKOV et al., 1999).

2.5 Effective Potential

The effective potential function Ueff (ψ) of the system is related to the mean total

torque τ(ψ) applied on the pendulum. The torque is defined as the partial derivative of

this potential function: τ(ψ) = −dUeff (ψ)/dψ. Such effective potential function was first

introduced by Landau & Lifschitz (1966) and experimental investigations of this effective

potential were made to prove its efficiency (FENN; BAYNE; SINCLAIR, 1998). The total

torque expression is written as the sum of (2.5) and (2.6):

τ = −mgl sin(ψ) − 1

2
ma2Ω2 sin(ψ) cos(ψ). (2.12)
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Therefore an expression for the effective potential function can be set up for this system:

Ueff = −
∫ ψ

π
τ(ψ′)dψ′

= mgl(− cos(ψ′))|ψπ +
1

2
ma2Ω2

(

−1

2
cos(2ψ′)

)∣

∣

∣

∣

ψ

π

Ueff = mgl(1 + cos(ψ)) +
1

4
ma2Ω2(1 − cos(2ψ)) (2.13)

Figure 6 shows the form of effective potential (red solid curve) (2.13) and the

corresponding potentials (blue dashed line is the inertial potential and green dash-dot

is the gravitational) of each torque. It can be seen that at ψ = π the minima of the

gravitational Ugr and inertial Uin potentials coincide generating the principal minimum

of the total potential. This minimum corresponds to the stable equilibrium position of a

regular pendulum. The next minimum of Uin happens at ψ = 0 where Ugr has a maximum,

corresponding to the equilibrium position of the inverted pendulum. If condition (2.7) is

true, the magnitude of Uin is larger than Ugr, then the effective potential has a local

minimum at ψ = 0. The slopes of the additional well at ψ = 0 are not as steep as the

main one at ψ = ±π.
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Figure 6 – Plots of the gravitational potential energy Ugr (green dash-dot line), mean
potential energy of the force of inertia Uin (blue dashed line), and the total
potential energy Ueff (ψ) for the pendulum with a vertically oscillating axis
(red solid line). Maximum deflection angle θmax can also be seen. (Simulation
parameters: m = 1 kg, g = 9.81 m/s2, l = 1.2 m, a = 0.17 m, and Ω =
45 rad/s.)
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The affirmation that stability happens when Uin is larger than Ugr is only true

while the upper stability condition is not achieved. Above it, the amplitude of the inertial

potential is still larger than the gravitational potential, but the system is no longer stable.

This approach of effective angle does not predict the upper boundary either.

The peaks of the potential barrier between the two wells occur at the deflections

±ψ0, from ψ = ±π (or ±θmax from ψ = 0). At these positions, gravity’s mean torque

is balanced by force of inertia’s mean torque. However, these equilibrium positions are

unstable: the slightest perturbation will make the pendulum fall to one of the wells and

oscillate there from one peak to another. It remains for a longer time near the peak of the

potential barrier at the deflection and then moves rapidly towards the other one, where

it remains for few moments before returning to the rapid motion.

When the amplitude of the pivot’s vibration increases beyond a critical value amax,

which is not small when compared to the pendulum’s length l, the dynamically stabilized

inverted position of the pendulum loses its stability. Consequently this case occurs beyond

the limits of applicability of the approach based on the effective potential of an inverted

pendulum, as well as the loss of stability of the non inverted pendulum on the conditions

of ordinary parametric resonance.

2.6 Arbitrary Angles

The lower boundary of stability and the effective potential were found for arbitrary

angles, i.e. without the use of the approximation sin θ ≈ θ, but the upper limit is known

only for small angles. Although there is no analytical expression for it for arbitrary angles,

it can be clearly seen on Figure 7. It can also be seen that the upper boundary is larger

than that for small angles, which shows the necessity of numerically solving the complete

equation (2.1) instead of (2.2). As in Figure 5, green points are sets of parameters for

which the system is stable while red dots represent unstable sets. Black curve shows the

lower boundary of stability and blue curve represents the upper for small angles. As Figure

5, this diagram was constructed following the procedure presented on Tables 1 and 2 of

Appendix C (SILVA; PERETTI; PRADO, 2016).

Without the use of the approximation for small angles sin θ ≈ θ, the simulations are

able to portray a more realistic experiment. Figure 7 shows the importance of numerically

integrating the complete equation (2.1), since there are sets of amplitude a and frequency

Ω that are stable (green) but are not contained on the region foreseen by the theoretical

approach for small angles.
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Figure 7 – Stability diagram for the parameters a and Ω for arbitrary angles (simulation
parameters: l = 1.2 m, g = 9.81 m/s2, ω0 = 2.86 Hz, and θ0 = 0.018 rad).
Green points are sets of parameters for which the system is stable while red
dots represent unstable sets. Black curve shows the lower boundary of stability
and blue curve represents the upper one for small angles.

2.7 Initial Angle

Figure 8 presents four stability diagrams of an inverted pendulum for arbitrary

angles using different initial angles. Green points represent sets of parameters for which the

system is stable while red ones represent unstable. Black curves show the lower boundary

of stability and blue curves represent the upper limit for small angles. Top left diagram

corresponds to initial angle equal to θ0 = 0.018 rad, top right θ0 = 0.518 rad, bottom left

θ0 = 1.0 rad, and bottom right θ0 = 1.5 rad. These plots were made using the complete

equation of motion (2.1). It can be seen that the larger the initial angle, the smaller the

stable region of the diagram is. There are no stable sets of parameters when the initial

angle is θ0 = 1.5 rad.

As a complementary reading, one finds the stabilization of an inverted pendulum

using a different external periodic function at Appendix A, where there is a comparison

of the stability boundary (2.7) with the boundary found for this other external function.

In this Chapter, the aspects of an inverted pendulum with a periodic oscillation

of a single cosine of amplitude a and frequency Ω at the suspension point were analysed.

Stability conditions were established and diagrams of stability were constructed with the

intentions of better understanding the behaviour of this system.
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Figure 8 – Stability diagram for the parameters a and Ω for arbitrary angles (simulation
parameters: l = 1.2 m, g = 9.81 m/s2 and ω0 = 2.86 Hz). Green points are the
sets of parameters for which the system is stable while red points represent
instability. Black curves show the lower boundary of stability and blue curves
represent the upper boundary for small angles. Top left corresponds to an
initial angle of θ0 = 0.018 rad; top right θ0 = 0.518 rad; bottom left, θ0 = 1 rad;
and bottom right θ0 = 1.5 rad. No stable set of parameters are found on the
last diagram.
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3 Generalization

This Chapter is focused on an inverted pendulum with an external periodic ex-

citation given by a sum of N cosines of amplitudes ai and frequencies Ωi applied at its

suspension point. The methods used on the previous Chapter will be adapted for this

generalization. Characteristics and some analysis of this system will be presented here.

3.1 Sum of Cosines

An external function given as the sum of N cosines of amplitudes a1, a2, ..., aN

and frequencies Ω1, Ω2, ..., ΩN is applied at the suspension point:

f(t) =
N
∑

i=1

ai cos(Ωit)

and the force of inertia corresponding to this perturbation is:

Fin(t) = m
N
∑

i=1

aiΩ
2
i cos(Ωit). (3.1)

The equation of motion for this inverted pendulum in the absence of friction is then given

by:

θ̈ −
[

ω2
0 − 1

l

N
∑

i=1

aiΩ
2
i cos(Ωit)

]

sin(θ) = 0, (3.2)

By using the approximation for small angles, the equation of motion is written as:

θ̈ −
[

ω2
0 − 1

l

N
∑

i=1

aiΩ
2
i cos(Ωit)

]

θ = 0. (3.3)

This equation has the form of a second-order linear ordinary differential equation known

as Hill equation, which is named after George William Hill (1886). Because of the large

determinants involved on Hill’s method to find the solution for these equations when N

is large, it is not a suitable method for the purposes of this work (BOGDANOFF, 1962).

Mathieu equations, as equation (2.2), are an important special case of Hill equations

since they are useful for treating a variety of problems in applied mathematics, including

wave motion in a periodic media and exact plane wave solutions in general relativity

(MATHIEU, 1868). The solution of a Hill equation may be given by Floquet theory, due to

Gaston Floquet (1883), which gives a canonical form for each fundamental matrix solution

of this common linear system by making a coordinate change that transforms the periodic

system into a traditional linear system with constant real coefficients. Although it is very

interesting, Floquet theory is not practical, hence the need of numerically integrating the

equations of motion so the stability of the system may be analysed.
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Keeping in mind that the stability condition used is that the module of the inertial

torque is larger than of the gravitational one, the lower boundary of stability for this new

system can be found. Since the external perturbation no longer has a known period of

oscillation the mean value of the inertial torque over a period must be carefully calculated

using 2.4, where it is supposed that there it a period T . Therefore:

τin = < −lFin sin(ψ + δ) >

= −
〈

m

[

N
∑

i=1

aiΩ
2
i cos(Ωit)

]

(sinψ + δ cosψ)

〉

= −ml
〈[

N
∑

i=1

aiΩ
2
i cos(Ωit)

] [

1

l

N
∑

i=1

ai cos(Ωit)

]〉

sinψ cosψ

τin = −m sinψ cosψ

〈





N
∑

i=1

a2
iΩ

2
i cos2(Ωit) +

N
∑

i6=j=1

aiajΩ
2
i cos(Ωit) cos(Ωjt)





〉

= −m sinψ cosψ





N
∑

i=1

a2
iΩ

2
i < cos2(Ωit) > +

N
∑

i6=j=1

aiajΩ
2
i < cos(Ωit) cos(Ωjt) >





τin = −m sinψ cosψ

[

N
∑

i=1

a2
iΩ

2
i

2

(

sin(2ΩiT )

2ΩiT
+ 1

)

+

N
∑

i6=j=1

aiajΩ
2
i

2T

(

sin((Ωi + Ωj)T )

Ωi + Ωj

+
sin((Ωi − Ωj)T )

Ωi − Ωj

)



 , (3.4)

while gravitational torque remains the same as in (2.5). The stability condition of this

system is now:

N
∑

i=1

a2
iΩ

2
i

(

sin(2ΩiT )

2ΩiT
+ 1

)

+

N
∑

i6=j=1

aiajΩ
2
i

T

(

sin((Ωi + Ωj)T )

Ωi + Ωj

+
sin((Ωi − Ωj)T )

Ωi − Ωj

)

> 2gl. (3.5)

Along with this stability condition, Bogdanoff & Citron (1965) stated that the difference

among all frequencies must be large for the system to be steady. There are other methods

to find condition (3.5), and one of them, by using pertubative analysis, is presented in

Appendix B.

The maximum value for the angle deflection from the inverted position can also

be found. Equating the right side of equations (2.5) and (3.4) and using θmax = ψ0:

cos(θmax) = 2gl

[

N
∑

i=1

a2
iΩ

2
i

(

sin(2ΩiT )

2ΩiT
+ 1

)

+

N
∑

i6=j=1

aiajΩ
2
i

T

(

sin((Ωi + Ωj)T )

Ωi + Ωj

+
sin((Ωi − Ωj)T )

Ωi − Ωj

)





−1

. (3.6)
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Again these results concern the smooth motion of an inverted pendulum with a quickly

vibrating axis and were found without the use of a differential equation for the system

under consideration, therefore they are valid for all values of θ. Since they were found by

the decomposition of the motion into slow oscillations and fast vibrations, these results

are approximated and valid only when the amplitudes of vibration are small compared

to the pendulum length ({ai}Ni=1 ≪ l), and the driving frequencies are larger than the

natural frequency ({Ωi}Ni=1 ≫ ω0). An upper boundary might be expected in this case

too. However it is not known in the literature and since it is not the main concern in this

work, it will not be explored.

Using the definition previously made for the potential function U(ψ), and integrat-

ing over a mean period T , the effective potential of this system is given by:

Ueff = mgl(1 + cos(ψ)) +
m

4

[

N
∑

i=1

a2
iΩ

2
i

(

sin(2ΩiT )

2ΩiT
+ 1

)

+

N
∑

i6=j=1

aiajΩ
2
i

T

(

sin((Ωi + Ωj)T )

Ωi + Ωj

+
sin((Ωi − Ωj)T )

Ωi − Ωj

)



 (1 − cos(2ψ)). (3.7)

Since the dependence of Ueff on the angle ψ is the same as in (2.13), the graph’s form is

the same as Figure 6.

3.2 Close Frequencies

There is a trivial case when the excitation frequencies have such close values that

the period of oscillation can be found by the average value of the set {Ti}Ni=1. In this case,

the stability condition resumes to a simple one:

N
∑

i=1

a2
iΩ

2
i > 2gl. (3.8)

This case simplifies all equations found in section 3.1, since the period is known.

The maximum deflection angle and the effective potential become:

cos(θmax) =
2gl

N
∑

i=1
a2
iΩ

2
i

(3.9)

and

Ueff = mgl(1 + cos(ψ)) +
m

4

N
∑

i=1

a2
iΩ

2
i (1 − cos(2ψ)) (3.10)

respectively.
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3.3 Random Frequencies

If the frequencies are randomly chosen inside defined ranges, and are equally dis-

tributed according to a Probability Density Function, the external perturbation can be

substituted by its average, which is written as:

f(t) = cos(Ωt)
N
∑

i=1

ai (3.11)

where

cos(Ωt) =
∫ ∞

0
cos(Ωt)h(Ω)dΩ

and h(Ω) is the PDF which corresponds to the distribution of the frequencies. As a

standard case, an uniform distribution can be used and the mean value assumes the

following expression:

cos(Ωt) =
1

Ωmax − Ωmin

∫ Ωmax

Ωmin

cos(Ωt)dΩ

=
sin(Ωmaxt) − sin(Ωmint)

(Ωmax − Ωmin)t
. (3.12)

The time dependence on equation (3.12) suggests that as time increases, a loss

of stability must occur. Hence, it is interesting to consider a time-dependent amplitude.

Therefore, by rewriting the amplitudes as a explicitly time dependent ai = a(t):

N
∑

i=1

ai = Na(t),

equation (3.11) is then given by:

f(t) = Na(t)

(

sin(Ωmaxt) − sin(Ωmint)

(Ωmax − Ωmin)t

)

. (3.13)

In this case, by denoting

h(t|Ω) =
a(t)

t
sin(Ωt) (3.14)

one can find:

d2h

dt2
= ä(t) sin(Ωt) + 2ȧ(t)

[

Ω cos(Ωt)

t
− sin(Ωt)

t2

]

+

a(t)

[

2 sin(Ωt)

t3
− 2Ω cos(Ωt)

t2
− Ω2 sin(Ωt)

t

]

.

A simple choice is to consider a linear dependence on the amplitude as a(t) = Ct, where

C is a constant, up to first order terms d2h
dt2

= −CNΩ2 sin(Ωt) is found. Rescaling CN =

aΩmax:

f̈(t) = − aΩ3
max

Ωmax − Ωmin

sin(Ωmaxt) +
aΩ2

minΩmax

Ωmax − Ωmin

sin(Ωmint) (3.15)



3.3. Random Frequencies 31

If minimum frequency is equal to zero (Ωmin = 0), equation (3.15) resumes to:

f̈(t) = −aΩ2
max sin(Ωmaxt) (3.16)

which reproduces, in average, the same results as case N = 1 and, therefore, it is expected

that the stabilization condition obtained:

a2 >
2gl

Ω2
max

(3.17)

should be recovered.

To numerically validate this approximation, one may rewrite the external pertur-

bation by considering that the amplitude is now dependent on the time, finding:

f(t) =
N
∑

i=1

ait cos(Ωit). (3.18)

The second derivative of equation (3.18) is

f̈(t) = −
N
∑

i=1

Ω2
i ait cos(Ωit) − 2

N
∑

i=1

Ωiai sin(Ωit)

and, with this, the equation of motion associated with the system is given by

θ̈ −
[

ω2
0 −

N
∑

i=1

(

aitΩ
2

l
cos(Ωit) +

2aiΩi

l
sin(Ωit)

)]

sin θ = 0. (3.19)

By numerically integrating equation (3.19) via a forth order Runge-Kutta method (fol-

lowing procedures shown in Tables 1 and 4 of Appendix C (SILVA; PERETTI; PRADO,

2016)), Figure 9 can be constructed, where it is shown the pendulum’s stability time, i.e.,

the time for which the inverted pendulum remains stable, as a function of the maximum

frequency Ωmax and maximum amplitude amax. This Figure corroborates the results found

previously, that the pattern of stability is as the one found for the deterministic case of

N = 1, which implies that, by using the assumptions that the frequencies are randomly

chosen according from an uniform distribution, and that the amplitude is linearly depen-

dent on time, the system with a perturbation of N cosines resumes to the case of one

cosine for a finite amount of time.

The main problem with this analysis is that the time proportional terms contribute

to destabilize the system so the system remains stable only for a finite time, as can be seen

on Figure 9. The bigger the number N of cosines used, the higher is the time during which

the system remains stable and the better the agreement with the case when N = 1, since

the highest stability times present approximately the same form. Red sets of amplitude

and frequency remain stable for less time than green ones.
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Figure 9 – Stability time diagram of an inverted pendulum using the PDF approximation
(simulation parameters: l = 1.2 m, g = 9.81 m/s2, ω0 = 2.86 Hz, and θ0 =
0.018 rad). It can be seen that the PDF approximation makes the system
resume to approximately the same results as N = 1, in the previous Chapter.
The more close to red the colour of the point, the smaller the time for which the
inverted pendulum remains stable, while green sets of amplitude and frequency
represent the highest times. Time scale is set in seconds. First diagram shows
no scale since it does not remain stable for more than 2 seconds.

3.4 Stabilization Probability

Having made the generalization of the external function as a sum of N cosines,

the remaining question is: which value of N gives the highest probability of stabilization?

Simulating for each value of N , varying from 1 to 20, Nrun times the time evolu-

tion of the inverted pendulum for different randomly chosen values of amplitudes ai and

frequencies Ωi via a fourth-order Runge-Kutta method (following procedures presented on

Tables 1 and 5 of Appendix C (SILVA; PERETTI; PRADO, 2016)), the stability proba-

bility pstab for different random values of amplitudes and frequencies chosen between fixed
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ranges [0, amax] and [0,Ωmax], respectively, is calculated using:

pstab =
nstab
Nrun

(3.20)

where nstab is the number of times the system stabilized.

Figure 10 presents the stabilization probability of N cosines when the maximum

amplitude is fixed at amax = 0.17 m and different maximum value for frequencies are

set. One can see that the higher the maximum frequency, the higher the probability of

stabilization is and that by fixing an upper value for the amplitude and ranging the

frequency Ωmax, the optimal value of N does not change.
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Figure 10 – Stabilization probability of an inverted pendulum (simulation parameters:
l = 1.2 m, g = 9.81 m/s2, ω0 = 2.86 Hz, θ0 = 0.018 rad, and Nrun =
2000) for different numbers of cosines N used on equation (3.2), keeping the
maximum amplitude fixed at amax = 0.17 m and changing the maximum
value of frequency Ωmax. Red crosses represent maximum frequency Ωmax =
20 rad/s; blue crosses, Ωmax = 40 rad/s; green squares, Ωmax = 80 rad/s; and
black circles, Ωmax = 160 rad/s.

Keeping the maximum frequency fixed at Ωmax = 80 rad/s and ranging maximum

amplitudes, Figure 11 shows the stability probability of our system. It can be seen that the

smaller the maximum amplitude, the larger the number of cosines in (3.2) that can be used

to stabilize the system is. Therefore, the maximum value of amax influences the optimal

number of cosines N . Red crosses represent maximum amplitude amax = 0.08 m; blue

crosses, amax = 0.17 m; green squares, amax = 0.34 m; and black circles, amax = 0.68 m.

Now, with maximum frequency and amplitude fixed at respectively Ωmax = 80 rad/s

and amax = 0.34 m, a study of the effects of the initial angle on the stabilization probabil-

ity is made. Figure 12 shows the stabilization probability for different values of number
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Figure 11 – Stabilization probability of an inverted pendulum (simulation parameters:
l = 1.2 m, g = 9.81 m/s2, ω0 = 2.86 Hz, θ0 = 0.018 rad, and Nrun =
2000) for different numbers of cosines N used on equation (3.2), keeping the
maximum frequency Ωmax fixed at 80 rad/s and changing the maximum value
of amplitude amax. Red crosses represent maximum amplitude amax = 0.08 m;
blue crosses, amax = 0.17 m; green squares, amax = 0.34 m; and black circles,
amax = 0.68 m.

of cosines N in equation (3.2) for two different initial angles θ0 = 0.018 rad (red squares)

and θ0 = 0.518 rad (blue circles). It can be seen that the change on the initial angle does

not affect the optimal number of cosines.

This Chapter introduced a generalized form of the previous one. Here, a sum of

N cosines was used and the results found on the previous chapter were generalized. It is

also shown a way of associating the case when N = 1 with N large, where frequencies

where randomly sorted from a range and amplitude was rescaled. Finally, the best value

of N was found for different ranges of amplitudes, frequencies, and initial angles.
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Figure 12 – Stabilization probability of an inverted pendulum (simulation parameters:
l = 1.2 m, g = 9.81 m/s2, ω0 = 2.86 Hz, and Nrun = 2000) for different
numbers of cosines N used on equation (3.2), keeping maxima frequency
Ωmax = 80 rad/s and amplitude amax = 0.34 m fixed for two different initial
angles. Red squares represent θ0 = 0.018 rad; and blue circles, θ0 = 0.518 rad.





37

4 Periodic and Almost Periodic Base Motion

This Chapter shows the aspects of the system for the special case when N = 2,

when there may be a periodic or non periodic base motion. The results found in the

previous Chapter will be rewritten for this specific case, and some characteristics of the

system will be pointed out.

4.1 Two Cosines

The generalization performed in the previous chapter is considered for the specific

case of two cosines N = 2. The external perturbation at the suspension point is given by

a sum of two cosines of amplitudes a1 and a2, and frequencies Ω1 and Ω2. The expected

effect is that the two cosines of different frequencies interfere with each other causing

a destabilization on the system when the two frequencies are close (HEMP; SETHNA,

1968). Therefore, the external perturbation can be written as:

f(t) = a1 cos(Ω1t) + a2 cos(Ω2) (4.1)

and the force of inertia is written as:

Fin(t) = m(a1Ω
2
1 cos(Ω1t) + a2Ω

2
2 cos(Ω2t)). (4.2)

Hence, in the absence of friction (β = 0), the equation of motion is given by

θ̈ −
[

ω2
0 − 1

l
(a1Ω

2
1 cos(Ω1t) + a2Ω

2
2 cos(Ω2t))

]

sin θ = 0, (4.3)

and for small angles

θ̈ −
[

ω2
0 − 1

l
(a1Ω

2
1 cos(Ω1t) + a2Ω

2
2 cos(Ω2t))

]

θ = 0 (4.4)

where ω0 is the natural frequency of oscillation of the system, and l is the length of the

inverted pendulum.

Figure 13 shows the evolution of the position of an inverted pendulum in time

for arbitrary angles: top plot corresponds to numerically integrating equation (4.3); and

middle plot considers the approximated equation of motion for small angles, equation

(4.4). Bottom plot shows the behaviour of the external perturbation composed of two

cosines. It can be seen that the behaviour of the position as a function of time is very

different when we consider arbitrary angles or small angles. Hence the importance of not

using the approximation on simulations.
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Figure 13 – Plots of position versus time of the bob of an inverted pendulum for arbitrary
angles (top plot), and using the approximation of small angles (middle plot).
Bottom plot shows the behaviour of the external perturbation composed of
two cosines of same amplitude a1 = a2 = 0.17 m and different frequencies
Ω1 = 45 rad/s and Ω2 = 80 rad/s. Simulation parameters: g = 9.81 m/s2,
l = 1.2 m, ω0 = 2.86 Hz, θ0 = 0.018 rad.

Since stability condition established in Chapter 2 is still valid, substituting N = 2

in equation (3.4), the inertial torque of the system can be obtained:

τin = −m sinψ cosψ

[

a2
1Ω

2
1

2

(

sin(2Ω1T )

2Ω1T
+ 1

)

+
a2

2Ω
2
2

2

(

sin(2Ω2T )

2Ω2T
+ 1

)

+

a1a2

2T
(Ω2

1 + Ω2
2)

(

sin((Ω1 + Ω2)T )

Ω1 + Ω2

+
sin((Ω1 − Ω2)T )

Ω1 − Ω2

)]

(4.5)

where m is the mass of the pendulum’s bob, and T is the period of the external pertur-

bation applied at the suspension point. Gravitational torque remains still the same as in
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equation (2.5), therefore the system’s stability condition is estabilished:

a2
1Ω

2
1

(

sin(2Ω1T )

2Ω1T
+ 1

)

+ a2
2Ω

2
2

(

sin(2Ω2T )

2Ω2T
+ 1

)

+

a1a2

T
(Ω2

1 + Ω2
2)

(

sin((Ω1 + Ω2)T )

Ω1 + Ω2

+
sin((Ω1 − Ω2)T )

Ω1 − Ω2

)

> 2gl. (4.6)

These results were found assuming that there is a period T for the system.

From previous Chapter’s equation (3.6), maximum angle of deflection is:

cos(θmax) = 2gl

[

a2
1Ω

2
1

(

sin(2Ω1T )

2Ω1T
+ 1

)

+ a2
2Ω

2
2

(

sin(2Ω2T )

2Ω2T
+ 1

)

+

a1a2

T
(Ω2

1 + Ω2
2)

(

sin((Ω1 + Ω2)T )

Ω1 + Ω2

+
sin((Ω1 − Ω2)T )

Ω1 − Ω2

)]

. (4.7)

An upper stability boundary when using (4.1) is also unknown in the literature

and it is not the main concern in this work, hence it will not be explored.

Substituting N = 2 in equation (3.7), the expression of the effective potential for

this case is

Ueff = mgl(1 + cosψ) +
1

4

[

a2
1Ω

2
1

(

sin(2Ω1T )

2Ω1T
+ 1

)

+ a2
2Ω

2
2

(

sin(2Ω2T )

2Ω2T
+ 1

)

+

+
a1a2

T
(Ω2

1 + Ω2
2)

(

sin((Ω1 + Ω2)T )

Ω1 + Ω2

+
sin((Ω1 − Ω2)T )

Ω1 − Ω2

)]

(1 − cos(2ψ)) (4.8)

The shape of the potential function does not change with the different number

of cosines used on the external function, since it dependes only on the angle ψ. As the

stability condition (4.6), the amplitude of the effective potential depends on a chosen

period for the system, since it does not necessarily has a known one.

Using the close frequencies approximation, stability condition (4.6) becomes:

a2
1Ω

2
1 + a2

2Ω
2
2 > 2gl (4.9)

Rewriting equation (4.9) as an equality:

a2
1

2gl
Ω2

1 +
a2

2

2gl
Ω2

2 = 1

an ellipse equation is found for the lower boundary of stability. When we fix two val-

ues of amplitudes and range frequencies, a stability diagram can be constructed for the

excitations frequencies Ω1 and Ω2 by numerically integrating equation (4.3) via a forth

order Runge-Kutta method. All diagrams from this Chapter were constructed following

the procedure presented on Tables 1 and 3 of Appendix C (SILVA; PERETTI; PRADO,

2016).



40 Chapter 4. Periodic and Almost Periodic Base Motion

Figure 14 shows two different stability diagrams for frequencies with different fixed

amplitudes. The diagram on the left has amplitudes a1 = 0.17 m and a2 = 0.34 m while the

one on the right has a1 = 0.15 m and a2 = 0.5 m. Green points represent sets of frequencies

for which the system is stable, and red dots represent unstable ones. Black curve shows

the ellipse cited above as the lower boundary of stability using the approximation for close

frequencies (4.9).
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Figure 14 – Stability diagram for different sets of frequencies with amplitudes fixed at
a1 = 0.17 m and a2 = 0.34 m on the left diagram, and a1 = 0.15 m and
a2 = 0.5 m on the right (simulation parameters: g = 9.81 m/s2, l = 1.2 m,
ω0 = 2.86 Hz, and θ0 = 0.018 rad). Green points represent stable sets of
frequencies, and red ones represent unstable. Black curve represents the lower
boundary of stability given by equation (4.9).

At the diagonal of these diagrams (when frequencies Ω1 and Ω2 are exactly the

same), the system resumes to the same case of one cosine, as discussed on Chapter 2, with

frequency Ω = Ω1 = Ω2 and amplitude a = a1 + a2. On the diagram where a = 0.5 m,

the lower (2.7) and upper (2.10) boundaries can be seen, since the green points at the

diagonal do not go all the way to the end. The diagram on the left needs a larger range

of frequencies to show the upper limit.

In Figure 14 it is interesting to notice that high values of frequencies do not

necessarily mean stability. Branches of unstable regions that reminds Arnold tongues

(ARNOLD, 1989) appear on the region above the lower stability condition. Sets of fractal

dimensions may present here (OTT, 2002).

Around the diagonal, where frequencies are close, beating phenomenon is observed.

This phenomenon explains the stable sets of frequencies found below the lower boundary
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(4.9), more clearly seen on the left diagram of Figure 14. When two adjacent frequencies

cause beating, stability is only possible if there is damping and it is sufficiently large to

prevent the pendulum from falling during long periods of low amplitude of the support

motion (HOWE, 1974).

Now, fixing values for the frequencies Ω1 and Ω2, four stability diagrams for differ-

ent sets of amplitudes a1 and a2 are constructed on Figure 15. At top left, frequencies are

fixed at Ω1 = 10 rad/s and Ω2 = 20 rad/s; top right, Ω1 = 20 rad/s and Ω2 = 80 rad/s;

bottom left, Ω1 = 80 rad/s and Ω2 = 160 rad/s; and bottom right, Ω1 = 10 rad/s and

Ω2 = 160 rad/s. Green points represent stable sets of amplitudes, while red ones, unstable.

Since frequencies are too high, the axes of the ellipses that give the lower boundary of

stability for close frequencies (4.9) are too small to appear on those diagrams and, there-

fore there is no expected behaviour for them. Additional regions of instability can be seen

when the difference between the frequencies is smaller, although some stability is present

even when the difference is arbitrarily small (HOWE, 1974).

All chosen sets of fixed frequencies in Figure 15 are multiple values, i.e., Ω2 = nΩ1,

therefore the period of function (4.1) is known for each set, and is equal to T = 2π/Ω1.

Because of it, expression (4.9) is no longer an approximation and is now an exact condition.

Figure 16 shows two stability diagrams for different sets of amplitudes with fixed

frequencies that are not multiple values of each other. The values of the axes of the ellipses

that give the lower boundary of stability according to (4.9) are too small to appear in

these diagrams.

4.2 Equal Amplitudes

An interesting case happens when the amplitudes a1 and a2 of perturbation (4.1)

are equal, and shall be called a1 = a2 = a. The lower boundary of stability (4.6) becomes

Ω2
1

(

sin(2Ω1T )

2Ω1T
+ 1

)

+ Ω2
2

(

sin(2Ω2T )

2Ω2T
+ 1

)

+

+
(Ω2

1 + Ω2
2)

T

(

sin((Ω1 + Ω2)T )

Ω1 + Ω2

+
sin((Ω1 − Ω2)T )

Ω1 − Ω2

)

>
2gl

a2
. (4.10)

Using the approximation for close frequencies, expression (4.10) is

Ω2
1 + Ω2

2 =
2gl

a2
, (4.11)

which is the equation of a circle with radius equals to (2gl/a2)1/2. Figure 17 shows two

stability diagrams for different sets of frequencies and different fixed amplitudes: a =

0.17 m (left) and a = 0.34 m (right). Green points represent stable sets of frequencies,

while red ones represent unstable sets. Black curve gives the lower boundary of stability

given by (4.11).
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Figure 15 – Stability diagram for different sets of amplitudes with frequencies fixed at
Ω1 = 10 rad/s and Ω2 = 20 rad/s at top left, Ω1 = 20 rad/s and Ω2 =
80 rad/s at top right, Ω1 = 80 rad/s and Ω2 = 160 rad/s at bottom left, and
Ω1 = 10 rad/s and Ω2 = 160 rad/s at bottom right (simulation parameters:
g = 9.81 m/s2, l = 1.2 m, ω0 = 2.86 Hz, and θ0 = 0.018 rad). Green points
represent stable sets of amplitudes, while red ones, unstable sets.

Figure 17 shows that when amplitudes a1 and a2 are equal, the stability diagram

for frequencies becomes symmetric with a symmetry axis at the diagonal. As can be seen,

the smaller the amplitude, more stable sets of frequencies are found and sets of fractal

dimensions seem to be present.

4.3 Equal Frequencies

By making the frequencies equal, Ω1 = Ω2 = Ω, the system resumes to the case

when N = 1 with an amplitude of a = a1 + a2, and the lower boundary of stability

becomes:

a2
1 + a2

2 >
2gl

Ω2
. (4.12)
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Figure 16 – Stability diagram for different sets of amplitudes with frequencies fixed at
Ω1 = 10 rad/s and Ω2 = 25 rad/s on the left diagram, and Ω1 = 45 rad/s and
Ω2 = 80 rad/s on the right (simulation parameters: g = 9.81 m/s2, l = 1.2 m,
ω0 = 2.86 Hz, and θ0 = 0.018 rad). Green points represent stable sets of
amplitudes while red ones, unstable sets.
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Figure 17 – Stability diagram for different sets of frequencies with amplitudes fixed at
a = 0.17 m on the left diagram, and a = 0.34 m on the right (simulation
parameters: g = 9.81 m/s2, l = 1.2 m, ω0 = 2.86 Hz, and θ0 = 0.018 rad).
Green points represent stable sets of frequencies, and red points, unstable.
Black curve represents the lower boundary of stability given by (4.11).
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Again, this represents an equation of a circle but with radius equals to (2gl/Ω2)1/2. Since

frequencies Ω have high values, this stability boundary circle is too small to appear on

Figure 18, and therefore, the behaviour of the stability diagrams is unknown. The only

expected aspect was a symmetry with axis at the diagonal, which can be seen.
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Figure 18 – Stability diagram for different sets of amplitudes with equal frequencies fixed
at Ω = 20 rad/s on the left diagram, and Ω = 80 rad/s on the right (simula-
tions parameters: g = 9.81 m/s2, l = 1.2 m, ω0 = 2.86 Hz, and θ0 = 0.018 rad).
Green points represent stable sets of amplitudes while red ones, unstable.

Figure 18 shows two stability diagrams for sets of amplitudes with fixed frequencies

Ω = 20 rad/s on the left, and Ω = 80 rad/s on the right. Green points represent stable

sets of amplitudes, while red represents unstable sets. Simulations have shown that for

frequencies above Ω = 25 rad/s, the stability diagram does not change for any frequency.

4.4 A Study of Periods

Since most sets of frequencies do not have a definite period, values of period can be

chosen so an approximated behaviour can be predicted. The lower boundary of stability

(4.6) depends on the period T and, therefore the choice of variable T is important so the

established boundaries are closer to their real behaviour. Four reasonable choices were

made in this work and are represented on Figure 19.

Figure 19 shows four stability diagrams for frequencies with fixed amplitudes at

a1 = a2 = 0.17 m for different choices of period T . Again, green points represent stable

sets of frequencies, and red points, unstable ones. Black curve limits the lower boundary

of stability by equation (4.11). Each period is related to a frequency as in

Ti =
2π

Ωi

. (4.13)
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Figure 19 – Stability diagrams for frequencies with amplitudes fixed at a1 = a2 = a =
0.17 m using (4.6) for four different choices of period Ti = 2π/Ωi (simulation
parameters: g = 9.81 m/s2, l = 1.2 m, ω0 = 2.86 Hz, and θ0 = 0.018 rad). Top
left diagram considers period T = T1; top right, the smallest value between T1

and T2; at bottom left, period is taken as the mean period value; and bottom
right considers the maximum value between T1 and T2. Green points represent
stable sets of frequencies while red dots, unstable. Black curve shows the lower
boundary of stability given by (4.11).

The choices made here were: the period being equal to the period of one of the frequencies

T = T1 (top left diagram); the minimum value between periods T1 and T2 (top right); the

mean value of periods T = (T1 +T2)/2; and the maximum value between periods (bottom

right). From these plots and by a qualitative analysis, the best choice of period seems to

be the maximum value between T1 and T2, since there seems to be a better agreement

with left diagram from Figure 17.

In this Chapter, the specific case for N = 2 was analysed. Stability condition and

diagrams were constructed for different combinations of amplitudes and frequencies so the

many aspects of this system could be seen. Since external function (4.1) not necessarily

has a defined value for the period, a few reasonable choices were made, tested, and it was
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established that the best choice of period is the highest value between the periods.
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5 External Stochastic Excitation

This Chapter starts by showing a brief review of previous works where the stability

condition was obtained for the inverted pendulum under a stochastic external excitation

with special conditions. Then, it will be shown how the addition of a Gaussian noise affect

the stability diagrams found in the previous Chapters.

5.1 Stochastic Excitation

Several authors have found that the inverted pendulum with a random parametric

excitation applied at the suspension point is a stable system over an infinite interval of

time if there is a damping coefficient (MITCHELL, 1972; SETHNA, 1973; HOWE, 1974).

Mitchell (1972) used the method of averaging to find the following stability condi-

tion:

σ2
ξ > gl (5.1)

where σ2
ξ is the variance of the suspension point velocity. Though equation (5.1) is inde-

pendent of a damping coefficient, numerical simulations have shown that the pendulum’s

stability is dependent on a sufficiently large damping at the base motion (MITCHELL,

1972), which is a sample function from a stochastic process with a high pass power spec-

tral density function. The stochastic base of motion used on his experiments was a white

noise generator, and he experimentally found out that the larger the variance of the base

acceleration, the more stable the pendulum becomes.

Using an arbitrary support motion, Sethna (1973) stated that the vertically up

position of an inverted pendulum can be made stable as long as the vertical support

motion is fast, the average of the square of the support velocity exceeds the square of the

velocity plus one, and the damping is linear.

Howe (1974) found the same stability condition (5.1) but assuming that the damp-

ing could also be small by making the change of variable

θ =

[

1 +
ξ(t)

l

]

φ. (5.2)

Although φ changes very little during the averaging period, it produces a term that con-

tributes with a nonzero value. Over many periods of oscillation, this nonzero contribution

accumulates and eventually alters significantly the motion of the system.

Bogdanoff and Citron (IBRAHIM, 2006) found through experiments that an in-

verted pendulum cannot be stabilized using only a Gaussian random noise as an external
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excitation, regardless of the spectral shape. It is important to notice that this experiment

considered nonzero damping.

5.2 Mixed Excitation

Considering an additive Gaussian noise of variance σ2 applied on an inverted pen-

dulum, additionally to the deterministic sum of cosines excitation at the suspension point,

a study is made on the new stability diagrams, which show the probability of the sys-

tem being stable pstab for sets of amplitudes ai and frequencies Ωi after Nrun iterations.

This probability is given by equation (3.20). The plots constructed have a colour scale

graduated accordingly to pstab: the closer to green the point, the more stable the set of

parameters is (SILVA; PERETTI; PRADO, 2016).

Considering the first case of an external perturbation of one cosine but now with

an additive noise, the equation of motion becomes:

θ̈ −
[

ω2
0 − aΩ2

l
cos(Ωt)

]

sin θ = ξ(t) (5.3)

where ξ(t) is, in this case, a Gaussian noise of zero mean and variance σ2. Figure 20 shows

four diagrams for different values of variance: top left is σ = 1; top right, σ = 2; bottom

left, σ = 8; and bottom right, σ = 10. The diagrams were constructed by numerically inte-

grating equation (5.3) via a fourth order Runge-Kutta method, following the procedures

described in Tables 1, and 2 or 3 of Appendix C (SILVA; PERETTI; PRADO, 2016).

Figure 20 shows that the additive noise does not change considerably the form of

the stability diagram from Figure 7. The increase of the variance produces the effect of

destabilizing some sets of amplitudes and frequencies that were stable before, increasing

the unstable region. The destruction of the diagrams starts at the borders of the stable

region of Figure 7, and penetrates further as variance increases. However, it can be seen

that using a perturbation on the form of a cosine is a very efficient way of stabilizing an

inverted pendulum since the additive Gaussian noise was not very effective to destabilize

it even with a large variance.

When using a deterministic excitation of two cosines with an additive Gaussian

random noise, the equation of motion becomes:

θ̈ −
[

ω2
0 − a1Ω

2
1

l
cos(Ω1t) − a2Ω

2
2

l
cos(Ω2t)

]

sin θ = ξ(t) (5.4)

where, again, ξ(t) is a Gaussian noise of zero mean and variance σ2. Since the behaviour

of the system does not change much with the addition of the noise, as can be seen by

comparing Figures 7 and 20, for the case of two cosines the study will be made for only

one value of variance, but for different parameters.
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Figure 20 – Stability diagram for the parameters amplitude a and frequency of oscillation
Ω with a Gaussian noise of mean zero and variance σ (simulation parameters:
l = 1.2 m, g = 9.81 m/s2, ω0 = 2.86 Hz, θ0 = 0.018 rad, Nrun = 50). The
colour scale is graduated accordingly to pstab: the closer to green the point,
the more stable is the set of parameters. Top left diagram shows the stability
diagram when σ = 1; top right, σ = 2; bottom left, σ = 8; and bottom right,
σ = 10. The solid black curve shows the lower boundary of stability (2.7),
and the dashed curve shows the upper boundary (2.10).

Figure 21 shows the effects of a Gaussian additive noise on a system with a de-

terministic excitation of two cosines of amplitudes a = 0.17 m (diagram on the left) and

a = 0.34 m (on the right). This figure suggests that when the amplitudes of the cosines

are higher, the system is less sensitive to degradations. An increase on the unstable region

can be seen above the stability boundary given by equation (4.11), plotted as a black solid

line, but the addition of the noise does not create new regions of stability.

Figure 22 also shows the effects of a Gaussian additive noise on a system with a

deterministic excitation of two cosines but with different fixed frequencies Ω1 = 20 rad/s

and Ω2 = 80 rad/s (diagram on the left), and Ω1 = 10 rad/s and Ω2 = 25 rad/s (on the

right). These diagrams suggest that the greater the difference between the frequencies, the



50 Chapter 5. External Stochastic Excitation

 0

 10

 20

 30

 40

 0  10  20  30  40

F
re

qu
en

cy
 Ω

2(
ra

d/
s)

Frequency Ω1(rad/s)

a=0.17m

 0

 10

 20

 30

 40

 0  10  20  30  40
Frequency Ω1(rad/s)

a=0.34m

 0

 0.2

 0.4

 0.6

 0.8

 1

Figure 21 – Stability diagram for different sets of frequencies with fixed amplitudes at a =
0.17 m (left) and a = 0.34 m (right) (simulation parameters: g = 9.81 m/s2,
l = 1.2 m, ω0 = 2.86 Hz, θ0 = 0.018 rad, Nrun = 50, and σ = 10). The colour
scale is graduated accordingly to pstab: the closer to green the point, the more
stable the set of frequencies is. Black curve shows the lower boundary of
stability given by (4.11).

more stable the system is, which agrees with the statements made by Howe (1974), since

the Gaussian additive noise proved to be more efficient to degrade the stability diagram

on the right than the one on the left.

In this Chapter, a review of some works previously made on the stabilization of an

inverted pendulum with a random noise applied at the suspension point was made. Then,

at the suspension point is applied an external perturbation of N cosines, and an additive

Gaussian noise is introduced in the system. The effects of this additive noise are seen on

diagrams that show the stability probability for different sets of parameters.
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Figure 22 – Stability diagram for different sets of amplitudes with fixed frequencies at
Ω1 = 20 rad/s and Ω2 = 80 rad/s (left), and Ω1 = 10 rad/s and Ω2 = 25 rad/s
(right) (simulation parameters: g = 9.81 m/s2, l = 1.2 m, ω0 = 2.86 Hz,
θ0 = 0.018 rad, Nrun = 50, and σ = 10). The colour scale is graduated
accordingly to pstab: the closer to green the point, the more stable the set of
amplitudes.
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6 Conclusions and Final Remarks

The main purpose of this work was to study the phenomenon related to the sta-

bilization of an inverted pendulum over large periods of time. By making a deterministic

analysis, it has been proved that periodic external forces on the form of a sum of N cosines

may be very effective on steadying this system, and that an additive Gaussian noise is

not sufficient to significantly destabilize it, although further studies on the effects of the

Gaussian noise are still to be made.

In Chapter 2, a review of an inverted pendulum with an external force in the form

of a cosine of amplitude a and frequency Ω based on previous articles was made. The

lower and upper boundaries of stability (2.7) and (2.10) respectively, maximum angle of

deflection (2.8), and effective potential (2.13) were established. The importance of not

using the small angles approximation sin θ ≈ θ can be seen in the stability diagram in

Figure 7, since equation (2.10) was the only one where this approach was used, and it

is not respected by the numerical integration of the equation of motion (2.1) through a

fourth order Runge-Kutta. A study of the influence of the initial angle on the system was

made and appears on Figure 8.

All methods introduced on Chapter 2 were used to make the generalization for a

sum of N cosines on Chapter 3. The condition of stability (3.5), maximum angle (3.6)

of deflection, and an equation for the system’s effective potential (3.7) were found and

approximations were made. Using the appropriate rescaling of the amplitude and choosing

the appropriate intervals of frequencies, it was shown that an inverted pendulum with

external force (3.18) can reduce to the case of N = 1 cosine. Then, still by choosing

random values of frequencies, a study was made to find the best value of N for the

highest stabilization probability. The drawn conclusions were: increasing the maximum

frequency Ωmax, the optimal value of N does not change; the smaller the value of the

maximum amplitude, the more number of cosines are needed to amount the probability

of stabilizing the system; and the choice of initial angle does not have any effect on the

value of N .

For the specific case of N = 2 cosines, generalized equations from Chapter 3 were

rewritten on Chapter 4. Different values of amplitudes were set so their influence on the

stability diagram of frequencies, which presents complex patterns, could be observed. The

same happens for the amplitude but in this case, an analysis was made to observe the

influence of periodic and almost periodic sets of frequencies on the diagrams. The larger

the difference between amplitudes a1 and a2, the less stable sets of frequencies there were,

while the opposite happens for frequencies: the larger the difference between frequencies
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Ω1 and Ω2, the more stable sets of frequencies were found. When the amplitudes are

exactly the same, the diagram has an axis of symmetry at its diagonal. When frequencies

are exactly the same, the system resumes to the case when N = 1 with an amplitude of

a = a1 + a2. When the system has no defined period, an approximation for its value can

be made. Four possible values were chosen, and it was stated that the best value for a

period choice is the maximum value between T1 and T2.

A review of previous works of an inverted pendulum with random parametric

excitations was made on Chapter 5, and it stated that the condition of stability was

dependent on the variance of the suspension point’s velocity of the inverted pendulum.

Then the influence of a Gaussian additive noise on the system along with the external

deterministic excitations was studied. A destruction of the stability diagram was expected,

but that it would not be so strong was not. Even the increase of noise variance up to a

value of σ = 10 was not enough to deform the diagrams on a significant manner.

This work covers many aspects of an inverted pendulum with deterministic and

stochastic parametric excitations, but further studies can still be made, as the introduction

of different periodic external forces and the influence of other stochastic noises. A more

precise solution for equation (2.1) can be sought using a better approximation as sin θ ≈
θ − θ3

6
so the upper boundary (2.10) could fit better for arbitrary angles. Regarding the

generalization of N cosines, distinct probability density functions could also be tested.

Chaotic modes may be present in the system and have not been explored so far. An

examination can also be made by considering the motion of the pivot in more than one

direction. A truly stochastic superposition of cosines also must be better explored. Further

works on this system are already in progress.
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APPENDIX A – A Different External

Function

The external function used to stabilize an inverted pendulum does not necessarily

need to be cos(Ωt) or sin(Ωt). Arnold (1989) stabilized an inverted pendulum using a

function of period 2τ defined in Figure 23. The function is periodic and defined separately

within each half period.

The system used here is the same as before: a light rod of length l with a bob of

mass m attached to it. This pendulum oscillates vertically with a periodic function, whose

acceleration is ±c (where c = 8a/τ 2)(ARNOLD, 1989).

Figure 23 – Inverted pendulum with an oscillatory suspension point (adapted from Arnold
(1989), “Mathematical Methods of Classical Mechanics”, Springer, 2nd edi-
tion, September 5, 1997, page 121).

Using the known points of Figure 23, the function that describes the motion of

the pendulum’s suspension point can be found. During the first half period (0 < t < τ)

the acceleration is c = −8a/τ 2. Therefore:

d2y1

dt2
= −8a

τ 2

y1(t) = −4at2

τ 2
+

4at

τ
. (A.1)

During the second half period (τ < t < 2τ), the acceleration is c = +8a/τ 2. Therefore:

d2y2

dt2
= +

8a

τ 2

y2(t) = −4at2

τ 2
− 12at

τ
+ 8a. (A.2)
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The equation which describes the coordinates of the bob is written as:

x = l sin θ (A.3)

y = l cos θ + yi (A.4)

where i = 1, 2 and yi are equations (A.1) and (A.2). Using (A.3) and (A.4) the Lagrangian

of the system is:

L =
ml2θ̇2

2
+
mẏ2

i

2
−mlθ̇ẏi sin θ −mg(l cos θ + yi). (A.5)

Replacing (A.5) in the Euler-Lagrange equation:

θ̈ − ÿi
l

sin θ − yiθ

l
cos θ − g

l
sin θ = 0.

And approximating for small angles:

θ̈ = (ω2 ± d2)θ (A.6)

where ω2 = g/l e d2 = c/l.

For a function defined at each half period the transformation matrix A is written

as the product of two matrices, each defined at a half period. Starting with the first half

period, the equation of motion is given by:

θ̈ − (ω2 − d2)θ = 0

θ̈ + (d2 − ω2)θ = 0

θ̈ + Λ2θ = 0. (A.7)

where Λ2 = d2 − ω2. The solutions to (A.7) and its first derivative are:

θ(t) = c1 cos(Λt) + c2 sin(Λt), (A.8)

θ̇(t) = −c1Λ sin(Λt) + c2Λ cos(Λt). (A.9)

The solution for the initial conditions θ = 1 and θ̇ = 0 yields c1 = 1 and c2 = 0. Therefore:

θ(t) = cos(Λt),

θ̇(t) = −Λ sin(Λt).

While the solution with initial conditions θ = 0 and θ̇ = 1 yields other values for the

constants c1 = 0 and c2 = 1/Λ. Therefore

θ(t) =
1

Λ
sin(Λt),

θ̇(t) = cos(Λt).
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With these solutions the matrix of transformation A2 can be written as:

A2 =





cos(Λτ) 1
Λ

sin(Λτ)

−Λ sin(Λτ) cos(Λτ)



 . (A.10)

During the other half period the equations of motion are:

θ̈ − (d2 + ω2)θ = 0

θ̈ − k2θ = 0 (A.11)

where k2 = d2 + ω2. The solutions to (A.11) and its first derivative are:

θ(t) = c3 cosh(kt) + c4 sinh(kt), (A.12)

θ̇(t) = kc3 sinh(kt) + kc4 cosh(kt). (A.13)

Initial conditions θ = 1 and θ̇ = 0 yield c3 = 1 and c4 = 0, then:

θ(t) = cosh(kt),

θ̇(t) = k sinh(kt).

While initial conditions θ = 0 and θ̇ = 1 yield c3 = 0 and c4 = 1/k. Therefore,

θ(t) =
1

k
sinh(kt),

θ̇(t) = cosh(kt).

With these solutions the matrix A1 is written as:

A1 =





cosh(kτ) 1
k

sinh(kτ)

k sinh(kτ) cosh(kτ)



 . (A.14)

The system’s total transformation matrix A is the product of A1 and A2:

A =
[

cos(Λτ) cosh(kτ)+ k

Λ
sin(Λτ) sinh(kτ) 1

k
cos(Λτ) sin(kτ)+ 1

Λ
sin(Λτ) cosh(kτ)

−Λ sin(Λτ) cosh(kτ)+k cos(Λτ) sinh(kτ) − Λ

k
sinh(kτ) sin(Λτ)+cos(Λτ) cosh(kτ)

]

. (A.15)

And the trace of this matrix is

TrA = 2 cos(Λτ) cosh(kτ) +

(

k

Λ
− Λ

k

)

sin(Λτ) sinh(kτ). (A.16)

If A is the matrix of linear mapping of the plane on itself, which preserves area

(det(A) = 1) then the mapping of A is stable if |TrA| < 2 (ARNOLD, 1989). This

condition is satisfied for sufficiently rapid oscillations of the suspension point (c > g).

Dimensionless variables ǫ and µ are here introduced such that:

a

l
= ǫ2 < 1 (A.17)

g

c
= µ2 < 1. (A.18)



62 APPENDIX A. A Different External Function

Substituting on k and Λ and remembering that |c| = 8a/τ 2:

kτ =

√

c

l
+ glτ

= 2ǫ
√

2
√

1 + µ2 (A.19)

Λτ =

√

c

l
− g

l
τ

= 2ǫ
√

2
√

1 − µ2 (A.20)

k

Λ
=

√
1 + µ2

√
1 − µ2

Λ

k
=

√
1 − µ2

√
1 + µ2

k

Λ
− Λ

k
= 2µ2 +O(µ4).

Expanding sines and cosines in power series and substituting (A.19) and (A.20) up to

fourth order of ǫ and µ:

sinh(kτ) = 2ǫ
√

2
√

1 + µ2 +
8

3
ǫ3

√
2(1 + µ2)3/2 +O(ǫ4 + µ4)

sin(Λτ) = 2ǫ
√

2
√

1 − µ2 − 8

3
ǫ3

√
2(1 − µ2)3/2 +O(ǫ4 + µ4)

cosh(kτ) = 1 + 4ǫ2(1 + µ2) +
8

3
ǫ4(1 + µ2)2 +O(ǫ4 + µ4)

cos(Λτ) = 1 − 4ǫ2(1 − µ2) +
8

3
ǫ4(1 − µ2)2 +O(ǫ4 + µ4).

Finally, neglecting higher order terms:
(

k

Λ
− Λ

k

)

sinh(kτ) sin(Λτ) = 16ǫ2µ4

cosh(kτ) cos(Λτ) = 1 + 8ǫ2µ2 − 16ǫ4 +
16

3
ǫ4.

Replacing in (A.16) and remembering the stability condition:

2
(

1 + 8ǫ2µ2 − 16ǫ4 +
16

3
ǫ4
)

+ 16ǫ4µ2 < 2

ǫ2 <
2

3
µ2.

From definitions (A.17) and (A.18), and recalling that ω2 = g/l and τ 2 = 8a/c, and the

relation between period and frequency is τ = 1/Ω:

3

2
ω2 <

ca

l2

1

2τ
>

√

3

64
ω
l

a

Ω >
2

a

√

3gl

64
, (A.21)

which is the condition of stability.
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APPENDIX B – Perturbative Analysis

The equation of motion (3.2) of an inverted pendulum with an external force given

by a sum of N cosines applied at the suspension point can be rewritten as:

d2θ

dt2
=
g

l

(

1 +
1

g

N
∑

i=1

aiΩ
2
i cos(Ωit)

)

sin θ (B.1)

where g is gravity, l is the pendulum’s length, and ai are the amplitudes and Ωi are the

frequencies of the external force’s cosines.

The motion of a particle under the influence of a constant field U (the gravitational

field in this case) and a force which varies with a high frequency may be studied by

perturbative analysis (LANDAU; LIFSCHITZ, 1966; KAPITZA, 1965). The equation of

motion of a particle in a field written in terms of the angular coordinate is:

mθ̈ = −dU

dθ
+ f(θ). (B.2)

By comparing (B.1) and (B.2), on may conclude that

U =
g

l
cosθ,

which is the potential associated with gravity, and

f(θ) = −sin θ

l

N
∑

i=1

aiΩ
2
i cos(Ωit),

which is related to the external force due to the vibration of the pivot.

Again, the assumption that the movement can be separated into two components

(a slow component ψ(t) of large amplitude and low frequency, and a fast component δ(t)

of small amplitude and high frequency), the motion of the pendulum is described by:

θ(t) = ψ(t) + δ(t). (B.3)

Expanding the terms on the right-hand side of (B.2) via Taylor expansion, one has:

∂U

∂θ
=

∂U

∂θ

∣

∣

∣

∣

∣

θ=ψ

+
∂2U

∂θ2

∣

∣

∣

∣

∣

θ=ψ

δ +
1

2

∂3U

∂θ3

∣

∣

∣

∣

∣

θ=ψ

δ2 + ...

∂f

∂θ
= f(ψ) +

∂f

∂θ

∣

∣

∣

∣

∣

θ=ψ

δ +
∂2f

∂θ2

∣

∣

∣

∣

∣

θ=ψ

δ2 + ....

Considering up to first order terms, from equations (B.2) and (B.3), one finds:

ψ̈ + δ̈ = − ∂U

∂θ

∣

∣

∣

∣

∣

θ=ψ

− ∂2U

∂θ2

∣

∣

∣

∣

∣

θ=ψ

δ + f(ψ) +
∂f

∂θ

∣

∣

∣

∣

∣

θ=ψ

δ. (B.4)
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Perturbative effects are associated with the terms with δ, hence they are disregarded.

Comparing the remaining terms of (B.4) with the associations made using (B.1) and

(B.2), one can see that:

δ̈ = f(ψ) = −− sin θ

l

N
∑

i=1

aiΩ
2
i cos(Ωit). (B.5)

Integrating equation(B.5) twice:

δ̇ =
sin θ

l

N
∑

i=1

aiΩi sin(Ωit) + C1

δ =
sin θ

l

N
∑

i=1

ai cos(Ωit) + C1t+ C0.

If δ is an oscillating term, constants C0 and C1 must be zero, otherwise δ would increase

with time. For any set of frequencies Ωi
N
i=1, the resultant superposition may not necessarily

result in a periodic motion. For that to occur, there must exist a period T such that

ΩiT = 2πni and ΩjT = 2πnj for every pair i 6= j = 1, ..., N :

Ωi

Ωj

=
Tj
Ti

=
ni
nj
. (B.6)

The ratio between frequencies must be a rational number where ni and nj are the smallest

integers.

Taking the time average of equation (B.4) and supposing that the non-perturbed

terms do not change on first order approximation, one finds:

ψ̈ ≈ −∂U

∂θ

∣

∣

∣

∣

∣

θ=ψ

+

〈

∂f

∂θ

∣

∣

∣

∣

∣

θ=ψ

δ

〉

. (B.7)

Computing separately the second term of the right-hand side of equation (B.7):

∂f

∂θ

∣

∣

∣

∣

∣

θ=ψ

= −cosψ

l

N
∑

i=1

aiΩ
2
i cos(Ωit)

〈

∂f

∂θ

∣

∣

∣

∣

∣

θ=ψ

δ

〉

=

〈

−cosψ

l2

(

N
∑

i=1

aiΩ
2
i cos(Ωit)

)(

N
∑

i=1

ai cos(Ωit)

)

sinψ

〉

= −cosψ sinψ

l2

(

N
∑

i=1

aiΩ
2
i 〈cos2(Ωit)〉+

+
N
∑

i6=j=1

aiajΩ
2
i 〈cos(Ωit) cos(Ωjt)〉





〈cos2(Ωit)〉 =
1

T

∫ T

0
cos2(Ωit)dt =

sin(2ΩiT )

4ΩiT
+

1

2
=

1

2

(

sin(2ΩiT )

2ΩiT
+ 1

)
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〈cos(ΩiT ) cos(ΩjT )〉 =
1

T

∫ N

0
cos(Ωit) cos(Ωjt)dt

=
1

(Ωi + Ωj)(Ωi − Ωj)T

[

(Ωi − Ωj)

2
sin((Ωi + Ωj)T ) +

+
(Ωi + Ωj)

2
sin((Ωi − Ωj)T )

]

=
1

2T

[

sin((Ωi + Ωj)T )

Ωi + Ωj

+
sin((Ωi − Ωj)T )

Ωi − Ωj

]

〈

∂f

∂θ

∣

∣

∣

∣

∣

θ=ψ

δ

〉

= −sin(2Ψ)

2l2

[

1

2

N
∑

i=1

a2
iΩ

2
i

(

sin(2ΩiT )

2ΩiT
+ 1

)

+

+
N
∑

i6=j=1

aiajΩ
2
i

2T

(

sin((Ωi + Ωj)T )

Ωi + Ωj

+
sin((Ωi − Ωj)T )

Ωi − Ωj

)





Landau & Lifschitz (1966) state that

ψ̈ = −∂Ueff
∂θ

,

where Ueff is the effective potential of the system. Therefore:

ψ̈ = − ∂U

∂θ

∣

∣

∣

∣

∣

θ=ψ

+

〈

∂f

∂θ

∣

∣

∣

∣

∣

θ=ψ

δ

〉

. (B.8)

From (B.8), an expression for the effective potential can be found:

Ueff =
g

l
cos Ψ − cos(2Ψ)

4l2

[

1

2

N
∑

i=1

a2
iΩ

2
i

(

sin(2ΩiT )

2ΩiT
+ 1

)

+

+
N
∑

i6=j=1

aiajΩ
2
i

2T

(

sin((Ωi + Ωj)T )

Ωi + Ωj

+
sin((Ωi − Ωj)T )

Ωi − Ωj

)



 (B.9)

The stability condition requires that the second derivative of the effective potential (B.9)

must be bigger than zero. Using this condition and Ψ = 0, the stability condition of the

inverted pendulum with an external force of N cosines applied at the suspension point is:

N
∑

i=1

a2
iΩ

2
i

(

sin(2ΩiT )

2ΩiT
+ 1

)

+

+
N
∑

i6=j=1

aiajΩ
2
i

T

(

sin((Ωi + Ωj)T )

Ωi + Ωj

+
sin((Ωi − Ωj)T )

Ωi − Ωj

)

> 2gl (B.10)
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Abstract

In this paper, we explore the stability of an inverted pendulum under a generalized parametric excitation

described by a superposition of N cosines with different amplitudes and frequencies, based on a simple sta-

bility condition that does not require any use of Lyapunov exponent, for example. Our analysis is separated

in 3 different cases: N = 1, N = 2, and N very large. Our results were obtained via numerical simulations by

fourth-order Runge Kutta integration of the non-linear equations. We also calculate the effective potential

also for N > 2. We show then that numerical integrations recover a wider region of stability that are not

captured by the (approximated) analytical method of the effective potential. We also analyze stochastic

stabilization here: firstly, we look the effects of external noise in the stability diagram by enlarging the

variance, and secondly, when N is large, we rescale the amplitude by showing that the diagrams for survival

time of the inverted pendulum resembles the exact case for N = 1. Finally, we find numerically the optimal

number of cosines corresponding to the maximal survival probability of the pendulum.

1. Introduction

The inverted pendulum, more precisely its stabilization mechanisms deserve a lot of attention from

several correlated areas, including Physics, Mathematics, Biology, (see for example an interesting review

[1]). However, the applications goes beyond, including the study of excitation effects in Ocean Structures

[2], inverted pendulum robots [3] , a benchmark for testing control algorithms in the context of nonlinear

programming [4], and many others.

Induced stability is a solved problem known since 1908 [5], but it was in the 1950s, with Kapiza [6],

that this kind of stability was studied for the inverted pendulum system. Experimental results were obtained

in the 1960s (see for example [7]) and even nowadays this problem still remains interesting [8].

The problem goes back to India, in the legend of an Indian magician who throws a rope to the sky. Apart

from the fact a boy climbs the rope until he goes out of sight, the rope can in principle be kept suspended.

A mathematical approach that considers a chain of N−segment inverted pendulums suggests an interesting

explanation to the mystery of the Indian rope trick [9]. Given that N → ∞ describes a perfectly flexible

string, when the sum of lengths of the pendulums is fixed, Hurst showed that this chain is theoretically
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controllable even in the limit of infinite N. Actually, Acheson [10] previously showed that such N finite

linked inverted pendulums could be stabilized by parametric excitation.

The possible excitations/perturbations which may be capable of stabilizing an inverted pendulum, even

for some time, have a large number of details which are not completely understood yet. Therefore, this ap-

parent simple system, has a complexity that can be considered a challenging problem since some important

stabilization problems in Engineering, as for instance, the stability of robot arms, the stability of populations

in biology [1], or even the stabilization of photons deviation in Cosmology [11] require similar stabilization

mechanisms.

An inverted pendulum (show in in Fig. 1) free of external forces, is unstable and the punctual mass m

attached to the rigid massless rod will tend to oscillate around to the stable equilibrium position (θ = 1800),

which corresponds to the usual pendulum problem).

In order to keep the pendulum upright, cosθ > 0, the frictionless hinge that attaches the rod to the

suspension point, must vertically accelerated. Let us denote such acceleration by a(t) = z̈(t), where z(t) is

a time-dependent excitation that controls the height of the pendulum suspension point P.

Figure 1: Inverted pendulum under a support excitation z(t).

The Lagrangian of this problem can easily be written as:

L (θ , θ̇ ,z, ż) =
1

2
ml2θ̇ 2 +

1

2
mż2 −mlżθ̇ sinθ −mgl cosθ −mgz(t). (1)

It is worth emphasizing that all our results can be directly extended to an equivalent physical pendulum

making simple associations. If we additionally consider a external excitation φ(t) we can derive the motion
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equation

θ̈(t) =
g

l

(

1+
1

g
z̈(t)

)

sinθ +φ(t) (2)

from the Lagrange equations.

Now, in order to generalize, we write z(t) = zdet(t)+ zrand(t) and φ(t) = φdet(t)+ φrand(t) where sub-

scripts “det” and “rand” denote the deterministic and stochastic time-dependent parts of the excitations/perturbations

respectively. In this work, we focus our analysis into two important situations: zrand(t) = 0 and zdet(t) =

∑
n
j=1 A j cos(ω jt), i.e., parametric sinusoidal excitation in the basis and φdet(t) = 0 and φrand(t) = N(µ,σ)

that denotes an external gaussian noise with mean µ and standard deviation σ . The more appropriate choice

here is µ = 0, given that we are mainly interested in the parametric stabilization of the inverted pendulum

or in what we can call its survival time τ , which means the maximum time the pendulum remains upright

or, mathematically, the time up to condition cosθ < 0 is satisfied. The condition µ 6= 0 leads to a natural

biased motion, which is not interesting here. In this work we consider to analyze how the stability condition

is broken as function of the external noise dispersion σ .

Several authors [1, 12] have explored the case N = 1 using small angles approximation known as the

effective potential method. However, even the well known case for one cosine, N = 1, deserves, in our

opinion, some attention and alternative analysis. Therefore, firstly, we checked the literature based on

numerical integration methods in order to verify the validity of previous results in the small oscillations

regime and the initial conditions dependence, basically, the initial angle dependence. Particularly we also

use these numerical integrations to observe the breaking of the stability region predicted by perturbative

analysis and by parametric resonance (see Butikov [12]) when the external noise is turned on (i.e., φ 6= 0).

In this case we calculate the pendulum survival probability by considering different time evolutions (i.e,

different evolutions meaning different seeds). A detailed connection between N = 1 and N → ∞ is also

explored when the pendulum amplitude grows linearly with time and is also rescaled with the number of

cosines set in the parametric excitation.

In the second part of this work we analyze the superposition of two cosines, N = 2, which as far as

we are concerned has not been explored yet. This case is interesting since the period of the composition is

not always known so that the perturbative analysis is not able to describe the inverted pendulum stability

regions correctly. Given such a problem, we analyze numerically the interesting case where the amplitudes

are fixed and the frequencies: ω1 and ω2 are varied. The analytical results obtained via the effective potential

method are compared with numerical simulations. We also analyze the effects of an analysis of the stability
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breakdown considering different external noise dispersion σ in the numerical diagrams. Deviations from

small oscillations behavior were considered in our analysis.

Finally, for N > 2, we look for optimization problems on the stability probability considering an ensem-

ble of frequencies and amplitudes. The most remarkable detail in our analysis is the fact a simple choice

for the stability criterion as, cosθ > 0, overcomes more laborious methods such as Liapunov exponent or

other analysis to check stability conditions. So we organized our papers as it follows: in the next section we

describe key points for a perturbative analysis extending our formulation for arbitrary N, which is known

in literature as effective potential method. In section 3, we briefly show the numerical simulations which

were developed. Our main results are presented in section 4. Some discussions and conclusions are finally

presented in section 5.

2. Perturbative Analysis

We start our perturbative analysis by chosing the perturbative function z(t) = ∑
N
i=1 Ai cos(ωit), so that

the Eq. 2 becomes

d2θ

dt2
=

g

l

(

1− 1

g

N

∑
i=1

Aiω
2
i cos(ωit)

)

sinθ (3)

where we set up φ(t) = 0 for all t.

The last equation can be written in a more elucidative form as

··
θ =−∂U

∂θ
+F(θ) (4)

where U = g
l

cosθ and F(θ) =
..
z(t)

l
sinθ =− sinθ

l ∑
N
i=1 Aiω

2
i cos(ωit). The physical interpretation is straight-

forward here, given that U(θ) is the gravitational potential, while F(θ) is an external force due to vibrations

at the pendulum suspension point.

We start assuming that the solution of Eq. 4 can be separated into two aditive components [15], [6]:

θ(t) = θ(t)+ξ (t). (5)

We are considering that the pendulum motion is composed by a non-perturbated path θ plus a noise ξ

composed by multiple frequencies {ωi}N
i=1and amplitudes {Ai}N

i=1. Another way to think is that θ(t) has a

large amplitude but slow frequency while ξ (t) has small amplitude but fast frequency.
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By the Taylor expansions of U(θ) and F(θ) around the slow path θ , we have:

∂U

∂θ
=

∂U

∂θ

∣

∣

∣

∣

θ=θ

+
∂ 2U

∂θ 2

∣

∣

∣

∣

θ=θ

ξ +
1

2

∂ 3U

∂θ 3

∣

∣

∣

∣

θ=θ

ξ 2 + ... (6)

∂F

∂θ
= F(θ)+

∂F

∂θ

∣

∣

∣

∣

θ=θ

ξ +
∂ 2F

∂θ 2

∣

∣

∣

∣

θ=θ

ξ 2 + ...

Considering these approximations up to the first order term, we can obtain from Eq. 4 that

··
θ +

··
ξ =− ∂U

∂θ

∣

∣

∣

∣

θ=θ

− ∂ 2U

∂θ 2

∣

∣

∣

∣

θ=θ

ξ +F(θ)+
∂F

∂θ

∣

∣

∣

∣

θ=θ

ξ (7)

Now it is crucial to consider the nature of motion to distinguish the important terms in Eq. 7. The only

candidates associated with the perturbative effects on the right side of this equation are − ∂ 2U
∂θ 2

∣

∣

∣

θ=θ
ξ , F(θ),

and ∂F
∂θ

∣

∣

∣

θ=θ
ξ . Therefore, given that the terms − ∂ 2U

∂θ 2

∣

∣

∣

θ=θ
ξ and ∂F

∂θ

∣

∣

∣

θ=θ
ξ are small when compared with

F(θ) we have
··
ξ = F(θ) =−sinθ

l

N

∑
i=1

Aiω
2
i cos(ωit) (8)

By integrating the equation 8 twice with respect to time we obtain

ξ (t) =
sinθ

l

N

∑
i=1

Ai cos(ωit)+ c1t + c0 (9)

Here, c0 and c1 are arbitrary constants and must be assumed null given that we want ξ to be an oscillatory

term, so that it should not increase as a function of time. This is a constraint that can be imposed as initial

condition. For a set {ωi}N
i=1 the superposition ∑

N
i=1 Ai cos(ωit) does not necessarily results in a periodic

function. For this to occur, there must be a period T , such that: ωiT = 2niπ and ω jT = 2n jπ , for every pair

i 6= j = 1, ...,N, or simply

ωi/ω j = ni/n j, (10)

i.e., the ratio between frequencies must be a rational number where ni and n j are the smallest possible

integers, so that, ni/n j is an irreducible fraction.

Let us focus our analysis only in situations where this condition is satisfied. It is important to recall this

is a problem for which an analytical solution is not typically known. Therefore, our aim here is to derive

a stability criteria given our choices for the perturbative functions. In order to do that, we start taking a

time average of Eq. 7 and assuming that the unperturbed part are not significantly altered in a first order
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approximation. Within these assumptions we find:

··
θ ≈− ∂U

∂θ

∣

∣

∣

∣

θ=θ

+

〈

∂F

∂θ

∣

∣

∣

∣

θ=θ

ξ

〉

(11)

Where 〈·〉 denotes a time average that results in

〈

∂F
∂θ

∣

∣

∣

θ=θ
ξ
〉

= − sinθ cosθ
l2

(

∑
N
i=1 A2

i ω2
i

〈

cos2(ωit)
〉

+∑
N
i 6= j=1 AiA jω

2
i

〈

cos(ωit)cos(ω jt)
〉

)

= − sin2θ
2l2

(

1
2 ∑

N
i=1 A2

i ω2
i (

sin(2ωiT )
2T ωi

+1)+∑
N
i 6= j=1

AiA jω
2
i

T

[

sin(ωi−ω j)T

(ωi−ω j)
+

sin(ωi+ω j)T

(ωi+ω j)

])

(12)

Now, given that
··
θ =− ∂Ue f f ective

∂θ
, where

Ue f f ective =
g

l
cosθ − cos2θ

4l2

(

1

2

N

∑
i=1

A2
i ω2

i (
sin(2ωiT )

2T ωi

+1)+
N

∑
i6= j=1

AiA jω
2
i

T

[

sin(ωi −ω j)T

(ωi −ω j)
+

sin(ωi +ω j)T

(ωi +ω j)

]

)

(13)

the stability criteria, ∂ 2

∂θ 2 Ue f f ective > 0, leads to

(

1

2

N

∑
i=1

A2
i ω2

i (
sin(2ωiT )

2T ωi

+1)+
N

∑
i 6= j=1

AiA jω
2
i

2T

[

sin(ωi −ω j)T

(ωi −ω j)
+

sin(ωi +ω j)T

(ωi +ω j)

]

)

> gl (14)

where without loss of generality, we have assumed θ = 0. Here it is important to separate our analysis in

three distinct parts: N = 1, N = 2 and for an arbitrary number of cosines N > 2.

2.1. N = 1;

This case has been widely studied under different analysis [1], [12]. When N = 1, the result from Eq.

14 is simply:

A2 > A2
min =

2gl

ω2
(15)

valid in the small oscillations regime. As we will show in section 4, this stability condition is not enough to

cover all of the stability regions in a diagram ω ×A. Unfortunately, it represents only one part of the history

since there is a upper bound for the amplitude that can be observed by numerical simulations.

2.2. N = 2;

This is the simplest case where the perturbative analysis cannot be rigorously applied to all possible

situations since the periodicity of the superposition A1 cos(ω1t)+A2 cos(ω2t) depends on certain restric-

tions. As it will be shown in section 4, this case becomes particularly interesting when the amplitudes are
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set equal, that is, A1 = A2 = A. Then, we find the condition:

(

ω2
1

sin(2ω1T )

2T ω1

+ω2
2

sin(2ω2T )

2T ω2

+
2

T

(

ω2
1 +ω2

2

)

[

sin(ω1 −ω2)T

(ω1 −ω2)
+

sin(ω1 +ω2)T

(ω1 +ω2)
+

T

2

])

>
2gl

A2
.

(16)

If besides having equal amplitudes we also set ω1 ≈ ω2, then we get from Eq. 16 that the condition

A2 > A2
min/4, certainly fulfills the requirements for stabilization given a frequency ω . However, for certain

ranges of frequencies, stabilization can be attained for amplitudes A that are slightly smaller.

2.3. N > 2;

For an important and trivial case is when the frequencies are close enough ω1 ≈ ω2 ≈ ... ≈ ωN ≈ 2π
T

.

This leads to sin(ωi −ω j)T ≈ (ωi −ω j)T ≈ 0. Moreover, we also have sin2ωiT ≈ 0 for all i = 1, ...,N.

In this case we have a simplified condition: ∑
N
i=1 A2

i ω2
i > 2gl. For N asymptotically large and for a set of

frequencies such that the {ωi}N
i=1 are equally distributed according to some probability density function

f (ω) we can replace: ∑
N
i=1 Ai cos(ωit) → cos(ωt)∑

N
i=1 Ai, where cos(ωt) =

∫ ∞
0 cos(ωt) f (ω)dω denotes

the ensemble average. A standard case, could be an uniform distribution for the frequencies choosen in an

interval [ωmin,ωmax], so that:

cos(ωt) =
sin(ωmaxt)− sin(ωmint)

t (ωmax −ωmin)
(17)

Here an interesting choice is to make Ai = A(t), which leads to ∑
N
i=1 Ai = NA(t). So we have z(t) =

NA(t) sin(ωmaxt)−sin(ωmint)
t (ωmax−ωmin)

. In this case if we denote f (t|ω) = A(t)
t

sin(ωt), we have

d2 f

dt2
= Ä(t)sinωt +2Ȧ(t)

(

ω cosωt

t
− sinωt

t2

)

+ (18)

A(t)

(

2sinωt

t3
− 2ω cosωt

t2
− ω2 sinωt

t

)

.

If A(t) does not depend on time, then f (t|ω)
t→∞→ 0. There is no parametric excitation and the pendulum is

asymptotically unstable as t → ∞. An alternative is to consider a linear dependence as A(t) = Ct. In this

case, we have
d2 f

dt2 =−CNω2 sinωt +O(1
t
), and reescaling CN = aωmax:

··
z(t) =

−a ω3
max

ωmax −ωmin

sin(ωmaxt)+
a ω2

min ωmax

ωmax −ωmin

sin(ωmint) (19)

For the sake of the simplicity, let us consider ωmin = 0, so that

··
z(t) =−aω2

max sin(ωmaxt). (20)
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It is very surprising here that we recover the stability condition obtained for the case N = 1, by simply

replacing ω2 by ω2
max in eq. 15, that is:

a2 >
2gl

ω2
max

(21)

At this point, it is worth emphasizing that the time-dependent amplitude can start contributing positively

for stabilization by extending the length of time in which cosθ > 0. However this favorable effect soon

becomes undesirable since this monotonically increasing amplitude will dominates the scenario leading to

a loss of stability. Therefore, the real important question to be made here is whether the system is capable

of keeping the memory of stabilization according to eq. 21 under this amplitude normalization procedure.

We will show numerically in section 4 that such condition is preserved. However, to show that the condition

21 is held, we have to analyze the survival times instead of the survival probabilities.

3. Numerical Simulations

In this work, after a detailed observations in the numerical simulations, we defined a simple stability

criterion definition:

Definition: Given a inverted pendulum governed by eq. 2 we say that this pendulum is stable during a

window of time up to time tmax if given an initial angle −π/2 < θ0 < π/2, all θt , t = 1,2, ...tmax, obtained

by integration of the motion equations via Runge-Kutta method of fourth order satisfy:

cosθt > 0 (22)

This simple stability criterion leads to algorithms that although relatively simple they can describe the

stability mapping in the inverted pendulum problem. Basically, we consider 4 procedures in our numerical

simulations. All of them are based on a main algorithm (see Table 1) which describes a generic Runge-Kutta

procedure for the inverted pendulum problem considering as input:

a) Parametric excitation: determined by N amplitudes: A[N] : (A1, ...,AN) and N frequencies ω[N] :

(ω1, ...,ωN);

b) Maximal number o iterations in the Rung Kutta procedure: Niter – This number can or cannot be

attained depending on stability condition given by eq. 22;

c) Time interval for Runge Kutta iteration: ∆t

d) Pendulum Characteristics: g – gravity acelaration, l – pendulum lengh. In this paper was considered

g = 9.81 m/s2 and l = 1.2 m, which corresponds to a standardized broomstick lenght.

8



Main Runge Kutta Routine(N,Niter,∆t,g, l,ω[N],A∗[N],ν , f [Niter],θ0, θ̇0, i,θ )

1 input:N,Niter,∆t,g, l,ω[N],A∗[N],ν , f [Niter],θ0, θ̇0

2 output:i,θ
3 Initilizations: θ = θ0; θ̇ = θ̇0; i = 0;

4 While [(cos(θ)> 0).or.(i < Niter)] do

5 i := i+1; t := i∆t;

6 θ1 := θ ; θ̇1 = θ̇

7 For j = 1, ...,N

8 A j =
(1−v) A∗

j

N
[ 2

ω j
+ t · tan(ω jt)]+ vA∗

j

9 Endfor

10 a1 = ω2
0 [1−∑

N
j=1

A jω
2
j

g
cos(ωit)]sinθ1 + f (i)

11 θ2 := θ1 +
1
2
θ̇1∆t

12 θ̇2 := θ̇1 +
1
2
a1∆t

13 a2 = ω2
0 [1−∑

N
j=1

A jω
2
j

g
cos(ωi(t +

∆t
2
))]sinθ2 + f (i)

14 θ3 = θ1 +
1
2
θ̇2∆t

15 θ̇3 = θ̇1 +
1
2
a2∆t

16 a3 = ω2
0 [1−∑

N
j=1

A jω
2
j

g
cos(ωi(t +

∆t
2
))]sinθ3 + f (i)

17 θ4 = θ1 + θ̇3∆t

18 θ̇4 = θ̇1 +a3∆t

19 a4 = ω2
0 [1−∑

N
j=1

A jω
2
j

g
cos(ωi ∗ (t +∆t))]sinθ4 + f (i)

20 θ = θ + ∆t
6
(θ̇1 +2(θ̇2 + θ̇3)+ θ̇4)

21 θ̇ = θ̇ + ∆t
6
(a1 +2(a2 +a3)+a4)

22 EndWhile

23 Return i, θ

24 End Main Runge Kutta Routine

Table 1: Main Procedure: performs the Runge Kutta iterations for the problem considering the all possible ingredients: excitation

parameters and external noise

e) Reescaling parameter: ν– If ν = 0, the amplitudes are rescaled as Ai → t Ai

N
, elsewhere (ν = 1) they

remain unchanged.

f) External noise vector: A string with Niter random Gaussian variables with standard deviation σ and

mean zero.

g) Initial conditions: θ0 and
·
θ 0– Without lost of generality we consider

·
θ 0 = 0, i.e., the pendulum

starts from rest.

As output of this generic procedure we have:

a) Survival time: i – Time (integer number) for which the pendulum remains stable.

b) Final angle: θ –If cosθ > 0, so necessarily i = Niter, elsewhere the pendulum cannot be maintained

stable until the maximal time considered as stop criteria (Niter)
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Now, we will present all procedures used in our work by reporting specifically each one of them showing

pseudo-codes.

3.1. Procedure 1

For N = 1, we change A and ω in the respective ranges [Amin,Amax] and [ωmin,ωmax]. For σ = 0

we look for each pair (ω,A) if the pendulum stabilizes or not by calling the main procedure (sub routine):

Main Runge Kutta Routine. For σ 6= 0 we run Nrun times the program for different seeds and we calculate

the survival probability of pendulum, i.e., psurvival = nsurvival/Nrun, where nsurvival is the number of times

that system stabilizes. In our procedure 2 psurvival is denoted by probk,m since it is associated to pair (ω,A),

parametrized as ω = ωmin + k∆ω and A = Amin +m∆A, where k = 1, ...,N1 and m = 1, ...,N2 (see again the

pseudo-code– described in Table 2).

Here (and in the other procedures) H(θ) is the Heaviside function in the cosine argument:

H(θ) =







1 if cosθ > 0

0 if cosθ ≤ 0

Similarly, iaverk,m corresponds to survival time average over Nrun repetitions, which is interesting only

when σ 6= 0. It is important to notice that psurvival is either 0 or 1 when σ = 0 (in this case we make

nrun = 1 necessarily). Here idum is the seed of uniform random variables generator: rand[idum]. In this

paper we used the generator ran2 of numerical recipes [14] as well as gasdev(rand[idum]) that has as input

rand[idum]. This last routine is the Gaussian random numbers generator according to Box-Muller method

which also is described in [14].

3.2. Procedure 2

For N = 2, we fix A1 = A2 = A and we pick up ω1 and ω2 by chance. When σ = 0, for each pair

(ω1,ω2) spanned in the invervals [ω
(1)
min,ω

(1)
max] and [ω

(2)
min,ω

(2)
max] respectively, we look whether the pendulum

stabilizes or not. For σ 6= 0 we run Nrun times the program for different seeds and we estimate the pendulum

survival probability, i.e., psurvival = nsurvival/Nrun, as shown in procedure 1. This procedure can be observed

in pseudo-code described in table 3.

3.3. Procedure 3

Here we analyze the problem with arbitrary N > 2. More precisely, we analyze the effects for N → ∞

by a amplitude renormalization such that A(t)→ At
N

. It is worth notice that in doing so, we realize this is a

similar problem to N = 1, as previously described in section 2. For each selected A which varies in the range
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Procedure 1 : Diagram N = 1

Input:Amin,Amax, l,g,ωmin,ωmax,σ ,∆ω ,∆A,∆t,Niter, idum,Nrun

Parameters: N = 1,ν = 1

· N1 = (ωmax −ωmin)/∆ω;

· N2 = (Amax −Amin)/∆A;

For irun = 1,Nrun

For ic = 1, ...,Niter

fic = σ · gasdev(rand[idum])
EndFor

For k = 1,N1

For m = 1,N2

ω1 = ωmin + k∆ω

A∗
1 = Amin +m∆A

Call Main Runge Kutta Routine(N = 1,Niter,∆t,g, l,ω[N],A∗[N],ν , f [Niter],θ0, θ̇0, i,θ )

iaverk,m = iaverk,m + i/Nrun

probk,m = probk,m +H(θ)/Nrun

EndFor

EndFor

EndFor

For k = 1,N1

For m = 1,N2

f req = ωmin + k∆ω

Ampl = Amin +m∆A

Print f req,Ampl, iaverk,m, probk,m

EndFor

EndFor

End Procedure

Table 2: This procedure is used to build data for a diagram of survival probability for each pair (ω , A) considering the parametric

excitation (oscillation at the suspention) with um cossine (N = 1) and an additive (white) noise
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Procedure 2: Diagram N = 2

Input:A,l,g,ω
(1)
min,ω

(1)
max,ω

(2)
min,ω

(2)
min,σ ,∆ω ,∆t,Niter, idum,Nrun

Parameters: N = 2, A∗
1 = A; A∗

2 = A;ν = 1

· N1 = (ω
(1)
max −ω

(1)
min)/∆ω;

· N2 = (ω
(2)
max −ω

(2)
min)/∆ω;

For irun = 1,Nrun

For ic = 1, ...,Niter

fic = σ ·gasdev(rand[idum])
EndFor

For k = 1,N1

For m = 1,N2

ω1 = ω
(1)
min + k∆ω

ω2 = ω
(2)
min +m∆ω

Call Main Sub Routine(N,Niter,∆t,g, l,ω[N],A∗[N],ν , f [Niter],θ0, θ̇0, i,θ )

iaverk,m = iaverk,m + i/Nrun

probk,m = probk,m +H(θ)/Nrun

EndFor

EndFor

EndFor

For k = 1,N1

For m = 1,N2

f req1 = ω
(1)
min + k∆ω

f req2 = ω
(2)
min +m∆ω

Print f req1, f req2, iaverk,m, probk,m

EndFor

EndFor

End Procedure

Table 3: This procedure produces data for the diagram of survival probability for each pair (ω1, ω2) considering the parametric

excitation (oscillation at the suspention) with a superposition of two cosines (N = 2) and an additive (white) noise. Here the

amplitudes are A1 = A2 = A, which is also a input of the algorithm
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[Amin,Amax] according to lag ∆A, we attribute A1 = A2 = ... = AN = A and we choose N random uniform

variables ω1, ω2, ...., ωN in the interval [0,ωmax]. The value maximum frequency to be drawn ωmax, assumes

values in the interval [0,ω
sup
max] varying according to a shift ∆ω . So this procedure calls the main sub-routine

Table: 1 with ν = 0 (which makes the rescaling). Here N is an arbitrary input, since we study the effects of

N in the asymptotic limit N → ∞.

In this case, the algorithm with this rescaling, computes the survival time (the time up destabilization)

in order to compare with stabilization diagrams with N = 1. This procedure is summarized according to

pseudo-code described in table 4.

3.4. Procedure 4

Finally, we look for an optimum number of cosines N in the stabilization of the inverted pendulum.

For arbitrary N, we also perform an optimization algorithm. Given the frequencies ω1, ω2, ..., ωN and A1,

A2, ...., AN randomly chosen uniformily in the respective intervals [ωmin,ωmax] and [Amin,Amax], we search

for the number N that maximizes the stabilization probability. Therefore the algorithm run Nrun different

formulas with parametric excitation z(t) = ∑
N
i=1 Ai cos(ωit) and call the main sub-routine that solves the

Runge-Kutta for each set: {(A1,ω1), ...,(AN ,ωN)}. From that, we calculate the psurvival = nsurvival/Nrun.

The procedure also computes the average time survival for completeness, but it is not used in this work.

4. Results

First of all we start looking at the phase diagrams for N = 1, d2θ
dt2 = g

l

(

1− 1
g
Aω2 cos(ωt)

)

sinθ +ξ (t), in

Fig. 2. Here we will show that our simple stability criteria cosθ(t)> 0 is in accordance with results obtained

from literature (see for example [1][12])) which are based on perturbative analysis as shown in section 2.

Based on our stability criteria we initially integrate the equations according to algorithms described in

section 3, in order to check the main results and to verify some important points not explored in literature

yet. The results for N = 1 are also important to give insights to the other cases (N ≥ 2).

In Fig. 2 we show results of simulations starting from a small angle, θ0 = 0.018, and using frequency

ω = 15 rad/s and A = 0.17 m. In our simulations, l = 1.2 m and g = 9.81 m/s2which brings in our imagi-

nation the typical situation of a child trying to stabilize a broomstick on its hand. Other dimensions deserve

discussion for large N which will be considered in other contribution [18].

In all the following results, we have used tmax = 106 iterations and ε = ∆t = 10−5. These parameter

values were settled after the observation that for t ≥ tmax and ε ′ < ε no significant variations were detected.

Fig. (2 a) and (2 b) show the time evolution and the corresponding phase diagram respectively. In this

13



Procedure 3 : Reescaling

Input:Amin,Amax,N,l,g,ω
(sup)
max ,∆ω ,∆A,∆t,Niter, idum,Nrun

Parameters: ν = 0

· N2 = (Amax −Amin)/∆A;

· N1 = ω
(sup)
max /∆ω

For irun = 1,Nrun

For k = 1,N1

ωmax = k∆ω

For i = 1,N
ωi =rand[idum] ·ωmax

End For

For m = 1,N2

Aux = Amin +m∆A

For i = 1,N
A∗

i = Aux ·ωmax

EndFor

Call Main Sub Routine(N,Niter,∆t,g, l,ω[N],A∗[N],ν , f [Niter],θ0, θ̇0, i,θ )

iaverk,m = iaverk,m + i/Nrun

probk,m = probk,m +H(θ)/Nrun

EndFor

EndFor

EndFor

For k = 1,N1

For m = 1,N2

f req = k∆ω

Ampl = Amin +m∆A

Print f req,Ampl, iaverk,m, probk,m

EndFor

EndFor

End Procedure

Table 4: Giving a superposition of N cosines exciting the basis of pendulum, this procedure calculate the average survival time of

pendulum calling the main subroutine when the amplitudes are rescaled. The plots must recover in some instance, the plots the

standard plots for N = 1
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Procedure 4 : Optimization

Input:Amin,Amax,Nmax,l,g,ωmin,ωmax,∆ω ,∆A,∆t,Niter, idum1, idum2,Nrun

Parameters: ν = 1

For N = 1,Nmax

For irun = 1,Nrun

For i = 1,N
ωi = ωmin+rand[idum1] · (ωmax −ωmin)

Ai = Amin+rand[idum2] · (Amax −Amin)
End For

Call Main Sub Routine(N,Niter,∆t,g, l,ω[N],A∗[N],ν , f [Niter],θ0, θ̇0, i,θ )

iaverN = iaverN + i/Nrun

probN = probN +H(θ)/Nrun

EndFor

EndFor

For N = 1,Nmax

Print N, iaverN , probN

EndFor

End Procedure

Table 5: Procedure that determines the N that maximizes the probability of stabilization considering different ensemble of formulas

simulation ξ (t) = 0, so that there is not any stochastic noise. The corresponding plots to (2 a) and (2 b)

when we use the small angle approximation sinθ ≈ θ (known as Mathieu equation [19])

··
θ − g

l

(

1− 1

g
Aω2 cos(ωt)

)

θ = 0 (23)

are observed in (2 c) and (2 d) respectively.

The fact that this figure illustrates a case where the initial condition leads to a non-stable outcome is not

relevant here, since they do not satisfy eq. 15. However what call ones attention is the fact that small initial

angle leads to a different different divergence for θ(t) for large times (instability) whether the one replaces

sinθ by θ or not. The plot (2 c) is in mono-log scale since there is a exponential divergence (straight line

in this scale) which is more pronounced than in (2 a). Such aspect although seems very simple is simply

discarded by some authors in literature. The very different phase diagrams (b) and (d) obtained for these

different regimes shows even more our thesis about this topic.

In the results shown in Fig. 2, we consider a larger amplitude A = 0.50 m. Now, that Eq. 15 is satisfied,

we can see a periodic behavior for θ and
·
θ as function of time in Fig. (3 a) and now beautiful Lissajous

plot in the phase space shown in Fig. (3 b).

Differently from the Fig. 2 the plots (3c) and (3d) corresponding to small oscillations regime are here
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Figure 2: Results for time evolving and phase diagram considering θ0 = 0.018 rad, ω = 15 rad/s and A= 0.17 m. (a) Time evolving

θ and
·
θ . (b) Corresponding phase diagram

·
θ × θ (c) The corresponding Fig. (a) in small oscillations approximation sinθ ≈ θ–

Mathieu equation. (d) Corresponding phase diagram in this approximation.

omitted since there is no significant difference in the simulations.

In order to study initial angles’ effects, we analyze the phase diagram ω ×A obtained via numerical

simulations. The diagrams are shown in Fig. 4, and which they correspond to results from Procedure

1: Table 2 (in this case we make Nrun = 1). It is important to consider that Eq. 15 determines a lower

bound for amplitude: Amin =
√

2gl
ω . On the other hand, when the amplitude A is increased beyond a certain

critical value Amax, the pendulum loses its stability again [16, 17, 12] and its evolution cannot be described

by effective potential method (perturbative analysis). It is shown in Butikov [12], based in simulation

(heuristic) arguments, shows that the solution over the upper boundary of stability has a simple spectral

decomposition in only two frequencies: ω/2 and 3ω/2, such that θ(t) = A1 cos(ωt/2)+A3 cos(3ωt/2).

By using this hypotesis and substituting this solution in Eq. 23 (instead of the exact equation Eq. 2) we
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Figure 3: Results for time evolving and phase diagram considering θ0 = 0.018 rad, ω = 15 rad/s and A= 0.50 m. (a) Time evolving

θ and
·
θ . (b) Corresponding phase diagram

·
θ × θ .

have:

A < Amax =
l

4

[

√

117+232(ω0/ω)2 +80(ω0/ω)4 −9−4(ω0/ω)2

]

(24)

The solid and dashed black curves show respectively the lower (Eq. 15) and upper (Eq. 24) stability

domain boundaries. First, we see that the blue region is being destroyed as the initial angle increases, but we

need to pay attention to the way it happens. We can observe an interesting effect: there is a set of conditions

in the primary stability region that loses its stability so that the region becomes fragmented, while another

set above the upper limit becomes stable. The upper limit, established in [12], is really restricted to small

angles showing that is based in the approximated equation, which again indicates the importance of the

numerical work here. However the lower bound obtained by the effective potential is absolutely respected

(not invaded by stability region).

In Fig. 5 we show the effects of an additive random noise. We are interested in seeing how the stability
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Figure 4: Initial angle effects on the diagram phases ω ×A. The upper (solid) and lower (dashed) curves correspond respectively

to the limits established by Eqs. 15 and 24.

diagram is degraded according to the increase of noise variance. Each plot corresponds to a different

variance (σ2). So, we run procedure I (see table 2) with Nrun = 50 times with different seeds and we

calculate an interesting statistical quantity developed in the context of survival analysis, which has a wide

application in the dynamical systems framework, when we analyze the escape from an unstable fixed point

(see for example the [13]), known as survival probability and here defined by:

psurvival =
nsurvival

Nrun

(25)

where nsurvival is the number of times in which our pendulum stabilizes.

The color scale are graduated according to the psurvival-values that were obtained.

Now we focus our analysis in the case N = 2, where we make A1 = A2 = A according to Procedure II:

Table 3. The results show a rich structure as we can see in Fig 6. We illustrate two different initial angles
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Figure 5: External (additive) stochastic noise effects on the diagram phases ω ×A. The different plots correspond to different

standard deviations (σ ) of noise φ(t).

for A = 0.17 recalling that red stands for unstable regions, while blue denotes stabilization. Comparing the

figures on the left with the ones on the right (small angles approximation) we can see that it is important

to consider sinθ and not to make the approximation sinθ ≈ θ , even for very small angles θ0 = 0.018 rad

≈ 1o. We can observe a less restrictive condition ω2
1 +ω2

2 ≤ 2gl

A2 (a quarter circle, plotted in all figures),

which corresponds a condition that ω1 ≈ ω2 = ω . Exactly in diagonal the condition goes to ω2 ≤ gl

A2 ,

which asserts the diagonal line penetrating the 1/4-circle. But, we have more stability regions inside this

semi-circle which depend on the proximity of the diagonal. However for θ0 = 0.518 the system recover the

restriction and all quarter of circle is completed but not for the small angles approximation.

However, even more interesting, one should note that it is not always the case that ω1 and ω2, both

large, will lead to stabilization. We see branches of unstable regions that remind us of Arnold tongues [20]

breaking the stability sea, specially around diagonal the diagonal. It is not our task in this paper to describe
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the properties of these unstable branches, but they are certainly very rich sets of fractal dimensions [21].

This fractal structure set is deeply modified when θ0 = 0.518 but only when the numerical solution is

not performed in small angle approximations.

Figure 6: Initial angle effects N = 2. We used A = 0.17.

In the Fig. 7 we show the same simulation of Fig. 6 for a larger amplitude A = 0.34. Now we have a

larger instability region. Details of the complexity of unstable branches look less pronounced on the scale

of this figure, but it does not mean that they are not there.

In Fig. 8 we also analyze the effect of noise on the stabilization diagram similar to the case shown in

Fig. 5 for N = 1. Again, Nrun = 50 and we observe only one case one case (σ = 6), since the behavior is

similar to the case N = 1, that is, the degraded region enlarges as σ enlarges. The case A = 0.34 m is less

sensitive to degradation than A = 0.17 m.

At this point it is important to analyse the results from the perspective of the effective potential method

according to Eq. 16. Recall that we are dealing with the case of N = 2 and equal amplitudes so that Eq. 16
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Figure 7: Initial angle effects N = 2. We used A = 0.34. Similar to Fig. 6.

depends on a variable T , which must be function of ω1 and ω2 not always easily determined. So, first we

consider what we think that are reasonable choices of T as shown in Fig. 9.

It is clear from these results that the stability diagrams obtained from the effective potential approxima-

tion depends strongly on the choice of T . From all the numerical simulations, the best option is the choice

T = max(T1,T2). Another limitation of Eq. 16 is shown in Fig. 10. Here, for different amplitudes we

have the same stabilization pattern, except by the fact that the pattern is rescaled with A. On the contrary,

however, simulations show that A = 0.17 and A = 0.34 (please see again Figs. 6 and 7 have completely

different diagrams than ones which are shown in the Fig. 10. Just as in the case N = 1, we must also have

an upper limit for the amplitude A, however a formulas like Eq. 24 is beyond of our expectations.

Now let us studying the stochastic stabilization considering N > 2. Dettman, keating and Prado [11]

studied this problem in the context of stochastic stabilization of chaos. And they showed not using our

pendulum inverted equation: d2θ
dt2 = g

l

(

1− A
g ∑ω2

i cos(ωit)
)

sinθ but so d2θ
dt2 =

(

1−A∑
N
i=1 sin(ωit +ϕi)

)

θ
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Figure 8: External Noise effects for effects N = 2. Comparison for A = 0.17 and A = 0.34 for σ = 6. We consider θ0 = 0.018.

that θ pendulum should be stabilized. Indeed for this particular equation this indeed occurs. We tested this

equation with parameters used in this paper: A = 38, by changing sin by cos (to bring even more proximity

with our case) and moreover making ϕ1 = ϕ2 = ...= 0 which they did not used but which bring even more

to similarity with our case. So we also perform 100 frequencies chosen at random from [120, 600] and

we do stabilize. However this means to make g = l = 1 in our case which is not real parameters for our

problem. By making g = l = 1 we also numerically stabilize θ even considering ω2
i term in the sum which

does not appear in [11], but the same does not ocurrs with real values in our case (l = 1.2 m and g = 9.81

m/s2). The general arbitrary case ω2
0 = g/l with the presence of term ω2

i deserves an special attention and

the problem is being studied by the authors in another contribution (see [18]).

So, this negative case leads to look the problem in a alternative point of view which we presented in

section 2.

For that we consider the case for N large considering a normalization for amplitude: A(t) = Ct, with
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Figure 9: Potential effective for N = 2 according to Eq. 16. We show some choices for T . The best one (that better fits with

simulations is to consider the maximal between periods.

CN = aωmax where ω1, ω2,..., ωN are randomly chosen in interval [0,ωmax]. Here it is important to notice

that z(t) =C ∑
N
i=1 t cos(ωit), and the equations must be originally integrated by Runge-Kutta by using z̈(t) =

−2C ∑
N
i=1 ωi cos(ωit)−C ∑

N
i=1 ω2

i t sin(ωit). Such choice as previously reported must captures the case

N = 1 at least for survival time. So we perform simulations (Procedure III - Table 4) that performs a

random formula with N cosines. So we build diagrams a versus ωmax for survival time (time that pendulum

remains stable according the established condition) which can be observed in Fig. 11.

After this interesting phenomena that brings N large for N = 1, we concentrate our ideas for an inter-

esting optimization process related to stability of pendulum. What the best N for a stabilization of inverted

pendulum. This question when performed so free seems to be no interesting. However, the question is, if

we would consider an ensemble of formulas by randomly chosen ω1, ...,ωN and A1, ...,AN in the intervals

[ωmin = 0,ωmax] and [Amin = 0,Amax] by repeating Nrun = 2000 different formulas and for each choise we
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Figure 10: Potential effective for N = 2 according to Eq. 16. We show that for different amplitudes we have the same behavior

which shows that effective potential as case N = 1 has a limitation since numerically we have very different diagrams considering

A = 0.17 and A = 0.34.

observe the stability or not of the pendulum by calculating with this sample a survival probability. We used

our Procedure 4: table 5 to calculate such probability. The Fig. 12 shows the survival probability in different

situations.

The upper plot in this figure by keeping Amax = 0.17m and we plot the probability for different values

of ωmax. The different frequencies does not change the Nmax(value that maximizes the survival probability).

However the middle figure, shows that keeping ωmax fixed and by plotting the survival probabilities for

different values Amax. In this case we change the Nmax. But it is important to notice that different initial

angles does not change Nmax as reported in the lower plot in same Fig. 12.
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Figure 11: Diagram a × ωmax. Each point corresponds to survival time (necessary time for the pendulum loses its stability)

according to procedure 3. We can observe a better agreement of the points with region determined by the bounds (continuous and

dashed curves) as N enlarges. This shows that case N = 1 has the pattern captured according to the amplitude normalization if we

exchange the survival probability by the survival time.

5. Conclusions

In this paper we have detailed the study of inverted pendulum under a parametric excitation in its basis

which is described by a superposition of N cosines. In case N = 1 we explore diagrams A × ω . We show

that depending of initial conditions the effective potential method diverges from the numerical simulations,

which also occurs in N = 2 that presents an interesting diagram where stability regions are alternated with

no stability ones in a fractal structure. The diagonal ω1 = ω2 = ω has an important hole in the stability due

to the known bating problem in waves. Although the method of effective potential is extended for arbitrary

N, its applicability depends on choice of a common period existence and its utility has several limitations

by showing the necessity of Runge Kutta integration of equations which in this paper is separated in four

procedures used in each part of our manuscript and showed in details.
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For N > 2 we perform two kind of analysis: a) a discussion about stochastic stabilization and b) op-

timization of survival probability of pendulum. In this first part (a), starting from hypothesis that inverted

pendulum with real parameters cannot be stabilized for N large (this does not occur with a suitable choice

of parameters) we show that problem for N large can be reduced to N = 1 if we look for survival time,

i.e., the properties of survival time diagram which via a suitable scale in the amplitude are preserved when

compared with regular, N = 1 diagram. In second part (b) we choose randomly choose amplitudes and

frequencies in ranges and we calculate the survival probability of pendulum in order to observe the optimal

N that maximizes such probability. We have two important conclusions here by observing our numerical

studies : a) By fixing the upper limit of the frequencies chosen and changing the amplitude, Nopt depends

on amplitude b) By fixing the upper limit of the amplitude and changing frequency, Nopt remains the same.

The initial angles seems to be does not change Nopt .

We believe that many relevant questions are not completely understood and deserve more attention

in future works. As an example, whether there is a general amplitude condition capable of stabilizing

an inverted pendulum in the limit of a large number N of cosines with random frequencies by extending

the particular result obtained in [11]. In this case, will it be necessary to introduce random phases in the

modeling? Other important question is the real connection between the additive external noise and the

parametric excitation in pendulum basis. This composition of different perturbations and the emerging

phenomena by including resonance and other effects can bring more light to the problem of the control of

noise systems.
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Figure 12: Survival probability obtained according to Procedure 4. From top to bottom: First plot shows curves corresponding to

the different maximal frequencies considering the same maximal amplitude. In the second plot, we can observe the different curves

corresponding to the different maximal amplitudes with the same maximal frequency. Finally, in the third plot, effects of initial

angle is explored.
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