Available online at www.sciencedirect.com
SCIENCE @DIRECT“
PHYSICS LETTERS B

ELSEVIER Physics Letters B 588 (2004) 180—188

www.elsevier.com/locate/physletb

Charm production in diffractive deep inelastic scattering

V.P. Gongalved M.V.T. Machadg:>¢

a|ngtituto de Fisica e Mateméatica, Universidade Federal de Pelotas, Caixa Postal 354, CEP 96010-090, Pelotas, RS, Brazl
b High Energy Physics Phenomenology Group, GFPAE IF-UFRGS, Caixa Postal 15051, CEP 91501-970, Porto Alegre, RS, Brazl
¢ Theory Division, CERN, CH-1211 Geneva 23, Switzerland

Received 14 January 2004; received in revised form 3 March 2004; accepted 4 March 2004
Available online 9 April 2004
Editor: M. Cvett

Abstract

The diffractive open charm production is computed in perturbative QCD formalism and in the Regge approach. The results
are compared with recent data on charm diffractive structumetfon measured at DESY-HERA. Our results demonstrate that
this observable can be useful to discriminate the QCD dynamics.

0 2004 Published by Elsevier B.V.

1. Introduction

The study of electroproduction at smalhas lead to the improvement of our understanding of QCD dynamics
at the interface of perturbative and nonperturbative physics. In particular, the discovery of diffractive events in this
process at HERA has triggered a large amount of experimental and theoretical work and greatly increased our
knowledge of the physics of diffraction (for recent reviews Befs. [1-3]). Diffractive processes in deep-inelastic
scattering (DIS) are of particular interest, because #rd photon in the initial state gives rise to the hope that, at
least in part, the scattering amplitude can be calculated in pQCD. Moreover, DIS exhibits the nice feature of having
a colorless particle, the virtual photon, in the initial statbe main theoretical interest diffraction is centered
around the interplay between the soft and hard physics. Hard physics is associated with the well established parton
picture and perturbative QCD, and is applicable to processes for which a large scale is present. Soft dynamics on
the other hand, linked for example with the total cross section of hadron scattering, is described by nonperturbative
aspects of QCD. The ability to separate clearly the regimes dominated by soft and hard processes is essential in
exploring QCD at both quantitative and qualitative level.

Recently, we have proposed the analyzes of the slopefodiclifve structure function as a potential observable to
disentangle the leading dynamicsgatdiffractive processes [4,5]. The predictions for the behavior of this quantity
are strongly dependent of the QCD dynamics dominanhé kinematical region (for a recent discussion see
Ref. [6]). Similarly, the study of the diffractive final state can lead to further progress in the direction of obtaining a
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coherent picture of the diffraction. In particular, chgsroduction looks promising in this respect, as predictions for

this process widely differ among several models [7—1&L&htly, the ZEUS Collaboratidhas presented its results

for the measurement of the open-charm contribution to the diffractive proton structure function [12]. Consequently,

a more detailed analyzes of the models and a comparison between their predictions and the experimental data is
on time. Here the diffractive open charm production is computed in perturbative QCD formalism and in the Regge
approach. As these models are based on very distinct assumptions, it allows shed light into the leading dynamics
atep diffractive processes.

This Letter is organized as follows. In the next section, we summarize the main formulas for computation of
the open charm diffractive structure function. One presents it in the transverse momentum representation in the
perturbative QCD approach. Moreover, the diffractive production of open charm is calculated in a Regge inspired
approach, where charm is produced by boson gluon fusion and which directly depends on the gluon distribution
of the Pomeron. In the last section, we compare both approaches with current experimental measurements from
DESY-HERA collider and present our discussions and conclusion.

2. Diffractive production of open charm in deep inelastic scattering

Before introducing the main expressions needed to owutation, let us introducéne kinematical definitions
in diffractive DIS (DDIS)y*(¢) + p(P) — X (Myx)p(P’) with X being the diffractive final state. The kinematics
is defined as follows,
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whereg, P and P’ are the four-momenta of the virtual boson, the incident proton and the remnant colorless final
state, respectively. The invariant mass of the diffractive final state is labgied he variabler is the momentum
fraction of the proton carried by the partons (qusadk gluons), the Bjorken variable, and by definitioa- Sxp.

As usual,0? = —g? is the photon virtuality.

At high energiesyp may be interpreted as the fraction of the proton four-momentum carried by the diffractive
exchange, the colorless Pomeron. Pheariable is the fraction of the four-momentum of the diffractive exchange
carried by the parton interacting with the virtual boson. The diffractive structure function is defined in analogy with
the decomposition of the unpolarized tatal cross section as,
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Since the first observation of diffractive DIS at HERAeveral attempts have been made to compare the data
with the Regge and QCD-based models [14-16] (see also [17-19]). In general, these models provide a reason-

able description of the present data on the diffractive structure funﬁﬁ(ﬁ), although based on quite distinct

frameworks. Furthermore, the QCD factorization theorem has been proven to be vamﬁ (%r[ZO], with the
immediate consequence that the DGLAP evolution equafiishould describe the scaling violations observed
in this observable. However, there are no constraints on the gluon momentum distribution since the momentum
sum rule does not formally apply.

Here, we study in detail the predictions for theaom component of the diffractive structure function,

FP® cham \which is directly sensitive to the gluonic content of the Pomeron, considering two distinct approaches:

(i) a Regge inspired model [13,14], where the diffractive production is dominated by a nonperturbative Pomeron,
and the diffractive structure function is obtained using the Ingelman—Schlein ansatz [22];
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(i) a pQCD approach [15,16] where the diffractive process is modeled as the scattering of the photon Fock states
with the proton through a gluon ladder exchange (in the proton rest frame).

Below we present a brief review of the main assumptions of these models.

In the perturbative QCD framework, there are successful analysis describing the diffractive structure function
[15,16]. The underlying physical picture is that, in the proton rest frame, diffractive DIS is described by the
interaction of the photon Fock stategz(andggg configurations) with the proton through a Pomeron exchange,
modeled as a two hard gluon exchange. The corresponding structure function contains the contribggion of
production to both the longitudinal and the transverse polarization of the incoming photon and of the production
of ggg final states from transverse photons. The basic elements of this approach are the photon light-cone wave
function and the nonintegrated gluon distribution (or dipole cross section in the dipole formalism). For elementary
quark—antiquark final state, the weafunctions depend on the helicities betphoton and of the (anti)quark. For
theggg system one considers a gluon dipole, where the pair forms an effective gluon state associated in color to
the emitted gluon and only the transseiphoton polarization is ipprtant. The interaction ith the proton target is
modeled by two gluon exchange, where they couple in all possible combinations to the dipole. Then the diffractive
structure function can be written as [15,16]

k2d2k
72 (. . QZ)Nﬂ/d“f a-p7

where DY is a combination of the concerned wave functidpgs the transverse momentum of the exchanged
gluons. The functiorf (xp, lf) defines the Pomeron amplitude (nonintegrated gluon distribution) and contains all
the details concerning the coupling of thehannel gluons to the proton. Integrating it owﬁrone obtains the
conventional collinear gluon distribution.

Concerning diffractive open charm production, the exclusixair arises from the dissociation of longitu-
dinally and transversely polarized photons, as well as the production efcthetate. The diffractive structure
functions fory*p — ccp are given by [1,7,8],

2 2 2 2 2
e B dk kf+m 0
XH 1 CL(XH ﬂ Q ) < / ! ! < _@<k2— _)

21, 2
f DV (o, k) F (xp, 12)| | (3)

48Bp 1—p)2) k2 /1— 4pk2/Q? 4
{[1—ﬂ—]€2]|1 24 k2 AL } @
Q T
e? de k2ﬂ3 ) Q2 )
wlialep. 0= 5, Q2f1 B V1= 4pK2/0? (k 4/3)"” ©

where the upper limit in the integration on the quark loop is constrained b@thection. The parameteBp
is the diffractive slope, which arises by assuming a simple exponential form f¢n thependence to the process
(one usesBp = 6 GeV2 in the following). The integralgr ; on gluon transverse momentum are defined as,
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where the two-body kinematical relation has a mass term (in relation to the light quarks dipoles) and reads as
k2 = (k,2 + mf,)/(l — B). The allowed range o is different from the light dipole case as the diffractive mass

My has a lower limit defined bM§ > 4m§. For the energy scale entering in the strong coupling we will use the
prescriptionu? = 4m?2.
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In order to compute the contribution of theg component, one makes use of the diffractive factorization
property [1]. The diffractive gluon distributiog (8) will be convoluted with the corresponding charm-coefficient
functionCg (¢, 1),

1
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D 2\ 205 (ng) [ dz B mgz\ p
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where the lower limit in the integration is weighted by = 1 + 4m§/Q2 and the coefficient function is given by,
1+
Cel.r) = [0+ A=)+ 45 (L — 30)r — 822 In T—

+e[-1+8(1—¢)—4A—-0Dr], (7

with ¢, the centre-of-mass velocity of the charm quark or antiquark, givenby/1 — (4rg/1—¢).
For the diffractive gluon distribution, we use the momentum representation, which reads as [1]
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The upper limit of thek,-integration is fixed by the conditioM2 = Q2(1— 8)/B > (k; + /k? + 4m2)2?, which
impliesk? < (Q2/4)(1— B)/B.

The diffractive gluon distribution obtained above depends directly on the unintegrated gluon function.
Concerning the behavior off, an expansion in powers af?/k? [1] producesg? ~ (1/8)(1 — B)3(1 +
2B)? [ dk? [xpg(xp, k?)1?/ Kk}, whereg (xp, Q?) is the collinear gluon distribution. Therefore, the diffractive gluon
distribution has a singular behavior@t> 0 and vanishes & — 1.

In order to perform further numerical analysis, we will use the unintegrated gluon function giving by the
saturation model, which has a simple analytical form [16]. It reads as,

300/ &2 ¢2
)= 23 ) o™ - gzem ) 9
o F (xp, £7) 42\ Q% (xp) P Qalxe) s

where ant(x) = (x/x0)~*, Qsat is the saturation scale and one has used the parameters for the 4-flavor fit.
Accordingly, for the computation of thgg ¢ contribution, Eq. (9) has been properly rescaled concerning the color
charge [23].

In Fig. 1 we present how the three contributiartg, cc from transversely and longitudinally polarized photons,
contribute for theg-spectrum o’ ® "™ At small-g we have that thezg component dominates, which implies
that the fraction of charm in this regime is predicted to be the same as expected in inclusive charm production
(~ 25%). The above result agree with the theoretical exgiieets [1]. Since the mass of the quark sets a limit on
the size of the-c dipole, it becomes color transparent and one expects a strong suppression for this configuration.
On the other hand, the effectivéugn dipole, associated witttg production is not restricted in size.

Concerning the Regge inspired approaches, diffraction dissociation of virtual photons furnishes the details on
the nature of the Pomeron and on its partonic structure. As a first investigation, we follows the Capella—Kaidalov—
Merino—Tran Thanh Van (CKMT) model to diffractive DIS based on Regge theory [13,14] and the Ingelman—
Schlein ansatz, which is based on the intuitive pietaf a Pomeron flux assocéat with the proton beam and
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Fig. 1. The open charm diffractive structiftenction and its three components plotted vergier a fixedxp = 0.004 andQ? = 4 Ge\~.

on the conventional partonic description of the Pamnejphoton collision. In tis case, deep inelastic diffractive
scattering proceeds in two steps (the Regge factorization): first a Pomeron is emitted from the proton and then the
virtual photon is absorbed by a constituent of the Pomerdhgisame way as the partonic structure of the hadrons.

In the CKMT model the structure function of the Pomerdh(g, 02), is associated to the deuteron structure
function. The Pomeron is considered as a Regge pole with a trajegtéry determined from soft processes, in

which absorptive corrections (Regge cuts) are takemaotount. The diffractive contribution to DIS is written in

the factorized form,

Fy® (xp, B, 0%, 1) = f (xp, 1) Fo (B, 07), (10)
where the first factor represents the Pomeron flux from the proton and can be written as
2
[£5p D1 1 20
16r P

wheregF (1) = g% (0)exp(Cr) is the Pomeron—proton coupling, witgh (0)]? = 23 mb andC = 2.2 GeV2
[13,14]. The Regge factorization implies that thedependence is completely separated fromaghdependence,
with the behavior incp determined only by the flux factor. The valuewf(¢) in the flux is given by

fxp, 1) = (11)

ap(t) =1+ A(Q%) + o't (12)
wherea’ = 0.25 GeV2 and
N doQ? )
A(Q )_A(O)(1+ 02+ d.) (13)

with A(0) = 0.09663,dp = 1.9533 and/;, = 1.1606 [24]. TheQ? dependence of the effective Pomeron intercept

is one of the main feature of the CKMT model. It was argued in the Refs. [13,14] that this is due to the fact that
the size of the absorptierrections decreases whéR increases. This parameterization gives a good description

of all existing data ory* p total cross section in the regia®?® < 10 Ge\? [24]. At larger 0?2, effects due to QCD
evolution become important. The scﬁff is a priori not known. From a theoretical point of view, values for
A(ngf) between 0.13 and 0.24 are possible, corresponding to the effective Pomeron intercept without eikonal-
type corrections and the “bare” value, respectivelyttBealues are not excluded by the recent fit for the data
which assumes in addition to the Pomeron exchange, the contribution of a subleading Reggeon trajectory [18,19].
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Integrating Eq. (10) over, FZD ® can be put in the factorized form

F21J<3) (x. B, Q2) = f(xp) Fp(B, Qz)’ -

where f (xp) is thez-integrated Pomeron flux

Fp) = / dlt] £ (xp. 1), (15)
0

It must be stressed that since the Pomeron is not a particle the separation of the flux factor from the photon—Pomeron
cross section is quite arbitrary, and therefore the normalization of the flux is ambiguous.

The second factor in Eq. (10) is the Pomeron structure fundfioand is proportional to the virtual photon—
Pomeron cross section. In the CKMT approak(8, Q?) is determined using Regge factorization and the values
of the triple Regge couplings determined from soft diffraction data. Namely, the Pomeron structure function is
obtained fromF,’, or more precisely from the combinatidf§ = (1/2)(F5 + Fj), by replacing the Reggeon—
proton couplings by the corresponding triple Reggeon couplings (see Ref. [13] for details). The following
parametrization of the deuteron structure functI€§1 at moderate values ad? (and smallx), based on Regge
theory, was introduced,

2
fg(x,QZ)zzAxA<Q%(1-—xy“95+4(—f2—— : (16)

0%2+a
where 1+ A(Q?) is the Pomeron intercépvhich depends on the photon virtitya The Pomeron structure function
is identical toFy except for a simple changes in its parametdisis, 0?) = F{ (x — B; A — eA,n(Q?) —
n(Q?) —2). The value of in Fp is obtained from conventional triple Reggeon fits to high mass single diffraction
dissociation for soft hadronic processes. The remaining parameters are given in Refs. [13,14]. In the CKMT
approach, the gluon distribution of the Pomeron can be obtained foglawa similar way as for the quarks
discussed above. It is written as,

)1+A(Q2)

Bep (B, Q%) = el C 2@ (1 — pye, (17)

wheren, is a free parameter ang = ri,(1)/g", = 0.07, with ri, andg?, being the couplings of the Pomeron
to the Pomeron and to the deuteron, respectively. The distribution is singular tofvardd due to the powerlike
behavior driven by the Pomeron exchange. In Ref. [11], where charm diffractive production was computed,
takes values between 0 and. in order to produce a normalizable distribution, which impliesfpk 0 a singular
behavior also ap = 1. As a good description of th@? dependence of the HERA data is achieved wigh= 0

and in view that a singular behavior for largés not observed in Regge-like fitting procedures to DDIS data, we
assume this value in our analyzes.

In the Regge based approaches, the massive charm contribution arises from photon—gluon fusion. The diffractive
structure function isF”® M= F(xp) x F58(B, 0?), where f(xp) is given by Eq. (15) and the charmed
contribution to the diffractive Pomeron structure functi(ﬁ@?(ﬁ, 02), is given by folding the gluon distribution
Eq. (17) in Eqg. (6) [11]. The factorization scale is assumed equakfo i the general case, the scaling violations
of Pomeron structure function should be considered. However, a@thmnge of the HERA data considered
here is either small and the parameters in (17) have been obtaingd fer5 Ge\?, in a first approximation we
disregard the logarithmic dependence@f which is given by QCD-evolution.

Another possible approach is the QCD analysis of the diffractive structure function in terms of both Regge
phenomenology and perturbative QCD evolution as made in Ref. [18]. In this case the parton distributions of the
Pomeron are derived from QCD fits of diffractive deep &stic scattering cross sections determined at HERA. In
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particular, the diffractive structure functions is given by

FPP(0% B, xp) = fo)p(xp) Fy (Q% B) + fie)p(xp) FR (02, B), (18)

where Ff can be interpreted as the Pomeron structure function @?ﬁdas an effective Reggeon structure
function, with the restriction that it takes into account various secondary Regge contributions which can hardly
be separated. The Pomeron and Reggeon fluxes are assumed to follow a Regge behavior with linear trajectories
apr(t) =apr(0) + a@Rz, such that

Imin
eB]P?,]Rf

fe/p R p(xp) = / ——————=dt (19)

20pR(1)—1 """
X

teut TP

where|fmin| is the minimum kinematically allowed value pf andzet = —1 Ge\2 is the limit of the measurement.
The gluon distribution for the Pomeron is parameterized in terms of nonperturbative input distributions at
03 =3 Ge\? as follows

n 2
BG(B, 0% = 03) = [Zc}mpj(zz —~ 1)} et/ (=1, (20)

j=1

and similarly for the quark flavor singlet distribution. Ti®& (n) is the jth member in a set of Chebyshev
polynomials, which are chosen such thet = 1, P, = n and Pj11 = 2nP;(n) — P;_1. Here we consider
this parameterization for the gluon distribution ahe corresponding Pomeron flux (Eq. (19)) as input in our
calculations. The parameters used are from the H1 fit in Ref. [18].

3. Resultsand discussion

In the previous section, we have reviewed the formulas for the open-charm contribution to the proton diffractive
structure functions in the perturbative QCD formalism and Regge based approach. In that follows, one computes
the charm diffractive structure function considering thaifferent analysis without adiibnal parameters. In Fig. 2
one presents the results for the QCD approach (solid lines), the CKMT model (dashed and long-dashed lines) and
the QCD analysis from Royon et al. [18] (dot-dashed lines) usipg= 1.5 GeV. In particular, we consider two
possibilities for the effective Pomeron intercept0) = 1+ A(Qgﬁ), which determines thep dependence of the
Pomeron flux. Basically, we have considered the highe(Q) = 1.24) bound obtained in the HERA fit and also
an intercep?-dependent (the CKMT Pomeron).

Regarding the CKMT approach, as the parameters have been constraiggd$dr Ge\2, we initially compare
our predictions with the experimental results fof = 4 Ge\2. We have that Regge based approach agrees with
ZEUS data both in shape and overall normalization@Srdependent Pomeron intercept and/or fixged= 1.24.

For largerQ? we have that these two choices give different normalizations. However, due to the scarce data a
discrimination is still not possible. Moreover, this result can be modified by the QCD evolution, which is not
considered in our analyzes. On the other handgtlieependence predicted by the CKMT approach is consistent
with the behavior present in the experimental measurements. This result is supported by the phenomenological
analyzes from ZEUS [12], which uses a fitting procedure based on QCD factorization for diffractive DIS in order
to determine the diffractive quark and gluon distributions.

The result when using the gluon distribution from Ref. [18] is quite different from that one coming from the
CKMT model. In particular, the deviation is increasingly larger at smaknd largeQ?. Moreover, the behavior
at small 8 has changed, which becomes flat at this kinematical region. The reason for that is an almost flat
diffractive gluon distribution at smaj§ coming out of the fit of Ref. [18], whereas one has a singular behavior
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Fig. 2. The open charm difictive structure functioerD(a) charm o5 a function ofg (data from ZEUS Collaboration [12]). The solid lines

correspond to the perturbative QCD calcwdati whereas the other lines repents the results from the Regge approach. The long-dashed
curves stand for the CKMT Pomeron and the dashed ones for a fixed Poimen@ept (see text). The dot-dashed curves represents the result
using a Regge/QCD analysis from Ref. [18].

when considering the CKMT gluon distribution on the Pomeron. These results strongly indicate that the charm
diffractive production could allows us further constrain future analysis on the diffractive parton (gluon) distributions
on diffractive DIS. It should be noticed a new set of NLO DGLAP/QCD diffractive parton distributions has been
recently determined [25] (plieninary), which includes for the first timleoth experimental and model uncertainties
for the error bands of the diffractive pdf’s. There, the srgablehavior is steep in contrast with the almost flat gluon
distribution found in the fit of Ref. [18]. Therefore, it is expected the results using these new parton distributions
will modify the analysis presented here.

The perturbative QCD approach provides a steep behavigr ioncomparison with the Regge based one. In
particular, for smallg and smallxp the difference between the predats is sizeable. The main contribution in
the pQCD approach comes from th&g component, which is strongly dependent on the input for the diffractive
gluon distribution. Moreover, the implicit dependencefopresent in the upper limit of thig-integration in Eq. (8)
implies an additiongb dependence. For instance, if we assume in a first approximationgthatcp, k,z) o Ink2,
it would produce a logarithmic enhancement in this dependence. Accordingly, the numerical calculation of Eq. (8)
produces a strong growth at sma@llfor xp = 0.004 at both virtualities, either overestimating the data points.
However, the description is in agreement with data.fer= 0.02, even at highp?. It should be noticed that
the QCD evolution in the unintegrated gluon distribution may modify this scenario. Furthermore, it is important to
emphasize that the pQCD approach predicts a quadratic dependenggo@onsequently, for a typical powerlike
behavior we expect a stronger dependence than presé#m iRegge models. Therefore, a better discrimination
between the models can be obtained by increasing the data statistics and enlarging the kinematical window.

As a summary, it was shown the diffractive production of open charm is an important observable testing
QCD dynamics. ZEUS Collaboration has recently measiteiithe open charm diffractive structure function
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Fy @cham \which is extracted from charmed mesob$* (2010 production. The data demonstrate a strong

sensitivity to the diffractive parton densities. Here, we have contrasted the pQCD two-gluon exchange approach and
Regge/QCD models. For the first one, the saturation modslagnsidered in order to write down the unintegrated
gluon distribution. In this case was observed good description at laggbut a sizeable underestimation at smaller
values ofxp, mostly at smalle, is verified. Concerning Regge approach, the CKMT model gives a reasonable
data description in shape and normalization with/witho@%adependent Pomeron intercept. On the other hand,

the Regge/QCD approach of Ref. [18] provides a flat behavior at ghalhich is not consistent with the current
measurements. A comparisaith the most recent parameterizationsdiffractive pdf’s is timely. We conclude

that an increasingly experimental statistics on this process would help to constrain the diffractive gluon distribution
appearing in diffractive factorizatioparoaches and/or discriminate among several parameterizations for the gluon
distribution in the Pomeron in approaches based on Regge phenomenology.
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