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Abstract

We study the superspace formulation of the noncommutative nonlinear supersymmetricO(N) invariant sigma-model in 2+1
dimensions. We prove that the model is renormalizable to all orders of 1/N and explicitly verify that the model is asymptotically
free. 2001 Elsevier Science B.V. All rights reserved.

PACS: 11.30.Pb; 11.10.Kk; 11.10.Lm

Noncommutative field theories present many un-
usual properties. As a consequence of the noncommu-
tativity, high momentum modes do not decouple from
the physics at large distances leading to the appearance
of infrared poles even in theories without massless
particles. Being nonintegrable, these infrared singular-
ities destroy the usual perturbative expansions. This
fact has motivated many studies on the renormaliza-
tion properties of noncommutative field theories [1–
13].

Based on previous experience with commutative
field theories one may wonder if supersymmetry is
able to solve this problem without jeopardizing unitar-
ity. This has been proven to be correct for the Wess–
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Zumino model and also, at least to the subleading
order of 1/N , for the nonlinear sigma model [14,15].
In this context, the use of the superspace formalism
[16] has shown to be a very powerful tool to inves-
tigate noncommutative supersymmetric theories [17,
18]. In the present work, using superfield techniques to
accommodate the intricacies of the Moyal product, we
will demonstrate that the noncommutative nonlinear
sigma model is renormalizable to all orders of 1/N .
Furthermore, the renormalization group equations are
analyzed and we prove that the model is asymptoti-
cally free.

The action of the noncommutativeO(N) sigma
model in three-dimensional spacetime is [15,19]

S =
∫

d3x d2θ
1

2

[
ΦjD

2Φj

(1)− Σ �

(
Φj � Φj − N

g

)]
,
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whereΦi , i = 1, . . . ,N , are real superfields andΣ is
a Lagrange multiplier superfield which enforces the
constraintΦjΦj = N/g. Just for reference and to
make contact with our previous work [15], we quote
the field component expansions forΦj andΣ :

(2)Φj = ϕj + θ̄ψj + 1

2
θ̄ θFj ,

(3)Σ = σ + θ̄ ξ + 1

2
θ̄ θλ,

whereψ is aN component Majorana spinor andϕ and
F areN components scalar fields.

We are interested in a massive phase whereΣ

acquires a nonvanishing vacuum expectation value.
Thus, replacingΣ → Σ + m, wherem is the vacuum
expectation value of the originalΣ , we obtain the new
action

S =
∫

d3x d2θ
1

2

[
Φj

(
D2 − m

)
Φj

(4)− Σ �

(
Φj �Φj − N

g

)]
.

Using this expression it is straightforward to verify
that the propagator for the basic superfields is〈
Φ̃i (p1, θ1)Φ̃j (p2, θ2)

〉
(5)= i

D2 + m

p2
1 − m2

δij δ
3(p1 − p2)δ̄12,

where we have introduced the notationδ̄12 = δ(θ̄1 −
θ̄2)δ(θ1 − θ2), D2 = 1

2
�DD, the supercovariant deriva-

tive D is

(6)D = ∂

∂θ
− iθ/∂,

and �Dα = γ 0
αβDβ . The interaction vertex is given by∫

d5zΣ �Φj � Φj

=
∫

d2θ

∫
d3k1d

3k2d
3k3

(2π)9
exp

(
−i
∑
a<b

ka ∧ kb

)
× Σ̃(k3, θ)Φ̃j (k1, θ)Φ̃j (k2, θ)

× (2π)3δ(k1 + k2 + k3)

≡
∫

d2θ

∫
d3k1d

3k2

(2π)6
cos(k1 ∧ k2)

(7)× Σ̃(−k1 − k2, θ)Φ̃i (k1, θ)Φ̃i (k2, θ).

Fig. 1. Leading contribution to the two point proper function of the
Σ field. Continuous and wavy lines represent theΦ propagator and
the externalΣ field.

Here,ka ∧ kb = 1
2kaµΘ

µνkbν , Θµν is the noncommu-
tativity matrix andΦ̃i andΣ̃ denote the Fourier trans-
forms of the superfieldsΦi anΣ , respectively.

To find the effective propagator for the auxiliary
field, let us consider the supergraph shown in Fig. 1.
It is straightforward to verify that it contributes

(8)N

∫
d2θ Σ̃(k, θ)

(
D2 + 2m

)
Σ̃(−k, θ)I−1(k2),

where

(9)I−1(k2)= 1

2

∫
d3l

(2π)3

cos2(k ∧ l)

(l2 − m2)((k + l)2 − m2)
.

Using the relation [20]∫
dnk

(2π)n

eik∧p

(k2 +M2)λ

(10)= Mn/2−λ

2λ−1(2π)n/2Γ [λ]
Kn/2−λ(

√−M2p ◦ p )

(
√−p ◦ p )

n/2−λ
,

wherep ◦ p = pµ(Θ
2)µνpν , we get

I−1(k2)= i

32π

1∫
0

dx√
m2 − k2x(1− x)

×
[
1− i 4

√
4k ◦ k

(
m2 − k2x(1− x)

)
×
√

2

π
K−1/2

(11)×
(√

4k ◦ k
(
m2 − k2x(1− x)

))]
.

For largek the last term either exponentially decreases
or strongly oscillates; in both cases, its presence in
a Feynman integral will lead to a finite result. For
practical purposes, the dominant asymptotic behavior
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can be then taken as

I−1(k2)� i

32π

1∫
0

dx√
m2 − k2x(1− x)

(12)� i

32
√−k2

.

In the sequel we are going to discuss the ultraviolet
behavior of the 1/Nexpansion for the model. To that
end we find convenient to replaceI−1(k2) by the
expression

(13)I−1(k2)� i

32
√−k2 + 4m2

,

which has the same asymptotic behavior atk → ∞ as
(12). Of course, such replacement does not alter the
leading UV behavior of Feynman integrals. Proceed-
ing in this way, we obtain〈
Σ̃(k1, θ1)Σ̃(k2, θ2)

〉
= − 1

2N
I
(
k2

1

)D2 − 2m

k2
1 − 4m2

δ5
12

(14)� −16i

N

D2 − 2m√
−k2

1 + 4m2
δ3(k1 − k2)δ̄12.

The superficial degree of divergence associated to
a generic Feynman supergraphγ having, respectively,
nΦ andnΣ internalΦ andΣ lines is given by

(15)d(γ ) = 3L− 2nΦ − nΣ + ND2,

where L is the number of loops andND2 is the
maximum number ofD2 factors which turn into loop
momenta after theθ integration. Due to the properties
of theD2 derivatives [21], this number is

(16)ND2 = nΦ + nΣ −L = V − 1,

whereV is the number of vertices. Thus,

(17)d(γ ) = 2− NΣ − NΦ

2
,

whereNΣ andNΦ are number ofΣ andΦi external
lines, respectively. One should stress that (16) is
actually an upper limit on the number of available
D2 factors since, after taking oneD2 factor for each
loop, the number of those that may be converted into
momentum must be even.

Fig. 2. 1/Ncorrection to the propagator of theΦ field.

Right away one sees that there is no quadratic diver-
gences except for vacuum diagrams and, as we shall
see shortly, there are neither linear divergences; hence
this theory is free of the nonintegrable infrared diver-
gences which spoil the usual perturbative expansions.

Before embarking into the general discussion, we
shall analyze all possible cases of divergences at the
leading order of 1/N . Linear divergences may arise
in graphs having eitherNΣ = 0, NΦ = 2 or NΣ = 1,
NΦ = 0. The last situation corresponds to the tadpole
graph which, as we know, should be absent once the
massm for the Φ field has been generated. Let us
then consider the other possibility, which corresponds
to the leading radiative correction to theΦ field prop-
agator depicted in Fig. 2. By partially integrating, we
may transfer theD2 derivative from one of the prop-
agators to the other lines. However, to get a nonva-
nishing result, only one factor ofD2 may survive in
this process. Then, one of theD2 has to be transferred
to the external line and so the degree of divergence
is lowered by one. At one-loop, just a logarithmic di-
vergence may remain. Explicitly, the supergraph cor-
responds to

I1 = 16

N

∫
d3p

(2π)3
d2θ1d

2θ2 Φ̃i(−p, θ1)Φ̃i (p, θ2)

×
∫

d3k

(2π)3
cos2(k ∧ p)

(18)× (D2 − 2m)δ̄12(D
2 + m)δ̄12

((k + p)2 − m2)
√−k2 + 4m2

,

which, after the aforementionedD-algebra transfor-
mation, can be cast as

I1 = 8

N

∫
d3p

(2π)3
d2θ Φ̃i(−p, θ)

(
D2 − m

)
Φ̃i (p, θ)

(19)

×
[∫

d3k

(2π)3

1

(k2 − m2)
√−k2 + 4m2

+ fin

]
,
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(a) (b)

Fig. 3. Leading vertex corrections.

where fin indicates a finite contribution. In this Letter,
all divergent integrals are to be understood as being
dimensionally regularized. By integrating overk and
Fourier transforming with respect to the external
momentum, we obtain

(20)I1 = − 4i

π2N

∫
d5zΦi

(
D2 − m

)
Φi

(
1

ε
+ fin

)
.

Notice that in the commutative case the divergence of
theΦ propagator is the same as in (20). To finalize this
preliminary discussion, we need to consider the lead-
ing corrections to the three point function. The rele-
vant diagrams are shown in Fig. 3. The contributions
of these supergraphs are, respectively,

I3a = −16

N

∫
d3p1d

3p2

(2π)6

∫
d2θ1d

2θ2d
2θ3

× Φ̃i (p1, θ1)Φ̃i(−p2, θ2)Σ̃(p2 − p1, θ3)

× (
D2 − 2m

)
δ̄12
(
D2 + m

)
δ̄13
(
D2 + m

)
δ̄32

×
∫

d3k

(2π)3

cos(k ∧ p1)cos(k ∧ p2)√−k2 + m2 [(k + p1)2 − m2]
(21)× cos((k + p1)∧ (p1 − p2))

[(k + p2)2 −m2]
and

I3b = (16)2i

N

∫
d3p1 d

3p2

(2π)6

×
∫

d2θ1d
2θ2d

2θ3d
2θ4d

2θ5

× Φ̃i (p1, θ1)Φ̃i (−p2, θ2)Σ̃(p2 − p1, θ5)

× (
D2 + m

)
δ̄12
(
D2 − 2m

)
δ̄23
(
D2 + m

)
δ̄34

× (
D2 − 2m

)
δ̄41
(
D2 + m

)
δ̄45
(
D2 + m

)
δ̄53

×
∫

d3k d3l

(2π)6

cos(k ∧ p1)cos(k ∧ p2)√−(k + p1)2 + m2

× cos((k +p1)∧ l)cos((k + p2)∧ l)√−(k + p2)2 + m2 (k2 −m2)(l2 − m2)

(22)

× cos((k − l + p1)∧ (p1 − p2))

[(k − l + p1)2 − m2][(k − l + p2)2 − m2] .

Let us first considerI3a . It is straightforward to see that
cos(k ∧ p1)cos(k ∧ p2)cos((k + p1) ∧ (p1 − p2)) =
1
4 cos(p1 ∧ p2) + · · · , where the dots indicate terms
that depend on the internal momenta and thus will give
finite contributions. Notice also that after integrating
on θ3(
D2 − 2m

)
δ̄12
(
D2 + m

)
δ̄13
(
D2 + m

)
δ̄32

(23)−→ k2δ̄12 + · · · ,
due to the properties of the supercovariant derivatives.
As a result of these manipulations, we can isolate the
divergent part ofI3a ,

I3a = − 4

N

∫
d3p1d

3p2

(2π)6

∫
d2θ

× Φ̃(p1, θ)Φ̃i (−p2, θ)Σ̃(p2 − p1, θ)

× cos(p1 ∧ p2)

∫
d3k

(2π)3

k2

√−k2 + m2

(24)

× 1

[(k + p1)2 −m2][(k + p2)2 − m2] + · · · ,

so that the pole term is

Idiv
3a = 2i

Nπ2ε

∫
d3p1d

3p2

(2π)6

∫
d2θ Φ̃i(p1, θ)

(25)

× Φ̃i (−p2, θ)Σ̃(p2 − p1, θ)cos(p1 ∧ p2).

To obtain the corresponding divergence in the commu-
tative case one should multiply this result by two and
replace the cosine factor by one.

ConcerningI3b, first notice that

cos(k ∧ p1)cos(k ∧ p2)cos
(
(k + p1)∧ l

)
× cos

(
(k + p2)∧ l

)
cos
(
(k − l + p1) ∧ (p1 − p2)

)
(26)= 1

16
cos(p1 ∧ p2)+ · · · .
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After performing theθ integrals, supercovariant deriv-
ative manipulations furnish now(
D2 + m

)
δ̄12
(
D2 − 2m

)
δ̄23
(
D2 + m

)
δ̄34

× (
D2 − 2m

)
δ̄41
(
D2 + m

)
δ̄45
(
D2 + m

)
δ̄53

(27)−→ (k + p2)
2(k − l + p2)

2 + · · · .
Using these results, one arrives at

I3b = 16i

N

∫
d3p1d

3p2

(2π)6

∫
d2θ Φ̃i(p1, θ)Φ̃i (−p2, θ)

× Σ̃(p2 − p1, θ)cos(p1 ∧ p2)

×
∫

d3k d3l

(2π)6

(k + p2)
2(k − l + p2)

2√−(k + p1)2 + m2

× 1√−(k + p2)2 + m2 (k2 + m2)(l2 − m2)

× 1

[(k − l + p1)2 − m2][(k − l + p2)2 − m2]
(28)+ fin,

which contains the following divergent part

Idiv
3b = i

π2Nε

∫
d3p1 d

3p2

(2π)6

∫
d2θ Φ̃i(p1, θ)

(29)

× Φ̃i (−p2, θ)Σ̃(p2 − p1, θ)cos(p1 ∧ p2).

Summarizing, the divergent part of the vertex correc-
tion is

(30)SΣ = 3i

Nπ2ε

∫
d5zΣ �Φi � Φi.

In the commutative case the corresponding result is

(31)
8i

Nπ2ε

∫
d5zΣΦiΦi,

so that, in view of (20), it may be eliminated by just a
wave function renormalization of theΦ field. Unlike
the commutative case, however, the renormalization
of the vertex requires here also a wave function
renormalization for the auxiliary fieldΣ . From a
formal viewpoint, this is caused by the presence of
additional factors 1/2V−1 in the planar contributions.
These modifications are, of course, a consequence
of the specific nonlocality induced by the Moyal
products.

To complete the discussion of the renormalization
at leading order we should examine the possible

divergences associated with the four point function of
theΦ field. By power counting, the four point function
may be logarithmically divergent but this divergence
is canceled. To see how this cancellation happens,
consider the highest degree contribution in the internal
(loop) momentum. It contains fourD2 factors but
only two of them can be converted into momentum
since one of those remaining must be associated to
the loop integration to produce a nonvanishing result.
Therefore, one of theD2 factors does not contribute
to the degree of divergence which becomes less by
one than it was initially thought. Hence, the resulting
contribution is finite.

From a formal standpoint, the divergences we found
may be absorbed into field and coupling constant
redefinitions

Φi0 = Z
1/2
Φ Φi,

Σ0 = ZΣΣ,

(32)g0 = Zgg,

whereΦi0,Σ0, g0 are the bare quantities andΦi,Σ,g

the renormalized ones. From (20) we obtain

(33)ZΦ = 1+ 8

π2Nε
,

which, as mentioned earlier, is the same as in the com-
mutative case. Nevertheless, unlike the commutative
case, theZΣ renormalization constant is not trivial. In
fact, from (30) we have

(34)ZΣZΦ = 1+ 6

π2Nε
,

from which

(35)ZΣ = 1− 2

Nπ2ε
.

Zg is fixed by the mass gap equation. As this equation
is not modified by the effect of the noncommutativity,
an identical mass formula is to be expected. Indeed,
the condition thatΣ has zero vacuum expectation
value leads to

(36)
i

Zgg
+ ZΦ

∫
d3k

(2π)3

1

k2 − m2 = 0,

which after integration becomes

(37)
1

g
= −ZΦZg

m

4π
,
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fixing ZΦZg to be a finite constant. By making the
choice

(38)ZΦZg = 1− µ

m
,

we obtain

(39)
1

g
= µ

4π
− m

4π
,

in agreement with the commutative case [15,19]. From
this, it also follows that the theory is asymptotically
free, the renormalization group beta function being
given by

(40)β(g) = − µ

4π
g.

We are now in a position to prove that the model
is renormalizable at any finite order of 1/N . The
first observation is that supergraphs with two external
Σ lines have negative degree of divergence. Indeed,
the number of verticesV in such graphs is always
even, V − 1 is odd and, then, the number ofD2

factors that may be turned into momenta decreases
by one from the value specified in (16). Hence,
these supergraphs are superficially convergent. By the
same reason, all supergraphs with two externalΦ

lines are at most logarithmically divergent. Indeed,
the number of vertices is also even leading to the
conclusion that one of theD2 factors is superfluous
and cannot be converted into momentum. Thus, the
superficial degree of divergence decreases from one to
zero. Analogous reasoning applied to the four point
function of theΦ field shows that there is no overall
divergence associated to the ultraviolet behavior of the
graph as whole. We may conclude that there are at
most logarithmic divergences and, therefore, only a
mild integrable infrared singularity will appear. This
is a power counting renormalization condition, which
is necessary but not sufficient to guarantee that the
model is renormalizable. It still remains to prove
that the needed counterterms have the same Moyal
product structure of those vertices already present in
the original action. Specifically, one needs to show
that, at any given order of 1/N , the divergent parts of
the supergraphs with twoΦ and oneΣ external lines
generate a counterterm of the form

∫
d5zΣ �Φi � Φi .

This result follows from the statements:
1. Loop integrations associated to nonplanar sub-

graphs are finite. Indeed, any such (sub)graph contains

a phase factor of the form [22]

(41)Γ = V (k,p)exp

(
i

2

∑
i,j

Iij ki ∧ kj

)
,

wherek andp denote the sets of internal and external
momenta,Iij is theintersection matrix whose entries
are ±1 depending on whether the lines carrying
momentaki and kj cross from different sides and 0
otherwise. Thus, the analytic expression associated to
such nonplanar subgraph must contain a factor of the
form

(42)
∫

d3ki

(2π)3

1

(k2
i − m2)α

eiki∧l (· · ·),

where the dots indicate terms which do not depend on
ki , l is some linear combination of the external and
internal momenta, andα is either an integer or half
integer number. From (10) we see that theki integral
is finite and furthermore that thel integration will
contain a convergence factor as well. This shows that
nonplanar subgraphs are superficially convergent. An
immediate consequence of this fact is that the degree
of divergence of an arbitrary graph is determined only
by its planar subgraphs.

2. All divergent contributions associated to graphs
with NΣ = 1 and NΦ = 2 have the Moyal product
structure

∫
Σ � Φ � Φ. This result follows from the

property

cosa1 cosa2 · · ·cosan

(43)= 1

2n−1

∑
cos(a1 ± a2 · · · ± an),

where the sum is taken over all possible combinations
of the ± signs. The above expression allows one
to demonstrate that for any graph with an arbitrary
number of loops there is one planar contribution,
i.e., containing a cosine factor depending only on the
external momenta. In fact, this result holds for an
arbitrary (having any number of external lines) one-
loop graph. To see that, consider the one-loop graph
depicted in Fig. 4. From (43) we extract the following
term

cos
[
k ∧ p1 + (k + p1)∧ p2 + · · ·

(44)+ (k + p1 + · · · + pn−1) ∧ pn

]
,

which, after taking into account external momentum
conservation, turns out not to depend on the loop



H.O. Girotti et al. / Physics Letters B 521 (2001) 119–126 125

Fig. 4. One-loop contribution to the Green function.

(a)

(b)

Fig. 5. (a) Ann-loop contribution. The dashed circle stands for an
arbitrary graph. (b) The(n+ 1)-loop graph obtained by joining two
external lines through a tree structure.

momentum, as stated. We now assume that the result
holds for an arbitraryn-loop graph. We may then
increase the number of loops by one unity by joining
two external lines through a tree diagram consisting of
one line with possibly other external lines attached to
it (see Fig. 5). Using the same procedure as in the one-
loop case, we can verify again that there is one term
whose cosine factor does not depend on the new loop
momenta. This proves our statement.

As a concluding remark, we want to emphasize that,
in spite of the nonlocality of the Moyal interaction,
the noncommutative nonlinear sigma model remains
renormalizable to all orders of 1/N , as we proved.
The renormalization program is nevertheless modified
as compared with the commutative case since a renor-
malization for theΣ field is now required. Further-
more, the leading order correction, which is of or-

derN , does not depend on the noncommutativity para-
meter. This dependence occurs in the next to the lead-
ing order and it is of the form 1/

√
Θ2, hence it does

not possess a commutative limit.
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