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Abstract

The present investigation is an attempt to understand the fermion mass ratios in the framework of QED of charged fermions
without a bare mass. Since QED of massless charged fermions is invariant under the dilatation transformation, this symmetry
has to be spontaneously broken to obtain massive fermions. In the proposed model we combine a mass-scale normalisation
with the renormalisation procedure, assuming the fermion momentum space being a four-dimensional one-shell hyperboloid
embedded in a five-dimensional space. The hyperboloid constrains the allowed fermion field solutions. We construct the theory
in the conventional way using equal time anti-commutator and the Lagrangian formalism. Starting from the Dyson–Schwinger
equation for fermion propagator in the Landau gauge, we derive the fermion mass function and self-reciprocal solutions for the
mass ratios, which are independent of any constant. 2000 Published by Elsevier Science B.V.
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1. Introduction

One of the still outstanding questions is the under-
standing of the nature of fermion mass ratios of the
elementary particles. The Standard Model (for a re-
view see [1–3]), which takes into account the three
small scale relevant interactions, up to now holds quite
well against experimental tests, so that one might hope
to calculate the masses of the elementary particles on
this basis [4–7]. However, the model does not offer
any clue on how to reduce the parameter set of experi-
mentally determined values in order to genuinely shed
light on the origin of the elementary particle masses.
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A remarkable fact is that in physical theories mea-
surable quantities are in general expressed in units of
length. One has however always the freedom to choose
the unit of length which is used. A change of this
unit transforms the values of all quantities according
to their dimension, but neither changes the formalism
nor the value of any meaningful physical observable,
as these are dimensionless. This suggests that a fun-
damental symmetry of a basic theory should be the di-
latational one, but that this invariance is spontaneously
broken and therefore admits a continuous set of de-
scriptions, each of which may be characterised by the
arbitrary choice of a unit of length.

In Quantum Field Theory it is an accepted prac-
tice in renormalisation prescriptions to introduce a di-
mensional scale into the theory, thence, it is no longer
sufficient to specify the Lagrangian density, but also

0370-2693/00/$ – see front matter 2000 Published by Elsevier Science B.V.
PII: S0370-2693(00)01227-2



B.E.J. Bodmann, Th.A.J. Maris / Physics Letters B 495 (2000) 98–104 99

the scale parameter and consequently the theory is
no longer scale invariant. It appears therefore an at-
tractive idea to understand the scale parameter on a
rather natural basis, i.e., as a consequence of a sponta-
neously broken dilatation invariance. The scope of the
present discussion is to test the hypothesis of sponta-
neously broken dilatation symmetry, which is valid if
self-reciprocal fermion mass ratios may be found from
a massless theory. Hence, we combine the always nec-
essary mass-scale normalisation with the renormali-
sation procedure in a simple model of charged mass-
less leptons. We assume that the original theory is de-
fined in a 5-dimensional space and has a generalised
Lorentz and dilatation invariance. No scale of length
dimension is fixed in the original theory with its five
dimensions. There is supposed to exist a spontaneous
dilatation symmetry breaking which reduces the phys-
ical momentum-space to a four-dimensional one, con-
sisting of a connected hyper-surfaceH embedded in
a five-dimensional space. It turns out that a descrip-
tion with such a vacuum is possible and remains quite
similar to the usual four-dimensional space–time for-
malism of fermion fields but with a relativistically in-
variant momentum cutoff. We point out, that we do not
change the usual description of the space–time mani-
fold carrying the photon field. There is no quantisation
into separate points or any other structural change of
space–time. The role of the momentum hyper-surface,
to be introduced, will only be to put a symmetry condi-
tion on the allowed solutions of the fermion field equa-
tions and belongs in this sense to these equations.

The rotation and dilatation in the original 5-dimen-
sional momentum-space should give a complete man-
ifold of different but physically equivalent symmetry
relations of the 5-dimensional field theory. Each of
these solutions should correspond to a certain choice
for the unit of length. Of course, it would be ideal to
start from the formalism of the 5-dimensional theory
and to derive how a spontaneous symmetry breaking
creates such a manifold instead of imposing it. Several
trials have shown us that such a theory might well ex-
ist, but we have not yet found a satisfactory solution.
However, even the assumption that there exists a 5-
dimensional momentum space theory, which allows an
infinite set of symmetry breaking solutions with the 4-
dimensional vacua of our present model seems to lead
to interesting conclusions and we hope to find the orig-
inal 5-dimensional theory at a later time. The simple

model of charged massless leptons on the mentioned
momentum hyper-surface may then be considered a by
intuition motivated first approach, which nevertheless
is self-consistent as shown by the results.

2. Field theory on a momentum hyperboloid

First we consider the space–time symmetries of the
classical field theory of a charged massless fermion
field. Besides being gauge invariant such a theory is
invariant under theSO(4,2)-group of conformal trans-
formations, formed by the Poincaré subgroup, space–
time reflections dilatations and the special conformal
transformations. Since special conformal transforma-
tions may mix space- and time-like vectors, they are
not compatible with a Quantum Field Theory [8].
Therefore the space–time symmetries of the QED of
massless fermions, which we shall discuss, consists
only of the Poincaré transformations, reflections and
dilatations. In the momentum space this subgroup con-
sists of the local phase transformation, Lorentz trans-
formation, reflections and dilatations.

As we remarked, in nature the dilatation invariance
is broken, but the Lorentz transformations are con-
served. We shall start from momentum space instead
from space–time. The Lorentz transformations in mo-
mentum space have the usual form and we shall define
the theory of our model in a way to be translationally
invariant in space–time coordinates. Even in the very
special case of a massless QED it would be desirable
to specify the basic theory and to show how its overall
dilatation symmetry is spontaneously broken, giving
the residual symmetries of the vacuum which we shall
postulate in the following. It appears that our present
assumptions are not self contradictory and might indi-
cate the direction of the more basic theory.

As an initial approach we restrict our discussion to
the equation of the lowest order self-energy diagram.
We admit that it is difficult to formally justify the ex-
clusion of weak as well as strong interactions in higher
order diagrams, that include all kinds of vacuum polar-
isation terms and show for the simplified case, how a
model seems to allow an approximation to observed
considerably large mass ratios, which contains as the
only parameter the electromagnetic coupling constant.
To this end, we assume that the four-dimensional
energy–momentumspace for fermions is a curved one,
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namely consisting of the surface of an one-shell hyper-
boloidH , embedded in a five-dimensional space with
the usual coordinatesp0,p1,p2,p3 andp5 as an extra
one, which is the simplest possible five-dimensional
momentum space geometry in agreement with invari-
ance under combined dilatation and Lorentz transfor-
mation [9].

In the following the physical momenta have index
µ = 0, . . . ,3 and the indexα refers to 0, . . . ,3 and
5. H is defined by the relation:̂M2 = gαβpαpβ =
p2

5+p2
0−p2

1−p2
2−p2

3 =M2. Here,M signifies the
massive vacuum state selected by the spontaneously
broken symmetry fixing an arbitrary but positive mass
scale. Due to its origin this value should not enter in
any measurable quantity. The coordinates of a unique
point onH may be chosen to bepµ andı = p5/|p5| =
±1.H is invariant under the five-dimensional unitary
transformation with the generators

Mβ
α = i

(
pα

∂

∂pβ
− pβ ∂

∂pα

)
,

(1)with
[
Mβ
α ,M

γ
β

]= igββMγ
α ,

where theMν
µ’s correspond to the usual space–time

Lorentz rotations, and in the commutation relation no
sum overβ is understood. Note, that the generator’s
commutators in Eq. (1) obey besides linearity and
antisymmetry the Jacobi identity. From the remaining
Mν

5 operations, we define the space–time operators in
momentum-space representation:

xµ = 1

2

{
p−1

5 ,M
µ
5

}

(2)

= lim
ε→0

i

(
∂

∂pµ
− 1

2

{(
p5

√
1+ ε2

p2
5

)−1

,
∂

∂5

}
pµ
)
,

where {·, ·} denotes the anti-commutator, and we
have regularised the expression 1/p5. These operators
commute with each other and withpαpα and have
the usual commutation rules withMν

µ and pµ. In
contradistinction to other investigations [10,11] our
configuration space is from the start four- and not five-
dimensional. The different role ofp5 from the one
of p0 implies symmetry breaking in the original 5-
dimensional theory.

Considering the Lorentz invariance ofp5 it is also of
interest to introduce the iso-spin-like operator, which
connects the two shell halves with sign(p5)=±1 and

t3 = sign(p5)δ
4(pµ − p′µ), t1 = δ(p5 + p′5)δ4(pµ −

p′µ), t2 = it1t3. These operators onH obey the usual
iso-spin relations and commute withxµ andpµ. The
operator setM̂, xµ and t3 is complete for the five-
dimensionalpα-space. A set of eigenfunctions is given
by

〈pα|xµ = x ′µ; t3=±1; M̂ =M〉

= lim
ε→0

1

4π2
θ(±p5)

√
p2

5+ ε2

M2

(3)× e−ipµxµδ(M −√pαpα),
with 〈x ′, ,M ′|x, ı,M〉 = δ4(xµ − x ′µ)δ(M −M ′)δı .
Our basic assumption is that all fermion fields can
have only momenta located on an hyperboloidH ,
with a definite value ofM for M̂ and we shall only
consider operators which commute witĥM , i.e., keep
M invariant, in agreement with the assumption of a
spontaneously broken scale invariance. At this point
we introduce an artifice, which simplifies the calcu-
lations without affecting the results. To avoid expres-
sions of the typeδ(M −M ′), one would have to con-
sider arbitrarily narrow probability distributions ofM-
values around the valueM ′ and to integrate these in
each operation. This complicates the formalism with-
out adding anything new and we therefore take the
mean value of the possible eigenvalues ofM̂, which
form an arbitrarily dense spectrum. Theδ(M −M ′)
operator reduces then toδMM ′ , for operators with one
M-value. In the framework of spontaneously broken
symmetries,M defines the vacuum corresponding to
the broken dilatation invariance and serves therefore as
a mass unit. In the limit ofM→∞, with pµ finite,p5
simultaneously goes to infinity, which leaves us with
the conventional massless four-momentum theory.
Additionally the twofoldness looses its original mean-
ing as thep5-positive and negative halves of the hyper-
boloid become disconnected. In the four-dimensional
hyperboloid space the set ofxµ-eigenfunctions (2) is
not anymore orthogonal, as the integration over the
M-values is missing. Because of the identity

M∫
−M

p5

M
δ
(
M −√pαpα )δ(M ′ −√pαpα )dp5

(4)= δ(M −M ′)θ(M2− pµpµ
)
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which now becomesδMM ′θ(M2−pµpµ), one obtains
onH from relation (3)

〈pµ, t3= ı|x ′µt3=  〉
= (2π)−2θ

(
M2− pµpµ

)
e−ipµxµδı

and 〈x ′µ, ı|xµ 〉 =Q(x ′ − x)δı
with Q(x ′ − x)

(5)= (2π)−2
∫
eipµ(xµ−x

′
µ)θ
(
M2− pµpµ

)
d4p.

Q is a measure for the expression of the lepton local-
isation in space–time and substitutes the usualδ4(x −
x ′) function with which it has the following features
in common: Symmetry underx↔ x ′ exchange, idem-
potency, further it recovers the delta functional in the
limit of flat momentum space and

∫
Q(x − x ′) dx0=∫

Q(x − x ′) dx ′0 = δ3(Ex − Ex ′). Q is a projection op-
erator on the linear set of two component wavefunc-
tions (the constituents of the mass ratio) with a Lorentz
invariant four-momentum cutoffM, which was to be
expected from our hyperboloid definition. The basic
advantage of the five-dimensional approach over the
two component direct cutoff formalism is, that the in-
clusion of the coordinatep5 into Lorentz invariant
expressions yields a natural analyticity of the cutoff
procedure and further connects between the two field
components, which may be characterised by theirt3
eigenvalues.

We have made the basic assumption that the charged
fermion fields can have only field components in the
space defined by Eq. (3), with fixedM. The mo-
menta are in this case, for free fermions with mass
m given by the two curves withp5 = ±

√
M2−m2

on the four-dimensional hyperboloid. Thus we can
construct the theory in the conventional way, starting
from equal-time anti-commutators and the usual La-
grangian and Hamiltonian formalism are valid. The
only new effect is that we have a two component field,
corresponding to the two signs ofp5. An essential
deviation from the conventional theory becomes ap-
parent if one considers fermions interacting with the
electromagnetic field, because in theH -space no vir-
tual fermion momenta larger thanM are allowed. We
take as usual the Dirac-Lagrangian density but as-
sume forΨ (x) and its allowed variations the condi-
tion QΨi(x) =

∫
Q(x − x ′)Ψi(x ′) d4x ′ = Ψi(x) with

i =±, which is the hyperboloid hypothesis. This con-

dition does not contradict the usual equal-time anti-
commutation rules, which we assume to be true. Seen
from the point of view of the usual formulation of
field theory, our assumption implies that the Lehmann-
density of the lepton propagator vanishes for invari-
ant momentum values exceedingM. A gauge trans-
formation may be performed by using the freedom of
choosing a factor exp{iφ(x)} in the basic set of (3) of
eigenfunctions of thexµs defined in Eq. (2). In that
function space the four-momentum is represented by
(i ∂
∂xµ
− ∂φ

∂xµ
), which may as usual be interpreted as

a change ofAµ(x). Consequently, there is no contra-
diction or alteration to the established gauge theory
of quantum fields with four-dimensional momentum
space, except for the necessary momentum cutoff that
enters through momentum-space curvature.

One may develop the operator field theory in the
common way, for instance, using the interaction rep-
resentation with the interaction given by Eq. (6) and
for the Feynman propagator of the fermion one has re-
lation (7)

(6)

Sint =
∫
Ψ̄i(x)/A(x)Ψi(x) dx

≡
∫
(Ψ̄iQ)(x)/A(x)(QΨi)(x) dx,

(7)

Sij (x − x ′)=
∫
Q(x ′ − y ′)Sij (y ′ − y)
×Q(y − x) d4y d4y ′.

The photon propagator remains the original one and
the vertex is modified by the projectionQ for each
fermion leg, which by virtue prevents forbidden mo-
mentum transfers.

3. The Dyson–Schwinger equation

One may derive the Dyson–Schwinger equation for
the Fermion propagator with the help of Feynman dia-
grams, in the usual way. We take as approximation the
bare vertex, using the Landau gauge, then the/p com-
ponent of the self-energy vanishes (Refs. [3,12,13]).
Further the vacuum polarisation only is taken into ac-
count by using the experimental coupling constante.
Summing the relevant perturbation series one finds for
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the mass function,

Q(p)m±(p)=−i e2

(2π)4
Q(p)

(8)×
∫

1

(p− p′)2Q(p
′) m±(p′)
p′2−m2±(p′)

d4p′.

Except for the projection operatorsQ, this is the
common result for a two component fermion field.
Applying for |p2| < M2 the operator ∂

∂pµ

∂
∂pµ

, one
obtains for this range the differential equation(s =
p2

0− p2):

Q(+s)
(
s
d2

ds2
+ 2

d

ds

)
m±(s)

(9)=− 3e2

(4π)2
Q(+s) m±

s −m2±
(Q(+s)= θ(M2−p2

0+p2)). These are still the usual
equations (Ref. [14]), except for the cutoff ofs =
p2

0−p2 atM2. Due to the hyperboloid hypothesis for
any givenp5 there is an estimated upper limit for a
possible mass pole, sincem2�M2. In fact, the higher
|p5|<M the lower the mass pole limit becomes, and
in the limit M → ∞ the mass pole tends to zero.
Thus forM <∞ any two massive solutionsm± are
connected through the boundary condition ats =M2

or equivalentlyp5= 0.
The differential equation (9) may be transformed

in a polynomial equation for the mass with the help
of Cauchy’s integral theorem for a closed path in
the complex mass-plane around the mass pole of the
orderλ, resulting in

(10)

0= − β
2

√
s + 4b2λ+1|λ+ 2c2λ+1|λ

+ 2m2±c2λ+2|λ,

(11)bκ|λ =
κ∑
ν=0

(ν − λ)(κ − ν − λ)aνaκ−ν,

(12)cκ|λ =
κ∑
ν=0

(ν − λ)(ν − λ− 1)(κ − ν − λ)aνaκ−ν,

where the coefficientsbκ|λ and cκ|λ depend on the
Laurent expansion coefficientsaν of the mass function
around the mass pole. Note, that the appearance of

√
s

in Eq. (10) is a manifestation of the branch cut. Upon

integratings out withm2± 6 s 6M2 and using the fact
thatc2λ+2|λ ≡ 0, yields for the real mass solutions,

for λ= 1:

(13)|m±| = M√
2

√
−1+ ξ2+

√
3∓ 8ξ − 6ξ2+ 4ξ4,

for λ> 2:

(14)|m±|

= M√
2

√
−1+ ξ2+

√
(1− ξ2)2− 4(1∓ 2ξ + ξ2),

which permits to calculate the mass ratios (see Fig. 1),
where we have tacitly absorbedβ and theaνs in
one variableξ . The resulting mass ratio function
R(ξ) yields considerably large mass ratios forλ = 1,
whereas forλ > 2 the permitted range, i.e., where
the mass solution is real valued is of the order of
unity. As may be seen from Fig. 1, the regions
where large mass ratios occur is the interval sym-
metrically aroundξ = 0 as indicated by a dark bar.
For λ> 2 only the semi-open intervals (light bars)
allow for real valued solutions. For any mass ra-
tio with valid ξ the reciprocal mass ratio exists for
−ξ , which reflects the before mentionedt3 operation.
As example the self-reciprocal mass ratio solutions
(Rxy(ξ) = R−1

xy (−ξ)), for the charged leptonse,µ
and τ are given,Rµe(ξ = −0.225531) = 206.77 =
R−1
µe (ξ = 0.225531), Rτe(ξ = −0.225537)= 3491.4

= R−1
τe (ξ = 0.225537) andRτµ(ξ = −0.224727) =

16.89=R−1
τµ(ξ = 0.224727).

4. Discussion and remarks

We are completely aware of the fact, that our
model at the present status is restricted to the question
whether spontaneous dilatation symmetry breaking in
a curved momentum space may be a candidate for an
explication of the existent mass ratios. Our reasoning
is far from leading to a theory, which is applicable
to the complete set of elementary particles and their
interactions. Nevertheless, the hyperbolic momentum
configuration space of constant curvature with its large
mass parameterM already shows its physical effect,
i.e., the considerable large mass ratios, which we
regard as the meaningful result of our approach.
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Fig. 1. The self-reciprocal fermion mass ratiosR(ξ)= R−1(−ξ) are determined forλ = 1 (solid line) and forλ > 2 (dot-dashed line). The
permitted range with a real valued mass ratio is indicated by a dark bar forλ= 1 and a light bar forλ> 2.

Evidently our treatment, leaves many questions
open: We have among others neglected the vacuum
polarisation in the photon propagator. As extremely
high momenta play an important role, the influence of
this approximation should be investigated. In Ref. [14]
the vacuum polarisation was judged to be essential,
but that discussion is not applicable to our case.
We have used the Landau gauge and the important
question of gauge invariance, which we have only
briefly mentioned and should be worked out in detail
for our case. Further, only constant momentum space
curvature and QED has been taken into account. One
further step will therefore be to examine howM and
the hyperboloid are affected if non-Abelian gauge
symmetry structures are taken into account in a more
general theory.

The Goldstone theorem might seem to require in
QED with zero bare fermion mass a pseudo-scalar
zero mass boson, because of the spontaneousγ5-
symmetry breaking, however, similar problems occur
in certain versions of QCD and several ways to cir-
cumvent it there have been proposed. To us, a nat-

ural way to do this in the present case is to realise
that the conserved formalγ5-current is a highly sin-
gular quantity, which has to be renormalised. In this
self-consistent procedure functionals of the interacting
fields enter and these carry the spontaneously broken
symmetry properties. This renormalisation process
may destroy the exact current conservation. In this
way not only a symmetry but with it the corresponding
current conservation can be spontaneously broken. In
other words, in certain spontaneously broken symme-
try cases Noether’s theorem may not be valid and con-
sequently Goldstone’s theorem not applicable (see, for
instance, [15]).

In the case of a spontaneously broken symmetry
in general more descriptions of the theory are possi-
ble, each based on a different vacuum and related by
the symmetry transformation, but all giving the same
values for observables. In our case, where the dilata-
tion invariance, theγ5 invariance and thep5 reflec-
tion (= τ3) symmetry are spontaneously broken, we
found indeed the freedom to chooseM, to change the
signs of both masses, and to change the mass ratio
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from R to R−1. It is remarkable that our result does
not depend on any constant of nature. But an essential
question is now whether a better treatment of the mass
equation would give a discrete mass spectrum, which
will be a topic of future investigation together with the
question, whether a generalisation of the present ap-
proach, for instance to a more sheeted hyperboloid like
structure is possible, in order to somehow organise the
fermion generations.
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