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Abstract

The present investigation is an attempt to understand the fermion mass ratios in the framework of QED of charged fermions
without a bare mass. Since QED of massless charged fermions is invariant under the dilatation transformation, this symmetry
has to be spontaneously broken to obtain massive fermions. In the proposed model we combine a mass-scale normalisatiol
with the renormalisation procedure, assuming the fermion momentum space being a four-dimensional one-shell hyperboloid
embedded in a five-dimensional space. The hyperboloid constrains the allowed fermion field solutions. We construct the theory
in the conventional way using equal time anti-commutator and the Lagrangian formalism. Starting from the Dyson—Schwinger
equation for fermion propagator in the Landau gauge, we derive the fermion mass function and self-reciprocal solutions for the
mass ratios, which are independent of any consta®000 Published by Elsevier Science B.V.
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1. Introduction A remarkable fact is that in physical theories mea-
surable quantities are in general expressed in units of
One of the still outstanding questions is the under- length. One has however always the freedom to choose
standing of the nature of fermion mass ratios of the the unit of length which is used. A change of this
elementary particles. The Standard Model (for a re- unit transforms the values of all quantities according
view see [1-3]), which takes into account the three to their dimension, but neither changes the formalism
small scale relevant interactions, up to now holds quite nor the value of any meaningful physical observable,
well against experimental tests, so that one might hope as these are dimensionless. This suggests that a fun-
to calculate the masses of the elementary particles ondamental symmetry of a basic theory should be the di-
this basis [4—7]. However, the model does not offer latational one, but that this invariance is spontaneously
any clue on how to reduce the parameter set of experi- broken and therefore admits a continuous set of de-
mentally determined values in order to genuinely shed scriptions, each of which may be characterised by the
light on the origin of the elementary particle masses. arbitrary choice of a unit of length.
In Quantum Field Theory it is an accepted prac-
" ) tice in renormalisation prescriptions to introduce a di-
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the scale parameter and consequently the theory ismodel of charged massless leptons on the mentioned
no longer scale invariant. It appears therefore an at- momentum hyper-surface may then be considered a by
tractive idea to understand the scale parameter on aintuition motivated first approach, which nevertheless
rather natural basis, i.e., as a consequence of a spontais self-consistent as shown by the results.
neously broken dilatation invariance. The scope of the
present discussion is to test the hypothesis of sponta-
neously broken dilatation symmetry, which is valid if 2. Field theory on a momentum hyperboloid
self-reciprocal fermion mass ratios may be found from
a massless theory. Hence, we combine the always nec- First we consider the space—time symmetries of the
essary mass-scale normalisation with the renormali- classical field theory of a charged massless fermion
sation procedure in a simple model of charged mass- field. Besides being gauge invariant such a theory is
less leptons. We assume that the original theory is de- invariant under th&Q(4, 2)-group of conformal trans-
fined in a 5-dimensional space and has a generalisedformations, formed by the Poincaré subgroup, space—
Lorentz and dilatation invariance. No scale of length time reflections dilatations and the special conformal
dimension is fixed in the original theory with its five transformations. Since special conformal transforma-
dimensions. There is supposed to exist a spontaneoudions may mix space- and time-like vectors, they are
dilatation symmetry breaking which reduces the phys- not compatible with a Quantum Field Theory [8].
ical momentum-space to a four-dimensional one, con- Therefore the space—time symmetries of the QED of
sisting of a connected hyper-surfateembedded in massless fermions, which we shall discuss, consists
a five-dimensional space. It turns out that a descrip- only of the Poincaré transformations, reflections and
tion with such a vacuum is possible and remains quite dilatations. In the momentum space this subgroup con-
similar to the usual four-dimensional space—time for- sists of the local phase transformation, Lorentz trans-
malism of fermion fields but with a relativistically in-  formation, reflections and dilatations.
variant momentum cutoff. We point out, thatwe donot  As we remarked, in nature the dilatation invariance
change the usual description of the space—time mani-is broken, but the Lorentz transformations are con-
fold carrying the photon field. There is no quantisation served. We shall start from momentum space instead
into separate points or any other structural change of from space—time. The Lorentz transformations in mo-
space—time. The role of the momentum hyper-surface, mentum space have the usual form and we shall define
to be introduced, will only be to put a symmetry condi- the theory of our model in a way to be translationally
tion on the allowed solutions of the fermion field equa- invariant in space—time coordinates. Even in the very
tions and belongs in this sense to these equations. special case of a massless QED it would be desirable
The rotation and dilatation in the original 5-dimen- to specify the basic theory and to show how its overall
sional momentum-space should give a complete man- dilatation symmetry is spontaneously broken, giving
ifold of different but physically equivalent symmetry the residual symmetries of the vacuum which we shall
relations of the 5-dimensional field theory. Each of postulate in the following. It appears that our present
these solutions should correspond to a certain choiceassumptions are not self contradictory and might indi-
for the unit of length. Of course, it would be ideal to cate the direction of the more basic theory.
start from the formalism of the 5-dimensional theory ~ As an initial approach we restrict our discussion to
and to derive how a spontaneous symmetry breaking the equation of the lowest order self-energy diagram.
creates such a manifold instead of imposing it. Several We admit that it is difficult to formally justify the ex-
trials have shown us that such a theory might well ex- clusion of weak as well as strong interactions in higher
ist, but we have not yet found a satisfactory solution. order diagrams, that include all kinds of vacuum polar-
However, even the assumption that there exists a 5-isation terms and show for the simplified case, how a
dimensional momentum space theory, which allows an model seems to allow an approximation to observed
infinite set of symmetry breaking solutions with the 4- considerably large mass ratios, which contains as the
dimensional vacua of our present model seems to leadonly parameter the electromagnetic coupling constant.
to interesting conclusions and we hope to find the orig- To this end, we assume that the four-dimensional
inal 5-dimensional theory at a later time. The simple energy—momentum space for fermionsis a curved one,
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namely consisting of the surface of an one-shell hyper- 3 = sign(p5)64(pu — p;), 11 =268(ps + pg)a“(pu —
boloid H, embedded in a five-dimensional space with pL), t2 = itt3. These operators oH obey the usual
the usual coordinatgsy, p1, p2, p3 andps asanextra  iso-spin relations and commute wiify and p,,. The
one, which is the simplest possible five-dimensional operator setM, x, andr is complete for the five-
momentum space geometry in agreement with invari- dimensionap,-space. A set of eigenfunctions s given
ance under combined dilatation and Lorentz transfor- by
mation [9]. R

In the following the physical momenta have index (pqlx, = x;//ﬁ t3=x1; M = M)
uw=0,...,3 and the indexx refers to 0...,3 and
5. H is defined by the relationd? = g, p®p# = 1 pE+ €2

P4+ p§ — p§ — p5 — p5 = M?. Here,M signifies the = lImy 2720 P~z
massive vacuum state selected by the spontaneously —ipuxt g (1 = 3
broken symmetry fixing an arbitrary but positive mass xe (M =/ Pap®), )

scale. Due to its origin' this value shpuld not enter in with (<, , M'|x, 1, M) :54()6“ —X,/L)‘S(M — M5,
any measurable quantity. The coordinates of & unique o, pasic assumption is that all fermion fields can
pointon# may be chosen to bye, and: = ps/|ps| = have only momenta located on an hyperboldid
+1.His mv_arlan_t under the five-dimensional unitary with a definite value of\ for M and we shall only
transformation with the generators consider operators which commute with, i.e., keep
. 9 g 0 M invariant, in agreement with the assumption of a
( ) spontaneously broken scale invariance. At this point
_ 5 1. B we introduce an artifice, which simplifies the calcu-
with  [M}. M| =iggM]. 1) lations without affecting the results. To avoid expres-
where theM’s correspond to the usual space-time Sions of the typ@ (M — M), one would have to con-
Lorentz rotations, and in the commutation relation no Sider arbitrarily narrow probability distributions o1 -
sum overg is understood. Note, that the generator’s Values around the valu#/” and to integrate these in
commutators in Eqg. (1) obey besides linearity and each operation. This complicates the formalism with-
antisymmetry the Jacobi identity. From the remaining ©ut adding anything new and we therefore take the
M operations, we define the space—time operators in Mmean value of the possible eigenvalueshof which

momentum-space representation: form an arbitrarily dense spectrum. TheM — M’)
operator reduces then 8g,,/, for operators with one
= }{pgl, ML} M-value. In the framework of spontaneously broken
2 symmetries M defines the vacuum corresponding to
A 1 2\ 1§ u the broken dilatation invariance and serves therefore as
= lim i (@ - 5{(1’5 1+ p_g) ’ 3_5}1’ ) amass unit. In the limit o# — oo, with p,, finite, ps

@) simultaneously goes to infinity, which leaves us with

) the conventional massless four-momentum theory.
where {-,-} denotes the anti-commutator, and we aqgitionally the twofoldness looses its original mean-
have regularised the expressiofpg. These operators  jn a5 theps-positive and negative halves of the hyper-
commute with each other and with, p* and have o 5iq hecome disconnected. In the four-dimensional

the usual commutation rules withf; and p,. In hyperboloid space the set of -eigenfunctions (2) is
contradistinction to other investigations [10,11] our o anymore orthogonal, as the integration over the
configuration space is from the start four- and notfive- ;-1 1asis missing. Because of the identity

dimensional. The different role gfs from the one

of po implies symmetry breaking in the original 5-  u

dimensional theory. / PSginy— (M — S ) d
Considering the Lorentz invariancegf it is also of M ( PecP ) ( Pecp ) pe

interest to introduce the iso-spin-like operator, which ~*

connects the two shell halves with sigg) = +1 and =8(M — M"8(M? — p, p") 4)



B.E.J. Bodmann, Th.A.J. Maris / Physics Letters B 495 (2000) 98-104 101

which now become&MM/e(Mz—pup“), one obtains dition does not contradict the usual equal-time anti-

on H from relation (3) commutation rules, which we assume to be true. Seen
from the point of view of the usual formulation of
(Pu-13=1lx,13=) field theory, our assumption implies that the Lehmann-
_ -2 2 W\ —ipuxh density of the lepton propagator vanishes for invari-
= @050 (M7= pup")e P b ant momentum values exceeding. A gauge trans-
and <x//u txpg) =00 —x)8, formation may be performed by using the freedom of
with 0’ —x) choosing a factor eX{p¢ (x)} in the basic set of (3) of

_ ) eigenfunctions of ther**s defined in Eqg. (2). In that
= (Zﬂ)*zv/elp“(x‘“x“)@(Mz —pup*)d*p.  (5) function space the four-momentum is represented by
(i — %), which may as usual be interpreted as

P . axH axH
_Q is a measure fqr the expression of the lepton local- a change ofa*(x). Consequently, there is no contra-
isation in space-time and substitutes the usfial — diction or alteration to the established gauge theory

x") function with which it has the following features  of quantum fields with four-dimensional momentum
in common: Symmetry under <> x’ exchange, idem-  space, except for the necessary momentum cutoff that
potency, further it recovers the delta functional in the enters through momentum-space curvature.

limit of flat momentum space anfiQ (x — x') dxo = One may develop the operator field theory in the
[Oox —x) dxgy = 83(x — x’). Q is a projection op- common way, for instance, using the interaction rep-
erator on the linear set of two component wavefunc- resentation with the interaction given by Eq. (6) and
tions (the constituents of the mass ratio) with a Lorentz for the Feynman propagator of the fermion one has re-
invariant four-momentum cutoff/, which was to be lation (7)

expected from our hyperboloid definition. The basic
advantage of the five-dimensional approach over the
two component direct cutoff formalism is, that the in-
clusion of the coordinates into Lorentz invariant _

expressions yields a natural analyticity of the cutoff = /(‘I’i Q) ()AX)(QW)(x) dx, (6)
procedure and further connects between the two field

components, which may be characterised by thgir Sij(x —x') = / 0" —yNSi; (v —y)
eigenvalues.

Sint = /J’i(x)A(x)Wi(x)dx

We have made the basic assumption that the charged x Q(y —x)d*yd*y'. 7)
fermion fields can have only field components in the
space defined by Eq. (3), with fixes. The mo- The photon propagator remains the original one and

menta are in this case, for free fermions with mass the vertex is modified by the projectiog for each
m given by the two curves withps = /M2 — m2 fermion leg, which by virtue prevents forbidden mo-
on the four-dimensional hyperboloid. Thus we can Mmentum transfers.

construct the theory in the conventional way, starting
from equal-time anti-commutators and the usual La-
grangian and Hamiltonian formalism are valid. The
only new effect is that we have a two component field,
corresponding to the two signs gfs. An essential
deviation from the conventional theory becomes ap- One may derive the Dyson—Schwinger equation for
parent if one considers fermions interacting with the the Fermion propagator with the help of Feynman dia-
electromagnetic field, because in tHespace no vir- grams, in the usual way. We take as approximation the
tual fermion momenta larger thavl are allowed. We bare vertex, using the Landau gauge, thenytltem-
take as usual the Dirac-Lagrangian density but as- ponent of the self-energy vanishes (Refs. [3,12,13]).
sume for¥ (x) and its allowed variations the condi- Further the vacuum polarisation only is taken into ac-
tion Q¥ (x) = [ Q(x — x¥; (x)) d*x’ = W;(x) with count by using the experimental coupling constant

i = &+, which is the hyperboloid hypothesis. This con- Summing the relevant perturbation series one finds for

3. The Dyson-Schwinger equation
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the mass function,
Wi

(2 )
/)ZQ(

Q(p)m+(p) =—i———70(p)
:l:(p/) d4 /.

/ (p P2 —mZ(p)
Except for the projection operatorg, this is the

8

common result for a two component ferm|on field.

Applying for |p?| < M? the operatorap apu, one
obtains for this range the differential equatiogn=
g = p?):

2
Q(+s)( d +2j )mgs)

3e 2
= +s
T @n)? o ) "y
(Q(+s) = 0(M?— p3+ p?)). These are still the usual
equatlons (Ref. [14]) except for the cutoff ef=
po P 2 at M2. Due to the hyperboloid hypothesis for
any given ps there is an estimated upper limit for a
possible mass pole, sine€ <« M?Z. In fact, the higher

9)

|ps| < M the lower the mass pole limit becomes, and

in the limit M — oo the mass pole tends to zero.
Thus forM < oo any two massive solutiong. are
connected through the boundary conditiorns at M?

or equivalentlyps = 0

The differential equation (9) may be transformed
in a polynomial equation for the mass with the help
of Cauchy’s integral theorem for a closed path in
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integratings out withm4. < s < M2 and using the fact
thatcp; 42, = 0, yields for the real mass solutions,

fora =1:

M
Im| = 72\/—1+$2+\/3:F8$ —6£2 4454, (13)

fora>2:

Im| (14)

M\/
= J-1+e24+ /1622 — 415 2% +£2),
7 +824,/(1— 22— 41 F 2 +62)

which permits to calculate the mass ratios (see Fig. 1),
where we have tacitly absorbegl and thea,s in
one variable&é. The resulting mass ratio function
R(&) yields considerably large mass ratios foe 1,
whereas forh > 2 the permitted range, i.e., where
the mass solution is real valued is of the order of
unity. As may be seen from Fig. 1, the regions
where large mass ratios occur is the interval sym-
metrically arounds = 0 as indicated by a dark bar.
For A > 2 only the semi-open intervals (light bars)
allow for real valued solutions. For any mass ra-
tio with valid & the reciprocal mass ratio exists for
—&, which reflects the before mentionegoperation.
As example the self-reciprocal mass ratio solutions
(Rxy(&) = R, ( &€)), for the charged leptons, u
and T are glven Ry (8 = —0.22553) = 20677 =

R (g = 0.22553), R;.(§ = —0.225537 = 34914

=Rl = 0225537 and Ry, (¢ = —0.224727 =

the complex mass-plane around the mass pole of the 16 89 R, (5 0.224727.

ordera, resulting in

0= - gx/g + 4b2 413 + 2c2 4112

+ 2m3 ey (10)
K
bep = Y (0 =)k — v — D)yt (11)
v=0
K
Celp =) 0 =RV = A =Dl —v = Davac—. (12)
v=0

where the coefficients, |, and c,» depend on the
Laurent expansion coefficienis of the mass function
around the mass pole. Note, that the appearangé of

4. Discussion and remarks

We are completely aware of the fact, that our
model at the present status is restricted to the question
whether spontaneous dilatation symmetry breaking in
a curved momentum space may be a candidate for an
explication of the existent mass ratios. Our reasoning
is far from leading to a theory, which is applicable
to the complete set of elementary particles and their
interactions. Nevertheless, the hyperbolic momentum
configuration space of constant curvature with its large
mass parameteV¥l already shows its physical effect,
i.e., the considerable large mass ratios, which we

in Eqg. (10) is a manifestation of the branch cut. Upon regard as the meaningful result of our approach.
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Fig. 1. The self-reciprocal fermion mass rati#gs) = R~1(—£) are determined fok = 1 (solid line) and forA > 2 (dot-dashed line). The
permitted range with a real valued mass ratio is indicated by a dark bar=fdr and a light bar for > 2.

Evidently our treatment, leaves many questions ural way to do this in the present case is to realise
open: We have among others neglected the vacuumthat the conserved formak-current is a highly sin-
polarisation in the photon propagator. As extremely gular quantity, which has to be renormalised. In this
high momenta play an important role, the influence of self-consistent procedure functionals of the interacting
this approximation should be investigated. In Ref. [14] fields enter and these carry the spontaneously broken
the vacuum polarisation was judged to be essential, symmetry properties. This renormalisation process
but that discussion is not applicable to our case. may destroy the exact current conservation. In this
We have used the Landau gauge and the importantway not only a symmetry but with it the corresponding
question of gauge invariance, which we have only current conservation can be spontaneously broken. In
briefly mentioned and should be worked out in detail other words, in certain spontaneously broken symme-
for our case. Further, only constant momentum space try cases Noether’s theorem may not be valid and con-
curvature and QED has been taken into account. Onesequently Goldstone’s theorem not applicable (see, for
further step will therefore be to examine ha# and instance, [15]).
the hyperboloid are affected if non-Abelian gauge In the case of a spontaneously broken symmetry
symmetry structures are taken into account in a more in general more descriptions of the theory are possi-
general theory. ble, each based on a different vacuum and related by

The Goldstone theorem might seem to require in the symmetry transformation, but all giving the same
QED with zero bare fermion mass a pseudo-scalar values for observables. In our case, where the dilata-
zero mass boson, because of the spontanegus  tion invariance, thes invariance and thes reflec-
symmetry breaking, however, similar problems occur tion (= t3) symmetry are spontaneously broken, we
in certain versions of QCD and several ways to cir- found indeed the freedom to chookg to change the
cumvent it there have been proposed. To us, a nat-signs of both masses, and to change the mass ratio
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